WorldWideScience

Sample records for periodic mesoporous hydridosilica

  1. New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5.

    Science.gov (United States)

    Xie, Zhuoying; Bai, Ling; Huang, Suwen; Zhu, Cun; Zhao, Yuanjin; Gu, Zhong-Ze

    2014-01-29

    Organic functionalization of periodic mesoporous silicas (PMSs) offers a way to improve their excellent properties and wide applications owing to their structural superiority. In this study, a new strategy for organic functionalization of PMSs is demonstrated by hydrosilylation of the recently discovered "impossible" periodic mesoporous hydridosilica, meso-HSiO1.5. This method overcomes the disadvantages of present pathways for organic functionalization of PMSs with organosilica. Moreover, compared to the traditional functionalization on the surface of porous silicon by hydrosilylation, the template-synthesized meso-HSiO1.5 is more flexible to access functional-groups-loaded PMSs with adjustable microstructures. The new method and materials will have wider applications based on both the structure and surface superiorities.

  2. Isomeric periodic mesoporous organosilicas with controllable properties

    NARCIS (Netherlands)

    Vercaemst, C.; Ide, I.; Friedrich, H.; de Jong, K.P.; Verpoort, F.; van der Voort, P.

    2009-01-01

    The synthesis procedure for isomeric periodic mesoporous organosilicas with E-configured ethenylene bridges was investigated using the homemade pure E-isomer of 1,2-bis(triethoxysilyl)ethene. The pH, aging temperature and the presence of cosolvents played a key role in obtaining well-ordered

  3. Syntheses and applications of periodic mesoporous organosilica nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2015-11-06

    Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms.

  4. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    International Nuclear Information System (INIS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-01-01

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM"−"1 cm"−"2. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N_2 adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2, and a possible mechanism was also given in the paper.

  5. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang, E-mail: caowang507@163.com; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-30

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM{sup −1} cm{sup −2}. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}, and a possible mechanism was also given in the paper.

  6. Designing advanced functional periodic mesoporous organosilicas for biomedical applications

    Directory of Open Access Journals (Sweden)

    Dolores Esquivel

    2014-03-01

    Full Text Available Periodic mesoporous organosilicas (PMOs, reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity and physical properties (morphology, porosity as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

  7. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen

    2017-12-28

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  8. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen; Francis, Lijo; Croissant, Jonas; Ghaffour, NorEddine; Alsaiari, Shahad; Khashab, Niveen M.

    2017-01-01

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  9. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Science.gov (United States)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  10. Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake.

    Science.gov (United States)

    Teng, Zhaogang; Wang, Chunyan; Tang, Yuxia; Li, Wei; Bao, Lei; Zhang, Xuehua; Su, Xiaodan; Zhang, Fan; Zhang, Junjie; Wang, Shouju; Zhao, Dongyuan; Lu, Guangming

    2018-01-31

    Mesoporous solids have been widely used in various biomedical areas such as drug delivery and tumor therapy. Although deformability has been recognized as a prime important characteristic influencing cellular uptake, the synthesis of deformable mesoporous solids is still a great challenge. Herein, deformable thioether-, benzene-, and ethane-bridged hollow periodic mesoporous organosilica (HPMO) nanocapsules have successfully been synthesized for the first time by a preferential etching approach. The prepared HPMO nanocapsules possess uniform diameters (240-310 nm), high surface areas (up to 878 m 2 ·g -1 ), well-defined mesopores (2.6-3.2 nm), and large pore volumes (0.33-0.75 m 3 ·g -1 ). Most importantly, the HPMO nanocapsules simultaneously have large hollow cavities (164-270 nm), thin shell thicknesses (20-38 nm), and abundant organic moiety in the shells, which endow a lower Young's modulus (E Y ) of 3.95 MPa than that of solid PMO nanoparticles (251 MPa). The HPMOs with low E Y are intrinsically flexible and deformable in the solution, which has been well-characterized by liquid cell electron microscopy. More interestingly, it is found that the deformable HPMOs can easily enter into human breast cancer MCF-7 cells via a spherical-to-oval morphology change, resulting in a 26-fold enhancement in cellular uptake (43.1% cells internalized with nanocapsules versus 1.65% cells with solid counterparts). The deformable HPMO nanocapsules were further loaded with anticancer drug doxorubicin (DOX), which shows high killing effects for MCF-7 cells, demonstrating the promise for biomedical applications.

  11. Aminopropyl-functionalized ethane-bridged periodic mesoporous organosilica spheres: preparation and application in liquid chromatography.

    Science.gov (United States)

    Li, Chun; Di, Bin; Hao, Weiqiang; Yan, Fang; Su, Mengxiang

    2011-01-21

    A synthetic approach for synthesizing spherical aminopropyl-functionalized ethane-bridged periodic mesoporous organosilicas (APEPMOs) is reported. The mesoporous material was prepared by a one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) and 3-aminopropyltriethoxysilane (APTES) using cetyltrimethylammonium chlorine (C(18)TACl) as a template with the aid of a co-solvent (methanol) in basic medium. The APEPMOs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. It was shown that this material exhibited spherical morphology, ordered cubic mesostructure and good mechanical strength. The APEPMOs were tested as a potential stationary phase for liquid chromatography (LC) because the column exhibited reduced back pressure. Moreover, they exhibited good chemical stability in basic mobile phase, which can be ascribed to the ethane groups in the mesoporous framework. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires

    KAUST Repository

    Fatieiev, Yevhen; Croissant, Jonas G.; Alamoudi, Kholod; Khashab, Niveen M.

    2017-01-01

    This work describes the sol-gel syntheses of para-substituted phenylene-bridged periodic mesoporous organosilica (PMO) nanoparticles (NPs) with tunable morphologies ranging from nanowires to nanospheres. The findings show the key role

  13. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-12-01

    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  14. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  15. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    Science.gov (United States)

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Assembling photoluminescent tri(8-quinolinolato)aluminum into periodic mesoporous organosilicas.

    Science.gov (United States)

    Yang, Ying; Zhang, Xin; Kan, Qiubin

    2013-12-01

    Mesostructured and mesoporous materials are emerging as a new class of optical materials. However, their synthesis is nontrivial. In this work, periodic mesostructured metal complex-containing silicas of MCM- and SBA-type bearing homogeneously distributed photoluminescent tri(8-quinolinolato)aluminum inside the channel walls (denoted as Alq3@PMO-MCM and Alq3@PMO-SBA, respectively) have been achieved via one-pot co-assembling of inorganic/surfactant/optically active species. A comprehensive multianalytical characterization of the structural and optical properties demonstrates that both Alq3@PMO-MCM and Alq3@PMO-SBA series gainfully combine the photoluminescent properties of Alq3 with the porous features of PMOs. Regularly arranged pores provide high surface area to disperse optically active components well and render Alq3-containing PMOs promising materials for optoelectronic applications. Copyright © 2013. Published by Elsevier Inc.

  17. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu

    2012-05-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review gives an introduction to recently developed mesoporous silicas with emphasis on their complicated structures and synthesis mechanisms. In addition, two powerful techniques for solving complex mesoporous structures, electron crystallography and electron tomography, are compared to elucidate their respective strength and limitations. Some critical issues and challenges regarding the development of novel mesoporous structures as well as their applications are also discussed. © 2011 Elsevier Ltd.

  18. Periodically Arranged Arrays of Dendritic Pt Nanospheres Using Cage-Type Mesoporous Silica as a Hard Template.

    Science.gov (United States)

    Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke

    2018-01-04

    Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating

    Directory of Open Access Journals (Sweden)

    Jiri Hromadka

    2017-02-01

    Full Text Available A long period grating (LPG modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs, along with an organic moiety of poly(allylamine hydrochloride polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4] or p-sulphanato calix[8]arene (CA[8]. The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006 was used to test the LPG sensor performance.

  20. Synthesis of coesite nanocrystals from ethane bridged periodic mesoporous organosilica at low temperature and extreme pressure.

    Science.gov (United States)

    Liang, Zhili; Mohanty, Paritosh; Fei, Yingwei; Landskron, Kai

    2010-12-14

    Coesite nanocrystals have been synthesized from periodic mesoporous organosilica (PMO) with (CH(2))(2) bridges heated at 300 °C for 150 min and 12 GPa. The crystals are not sintered, single crystalline, and have diameters of ca. 100-300 nm. Below 300 °C, an amorphous non-porous organosilica glass was obtained. Heating above 300 °C at 12 GPa results in the rapid crystal growth and micron size coesite crystals were formed.

  1. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32054, Taiwan (China)

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  2. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    International Nuclear Information System (INIS)

    Dutta, Saikat; Wu, Kevin C.-W.; Kao, Hsien-Ming

    2014-01-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13 C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed

  3. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  4. Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires

    KAUST Repository

    Fatieiev, Yevhen

    2017-01-10

    This work describes the sol-gel syntheses of para-substituted phenylene-bridged periodic mesoporous organosilica (PMO) nanoparticles (NPs) with tunable morphologies ranging from nanowires to nanospheres. The findings show the key role of the addition of organic co-solvents in the aqueous templates on the final morphologies of PMO NPs. Other factors such as the temperature, the stirring speed, and the amount of organic solvents also influence the shape of PMO NPs. The tuning of the shape of the PMO nanomaterials made it possible to study the influence of the particle morphology on the cellular internalization and biocompatibility.

  5. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  6. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  7. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu; Zhang, Daliang

    2012-01-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review

  8. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  9. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wanyika, Harrison, E-mail: hwanyika@gmail.com [Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry (Kenya)

    2013-08-15

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol-gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil.

  10. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres

    International Nuclear Information System (INIS)

    Wanyika, Harrison

    2013-01-01

    The use of nanomaterials for the controlled delivery of pesticides is nascent technology that has the potential to increase the efficiency of food production and decrease pollution. In this work, the prospect of mesoporous silica nanoparticles (MSN) for storage and controlled release of metalaxyl fungicide has been investigated. Mesoporous silica nanospheres with average particle diameters of 162 nm and average pore sizes of 3.2 nm were prepared by a sol–gel process. Metalaxyl molecules were loaded into MSN pores from an aqueous solution by a rotary evaporation method. The loaded amount of metalaxyl as evaluated by thermogravimetric analysis was about 14 wt%. Release of the fungicide entrapped in the MSN matrix revealed sustained release behavior. About 76 % of the free metalaxyl was released in soil within a period of 30 days while only 11.5 and 47 % of the metalaxyl contained in the MSN carrier was released in soil and water, respectively, within the same period. The study showed that MSN can be used to successfully store metalaxyl molecules in its mesoporous framework and significantly delay their release in soil

  11. Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko

    2015-02-01

    MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.

  12. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  13. Identification and quality assessment of beverages using a long period grating fibre-optic sensor modified with a mesoporous thin film

    Directory of Open Access Journals (Sweden)

    Sergiy Korposh

    2014-08-01

    Full Text Available In this study, an optical fibre long period grating (LPG sensor functionalised with a mesoporous thin film was employed for the identification and quality assessment of beverages. The principle of the discrimination of beverages using an LPG sensor is based on the measurement of the change in refractive index of a sensitive film, induced by the binding of the chemical compounds present in the beverage. The sensitive film deposited onto the LPG consisted of poly(allylamine hydrochloride (PAH and silica nanospheres (SiO2 NPs with diameters ranging from 40 nm to 50 nm. PAH imparts selectivity, while the SiO2 NPs endow the film with high porosity and enhanced sensitivity. In this study, five different types of beverages, red and white wines, brandy, nihonshyu (sake, a Japanese rice wine, and shochu (a Japanese distilled beverage, prepared via distillation and fermentation, were used to assess the capability of the sensor to identify the origin of the beverages. In addition, a selection of red wines was used to evaluate the use of the sensor in the assessment of the quality of beverages. The results obtained were benchmarked against those obtained using gas chromatography–mass spectrometry for the determination of volatile compounds contributing to the flavours of a set of red wines. Principal component analysis (PCA was employed for data analysis. This approach enabled both quality assessment of beverages and identification of the methods and materials used for their preparation. Keywords: Long period grating, Mesoporous thin film, Layer-by-layer, Quality assessment, Beverages

  14. Synthesis and characterization of alkyl-imidazolium-based periodic mesoporous organosilicas: a versatile host for the immobilization of perruthenate (RuO4-) in the aerobic oxidation of alcohols.

    Science.gov (United States)

    Karimi, Babak; Elhamifar, Dawood; Yari, Omolbanin; Khorasani, Mojtaba; Vali, Hojatollah; Clark, James H; Hunt, Andrew J

    2012-10-15

    The preparation and characterization of a set of periodic mesoporous organosilicas (PMOs) that contain different fractions of 1,3-bis(3-trimethoxysilylpropyl)imidazolium chloride (BTMSPI) groups uniformly distributed in the silica mesoporous framework is described. The mesoporous structure of the materials was characterized by powder X-ray diffraction, transmission electron microscopy, and N(2) adsorption-desorption analysis. The presence of propyl imidazolium groups in the silica framework of the materials was also characterized by solid-state NMR spectroscopy and diffuse-reflectance Fourier-transform infrared spectroscopy. The effect of the BTMSPI concentration in the initial solutions on the structural properties (including morphology) of the final materials was also examined. The total organic content of the PMOs was measured by elemental analysis, whereas their thermal stability was determined by thermogravimetric analysis. Among the described materials, it was found that PMO with 10% imidazolium content is an effective host for the immobilization of perruthenate through an ion-exchange protocol. The resulting Ru@PI-10 was then employed as a recyclable catalyst in the highly efficient aerobic oxidation of various types of alcohols. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  16. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  17. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  18. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  19. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  20. Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure

    KAUST Repository

    Yates, Matthew D.

    2014-06-04

    © 2014 Wiley Periodicals, Inc. Actively respiring biofilms of Geobacter sulfurreducens were used as a biotemplate to form a palladium mesoporous layer directly on an electrode surface. Cells and proteins within the biofilm acted as the reductant and stabilizer to facilitate the reduction, dispersion, and attachment of palladium nanoparticles to the electrode surface without using synthetic chemicals. © 2014 Wiley Periodicals, Inc. Mesoporous structures can increase catalytic activity by maximizing the ratio of surface area to volume, but current synthesis techniques utilize expensive polymers and toxic chemicals. A Geobacter sulfurreducens biofilm was used as a sustainable template to form mesoporous Pd structures while eliminating the need for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle formation, producing a catalytic Pd mesoporous (pore size 9.7±0.1nm) structure attached to the graphite electrode with a 1.5-2μm thick backbone composed of nanoparticles (~200nm). A control electrode electrochemically plated with Pd in the absence of a biofilm exhibited a variable planar Pd base (~0.5-3μm thick) with sporadic Pd extrusions (~2μm across, 1-5μm tall) from the surface. The biotemplated mesoporous structure produced 15-20% higher stable current densities during H2 oxidation tests than the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst. These results indicate that electroactive biofilms can be used as a sustainable base material to produce nanoporous structures without the need for synthetic polymers. Biotechnol. Bioeng. 2014;111: 2349-2354.

  1. Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure

    KAUST Repository

    Yates, Matthew D.; Cusick, Roland D.; Ivanov, Ivan; Logan, Bruce E.

    2014-01-01

    © 2014 Wiley Periodicals, Inc. Actively respiring biofilms of Geobacter sulfurreducens were used as a biotemplate to form a palladium mesoporous layer directly on an electrode surface. Cells and proteins within the biofilm acted as the reductant and stabilizer to facilitate the reduction, dispersion, and attachment of palladium nanoparticles to the electrode surface without using synthetic chemicals. © 2014 Wiley Periodicals, Inc. Mesoporous structures can increase catalytic activity by maximizing the ratio of surface area to volume, but current synthesis techniques utilize expensive polymers and toxic chemicals. A Geobacter sulfurreducens biofilm was used as a sustainable template to form mesoporous Pd structures while eliminating the need for synthetic chemicals. The bulk of the biofilm material was removed by thermal treatments after nanoparticle formation, producing a catalytic Pd mesoporous (pore size 9.7±0.1nm) structure attached to the graphite electrode with a 1.5-2μm thick backbone composed of nanoparticles (~200nm). A control electrode electrochemically plated with Pd in the absence of a biofilm exhibited a variable planar Pd base (~0.5-3μm thick) with sporadic Pd extrusions (~2μm across, 1-5μm tall) from the surface. The biotemplated mesoporous structure produced 15-20% higher stable current densities during H2 oxidation tests than the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst. These results indicate that electroactive biofilms can be used as a sustainable base material to produce nanoporous structures without the need for synthetic polymers. Biotechnol. Bioeng. 2014;111: 2349-2354.

  2. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    Science.gov (United States)

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Gyroidal mesoporous carbon materials and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Ulrich B.; Werner, Joerg G.

    2017-07-25

    The present invention relates to, inter alia, gyroidal mesoporous carbon materials and methods of use and manufacture thereof. In one embodiment, the present invention relates to a mesoporous carbon composition comprising a gyroidal mesoporous carbon having an ordered gyroidal structure and mesopores having a pore size of greater than 2 nanometers (nm) in diameter, and more particularly greater than 11 nm in diameter.

  4. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Jing; Wang, Jie; Wang, Cong-Xiao; Xia, Yong-Yao [Department of Chemistry and Shanghai Key Laboratory of Molecular, Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai (China)

    2011-11-15

    Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium-carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium-carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m{sup 2}g{sup -1}), large pore volumes (1.24 cm{sup 3}g{sup -1}), narrow mesopore-size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg{sup -1} in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore-walls can increase the specific surface area to provide more sites for charge storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Mesoporous (Ta, Nb3W7 Modified with Stearic Acid Used as Solid Acids for Esterification

    Directory of Open Access Journals (Sweden)

    Fei Chang

    2017-01-01

    Full Text Available Mesoporous solid acids Ta3W7 and Nb3W7 were prepared from TaCl5 and NbCl5 with WCl6 in the presence of stearic acid (SA via a sol-gel method, respectively. For comparison, mesoporous Ta3W7-P123 mixed oxides and mesoporous Nb3W7-P123 mixed oxides were synthesized in the same way. The catalysts were characterized through TGA, XRD, SEM, TEM, BET, and NH3-TPD. Experimental results showed that Ta3W7-SA and Nb3W7-SA exhibited several advantages such as higher activity, shorter preparation period, lower cost, stronger acid sites, and higher surface area, which had potential to be used as mesoporous heterogeneous catalysts in biodiesel production.

  6. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  7. Magnetic mesoporous material for the sequestration of algae

    Science.gov (United States)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  8. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications

    KAUST Repository

    Croissant, Jonas G.; Fatieiev, Yevhen; Almalik, Abdulaziz; Khashab, Niveen M.

    2017-01-01

    organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona

  9. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  10. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin

    2014-12-03

    Recently, preparation of mesoporous fibers has attracted extensive attentions because of their unique and broad applications in photocatalysis, optoelectronics, and biomaterials. However, it remains a great challenge to fabricate thoroughly mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a proof of concept, the as-fabricated mesoporous TiO2 fibers exhibit much higher photocatalytic activity and stability than both the conventional solid counterparts and the commercially available P25. The abundant vapors released from the introduced foaming agents are responsible for the creation of pores with uniform spatial distribution in the spun precursor fibers. The present work represents a critically important step in advancing the electrospinning technique for generating mesoporous fibers in a facile and universal manner.

  11. Liquid Photonic Crystals for Mesopore Detection.

    Science.gov (United States)

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    International Nuclear Information System (INIS)

    Zhang, Jianhua; Tao, Cuilian; Zhu, Yufang; Zhu, Min; Li, Jie; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO 3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO 3 materials were investigated. Mesoporous Fe–CaSiO 3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO 3 materials, mesoporous Fe–CaSiO 3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO 3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO 3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO 3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. (paper)

  13. Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells

    KAUST Repository

    Croissant, Jonas G.

    2016-06-01

    Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta-phenylene bridges, and we conducted a comparative structure–property relationship investigation with para-phenylene-bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials. We observed a much higher porosity and thermal stability of the para-based PMO which was likely due to a higher molecular periodicity. Additionally, the para isomer could generate multipodal NPs at very low stirring speed and upon this discovery we designed a phenylene–ethylene bridged PMO with a controlled Janus morphology. Unprecedentedly high payloads could be obtained from 40 to 110 wt % regardless of the organic bridge of PMOs. Finally, we demonstrate for the first time the co-delivery of two cargos by PMO NPs. Importantly, the cargo stability in PMOs did not require the capping of the pores, unlike pure silica, and the delivery could be autonomously triggered in cancer cells by acidic pH with nearly 70 % cell killing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  14. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  15. Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli.

    Science.gov (United States)

    Koneru, Bhuvaneswari; Shi, Yi; Wang, Yu-Chieh; Chavala, Sai H; Miller, Michael L; Holbert, Brittany; Conson, Maricar; Ni, Aiguo; Di Pasqua, Anthony J

    2015-10-30

    Tetracycline (TC) is a well-known broad spectrum antibiotic, which is effective against many Gram positive and Gram negative bacteria. Controlled release nanoparticle formulations of TC have been reported, and could be beneficial for application in the treatment of periodontitis and dental bone infections. Furthermore, TC-controlled transcriptional regulation systems (Tet-on and Tet-off) are useful for controlling transgene expression in vitro and in vivo for biomedical research purposes; controlled TC release systems could be useful here, as well. Mesoporous silica nanomaterials (MSNs) are widely studied for drug delivery applications; Mobile crystalline material 41 (MCM-41), a type of MSN, has a mesoporous structure with pores forming channels in a hexagonal fashion. We prepared 41 ± 4 and 406 ± 55 nm MCM-41 mesoporous silica nanoparticles and loaded TC for controlled dug release; TC content in the TC-MCM-41 nanoparticles was 18.7% and 17.7% w/w, respectively. Release of TC from TC-MCM-41 nanoparticles was then measured in phosphate-buffered saline (PBS), pH 7.2, at 37 °C over a period of 5 h. Most antibiotic was released from both over this observation period; however, the majority of TC was released over the first hour. Efficacy of the TC-MCM-41 nanoparticles was then shown to be superior to free TC against Escherichia coli (E. coli) in culture over a 24 h period, while blank nanoparticles had no effect.

  16. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  17. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  18. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  19. Phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper: An efficient nanocatalyst for clean production of polyhydroquinolines.

    Science.gov (United States)

    Elhamifar, Dawood; Ardeshirfard, Hakimeh

    2017-11-01

    A novel phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper (Cu@BPMO-Ph-IL) is prepared, characterized and its catalytic application is developed in the clean production of polyhydroquinolines. The Cu@BPMO-Ph-IL was prepared via chemical grafting of ionic liquid groups onto phenyl-based PMO followed by treatment with copper acetate. This nanocatalyst was characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), nitrogen-sorption and energy dispersive X-ray (EDX) analyses. This was successfully applied in the one-pot Hantzsch condensation of aldehydes, ammonium acetate, alkylacetoacetates and dimedone to prepare a set of different derivatives of polyhydroquinolines in high yields and selectivity. The catalyst was effectively recovered and reused several times without important decrease in efficiency. The recovered catalyst was also characterized with TEM analysis to study its stability and durability under applied conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    Science.gov (United States)

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  1. Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Department; Matsuoka, Fumiaki [Department; Suh, Hyo Seon [Institute; Materials; Beaucage, Peter A. [Department; Xiong, Shisheng [Institute; Materials; Smilgies, Detlef-M. [Cornell; Tan, Kwan Wee [Department; School; Werner, Jörg G. [Department; Nealey, Paul F. [Institute; Materials; Wiesner, Ulrich B. [Department

    2017-12-19

    Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. In situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.

  2. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin; Wang, Lin; Gao, Fengmei; Wei, Guodong; Tang, Bin; Yang, Weiyou; Wu, Tao

    2014-01-01

    mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a

  3. One-step synthesis of mesoporous silica–graphene composites by ...

    Indian Academy of Sciences (India)

    Silica–graphene oxide composites were synthesized by hydrothermal method with simultaneous functionalization and reduction of graphene oxide (GO) in the presence of mesoporous silica. Two types of silica were used in the study, mesoporous synthetic silica (MSU-F) synthesized by sol-gel method and mesoporous ...

  4. Step-Up Synthesis of Periodic Mesoporous Organosilicas with a Tyrosine Framework and Performance in Horseradish Peroxidase Immobilization.

    Science.gov (United States)

    Wang, Jianqiang; Zhang, Wenqi; Gu, Changqing; Zhang, Wenpei; Zhou, Man; Wang, Zhiwei; Guo, Cheng; Sun, Linbing

    2017-12-14

    New amino-acid-bridged periodic mesoporous organosilicas (PMOs) were constructed by hydrolysis and condensation reactions under acid conditions in the presence of a template. The tyrosine bissilylated organic precursor (TBOS) was first prepared through a multistep reaction by using tyrosine (a natural amino acid) as the starting material. PMOs with the tyrosine framework (Tyr-PMOs) were constructed by simultaneously using TBOS and tetraethoxysilane as complex silicon sources in the condensation process. All the Tyr-PMOs materials were characterized by XRD, FTIR spectroscopy, N 2 adsorption-desorption, TEM, SEM, and solid-state 29 Si NMR spectroscopy to confirm the structure. The horseradish peroxidase (HRP) enzyme was first immobilized on these new Tyr-PMOs materials. Optimal conditions for enzyme adsorption included a temperature of 40 °C, a time of 8 h, and a pH value of 7. Furthermore, the novel Tyr-PMOs materials could store HRP for approximately 40 days and maintained the enzymatic activity, and the Tyr-PMOs-10 % HRP with the best immobilization effect could be reused at least eight times. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    International Nuclear Information System (INIS)

    Shih, Chi-Chung; Chien, Chi-Sheng; Kung, Jung-Chang; Chen, Jian-Chih; Chang, Shy-Shin; Lu, Pei-Shan; Shih, Chi-Jen

    2013-01-01

    Highlights: ► All the unwanted organic contents were removed completely at temperatures above 600 °C. ► Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. ► SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. ► The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO 2 –CaO–P 2 O 5 mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1–9.1 wt% and significantly decreased from 328.7 to 204.0 m 2 /g in the concentration range of 9.1–12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  6. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites

    International Nuclear Information System (INIS)

    Lee, Hyung Won; Jun, Bo Ram; Kim, Hannah; Kim, Do Heui; Jeon, Jong-Ki; Park, Sung Hoon; Ko, Chang Hyun; Kim, Tae-Wan; Park, Young-Kwon

    2015-01-01

    The hydrodeoxygenation of 2-methoxy phenol and dibenzofuran, which are representative model compounds of bio-oil, was performed using two different Pt/mesoporous zeolite catalysts, Pt/mesoporous Y and Pt/mesoporous MFI. The reforming of 2-methoxy phenol and dibenzofuran via catalytic hydrodeoxygenation was investigated using a batch reactor at 40 bar and 250 °C. The characteristics of the catalysts were analyzed by N 2 adsorption-desorption, X-ray diffraction, and NH 3 temperature programmed desorption. Pt/mesoporous zeolite catalysts containing both strong acid sites and mesopores showed the higher conversion of 2-methoxy phenol than Pt/SiO 2 and Pt/Si-MCM-48 with no acid sites, Pt/γ-Al 2 O 3 , and a mixture of mesoporous Y and Pt/SiO 2 , indicating the importance of both Pt and strong acid sites for high catalytic activity. Among the two Pt/mesoporous zeolite catalysts tested, the conversion of 2-methoxy phenol to cyclohexane over Pt/mesoporous Y was much higher than that over the Pt/mesoporous MFI. This was attributed to the better textural properties, such as surface area, pore volume and micropore size, compared to those of Pt/mesoporous MFI. The catalytic conversions of dibenzofuran obtained using two Pt/mesoporous zeolite catalysts were similar and the main products were 1,1′-bicyclohexyl, cyclopentylmethyl-cyclohexane and cyclohexane. In addition, the reaction mechanisms of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolite were suggested. - Highlights: • HDO of 2-methoxy phenol and dibenzofuran was performed over Pt/mesoporous zeolites. • Pt/mesoporous zeolites have mesopores and strong acid sites. • Main product of HDO of 2-methoxy phenol was cyclohexane. • Main products of HDO of dibenzofuran were bicyclohexyl (BCH), i-BCH, and cyclohexane

  7. Mesoporous Transition Metal Oxides for Supercapacitors

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  8. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  9. Ultrasound-driven design of new mesoporous metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Univ. Bayreuth (Germany); Skorb, Ekaterina [Max-Planck-Institut fuer Kolloid- und Grenzflaechenforschung, Golm (Germany)

    2011-07-01

    Mesoporous metal nanocomposites were formed by a ''green chemistry'' method with ultrasound irradiation. The sonication technique combines the fabrication of a mesoporous support consisting of metallic particles (Al, Mg) several tens of micrometers in size and the subsequent incorporation of metal (Ag, Au, Pt etc.) nanoparticles into its pores. Next to filling the mesoporous support with particles we are also able to form mesoporous alloys e.g. AlNi or CoAlFe. The resulting material is analyzed by transmission electron microscopy, powder X-ray diffraction, small-angle neutron scattering and the Brunauer-Emmett-Teller and the Barrett-Joyner-Halenda method. Surface areas up to 200 m{sup 2}/g with a narrow pore size distribution around 3 nm can be achieved. The mesoporous structures are analyzed by confocal light microscopy after coloring the particles with dye. We explain the formation of the mesoporous inner structures by the following mechanism: Thermal etching and recrystallization of metals by ultrasound-stimulated high-speed jets of liquid form the porous structure that is stabilized by surface oxidation through free radicals generated during cavitation. We expect this approach to be universal and opening perspectives for a whole new class of catalytic materials that can be prepared in a fairly easy and cost effective way.

  10. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  11. Mesoporous carbonates and method of making

    Science.gov (United States)

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  12. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia; Beretta, Mario; Cattaneo, Alice Silvia; Comotti, Angiolina; Falqui, Andrea; Zhao, Ke; Rogers, Charles T.; Sozzani, Piero

    2015-01-01

    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.

  13. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia

    2015-02-16

    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.

  14. Research Update: Mesoporous sensor nanoarchitectonics

    Directory of Open Access Journals (Sweden)

    Katsuhiko Ariga

    2014-03-01

    Full Text Available In this short review, we have selected three main subjects: (i mesoporous materials, (ii sensing applications, and (iii the concept of nanoarchitectonics, as examples of recent hot topics in nanomaterials research. Mesoporous materials satisfy the conditions necessary not only for a wide range of applications but also for ease of production, by a variety of simple processes, which yield bulk quantities of materials without loss of their well-defined nanometric structural features. Sensing applications are of general importance because many events arise from interaction with external stimuli. In addition to these important features, nanoarchitectonics is a concept aimed at production of novel functionality of whole units according to concerted interactions within nanostructures. For the combined subject of mesoporous sensor nanoarchitectonics, we present recent examples of research in the corresponding fields categorized according to mechanism of detection including optical, electrical, and piezoelectric sensing.

  15. Application of mesoporous carbon and modified mesoporous carbon for treatment of DMF sewage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang, E-mail: liufangfw@163.com; Gao, Ya; Zhang, Shuang; Yan, Xi; Fan, Fengtao; Zhao, Chaocheng; Sun, Juan [China University of Petroleum(East China), Department of Chemical Engineering (China)

    2016-02-15

    Mesoporous carbon (MC) was prepared in soft template, and potassium ferricyanide was added into MC to prepare the modified mesoporous carbon (MMC). TEM, SEM, FT-IR, and N{sub 2} adsorption–desorption were used to characterize the textural properties of mesoporous materials. The BET specific surface area, pore volume, and the pore size of MC and MMC were 607.6321 and 304.7475 m{sup 2}/g, 0.313552 and 0.603573 cm{sup 3}/g, and 5.4356 and 7.9227 nm, respectively. The adsorption capabilities of MC and MMC were compared with the silica mesoporous material MCM-41. The influences of different adsorption conditions were optimized. For MC, the optimums of adsorbent dose, DMF initial concentration, rotating speed, and pH were 0.002 mg/50 mL, 200 mg/L, 200 r/min, and 4, respectively. MMC showed the highest DMF adsorption capacity at adsorbent dose 0.002 g/50 mL, DMF initial concentration 1000 mg/L, rotating speed 1000 r/min, pH more than 9, and contact time of less than 20 min. Meanwhile for MC, MMC, Pseudo-second-order equation was used to fit adsorption kinetics data. And adsorption process could be well fitted by Langmuir and Freundlich adsorption isotherms of MC, MMC. The results showed that MMC was a perfect adsorbent for DMF, and it was easy to separation and recycle. The recycling property of MMC was still relatively better than other two adsorbents.

  16. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  17. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Science.gov (United States)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  18. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong

    2016-06-24

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers with mesoporous architectures, controlled morphologies, large surface areas, and optimal performances. In this work, a facile foaming-assisted electrospinning strategy with foaming agent of tea saponin is used to produce thoroughly mesoporous ZnO nanofibers with high purity and controlled morphology. Interestingly, mesoporous fibers with elliptical cross-section exhibit the significantly enhanced photocatalytic activity for hydrogen production, as compared to the counterparts with circular and rectangular cross-sections, and they also perform better than the commercial ZnO nanopowders. The unexpected shape dependence of photocatalytic activities is attributed to the different stacking modes of the mesoporous fibers, and a geometrical model is developed to account for the shape dependence. This work represents an important step toward producing thoroughly mesoporous ZnO nanofibers with tailored morphologies, and the discovery that fibers with elliptical cross-section render the best performance provides a valuable guideline for improving the photocatalytic performance of such mesoporous nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. "Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, P. F.; Mayes, R.; Wang, X. Q.; Mahurin, S., M.; Bauer, J. C.; Presser, V.; McDonough, J.; Gogotsi, Y.; Dai, S.

    2011-04-20

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

  20. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  1. Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chi-Chung [Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Chien, Chi-Sheng [Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Department of Orthopaedics, Chi Mei Foundation Hospital, Tainan, Taiwan (China); Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Kung, Jung-Chang [Department of Family Dentistry, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Shy-Shin [Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Lu, Pei-Shan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer All the unwanted organic contents were removed completely at temperatures above 600 Degree-Sign C. Black-Right-Pointing-Pointer Specific surface area and pore volume of Mesoporous bioactive glasses reached maximum at the critical surfactant concentration. Black-Right-Pointing-Pointer SAED pattern suggests that some glassy structures in the Bioactive Glasses became crystalline due to the heat treatment. Black-Right-Pointing-Pointer The MBGs can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods. - Abstract: Mesoporous bioactive glasses were prepared by the evaporation-induced self-assembly method. The main objective of the present study is to determine the effect of surfactant concentration on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glasses; the characterization techniques used include X-ray diffraction, scanning electron microscopy and nitrogen adsorption and desorption isotherms. The results show that the specific surface area initially increased with increasing surfactant concentrations in the range of 2.1-9.1 wt% and significantly decreased from 328.7 to 204.0 m{sup 2}/g in the concentration range of 9.1-12.5 wt%. For texture evaluation, the selected area electron diffraction patterns of the mesoporous bioactive glass precursor gels (9.1 wt% F127) calcined at different temperatures were analyzed; these patterns support the notion that some glassy structures in bioactive glasses become crystalline following heat treatment. The scanning electron microscopy images and X-ray diffraction patterns obtained agree with the inductively coupled plasma with atomic emission spectroscopy results as the mesoporous bioactive glasses can induce the formation of an apatite-like layer on their surface in SBF, even after short soaking periods.

  2. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  3. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  4. Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants.

    Science.gov (United States)

    Zhao, Pengyue; Cao, Lidong; Ma, Dukang; Zhou, Zhaolu; Huang, Qiliang; Pan, Canping

    2017-05-16

    Mesoporous silica nanoparticles are used as pesticide carries in plants, which has been considered as a novel method to reduce the indiscriminate use of conventional pesticides. In the present work, mesoporous silica nanoparticles with particle diameters of 200-300 nm were synthesized in order to obtain pyrimethanil-loaded nanoparticles. The microstructure of the nanoparticles was observed by scanning electron microscopy. The loading content of pyrimethanil-loaded nanoparticles was investigated. After treatment on cucumber leaves, the concentrations of pyrimethanil were determined in different parts of cucumber over a period of 48 days using high performance liquid chromatography tandem mass spectrometry. It was shown that the pyrimethanil-loaded mesoporous silica nanoparticles might be more conducive to acropetal, rather than basipetal, uptake, and the dosage had almost no effect on the distribution and dissipation rate in cucumber plants. The application of the pesticide-loaded nanoparticles in leaves had a low risk of pyrimethanil accumulating in the edible part of the plant.

  5. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu; Pitukmanorom, Pemakorn; Zhao, L. J.; Ying, Jackie

    2010-01-01

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites

  6. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  7. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... materials were all prepared by hydrothermal crystallization of gels adsorbed on carbon matrices which were subsequently removed by combustion. The procedures presented here resulted in mesoporous zeolite and zeotypes materials with MFI, MEL, BEA, AFI and CHA framework structures. All samples were...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA...

  8. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  9. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  10. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    International Nuclear Information System (INIS)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin; Bae, Joonwon

    2013-01-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol–gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  11. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul, 151-742 (Korea, Republic of); Bae, Joonwon [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of)

    2013-06-28

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  12. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Science.gov (United States)

    Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin

    2013-06-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.

  13. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lei; Zhang, Anfeng [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Li, Keyan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Ordered mesoporous graphitic carbon nitrides with S{sub BET} = 279.3 m{sup 2}/g were prepared. • Enhanced photocatalytic activity and reusability were presented. • Improved S{sub BET} and charge carrier separation efficiency contribute to the activity. - Abstract: Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N{sub 2} physical adsorption, XRD, FT-IR, XPS, UV–vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C{sub 3}N{sub 4}, ordered mesoporous g-C{sub 3}N{sub 4} exhibits a larger specific surface area of 279.3 m{sup 2}/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV–Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min{sup −1} which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved S{sub BET}, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C{sub 3}N{sub 4} is a practical candidate for further modification.

  14. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  15. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  16. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications

    KAUST Repository

    Croissant, Jonas G.

    2017-11-30

    Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer\\'s disease therapy.

  17. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    Directory of Open Access Journals (Sweden)

    Juan L Vivero-Escoto, Ya-Dong Chiang, Kevin C-W Wu and Yusuke Yamauchi

    2012-01-01

    Full Text Available This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  18. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  19. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    Science.gov (United States)

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-05-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  20. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  1. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  2. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  3. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    International Nuclear Information System (INIS)

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  4. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites

    DEFF Research Database (Denmark)

    Christensen, Christina Hviid; Johannsen, Kim; Toernqvist, Eric

    2007-01-01

    During the last years, several new routes to produce zeolites with controlled mesoporosity have appeared. Moreover, an improved catalytic performance of the resulting mesoporous zeolites over conventional zeolites has been demonstrated in several reactions. In most cases, the mesoporous zeolites...... exhibit higher catalytic activity, but in some cases also improved selectivity and longer catalyst lifetime has been reported. The beneficial effects of introducing mesopores into the zeolites has in most instances been attributed to improved mass transport to and from the active sites located...... in the zeolite micropores. Here, we briefly discuss the most important ways of introducing mesopores into zeolites and, for the first time, we show experimentally that the presence of mesopores dramatically increases the rate of diffusion in zeolite catalysts. This is done by studying the elution of iso...

  5. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    Science.gov (United States)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  6. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  7. Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

    International Nuclear Information System (INIS)

    Lin, Rong; Yue, Wenbo; Niu, Fangzhou; Ma, Jie

    2016-01-01

    As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Graphene-encapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides (SnO_2, Mn_3O_4), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides with high isoelectric points are not essential for this synthesis method since metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

  8. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures.

    Science.gov (United States)

    Fang, Jixiang; Zhang, Lingling; Li, Jiang; Lu, Lu; Ma, Chuansheng; Cheng, Shaodong; Li, Zhiyuan; Xiong, Qihua; You, Hongjun

    2018-02-06

    Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.

  9. Synthesis of mesoporous silica microsphere from dual surfactant

    Directory of Open Access Journals (Sweden)

    Venkatathri Narayanan

    2008-12-01

    Full Text Available A new procedure is reported to synthesis mesoporous silica micro sphere for the first time. In these method two surfactants namely Span 80 and Tween 80 were used. Small angle X ray diffraction and N2 adsorption analysis shows the synthesized material has mesoporous property. The material has spherical morphology with 1-10 µm particle size. Beside the material found to have microcapsule property as observed from the Transmission electron microscopy. The Fourier transform Infrared spectroscopic analysis reveals that the materials are similar to other mesoporous materials. We also encapsulated an UV-absorber Ibuprofen inside the microcapsule, by mixing it before the synthesis. This shows a possibility of the materials in cosmetic applications.

  10. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  14. Nanocomposite of cobalt oxide and ordered mesoporous carbon as the electrode materials for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Liu, P.; Zhao, J.; Feng, J.; Tang, B. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    An incipient wetness impregnation method was used to prepare a cobalt oxide ordered mesoporous carbon composite for use as an electrode in supercapacitor applications. The composite was then incorporated inside periodic nanoholes in the ordered mesoporous carbon (OMC). X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherm analyses were used to characterize the structures of the samples. The specific capacitance of the synthesized materials was estimated using cyclic voltammetric (CV) analyses. The study showed that composites prepared using the new method exhibited a higher reversible specific capacitance of 594.8 F per g at a scan rate of 5 mV per second. The composite also showed good cyclic stability. Results suggested that the composite can be used as an electrode material in supercapacitors.

  15. Functional mesoporous silica nanoparticles for bio-imaging applications.

    Science.gov (United States)

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  16. Thermal and hydrothermal stability of ZrMCM-41 mesoporous ...

    Indian Academy of Sciences (India)

    Administrator

    The mesoporous structure of the ZrMCM-41 mesoporous molecular sieve still retains after calcination at 750°C for 3 h or ... adsorption, sensor and petrochemical industry. 2–5. However, the ... the pH value of the mixed solution was adjusted to.

  17. Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Po-Wen [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The dissertation begins with Chapter 1, which is a general introduction of the fundamental synthesis of mesoporous silica materials, the selective functionlization of mesoporous silica materials, and the synthesis of nanostructured porous materials via nanocasting. In Chapter 2, the thermo-responsive polymer coated mesoporous silica nanoparticles (MSN) was synthesized via surface-initated polymerization and exhibited unique partition activities in a biphasic solution with the thermally induced change. In Chapter 3, the monodispersed spherical MSN with different mesoporous structure (MCM-48) was developed and employed as a template for the synthesis of mesoporous carbon nanoparticles (MCN) via nanocasting. MCN was demonstrated for the delivery of membrane impermeable chemical agents inside the cells. The cellular uptake efficiency and biocompabtibility of MCN with human cervical cancer cells were also investigated. In addition to the biocompabtibility of MCN, MCN was demonstrated to support Rh-Mn nanoparticles for catalytic reaction in Chapter 4. Owing to the unique mesoporosity, Rh-Mn nanoparticles can be well distributed inside the mesoporous structure and exhibited interesting catalytic performance on CO hydrogenation. In Chapter 5, the synthesis route of the aforementioned MCM-48 MSN was discussed and investigated in details and other metal oxide nanoparticles were also developed via nanocasting by using MCM-48 MSN as a template. At last, there is a general conclusion summarized in Chapter 6.

  18. Hierarchical Mesoporous Organosilica-Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release.

    Science.gov (United States)

    Luo, Leilei; Liang, Yucang; Erichsen, Egil Severin; Anwander, Reiner

    2018-05-17

    A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot, two-step strategy allows rational control over the core/shell chemical composition, topology, and pore/particle size, simply by adjusting the reaction conditions in the presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent under basic conditions. The spherical, ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm3‾ n) depending on the organosilica precursor. The hexagonal MS shell was obtained by n-hexane-induced controlled hydrolysis of TEOS followed by directional co-assembly/condensation of silicate/CTAB composites at the PMO cores. The HSMSCSNs feature a hierarchical pore structure with pore diameters of about 2.7 and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the ranges of 90-275 and 15-50 nm, respectively, and the surface areas (max. 1300 m 2  g -1 ) and pore volumes (max. 1.83 cm 3  g -1 ) are among the highest reported for core-shell nanoparticles. The adsorption and controlled release of the fungicide propiconazole by the HSMSCSNs showed a three-stage release profile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rational design of mesoporous metals and related nanomaterials by a soft-template approach.

    Science.gov (United States)

    Yamauchi, Yusuke; Kuroda, Kazuyuki

    2008-04-07

    We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.

  20. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  1. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    Science.gov (United States)

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  4. Generalized synthesis of periodic surfactant/inorganic composite materials

    NARCIS (Netherlands)

    Huo, Q.; Margolese, D.I.; Ciesla, U.; Feng, P.; Gier, T.E.; Sieger, P.; Leon, R.; Petroff, P.M.; Schüth, F.; Stucky, G.D.

    1994-01-01

    THE recent synthesis of silica-based mesoporous materials by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be

  5. Aromatization of alkanes over Pt promoted conventional and mesoporous gallosilicates of MEL zeolite

    KAUST Repository

    Akhtar, M. N.; Al-Yassir, N.; Al-Khattaf, S.; Čejka, Jiří

    2012-01-01

    Aromatization of hexane and propane was investigated over Pt promoted mesoporous gallium-containing HZSM-11 with controlled mesoporosity generated by desilication. Prepared catalysts were characterized by nitrogen adsorption, X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared of chemisorbed pyridine, and NH 3 temperature programmed desorption confirming the development of intracrystalline mesoporosity of Ga-containing HZSM-11. The catalytic activities, which were compared in the aromatization of n-hexane and propane, increased upon desilication. The aromatization of n-hexane decreased in the following order, Pt/mesoporous GaZSM-11 Pt/conventional GaZSM-11 mesoporous GaZSM-11 > conventional GaZSM-11. Hexane conversion reached 70.1% over mesoporous Pt/GaZSM-11 with Si/Ga of 61, as compared with 29.6 and 24.9% for corresponding mesoporous and conventional GaZSM-11 (Si/Ga = 94), respectively, for experiments at liquid hour space velocity of 3.6 h -1, and 540 °C. Comparison of BTX (benzene-toluene-xylene) selectivity at the conversion level of ∼21.0% revealed that Pt/mesoporous GaZSM-11 is more selective than corresponding mesoporous and conventional GaZSM-11. The BTX selectivity over Pt/mesoporous GaZSM-11 (Si/Ga = 94), which showed strong dependence on the conversion, reached 28.2%, whereas over corresponding mesoporous and conventional GaZSM-11catalysts reached 19.1% and 5.5%, respectively. A higher conversion and better selectivity can be attributed to the improved accessibility to the active extra-framework Ga species owing to the generation of mesopores inside the zeolite particles and shortening the contact time. It is worth mentioning that the prepared catalysts exhibited quite low activity in propane aromatization but exhibiting similar trends as for hexane aromatization. © 2011 Elsevier B.V. All rights reserved.

  6. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Recent Advances in Catalysis Over Mesoporous Molecular Sieves

    Czech Academy of Sciences Publication Activity Database

    Martín-Aranda, R. M.; Čejka, Jiří

    2010-01-01

    Roč. 53, 3-4 (2010), s. 141-153 ISSN 1022-5528 R&D Projects: GA AV ČR KAN100400701; GA AV ČR IAA400400805; GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous molecular sieves * MCM-41 * SBA-15 * mesoporous alumina Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.359, year: 2010

  8. Synthesis and characterization of mesoporous NaY zeolite from natural Blitar’s kaolin

    Science.gov (United States)

    Khalifah, S. N.; aini, Z. N.; Hayati, E. K.; Aini, N.; Prasetyo, A.

    2018-03-01

    Mesoporous NaY Zeolite has been synthesized from calcined natural Blitar’s kaolin with the addition of NaOH and CTABr surfactant as mesoporous template by hydrothermal method. Natural kaolin was calcinated with different time and temperature to change kaolin to metakaolin. X-ray diffraction data showed that mesoporous NaY zeolite was formed with impurities compound of sodalite, kaolin and quartz phases. The BET analysis resulted that the pore of NaY Zeolite belongs to mesoporous type with pore size 9,421 nm. Characterization from FTIR confirmed about the functional group of zeolites (988, 776, 663, 464 cm-1). Scanning electron microscopy characterization showed that the morphological of mesoporous NaY zeolites have uniform and crystalline particles formed.

  9. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  10. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong; Ding, Yong; Li, Zhou; Song, Jinhui; Wang, Zhong Lin

    2009-01-01

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed

  11. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  12. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  13. Catalytic properties of Thallium-containing mesoporous silicas

    Directory of Open Access Journals (Sweden)

    A. Baradji

    2017-02-01

    Full Text Available The benzylation of benzene by benzyl chloride over a series of Thallium-containing mesoporous silicas with different Tl contents has been investigated. These materials (Tl-HMS-n have been characterized by chemical analysis, N2 adsorption/desorption isotherm and X-ray diffraction (XRD. The mesoporous Thallium-containing materials showed both high activity and high selectivity for the benzylation of benzene. More interesting is the observation that these catalysts are always active and selective for large molecules like naphthenic compounds such as methoxynaphthalene.

  14. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  15. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    Directory of Open Access Journals (Sweden)

    Karlsson J

    2015-07-01

    Full Text Available Johan Karlsson, Saba Atefyekta, Martin Andersson Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden Abstract: The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. Keywords: mesoporous titania, controlled drug delivery, release kinetics, alendronate, QCM-D

  16. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  17. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  18. Multifunctional EuYVO4 nanoparticles coated with mesoporous silica

    International Nuclear Information System (INIS)

    Justino, Larissa G.; Nigoghossian, Karina; Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M.; Ribeiro, Sidney J.L.; Caiut, José Maurício A.

    2016-01-01

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO 4 nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO 4 :Eu 3+ nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  19. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    Energy Technology Data Exchange (ETDEWEB)

    Mnasri, Najib [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Charnay, Clarence; Ménorval, Louis-Charles de [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); Elaloui, Elimame [Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Science, University of Gafsa, 2112 Gafsa (Tunisia); Zajac, Jerzy, E-mail: jerzy.zajac@umontpellier.fr [Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France)

    2016-11-15

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM and TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.

  20. Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte.

    Science.gov (United States)

    Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop

    2005-06-21

    A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.

  1. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    International Nuclear Information System (INIS)

    Cheng, Liang; Shao, Mingwang; Chen, Dayan; Zhang, Yuzhong

    2010-01-01

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC 2 O 4 precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  2. Formation of pyridine N-oxides using mesoporous titanium silicalite-1

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Perez-Ferreras, Susana

    2014-01-01

    Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome the...

  3. Orientation specific deposition of mesoporous particles

    Directory of Open Access Journals (Sweden)

    Tomas Kjellman

    2014-11-01

    Full Text Available We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface. A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  4. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi

    2012-02-08

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  5. The role of curvature in silica mesoporous crystals

    KAUST Repository

    Miyasaka, Keiichi; Bennett, Alfonso Garcia; Han, Lu; Han, Yu; Xiao, Changhong; Fujita, Nobuhisa; Castle, Toen; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2012-01-01

    Silica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc. The present work aims to highlight some current studies devoted to the interface curvature on SMCs, in which electron microscopy and electron crystallography (EC) are used to understand the geometry of silica wall surface in bicontinuous and cage-type mesostructures through the investigation of electrostatic potential maps. Additionally, we show that by altering the synthesis conditions during the preparation of SMCs, it is possible to isolate particles during micellar mesophase transformations in the cubic bicontinuous system, allowing us to view and study epitaxial relations under the specific synthesis conditions. By studying the relationship between mesoporous structure, interface curvature and micellar mesophases using electron microscopy and EC, we hope to bring new insights into the formation mechanism of these unique materials but also contribute a new way of understanding periodic liquid crystal systems. © 2012 The Royal Society.

  6. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Albert Serrà

    2014-03-01

    Full Text Available A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane’s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

  7. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  8. Confined palladium colloids in mesoporous frameworks for carbon nanotube growth

    NARCIS (Netherlands)

    Berenguer-Murcia, A.; Rebrov, E.V.; Cabaj, M.; Wheatley, A.E.H.; Johnson, B.F.G.; Robertson, J.; Schouten, J.C.

    2009-01-01

    Palladium colloidal nanoparticles with an average size of approximately 2.4 nm have been incorporated into mesoporous inorganic thin films following a multistep approach. This involves the deposition of mesoporous titania thin films with a thickness of 200 nm by spin-coating on titanium plates with

  9. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  10. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    International Nuclear Information System (INIS)

    Gao, Lin; Sun, Jihong; Zhang, Li; Wang, Jinpeng; Ren, Bo

    2012-01-01

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N 2 adsorption–desorption isotherms, thermogravimetric analyses, solid-state 29 Si NMR spectra, elemental analysis, and UV–vis spectra. Meanwhile, the Korsmeyer–Peppas equation f t = kt n was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer–Peppas equation was around 4.10. Highlights: ► BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. ► Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. ► BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  11. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  12. Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid

    Directory of Open Access Journals (Sweden)

    Junhyun Choi

    2014-01-01

    Full Text Available Silicate mesoporous materials were synthesized with nonionic surfactant and their surfaces were modified by oleic acid adsorption. Infrared spectrometer, nitrogen adsorption-desorption isotherm, scanning electron microscopy, and thermogravimetric analyses were used to investigate the structure of oleic acid modified mesoporous material. The effects of heat treatment at various temperatures on oleic acid modified materials were also studied. Oleic acids on silica surfaces were found to be bonded chemically and/or physically and be capable of enduring up to 180°C. The adsorbed oleic acid improved the hydrothermal stability of mesoporous silica and assisted mesopore structure to grow more in hydrothermal treatment process by preventing the approach of water.

  13. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  14. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g −1 at 2 A g −1 and impressive high-rate capability with a specific capacitance of 338 F g −1 at 40 A g −1 . In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g −1 , a high capacitance of 660 F g −1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties

  15. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  16. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    Science.gov (United States)

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    Science.gov (United States)

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Composite templates synthesis of mesoporous titania from industrial titanyl sulfate solution under external outfields

    International Nuclear Information System (INIS)

    Tian Congxue

    2008-01-01

    The precursors of mesoporous titania were synthesized via supra-molecular self-assembly route induced by composite templates (CTAB/P-123) from industrial titanyl sulfate solution under ultrasonic irradiation, microwave and hydrothermal condition. The hydrolysis and polycondensation rates of TiOSO 4 solution were controlled by adjusting the pH value at about 1.0. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by X-ray diffraction (XRD), N 2 isothermal adsorption-desorption, HRTEM and SAD. External outfields with enhancing polar action and soft hydrothermal condition were beneficial to prepare better mesoporous TiO 2 . Ultrasonic vibration promoted the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO 2 was synthesized with BET specific surface area of 190.6 m 2 g -1 , average pore diameter of 2.57 nm and crystal size of 13.65 nm. And ultrasonic irradiation, microwave and hydrothermal conditions were making for forming and stabilizing the mesoporous structure

  19. Synthesis and Physicochemical Characterization of Mesoporous SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dharani Das

    2014-01-01

    Full Text Available There exists a knowledge gap in understanding potential toxicity of mesoporous silica nanoparticles. A critical step in assessing toxicity of these particles is to have a wide size range with different chemistries and physicochemical properties. There are several challenges when synthesizing mesoporous silica nanoparticles over a wide range of sizes including (1 nonuniform synthesis protocols using the same starting materials, (2 the low material yield in a single batch synthesis (especially for particles below 60–70 nm, and (3 morphological instability during surfactant removal process and surface modifications. In this study, we synthesized a library of mesoporous silica nanoparticles with approximate particle sizes of 25, 70, 100, 170, and 600 nm. Surfaces of the silica nanoparticles were modified with hydrophilic-CH2–(CH22–COOH and relatively hydrophobic-CH2–(CH210–COOH functional groups. All silica nanoparticles were analysed for morphology, surface functionality, surface area/pore volume, surface organic content, and dispersion characteristics in liquid media. Our analysis revealed the synthesis of a spectrum of monodisperse bare and surface modified mesoporous silica nanoparticles with a narrow particle size distribution and devoid of cocontaminants critical for toxicity studies. Complete physicochemical characterization of these synthetic mesoporous silica nanoparticles will permit systematic toxicology studies for investigation of structure-activity relationships.

  20. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S.A. Mandavgane

    2010-12-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as aconcrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc.Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitatedfrom the sodium silicate by acidification. In the present work, conversion of about 90% of silica containedin RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The resultsshowed that silica obtained from RHA is mesoporous, has a large surface area and small particle size.Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usuallycontains carbon particles. Activated carbon embedded on silica has been prepared using the carbon alreadypresent in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67

  2. Mesoporous metal catalysts formed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  3. Ordered mesoporous carbide-derived carbon as new high performance electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Korenblit, Yair; Yushin, Gleb [Georgia Inst. of Technology, Atlanta, GA (United States); Rose, Marcus; Kockrick, Emanuel; Borchardt, Lars; Kaskel, Stefan [Technische Univ. Dresden (Germany); Kvit, Alexander [Wisconsin Univ., Madison, WI (United States)

    2010-07-01

    The preparation and application of templated ordered mesoporous CDC overcome the present limitations of slow intraparticle ion transport and poor control over the biomodal pore size distribution in the carbons currently used, and shows a route for further performance enhancement. The ordered mesoporous channels in SiC CDC serve as ion-highways and allow for very fast ionic transport into the bulk of the CDC particles, thus leading to an excellent frequency response and outstanding capacitance retention at high current densities. The ordered mesopores in SiC allow for a greatly increased specific surface area and specific capacitance of SiC CDC, nearly doubling the previously reported values. The use of CDC produced from other carbides, including mesoporous TiC or VC is expected to further enhance the energy storage characteristics of EDLC electrodes, while optimization of the mesopore size is expected to enhance the power characteristics of EDLC. (orig.)

  4. Catalytic Activity and Photophysical Properties of Biomolecules Immobilized on Mesoporous Silica

    DEFF Research Database (Denmark)

    Ikemoto, Hideki

    Mesoporous silicas, based on Santa Barbara Amorphous-15 (SBA-15), with different morphology, structure, pore size and functional groups have been synthesized. Two metalloenzymes and a photosynthetic membrane protein were immobilized on or confined in the pores of the mesoporous silicas to prepare...

  5. Preparation of mesoporous carbon/polypyrrole composite materials and their supercapacitive properties

    Directory of Open Access Journals (Sweden)

    WU-JUN ZOU

    2011-08-01

    Full Text Available We synthesized mesoporous carbons/polypyrrole composites, using a chemical oxidative polymerization and calcium carbonate as a sacrificial template. N2 adsorption-desorption method, Fourier infrared spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the composites. The measurement results indicated that as-synthesized carbon with the disordered mesoporous structure and a pore size of approximately 5 nm was uniformly coated by polypyrrole. The electrochemical behavior of the resulting composite was examined by cyclic voltammetry and cycle life measurements, and the obtained results showed that the specific capacitance of the resulting composite electrode was as high as 313 F g−1, nearly twice the capacitance of pure mesoporous carbon electrode (163 F g–1. This reveals that the electrochemical performance of these materials is governed by a combination of the electric double layer capacitance of mesoporous carbon and pseudocapacitance of polypyrrole.

  6. Preparation of Mesoporous SnO2 by Electrostatic Self-Assembly

    Directory of Open Access Journals (Sweden)

    Yang Jing

    2014-01-01

    Full Text Available We report a simple and scalable strategy to synthesize mesoporous SnO2 with tin dioxide nanoparticles of 5-6 nm crystalline walls and 3-4 nm pore diameter with the assistance of Mo7O246- as templating agent at room temperature. The samples were characterized by XRD, TEM, UV-DRS, XPS, and BET. The product has a moderately high surface area of 132 m2 g−1 and a narrow mesoporous structure with an average pore diameter of 3.5 nm. The photocatalytic activities of the mesoporous SnO2 were evaluated by the degradation of methyl orange (MO in aqueous solution under UV light irradiation.

  7. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    Science.gov (United States)

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  8. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    Science.gov (United States)

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    Science.gov (United States)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  10. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    Science.gov (United States)

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  11. A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties

    Science.gov (United States)

    Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun

    2017-11-01

    Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.

  12. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  13. A review on chemical methodologies for preparation of mesoporous silica and alumina based materials.

    Science.gov (United States)

    Naik, Bhanudas; Ghosh, Narendra Nath

    2009-01-01

    The discovery of novel family of molecular sieves called M41S aroused a worldwide resurgence in the field of porous materials. According to IUPAC definition inorganic solids that contain pores with diameter in the size range of 20-500 A are considered mesoporous materials. Mesoporous silica and alumina based materials find applications in catalysis, adsorption, host- guest encapsulation etc. This article reviews the current state of art and outline the recent patents in mesoporous materials research in three general areas: Synthesis, various mechanisms involved for porous structure formation and applications of silica and alumina based mesoporous materials.

  14. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  15. Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior

    International Nuclear Information System (INIS)

    Chatzikyriakou, Dafni; Krins, Natacha; Gilbert, Bernard; Colson, Pierre; Dewalque, Jennifer; Denayer, Jessica; Cloots, Rudi; Henrist, Catherine

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous films exhibit better electrochemical kinetics compared to the dense films. • Mesoporous films exhibit better reversibility compared to the dense films. • Li + cations disrupt WO 3 network in a reversible way in the mesoporous film. • Li + irreversibly intercalate in the voids of crystallites in the dense film. - Abstract: The intercalation and de-intercalation of lithium cations in electrochromic tungsten oxide thin films are significantly influenced by their structural and surface characteristics. In this study, we prepared two types of amorphous films via the sol-gel technique: one dense and one mesoporous in order to compare their response upon lithium intercalation and de-intercalation. According to chronoamperometric measurements, Li + intercalates/de-intercalates faster in the mesoporous film (24s/6s) than in the dense film (48s/10s). The electrochemical measurements (cyclic voltammetry and chronoamperometry) also showed worse reversibility for the dense film compared to the mesoporous film, giving rise to important Li + trapping and remaining coloration of the film. Raman analysis showed that the mesoporous film provides more accessible and various W-O surface bonds for Li + intercalation. On the contrary, in the first electrochemical insertion and de-insertion in the dense film, Li + selectively reacts with a few surface W-O bonds and preferentially intercalates into pre-existing crystallites to form stable irreversible Li x WO 3 bronze

  16. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-01-01

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  17. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke

    2011-01-01

    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI: http://dx.doi.org/10.9767/bcrec.5.2.793.63-67

  18. Multifunctional EuYVO{sub 4} nanoparticles coated with mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Larissa G. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil); Nigoghossian, Karina [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M. [Department of Morphology, Dental School at Araraquara, Univ. Estadual Paulista – UNESP, Araraquara, SP (Brazil); Ribeiro, Sidney J.L. [Inst. of Chemistry – São Paulo State University- UNESP, 14801-970 Araraquara, SP (Brazil); Caiut, José Maurício A., E-mail: caiut@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP (Brazil)

    2016-11-15

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO{sub 4} nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO{sub 4}:Eu{sup 3+} nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  19. A simple large-scale synthesis of mesoporous In_2O_3 for gas sensing applications

    International Nuclear Information System (INIS)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-01-01

    Graphical abstract: Large-scale mesoporous In_2O_3 nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In_2O_3 nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In_2O_3 nanostructures were discussed based on the experimental results. • The as-prepared In_2O_3 samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In_2O_3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In_2O_3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In_2O_3. The In_2O_3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In_2O_3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  20. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  1. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    treatment of a mixture of sucrose and ammonia followed by carbonization of the mixture in N-2 at high temperatures. The porous carbon produced by this method was subsequently applied as a hard template in the synthesis of mesoporous silicalite-1 and removed by combustion after synthesis. X-ray diffraction......A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal...... the porous carbon template as well as the mesoporous zeolite single-crystal material....

  2. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  3. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  4. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal; Wang, Peng

    2013-01-01

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  5. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  6. The Effects of Doping Copper and Mesoporous Structure on Photocatalytic Properties of TiO2

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available This paper describes a system for the synthesis of Cu-doped mesoporous TiO2 nanoparticles by a hydrothermal method at relatively low temperatures. The technique used is to dope the as-prepared mesoporous TiO2 system with copper. In this method, the copper species with the form of Cu1+, which was attributed to the reduction effect of dehydroxylation and evidenced by X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD, was well dispersed in the optimal concentration 1 wt.% Cu-doped mesoporous TiO2. In this as-prepared mesoporous TiO2 system, original particles with a size of approximately 20 nm are aggregated together to shapes of approximately 1100 nm, which resulted in the porous aggregate structure. More importantly, the enhancement of the photocatalytic activity was discussed as effects due to the formation of stable Cu(I and the mesoporous structure in the Cu-doped mesoporous TiO2. Among them, Cu-doped mesoporous TiO2 shows the highest degradation rate of methyl orange (MO. In addition, the effects of initial solution pH on degradation of MO had also been investigated. As a result, the optimum values of initial solution pH were found to be 3.

  7. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites

    Institute of Scientific and Technical Information of China (English)

    RUN Mingtao; ZHANG Dayu; WU Sizhu; WU Gang

    2007-01-01

    The nonisothermal and isothermal degradation processesofpoly(ethyleneterephthalate)/mesoporous molecular sieve (PET/MMS) composites synthesized by insitu polymerization were studied by using thermogravimetric analysis in nitrogen.The nonisothermal degradation of the composite is found to be the first-order reaction.An isoconversional procedure developed by Ozawa is used to calculate the apparent activation energy (E),which is an average value of about 260 kJ/mol with the weight conversion from 0% to 30%,and is higher than that of neat PET.Isothermal degradation results are confirmed with the nonisothermal process,in which PET/MMS showed higher thermal stability than neat PET.The polymer in mesoporous channels has more stability due to the protection of the inorganic pore-wall.These results indicate that mesoporous MMS in PET/MMS composites improve the stability of the polymer.

  9. A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications

    Science.gov (United States)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-08-01

    In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  10. Direct fabrication of ordered mesoporous carbons with super-micropore/small mesopore using mixed triblock copolymers.

    Science.gov (United States)

    Li, Peng; Song, Yan; Tang, Zhihong; Yang, Guangzhi; Yang, Junhe

    2014-01-01

    Ordered mesoporous carbons (OMCs) have been prepared by the strategy of evaporation-induced organic-organic self-assembly method by employing a mixture of amphiphilic triblock copolymers poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) and reverse PPO-PEO-PPO as templates, with soluble in ethanol, low-molecular-weight phenolic resin as precursor, followed by carbonization. It has been found that the as prepared OMCs with porosity that combines super-micropore and small mesopore size distributed from 0.8 to 4 nm, which bridges the pore size from 2 to 3 nm and also for the diversification of the soft-templating synthesis of OMCs. Furthermore, the results showed that the OMCs obtained have mesophase transition from cylindrical p6 mm to centered rectangular c2 mm structure by simply tuning the ratio of PPO-PEO-PPO/PEO-PPO-PEO. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity

    International Nuclear Information System (INIS)

    Kumaresan, L.; Prabhu, A.; Palanichamy, M.; Murugesan, V.

    2011-01-01

    Research highlights: → Mesoporous TiO 2 synthesized using P123 as soft template in sol-gel method. → Nanoparticle aggregates are better for photocatalytic activity than free nanoparticles. → Particle to particle transport of electrons in the conduction band of aggregates are important factor. - Abstract: Mesoporous TiO 2 was synthesized using triblock copolymer as the structure directing template in ethanol/water, isopropanol/water or 1-butanol/water medium by sol-gel method. The presence of intense peak at low angle in the XRD patterns confirmed the orderly arrangement of mesopores in the material. Among the three different alcohols, ethanol had influenced better in controlling the particle size than others. The enhanced specific surface area also revealed the formation of mesopores. Aggregates of particles were clearly seen in the TEM images and the size of the particles was approximately 10 nm. The photocatalytic activity of mesoporous TiO 2 was evaluated using aqueous alachlor as a model pollutant. The activity of mesoporous TiO 2 synthesized in ethanol/water mole ratio of 50 was higher than other mesoporous TiO 2 and commercial TiO 2 (Degussa P-25). The transport of excited electrons from one particle to its neighboring nanoparticles of mesoporous TiO 2 is suggested to be the cause for enhanced photocatalytic activity.

  12. Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Qiao, Rui [ORNL

    2010-01-01

    In the spirit of the theoretical evolution from the Helmholtz model to the Gouy Chapman Stern model for electric double-layer capacitors, we explored the effect of a diffuse layer on the capacitance of mesoporous carbon supercapacitors by solving the Poisson Boltzmann (PB) equation in mesopores of diameters from 2 to 20 nm. To evaluate the effect of pore shape, both slit and cylindrical pores were considered. We found that the diffuse layer does not affect the capacitance significantly. For slit pores, the area-normalized capacitance is nearly independent of pore size, which is not experimentally observed for template carbons. In comparison, for cylindrical pores, PB simulations produce a trend of slightly increasing area-normalized capacitance with pore size, similar to that depicted by the electric double-cylinder capacitor model proposed earlier. These results indicate that it is appropriate to approximate the pore shape of mesoporous carbons as being cylindrical and the electric double-cylinder capacitor model should be used for mesoporous carbons as a replacement of the traditional Helmholtz model.

  13. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  14. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties

    Science.gov (United States)

    Li, Cuiling; Dag, Ömer; Dao, Thang Duy; Nagao, Tadaaki; Sakamoto, Yasuhiro; Kimura, Tatsuo; Terasaki, Osamu; Yamauchi, Yusuke

    2015-03-01

    Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles.

  15. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.

    Science.gov (United States)

    Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng

    2014-03-17

    The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.

  16. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Science.gov (United States)

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  17. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-02-14

    The present study is the first report on the synthesis and characterization of mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). A series of NR/HMS composites were prepared in tetrahydrofuran via an in situ sol–gel process using tetraethylorthosilicate as the silica precursor. The physicochemical properties of the composites were characterized by various techniques. The effects of the gel composition on the structural and textural properties of the NR/HMS composites were investigated. The Fourier-transform infrared spectroscopy (FTIR) and {sup 29}Si magic angle spinning nuclear magnetic resonance ({sup 29}Si MAS NMR) results revealed that the surface silanol groups of NR/HMS composites were covered with NR molecules. The powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated an expansion of the hexagonal unit cell and channel wall thickness due to the incorporation of NR molecules into the mesoporous structure. NR/HMS composites also possessed nanosized particles (∼79.4 nm) as confirmed by scanning electron microscopy (SEM) and particle size distribution analysis. From N{sub 2} adsorption–desorption measurement, the NR/HMS composites possessed a high BET surface area, large pore volume and narrow pore size distribution. Further, they were enhanced hydrophobicity confirmed by H{sub 2}O adsorption–desorption measurement. In addition, the mechanistic pathway of the NR/HMS composite formation was proposed. - Highlights: • NR molecules were incorporated into hexagonal meso-structure of HMS. • NR/HMS composites exhibited an expanded unit cell and channel wall thickness. • Nanosized NR/HMS composites with a lower particle size range were obtained. • NR/HMS had high surface area, large pore volume and narrow pore size distribution. • NR/HMS composites displayed an enhanced hydrophobicity.

  18. Phospholipid-Coated Mesoporous Silica Nanoparticles Acting as Lubricating Drug Nanocarriers

    OpenAIRE

    Tao Sun; Yulong Sun; Hongyu Zhang

    2018-01-01

    Osteoarthritis (OA) is a severe disease caused by wear and inflammation of joints. In this study, phospholipid-coated mesoporous silica nanoparticles (MSNs@lip) were prepared in order to treat OA at an early stage. The phospholipid layer has excellent lubrication capability in aqueous media due to the hydration lubrication mechanism, while mesoporous silica nanoparticles (MSNs) act as effective drug nanocarriers. The MSNs@lip were characterized by scanning electron microscope, transmission el...

  19. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  20. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Jian-Hua; He, Jian-Ping; Ji, Ya-Jun; Dang, Wang-Juan; Liu, Xiao-Lei; Zhao, Gui-Wang; Zhang, Chuan-Xiang; Zhao, Ji-Shuang; Fu, Qing-Bin; Hu, Huo-Ping

    2007-01-01

    Mesoporous carbon with ordered hexagonal structure derived from the co-assembly of triblock copolymer F127 and resol was employed as the carbon support of Pt catalysts for hydrogen electro-oxidation. Structural characterizations revealed that the mesoporous carbon exhibited large surface area and uniform mesopores. The Pt nanoparticles supported on the novel mesoporous carbon were fabricated by a facile CTAB assisted microwave synthesis process, wherein CTAB was expected to improve the wettability of carbon support as well as the dispersion of Pt nanoparticles. X-ray diffraction and transmission electron microscopy were applied to characterize the Pt catalysts. It was found that the Pt nanoparticles were uniform in size and highly dispersed on the mesoporous carbon supports. The cyclic voltammograms in sulfuric acid demonstrated that the electrochemical active surface area of Pt catalysts prepared with CTAB was two times than that without CTAB

  1. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  2. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  3. Controllable Fabrication of Ordered Mesoporous Bi2WO6 and Its High Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Xueming Dang

    2014-01-01

    Full Text Available Ordered mesoporous Bi2WO6 was fabricated by nanocasting technique using SBA-15 as the template. The effect of the dosage of SBA-15 on the formation of the ordered structure and the photocatalytic ability of mesoporous Bi2WO6 was discussed. It was confirmed that the ordered mesoporous structure was obtained as the dosage of SBA-15 was 0.3 g. It was found that, compared to Bi2WO6, the RhB degradation rate with ordered mesoporous Bi2WO6 was enhanced under visible light (λ>400 nm by the photocatalytic measurements. The enhanced photocatalytic performance of ordered mesoporous Bi2WO6 was attributed to its particular ordered mesoporous structure which could increase the light-harvesting efficiency, reduce the recombination of the photogenerated charge carriers, and promote the surface reaction.

  4. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry

    Directory of Open Access Journals (Sweden)

    Ryong Ryoo

    2012-04-01

    Full Text Available With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.

  5. Surface modification to improve the sorption property of U(VI) on mesoporous silica

    International Nuclear Information System (INIS)

    Lijuan Song; Yulong Wang; Lu Zhu; Bolong Guo; Suwen Chen; Wangsuo Wu

    2014-01-01

    Polyoxometalates K 7 [α-PW 11 O 39 ]·14H 2 O (PW11) modified mesoporous silica (MCM-48) with cubic structure, was prepared by impregnation and calcination methods. The modified mesoporous silica sorbent (PW11/MCM-48) was studied as a potential adsorbent for U(VI) from aqueous solutions. MCM-48 and PW11/MCM-48 were confirmed by X-ray diffraction and nitrogen physisorption techniques. The results indicate the original keggin structure of PW11 and mesoporous structure of MCM-48 are maintained after supporting PW11 on mesoporous silica MCM-48. The effects of contact time, solid-to-liquid ratio (m/V), solution pH and ionic strength on U(VI) sorption behaviors of the pure and modified mesoporous silicas were also studied. Typical sorption isotherms such as Langmuir and Freundlich isotherms were determined for sorption process. The results suggest that the sorption of U(VI) on MCM-48 or PW11/MCM-48 are strongly dependent on pH values but independent of ionic strength. The sorption capacity of PW11/MCM-48 for U(VI) is about ten times more than that of MCM-48. (author)

  6. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Science.gov (United States)

    Lee, Min-Hong

    The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on

  7. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    Energy Technology Data Exchange (ETDEWEB)

    Enterría, Marina, E-mail: marina@incar.csic.es; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-15

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm{sup 3}/g, respectively. X-ray diffraction and N{sub 2} adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica.

  8. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly

    International Nuclear Information System (INIS)

    Enterría, Marina; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M.D.

    2014-01-01

    Highlights: • Hierarchical micro-mesoporous aluminosilicates were synthesized. • Y zeolite core/MCM-48 silica shell structures were obtained. • Y zeolite favors the formation of the mesostructure. • Porosity and structure can be varied by modifying the preparation variables. • Duration of the hydrothermal step has a great effect on the materials properties. -- Abstract: A simple procedure to obtain hierarchical micro-mesoporous aluminosilicate composites was developed by growing MCM-48 silica over commercial Y zeolite. The obtained hierarchical composites have a microporous core and a mesoporous shell. The process consists in assembling dispersed Y zeolite with a mesoporous silica phase that is formed “in situ” by “soft-templating” with cetryltrimethylammonium bromide (CTAB) as surfactant. The Y zeolite/MCM-48 silica ratio and aging time were varied to study their effects on the final porosity and structure of the hierarchical composites. The pore textural and structural characteristics of the composites did not match those of the corresponding Y zeolite/MCM-48 silica physical mixtures. This implies that the synthesized composites integrate micropores and mesopores in the same bulk. The obtained composites exhibited micropore and mesopore volumes ranging between 0.15–0.31 and 0.30–0.51 cm 3 /g, respectively. X-ray diffraction and N 2 adsorption results revealed that the presence of zeolite in the reaction medium favors the formation of mesopores in the obtained materials, especially for short hydrothermal treatments. TEM results showed that the obtained adsorbents are constituted by an integrated micro-mesoporous bimodal system in which Y zeolite is surrounded by a thin cover of MCM-48 silica

  9. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    Science.gov (United States)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  10. Raman spectroscopy of pharmaceutical cocrystals in nanosized pores of mesoporous silica

    International Nuclear Information System (INIS)

    Ohta, Ryuichi; Ajito, Katsuhiro; Ueno, Yuko

    2017-01-01

    The Raman spectroscopy of pharmaceutical cocrystals based on caffeine and oxalic acid in nanosized pores of mesoporous silica has been demonstrated at various molar amounts. The Raman peak shifts of caffeine molecules express the existence of pharmaceutical cocrystals in mesoporous silica. The molar amount dependence of the peak shifts describes that caffeine and oxalic acid cocrystallized on the surface of the nanosized pores and piled up layer by layer. This is the first report that shows the Raman spectroscopy is a powerful tool to observe the synthesis of pharmaceutical cocrystals incorporated in the nanosized pores of mesoporous silica. The results indicate a way to control the size of cocrystals on a nanometer scale, which will provide higher bioavailability of pharmaceuticals. (author)

  11. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    Science.gov (United States)

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  12. Mesoporous Spinel Li4Ti5O12 Nanoparticles for High Rate Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Liu, Weijian; Shao, Dan; Luo, Guoen; Gao, Qiongzhi; Yan, Guangjie; He, Jiarong; Chen, Dongyang; Yu, Xiaoyuan; Fang, Yueping

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous Li 4 Ti 5 O 12 nanoparticles were prepared by a simple hydrothermal method. • The mesoporous Li 4 Ti 5 O 12 nanoparticles exhibited a diameter of 40 ± 5 nm and a pore-size distribution of 6 - 8 nm. • Cells with the mesoporous Li 4 Ti 5 O 12 anode showed excellent high rate electrochemical properties. - Abstract: Mesoporous spinel lithium titanate (Li 4 Ti 5 O 12 ) nanoparticles with the diameter of 40 ± 5 nm and the pore-size distribution of 6 - 8 nm were prepared by a simple hydrothermal method. As an anode material for lithium-ion batteries, these spinel Li 4 Ti 5 O 12 mesoporous nanoparticles exhibited desirable lithium storage properties with an initial discharge capacity of 176 mAh g −1 at 1 C rate and a capacity of approximately 145 mAh g −1 after 200 cycles at a high rate of 20 C. These excellent electrochemical properties at high charge/discharge rates are due to the mesoporous nano-scale structures with small size particles, uniform mesopores and larger electrode/electrolyte contact area, which shortens the diffusion path for both electrons and Li + ions, and offers more active sites for Li + insertion-extraction process

  13. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Simon, Paul; Schulze, Renate; Doert, Thomas; Luo, Yongxiang; Cuniberti, Gianaurelio

    2011-04-01

    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO(2) glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO(2) in an effort to develop a bioactive mesoporous SrO-SiO(2) (Sr-Si) glass with the capacity to deliver Sr(2+) ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr(2+) on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr-Si glass were investigated. The prepared mesoporous Sr-Si glass was found to have an excellent release profile of bioactive Sr(2+) ions and dexamethasone, and the incorporation of Sr(2+) improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr-Si glass had no cytotoxic effects and its release of Sr(2+) and SiO(4)(4-) ions enhanced alkaline phosphatase activity - a marker of osteogenic cell differentiation - in human bone mesenchymal stem cells. Mesoporous Sr-Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr(2+) into mesoporous SiO(2) glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  16. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  17. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  18. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  19. Synthesis of Novel Mesoporous Silica Materials with Hierarchical Pore Structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Choi, Wang Kyu; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Porous materials with various pore sizes in the range of micropore (< 2 nm), mesopore (2-50 nm), and macropore (> 50 nm) are attractive due to their many emerging applications such as catalysts, separation systems, and low dielectric constant materials. The discovery of new M41S mesoporous silica families with pore sizes larger than 2 nm in diameter in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these silica materials has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Recently, core-shell nanoparticles with a silica core and mesoporous shell under basic conditions were synthesized using the silica nanoparticles as a core, and a silica precursor (TEOS) and cationic surfactant (CTABr) as a material for the formation of the mesoporous shell. The resultant materials were very monodispersive in size and showed a narrow pore size distribution in the range of ca 2-3 nm in diameter, depending on the alkyl-chain length of the surfactants used. In this work, the mesoporous shell coated-fumed silicas (denoted as MS M-5s) were synthesized by using fumed silica instead of the silica nanoparticle as a core based on previous reports. Also, the structural properties of the MS M-5s such as the specific surface area and pore volume were easily controlled by varying the amount of the silica precursor and surfactant. The resultant materials exhibited a BET surface area of ca 279-446 m{sup 2}/g and total pore volume of ca 0.64-0.74 cm{sup 3}/g and showed a narrow pore size distribution (PSD) due to the removal of the organic surfactant molecules

  20. Mesoporous PtSnO2/C Catalyst with Enhanced Catalytic Activity for Ethanol Electro-oxidation

    Directory of Open Access Journals (Sweden)

    Siyu Chen

    2018-01-01

    Full Text Available In this paper, we report the synthesis, characterization, and electrochemical evaluation of a mesoporous PtSnO2/C catalyst, called PtSnO2(M/C, with a nominal Pt : Sn ratio of 3 : 1. Brunauer–Emmett–Teller and transmission electron microscopy characterizations showed the obvious mesoporous structure of SnO2 in PtSnO2(M/C catalyst. X-ray photoelectron spectroscopy analysis exhibited the interaction between Pt and mesoporous SnO2. Compared with Pt/C and commercial PtSnO2/C catalysts, PtSnO2(M/C catalyst has a lower active site, but higher catalytic activity for ethanol electro-oxidation reaction (EOR. The enhanced activity could be attributed to Pt nanoparticles deposited on mesoporous SnO2 that could decrease the amount of poisonous intermediates produced during EOR by the interaction between Pt and mesoporous SnO2.

  1. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

    OpenAIRE

    Xing, Wei; Wu, Zucheng; Tao, Shanwen

    2016-01-01

    Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved a...

  2. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    Science.gov (United States)

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  3. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  4. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    Science.gov (United States)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…

  5. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  6. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  7. Structure of water in mesoporous organosilica by calorimetry and inelastic neutron scattering

    Science.gov (United States)

    Levy, Esthy; Kolesnikov, Alexander I.; Li, Jichen; Mastai, Yitzhak

    2009-01-01

    In this paper, we describe the preparation of mesoporous organosilica samples with hydrophilic or hydrophobic organic functionality inside the silica channel. We synthesized mesoporous organosilica of identical pore sizes based on two different organic surface functionality namely hydrophobic (based on octyltriethoxysilane OTES) and hydrophilic (3-aminopropyltriethoxysilane ATES) and MCM-41 was used as a reference system. The structure of water/ice in those porous silica samples have been investigated over a range temperatures by differential scanning calorimetry (DSC) and inelastic neutron scattering (INS). INS study revealed that water confined in hydrophobic mesoporous organosilica shows vibrational behavior strongly different than bulk water. It consists of two states: water with strong and weak hydrogen bonds (with ratio 1:2.65, respectively), compared to ice-Ih. The corresponding O-O distances in these water states are 2.67 and 2.87 Ǻ, which strongly differ compared to ice-Ih (2.76 Ǻ). INS spectra for water in hydrophilic mesoporous organosilica ATES show behavior similar to bulk water, but with greater degree of disorder.

  8. Synthesis of ordered mesoporous uranium dioxide by a nanocasting route

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran; Wang Lin; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences and Collaborative Innovation Center

    2016-11-01

    Ordered mesoporous UO{sub 2} with 3-D structure (for UO{sub 2}-KIT-6) and nanowire bundles (for UO{sub 2}-SBA-15) was synthesized for the first time by a nanocasting route using different ordered mesoporous silica (KIT-6 and SBA-15, respectively) as templates and uranyl nitrate hexahydrate as the metal precursor. The uranyl nitrate was impregnated into the mesopore of the silica template and was converted to U{sub 3}O{sub 8} after the first step. The synthesis of ordered UO{sub 2} mesostructure was achieved by reducing the mesoporous U{sub 3}O{sub 8} with silica composites under 5% H{sub 2}/Ar atmosphere at 700 C, followed by a template removal process. The as-prepared UO{sub 2}-KIT-6 had a particle size of several millimeters, and was constructed with uncoupled subframework mesostructure and crystalline walls, while UO{sub 2}-SBA-15 possessed a rope-like morphology and consisted of nanowire arrays. The surface area and pore volume of ordered UO{sub 2} mesostructure are 47.2 m{sup 2} g{sup -1} and 0.23 cm{sup 3} g{sup -1} for the UO{sub 2}-KIT-6, and 54.4 m{sup 2} g{sup -1} and 0.28 cm{sup 3} g{sup -1} for the UO{sub 2}-SBA-15, respectively.

  9. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    Science.gov (United States)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  11. Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica

    International Nuclear Information System (INIS)

    Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.

    2007-01-01

    Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2 :MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas. - Graphical abstract: A novel manganese ethylxanthate precursor was used to impregnate the pore network of mesoporous silica and was decomposed to yield MnS particles smaller or equal to the pore size. The particles exhibit all three common polymorphs, demonstrate unexpected ferromagnetism at low temperatures and display a strong luminescence

  12. Efficient adsorption concentration and photolysis of acetaldehyde on titania-mesoporous silica composite

    Science.gov (United States)

    Yamaguchi, Satoshi; Matsumoto, Akihiko

    2017-07-01

    Titania-mesoporous silica composite (TiO2/MCM) was prepared by hydrolysis of titaniumtetraisopropoxide (TTIP) with the presence of mesoporous silica MCM-41. The TiO2/MCM samples consisted of highly dispersed TiO2 on the surface of MCM-41. Dynamic adsorption and photocatalytic decomposition features for acetaldehyde (CH3CHO) were measured by flow method. The amount of CH3CHO decomposition on TiO2/MCM-41 increased with the TiO2 amount, suggesting that a large amount of CH3CHO was adsorbed on mesopores of MCM-41 of the TiO2/MCM and was efficiently decomposed on finely dispersed TiO2 surface by ultraviolet irradiation.

  13. Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Nannan [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Yuan, Dingsheng, E-mail: tydsh@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhou, Tianxiang; Chen, Jingxing; Mo, Shanshan; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-05-15

    Graphical abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance is up to 386 F g{sup -1}. Research highlights: {yields} An efficient and quick microwave method has been employed. {yields} A worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites have been successfully prepared. {yields} This composite exhibits excellent capacitance performance. {yields} This composite could be a potential electrode material for the supercapacitors. -- Abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. As-prepared products have been characterized by X-ray diffraction, N{sub 2} adsorption-desorption, scanning electron microscopy, transmission electron microscopy and inductive coupled plasma atomic emission spectroscopy. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance reaches 386 F g{sup -1}, three times more than the pure worm-like mesoporous carbon.

  14. Steam-assisted crystallization of TPA+-exchanged MCM-41 type mesoporous materials with thick pore walls

    International Nuclear Information System (INIS)

    Chen, Hong Li; Zhang, Kun; Wang, Yi Meng

    2012-01-01

    Highlights: ► Mesoporous Ti-containing silica with thicker pore walls was synthesized. ► Ion-exchange and steam-assisted crystallization led to MCM-41/MFI composite. ► The introduction of Ti inhibited the formation of separated MFI particles. ► Lower temperature favored retaining mesoporous characteristics and morphology. -- Abstract: Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, 1 H– 13 C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show that the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.

  15. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.

    Science.gov (United States)

    Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar

    2010-07-14

    The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.

  16. Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals

    Energy Technology Data Exchange (ETDEWEB)

    Yang Sanming; Coombs, N.; Ozin, G.A. [Toronto Univ., Ont. (Canada). Materials Chemistry Research Group

    2000-12-15

    Regular arrays of hexagonal mesoporous silica spheres are crucial for a number of applications, but until now control of the diameter, dispersity, and packing of the spheres has not proved possible. These authors report a new method-micromolding in inverted polymer opals-that allows the synthesis of such hexagonal mesoporous silica opals for the first time. (orig.)

  17. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    International Nuclear Information System (INIS)

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  18. Mesoporous tungsten titanate as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of biomolecules

    International Nuclear Information System (INIS)

    Shan Zhe; Han Lu; Yuan Minjia; Deng Chunhui; Zhao Dongyuan; Tu Bo; Yang Pengyuan

    2007-01-01

    In this paper, mesoporous tungsten titanate (WTiO) with different nano-pore structures was utilized as matrix for the analysis of short peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Effect of characteristic features of mesoporous matrices on laser desorption/ionization process was investigated. Experiments showed that the ordered two-dimensional and three-dimensional mesoporous matrices were superior in performance to the non-ordered WTiO matrix. The dramatic enhancement of signal sensitivity by the ordered mesoporous matrices can be reasonably attributed to the ordered structure, which facilitated the understanding on structure-function relationship in mesoporous cavity for laser desorption process of adsorbed biomolecules. With the ordered mesoporous matrix, the short peptides are successfully detected. The presence of trace alkali metal salt effectively increased the analyte ion yields and the MALDI-TOFMS using the inorganic mesoporous matrices displayed a high salt tolerance. The developed technique also showed a satisfactory performance in peptide-mapping and amino-acid sequencing analysis

  19. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    Science.gov (United States)

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  20. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    International Nuclear Information System (INIS)

    Smeulders, Geert; Meynen, Vera; Silvestre-Albero, Ana; Houthoofd, Kristof; Mertens, Myrjam; Silvestre-Albero, Joaquin; Martens, Johan A.; Cool, Pegie

    2012-01-01

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: ► The stability (hydrothermal, mechanical and chemical) of PMOs is studied. ► Compared stability of PMOs with classic and other hybrid mesoporous silica materials. ► Immersion calorimetry to study the effect of hydrophobicity. ► PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with 29 Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  1. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Smeulders, Geert, E-mail: geert.smeulders@ua.ac.be [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Meynen, Vera [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Silvestre-Albero, Ana [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Houthoofd, Kristof [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Mertens, Myrjam [Flemish Institute for Technological Research (VITO N.V.), Boeretang 200, 2400 Mol (Belgium); Silvestre-Albero, Joaquin [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Martens, Johan A. [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Cool, Pegie [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2012-02-15

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: Black-Right-Pointing-Pointer The stability (hydrothermal, mechanical and chemical) of PMOs is studied. Black-Right-Pointing-Pointer Compared stability of PMOs with classic and other hybrid mesoporous silica materials. Black-Right-Pointing-Pointer Immersion calorimetry to study the effect of hydrophobicity. Black-Right-Pointing-Pointer PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with {sup 29}Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  2. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study

    International Nuclear Information System (INIS)

    Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.; Denton, Kelley; Tao Zhimin; Asefa, Tewodros

    2009-01-01

    The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of ∼2.7-3.3 nm and moderate to high surface areas up to ∼1000 m 2 /g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for

  3. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  4. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o-phenylphenol degradation.

    Science.gov (United States)

    Hou, Jifei; Yang, Shasha; Wan, Haiqin; Fu, Heyun; Qu, Xiaolei; Xu, Zhaoyi; Zheng, Shourong

    2018-04-01

    As a broad-spectrum preservative, toxic o-phenylphenol (OPP) was frequently detected in aquatic environments. In this study, N-doped mesoporous carbon was prepared by a hard template method using different nitrogen precursors and carbonization temperatures (i.e., 700, 850 and 1000 °C), and was used to activate peroxymonosulfate (PMS) for OPP degradation. For comparison, mesoporous carbon (CMK-3) was also prepared. Characterization results showed that the N-doped mesoporous carbon samples prepared under different conditions were perfect replica of their template. In comparison with ethylenediamine (EDA) and dicyandiamide (DCDA) as the precursors, N-doped mesoporous carbon prepared using EDA and carbon tetrachloride as the precursors displayed a higher catalytic activity for OPP degradation. Increasing carbonization temperature of N-doped mesoporous carbon led to decreased N content and increased graphitic N content at the expense of pyridinic and pyrrolic N. Electron paramagnetic resonance (EPR) analysis showed that PMS activation on N-doped mesoporous carbon resulted in highly active species and singlet oxygen, and catalytic PMS activation for OPP degradation followed a combined radical and nonradical reaction mechanism. Increasing PMS concentration enhanced OPP degradation, while OPP degradation rate was independent on initial OPP concentration. Furthermore, the dependency of OPP degradation on PMS concentration followed the Langmuir-Hinshelwood model, reflecting that the activation of adsorbed PMS was the rate controlling step. Based on the analysis by time-of-flight mass spectrometry, the degradation pathway of OPP was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard

    International Nuclear Information System (INIS)

    Praveen Kumar, J.; Prasad, G.K.; Ramacharyulu, P.V.R.K.; Garg, P.; Ganesan, K.

    2013-01-01

    Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. They were prepared by precipitation pyrolysis method and characterized by means of X-ray diffraction, transmission electron microscopy, nitrogen adsorption, Fourier transform infrared spectroscopy techniques. Obtained data indicated the presence of mesopores with diameter ranging from 2 to 80 nm and the materials exhibited relatively high surface area 86 m 2 g −1 when compared to the individual metal oxide nanoparticles. Reactive sites of mesoporous CuO–ZnO binary metal oxide nanocomposites were studied by infrared spectroscopy technique using pyridine as a probe molecule. These materials demonstrated superior decontamination properties against sulfur mustard when compared to single component metal oxides and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Graphical abstract: Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. These materials demonstrated superior decontamination properties against sulfur mustard and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Highlights: • Preparation of mesoporous CuO–ZnO binary metal oxide nanocomposite. • CuO–ZnO with better surface area was synthesized by precipitation pyrolysis. • Decontamination of HD using mesoporous CuO–ZnO binary metal oxide nanocomposite. • HD decontaminated by elimination and hydrolysis reactions

  6. Mesoporous CuO–ZnO binary metal oxide nanocomposite for decontamination of sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, J.; Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Garg, P.; Ganesan, K.

    2013-11-01

    Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. They were prepared by precipitation pyrolysis method and characterized by means of X-ray diffraction, transmission electron microscopy, nitrogen adsorption, Fourier transform infrared spectroscopy techniques. Obtained data indicated the presence of mesopores with diameter ranging from 2 to 80 nm and the materials exhibited relatively high surface area 86 m{sup 2} g{sup −1} when compared to the individual metal oxide nanoparticles. Reactive sites of mesoporous CuO–ZnO binary metal oxide nanocomposites were studied by infrared spectroscopy technique using pyridine as a probe molecule. These materials demonstrated superior decontamination properties against sulfur mustard when compared to single component metal oxides and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Graphical abstract: Mesoporous CuO–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard, a well known chemical warfare agent. These materials demonstrated superior decontamination properties against sulfur mustard and decontaminated it to divinyl sulfide, chloroethyl vinyl sulfide, hemisulfur mustard, etc. - Highlights: • Preparation of mesoporous CuO–ZnO binary metal oxide nanocomposite. • CuO–ZnO with better surface area was synthesized by precipitation pyrolysis. • Decontamination of HD using mesoporous CuO–ZnO binary metal oxide nanocomposite. • HD decontaminated by elimination and hydrolysis reactions.

  7. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-01-01

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 o C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m 2 /g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO 3 LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  8. Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template.

    Science.gov (United States)

    Wu, Zhangxiong; Li, Qiang; Feng, Dan; Webley, Paul A; Zhao, Dongyuan

    2010-09-01

    In this paper, an efficient route is developed for controllable synthesis of ordered mesoporous alumina (OMA) materials with variable pore architectures and high mesoporosity, as well as crystalline framework. The route is based on the nanocasting pathway with bimodal mesoporous carbon as the hard template. In contrast to conventional reports, we first realize the possibility of creating two ordered mesopore architectures by using a single carbon hard template obtained from organic-organic self-assembly, which is also the first time such carbon materials are adopted to replicate ordered mesoporous materials. The mesopore architecture and surface property of the carbon template are rationally designed in order to obtain ordered alumina mesostructures. We found that the key factors rely on the unique bimodal mesopore architecture and surface functionalization of the carbon hard template. Namely, the bimodal mesopores (2.3 and 5.9 nm) and the surface functionalities make it possible to selectively load alumina into the small mesopores dominantly and/or with a layer of alumina coated on the inner surface of the large primary mesopores with different thicknesses until full loading is achieved. Thus, OMA materials with variable pore architectures (similar and reverse mesostructures relative to the carbon template) and controllable mesoporosity in a wide range are achieved. Meanwhile, in situ ammonia hydrolysis for conversion of the metal precursor to its hydroxide is helpful for easy crystallization (as low as approximately 500 degrees C). Well-crystallized alumina frameworks composed of gamma-Al(2)O(3) nanocrystals with sizes of 6-7 nm are obtained after burning out the carbon template at 600 degrees C, which is advantageous over soft-templated aluminas. The effects of synthesis factors are demonstrated and discussed relative to control experiments. Furthermore, our method is versatile enough to be used for general synthesis of other important but difficult

  9. Ordered mesoporous carbon for electrochemical sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ndamanisha, Jean Chrysostome [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Universite du Burundi, Institut de pedagogie appliquee, B.P. 5223, Bujumbura (Burundi); Guo Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2012-10-17

    Highlights: Black-Right-Pointing-Pointer The preparation and functionalization of ordered mesoporous carbon. Black-Right-Pointing-Pointer Their applications as electrochemical sensors with high electrocatalytic activity. Black-Right-Pointing-Pointer A promising electrode material based on its interesting properties. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters in the mesopore range, ordered mesoporous carbon (OMC) is suitable for applications in catalysis and sensing. We report recent applications of OMC in electrochemical sensors and biosensors. After a brief description of the electrochemical properties, the functionalization of the OMC for improvement of the electrocatalytic properties is then presented. We show how the ordered mesostructure of OMC is very important in those applications. The high density of edge plane-like defective sites (EDSs), oxygen-containing groups and a large surface area on OMC may provide many favorable sites for electron transfer to compounds, which makes OMC a potential novel material for an investigation of the electrochemical behavior of substances. Moreover, the structural capabilities of OMC at the scale of a few nanometers agree with immobilization of other electrocataytic substances. Interesting properties of this material may open up a new approach to study the electrochemical determination of other biomolecules.

  10. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica-Effect of Pore-Level Anisotropy.

    Science.gov (United States)

    Balzer, Christian; Waag, Anna M; Gehret, Stefan; Reichenauer, Gudrun; Putz, Florian; Hüsing, Nicola; Paris, Oskar; Bernstein, Noam; Gor, Gennady Y; Neimark, Alexander V

    2017-06-06

    The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N 2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.

  12. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    International Nuclear Information System (INIS)

    Burke, Aoife M.; Hanrahan, John P.; Healy, David A.; Sodeau, John R.; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 μmol g -1 for Cr, 340 μmol g -1 for Ni, 358 μmol g -1 for Fe, 364 μmol g -1 for Mn and 188 μmol g -1 for Pd

  13. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Aoife M.; Hanrahan, John P. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Healy, David A.; Sodeau, John R. [Department of Chemistry, Centre of Research in Atmospheric Chemistry, University College Cork, Cork (Ireland); Holmes, Justin D. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Morris, Michael A. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)], E-mail: m.morris@ucc.ie

    2009-05-15

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 {mu}mol g{sup -1} for Cr, 340 {mu}mol g{sup -1} for Ni, 358 {mu}mol g{sup -1} for Fe, 364 {mu}mol g{sup -1} for Mn and 188 {mu}mol g{sup -1} for Pd.

  14. Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Jia-Ling

    2014-04-15

    Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    International Nuclear Information System (INIS)

    Li, Dongdong; Yu, Xiang

    2016-01-01

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N 2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10 6 M −1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10 6 M −1 in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.

  16. Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2012-02-01

    We fabricate epoxy composites with low thermal expansion by using mesoporous silica particles with a large pore diameter (around 10 nm) as inorganic fillers. From a simple calculation, almost all the mesopores are estimated to be completely filled with the epoxy polymer. The coefficient of linear thermal expansion (CTE) values of the obtained epoxy composites proportionally decrease with the increase of the mesoporous silica content.

  17. A simple large-scale synthesis of mesoporous In{sub 2}O{sub 3} for gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Su; Song, Peng, E-mail: mse_songp@ujn.edu.cn; Yan, Huihui; Yang, Zhongxi; Wang, Qi, E-mail: mse_wangq@ujn.edu.cn

    2016-08-15

    Graphical abstract: Large-scale mesoporous In{sub 2}O{sub 3} nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In{sub 2}O{sub 3} nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In{sub 2}O{sub 3} nanostructures were discussed based on the experimental results. • The as-prepared In{sub 2}O{sub 3} samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In{sub 2}O{sub 3} nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In{sub 2}O{sub 3} nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In{sub 2}O{sub 3}. The In{sub 2}O{sub 3} particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In{sub 2}O{sub 3} nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  18. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    Directory of Open Access Journals (Sweden)

    Tiancong Zhao

    2017-12-01

    Full Text Available Mesoporous SiO2 nanoparticles (MSNs are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores, and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2 on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  19. Templated, carbothermal reduction synthesis of mesoporous silicon ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... and a transmission electron microscope with facilities for energy dispersive ... Figure 1 shows SEM images of mesoporous silica shell over the ... leads to an inverted arrangement of CTABr surfactant, which repels rather than ...

  20. Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.

    Science.gov (United States)

    Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang

    2018-08-01

    Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.

  1. Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-10-15

    This study is the first report on synthesis, characterization and catalytic application of propylsulfonic acid-functionalized mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). In comparison with propylsulfonic acid-functionalized HMS (HMS-SO{sub 3}H), a series of NR/HMS-SO{sub 3}H composites were prepared via an in situ sol–gel process using tetrahydrofuran as the synthesis media. Tetraethylorthosilicate as the silica source, was simultaneously condensed with 3-mercaptopropyltrimethoxysilane in a solution of NR followed by oxidation with hydrogen peroxide to achieve the mesoporous composites containing propylsulfonic acid groups. Fourier-transform infrared spectroscopy and {sup 29}Si MAS nuclear magnetic resonance spectroscopy results verified that the silica surfaces of the NR/HMS-SO{sub 3}H composites were functionalized with propylsulfonic acid groups and covered with NR molecules. After the incorporation of NR and organo-functional group into HMS, the hexagonal mesostructure remained intact concomitantly with an increased framework wall thickness and unit cell size, as evidenced by the X-ray powder diffraction analysis. Scanning electron microscopy analysis indicated a high interparticle porosity of NR/HMS-SO{sub 3}H composites. The textural properties of NR/HMS-SO{sub 3}H were affected by the amount of MPTMS loading to a smaller extent than that of HMS-SO{sub 3}H. NR/HMS-SO{sub 3}H exhibited higher hydrophobicity than HMS-SO{sub 3}H, as revealed by H{sub 2}O adsorption–desorption measurements. Moreover, the NR/HMS-SO{sub 3}H catalysts possessed a superior specific activity to HMS-SO{sub 3}H in the esterification of lauric acid with ethanol, resulting in a higher conversion level. - Highlights: • Acidic NR/HMS-SO{sub 3}H composites were prepared by in situ sol–gel process. • Propylsulfonic acid was functionalized onto HMS surface by direct co-condensation. • NR/HMS-SO{sub 3}H exhibited a hexagonal

  2. Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jiehua, E-mail: linjiehua@qust.edu.cn [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Yue; Wei Zhijing; Wang Wei [Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2011-11-15

    Highlights: > The increased amount of monoclonal antibody in Au/SiO{sub 2} led to a wider linear range. > Due to the increased HRP tags in HRP-Ab{sub 2}/SiO{sub 2}, signal amplification achieved. > A simple dual amplification immunoassay achieved with flow injection analysis. - Abstract: A chemiluminescent dual signal amplification strategy for the determination of {alpha}-fetoprotein (AFP) was proposed based on a sandwich immunoassay format. Monoclonal antibody of AFP immobilized on the gold nanoparticles doped mesoporous SiO{sub 2} (Au/SiO{sub 2}) were prepared and used as a primary antibody. Horseradish peroxidase (HRP) and HRP-labeled secondary antibody (Ab{sub 2}) co-immobilized into the mesoporous SiO{sub 2} nanoparticles (HRP-Ab{sub 2}/SiO{sub 2}) were used as the labeled immunological probe. Due to the high ratio surface areas and pore volumes of the mesoporous SiO{sub 2}, not only the amount of AFP monoclonal antibody but also the amount of the modified HRP and Ab{sub 2} in HRP-Ab{sub 2}/SiO{sub 2} were largely increased. Thus the chemiluminescent signal was amplified by using the system of luminol and H{sub 2}O{sub 2} under the catalysis of HRP. Under the optimal conditions, two linear ranges for AFP were obtained from 0.01 to 0.5 ng mL{sup -1} and 0.5 to 100 ng mL{sup -1} with a detection limit of 0.005 ng mL{sup -1} (3{sigma}). The fabricated signal amplification strategy showed an excellent promise for sensitive detection of AFP and other tumor markers.

  3. Synthesis and Textural Characterization of Mesoporous and Meso-/Macroporous Silica Monoliths Obtained by Spinodal Decomposition

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2016-04-01

    Full Text Available Silica monoliths featuring either mesopores or flow-through macropores and mesopores in their skeleton are prepared by combining spinodal phase separation and sol-gel condensation. The macroporous network is first generated by phase separation in acidic medium in the presence of polyethyleneoxides while mesoporosity is engineered in a second step in alkaline medium, possibly in the presence of alkylammonium cations as surfactants. The mesoporous monoliths, also referred as aerogels, are obtained in the presence of alkylpolyethylene oxides in acidic medium without the use of supercritical drying. The impact of the experimental conditions on pore architecture of the monoliths regarding the shape, the ordering, the size and the connectivity of the mesopores is comprehensively discussed based on a critical appraisal of the different models used for textural analysis.

  4. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  5. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    Science.gov (United States)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  6. Immobilization of mesoporous silica particles on stainless steel plates

    International Nuclear Information System (INIS)

    Pasqua, Luigi; Morra, Marco

    2017-01-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  7. Immobilization of mesoporous silica particles on stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  8. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  9. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas; Fatieiev, Yevhen; Julfakyan, Khachatur; Lu, Jie; Emwas, Abdelhamid; Anjum, Dalaver; Omar, Haneen; Tamanoi, Fuyuhiko; Zink, Jeffrey; Khashab, Niveen M.

    2016-01-01

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a

  10. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    Science.gov (United States)

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  11. Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants

    Directory of Open Access Journals (Sweden)

    Tae-Jung Ha

    2011-01-01

    Full Text Available Materials with nanosized and well-arranged pores have been researched actively in order to be applied to new technology fields. Especially, mesoporous material containing various pore structures is expected to have different pore structure. To form a mixed pore structure, ordered mesoporous silica films were prepared with a mixture of surfactant; Brij-76 and P-123 block copolymer. In mixed surfactant system, mixed pore structure was observed in the region of P-123/(Brij-76 + P-123 with about 50.0 wt.% while a single pore structure was observed in regions which have large difference in ratio between Brij-76 and P-123 through the X-ray diffraction analysis. Regardless of surfactant ratio, porosity was retained almost the same. It is expected that ordered mesoporous silica film with mixed pore structure can be one of the new materials which has distinctive properties.

  12. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    Science.gov (United States)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  13. Synthesis of Mesoporous Single Crystal Co(OH)2 Nanoplate and Its Topotactic Conversion to Dual-Pore Mesoporous Single Crystal Co3O4.

    Science.gov (United States)

    Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui

    2016-06-22

    A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.

  14. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    Science.gov (United States)

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  15. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  16. Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance

    International Nuclear Information System (INIS)

    Dhawale, D.S.; Lokhande, C.D.

    2011-01-01

    Highlights: → Low temperature synthesis of mesoporous ZnO thin films by CBD method with urea containing bath. → Wurtzite crystal structure of mesoporous ZnO has been confirmed from the XRD study. → SEM images reveal the formation of hydrophobic mesoporous ZnO thin films. → Maximum LPG response of 52% has been achieved with high stability. - Abstract: In the present work, we report base free chemical bath deposition (CBD) of mesoporous zinc oxide (ZnO) thin films from urea containing bath for liquefied petroleum gas (LPG) sensor application. Mesoporous morphology with average pore size ∼2 μm and wurtzite crystal structure are confirmed from scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The surface of ZnO is hydrophobic with water contact angle 128 ± 1 o . Optical study reveals the presence of direct bad gap with energy 3.24 eV. The gas sensing study reveals the mesoporous ZnO is highly selective towards LPG as compared with CO 2 and maximum LPG response of 52% is achieved upon the exposure of 3900 ppm LPG at 573 K as well as good reproducibility and short response/recovery times.

  17. Preparation of mesoporous alumina particles by spray pyrolysis and application to double bond migration of 2-butene.

    Science.gov (United States)

    Song, Ki Chang; Kim, Joo Hyun; Kim, Jin Han; Jung, Kyeong Youl; Park, Young-Kwon; Jeon, Jong-Ki

    2011-07-01

    The objective of the present study is to investigate the catalytic performance of mesoporous alumina that were prepared via spray pyrolysis for double bond migration from 2-butene to 1-butene. The mesoporous alumina particles were prepared via spray pyrolysis by changing the types of organic surfactants and Al precursors. The texture and acidic properties of mesoporous alumina were analyzed through N2 adsorption, SEM, ammonia-temperature programmed desorption, and FT-IR of adsorbed pyridine. The morphologies and texture properties of the mesoporous alumina were found to have been strongly influenced by the combination of the Al precursor and the structure-directing agents. The mesoporous alumina samples had two kinds of acidic sites: a Lewis acid site and a H-bonded weak acid site. 1-Butene was produced selectively through double bond migration of 2-butene over all of the mesoporous alumina catalysts. The catalyst prepared by using a chloride compound as an aluminium precursor and CTAC as a structure-directing agent showed the highest activity in the double bond migration of 2-butene, which was attributed to its large surface area and an overall high amount of acid sites.

  18. Preparation of mesoporous CdS-containing TiO{sub 2} film and enhanced visible light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanmei; Wang, Renliang, E-mail: rlwang@tsmc.edu.cn; Zhang, Wenping; Ge, Haiyan; Wang, Xiaopeng; Li, Li

    2015-01-15

    Highlights: • Well-dispersed distribution of CdS nanoparticles inside of TiO{sub 2} mesoporous structures was fabricated. • The sensitization of CdS nanoparticles significantly extends the response of TiO{sub 2} mesoporous film in the visible region. • An improved visible light photocatalytic activity was observed by the CdS–MTF. - Abstract: Mesoporous TiO{sub 2} films containing CdS nanocrystals were successfully fabricated by a two-step process of successive ionic layer adsorption and reaction (SILAR) technique and a solvothermal method followed by annealing. The distribution of CdS nanoparticles in the inner structures of the TiO{sub 2} mesoporous films is confirmed by field emission scanning electron microscope. The CdS modification of the mesoporous films results in an increase in the visible light adsorption, and exhibits more excellent photocatalytic degradation of methyl orange (MO) under visible light irradiation.

  19. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules

    Science.gov (United States)

    Knežević, Nikola Ž.; Durand, Jean-Olivier

    2015-01-01

    Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues.Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues. Dedicated to Professor Jeffrey I. Zink on the occasion of his 70th birthday.

  20. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  1. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials.

    Science.gov (United States)

    Galarneau, Anne; Villemot, François; Rodriguez, Jeremy; Fajula, François; Coasne, Benoit

    2014-11-11

    The t-plot method is a well-known technique which allows determining the micro- and/or mesoporous volumes and the specific surface area of a sample by comparison with a reference adsorption isotherm of a nonporous material having the same surface chemistry. In this paper, the validity of the t-plot method is discussed in the case of hierarchical porous materials exhibiting both micro- and mesoporosities. Different hierarchical zeolites with MCM-41 type ordered mesoporosity are prepared using pseudomorphic transformation. For comparison, we also consider simple mechanical mixtures of microporous and mesoporous materials. We first show an intrinsic failure of the t-plot method; this method does not describe the fact that, for a given surface chemistry and pressure, the thickness of the film adsorbed in micropores or small mesopores (plot method to estimate the micro- and mesoporous volumes of hierarchical samples is then discussed, and an abacus is given to correct the underestimated microporous volume by the t-plot method.

  2. Radiation response of cubic mesoporous silicate and borosilicate thin films

    Science.gov (United States)

    Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio

    2018-01-01

    The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree

  3. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    International Nuclear Information System (INIS)

    Torres, Cecilia C.; Urbano, Bruno F.; Campos, Cristian H.; Rivas, Bernabé L.; Reyes, Patricio

    2015-01-01

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, 29 Si and 13 C solid state NMR, and N 2 adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point

  4. Benzylation of Toluene over Iron Modified Mesoporous Ceria

    Directory of Open Access Journals (Sweden)

    K.J. Rose Philo

    2012-12-01

    Full Text Available Green chemistry has been looked upon as a sustainable science which accomplishes both economical and environmental goals, simultaneously.With this objective, we developed an alternative process to obtain the industrially important benzyl aromatics by benzylation of aromatics using benzyl chloride, catalysed by mesoporous solid acid catalysts. In this work mesoporous ceria is prepared using neutral surfactant which helped the calcination possible at a lower temperature enabling a higher surface area. Mesoporous ceria modified with Fe can be successfully utilized for the selective benzylation of toluene to more desirable product methyl diphenyl methane with 100% conversion and selectivity in 2 hours using only 50mg of the catalyst under milder condition. The reusability, regenerability, high selectivity, 100% conversion, moderate reaction temperature and absence of solvent, etc. make these catalysts to be used in a truly heterogeneous manner and make the benzylation reaction an environment friendly one. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 30th June 2012; Revised: 7th November 2012; Accepted: 10th November 2012[How to Cite: K.J. Rose Philo, S. Sugunan. (2012. Benzylation of Toluene over Iron Modified Mesoporouxs Ceria. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 158-164. (doi:10.9767/bcrec.7.2.3759.158-164][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3759.158-164 ] | View in 

  5. Mesoporous hydroxyapatite: Preparation, drug adsorption, and release properties

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    2014-11-14

    Mesoporous hydroxyapatite (HA) was synthesized through gas–liquid chemical precipitation method at ambient temperature without any template. Structure, morphology and pore size distribution of HA were analyzed via X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution electron microscopy and N{sub 2} adsorption/desorption. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug adsorption and release behavior of HA. The kinetics of DOX adsorption on HA followed the pseudo-second-order rate expression. Adsorption isotherms at various temperatures were obtained, and the equilibrium data fitted the Langmuir model. The values of thermodynamic parameters (Gibbs free energy, entropy, and enthalpy changes) demonstrated that the adsorption process was spontaneous and endothermic. In vitro pH-responsive (pH = 7.4, 5.8) controlled release was investigated. DOX-loaded HA showed a slow, long-term, and steady release rate. The release rate at pH5.8 was larger than that at pH7.4. Consequently, the as-prepared mesoporous HA has potential applications in controlled drug delivery systems. - Highlights: • Mesoporous HA was synthesized by a simple precipitation method without any template. • The kinetics of adsorption followed the pseudo-second-order rate expression. • Thermodynamics investigation showed that adsorption was spontaneous and endothermic. • DOX-loaded HA showed a long-term, steady, and pH-controlled release rate.

  6. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  7. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu; Zhang, Daliang; Chng, Leng Leng; Sun, Junliang; Zhao, L. J.; Zou, Xiaodong; Ying, Jackie

    2009-01-01

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  8. Phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors

    Science.gov (United States)

    Cai, Tingwei; Zhou, Min; Han, Guangshuai; Guan, Shiyou

    2013-11-01

    A novel phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure is synthesized by the facile evaporation induced self-assembly strategy under a basic aqueous condition with SiO2 particles as template. The prepared bimodal mesoporous carbons (BMCs) are composed of ordered mesoporous and disordered mesoporous with diameter of about 3.5 nm and 7.0 nm, respectively. They can be employed as supercapacitor electrodes in H2SO4 aqueous electrolyte after the simple acid-treatment. BMC exhibits an exceptional specific capacitance of 344 F g-1 at the current density of 0.1 A g-1, although it has a relatively low surface area of 722 m2 g-1. And the BMC electrode displays an excellent cycling stability over 10,000 cycles.

  9. Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries

    Science.gov (United States)

    Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei

    2017-10-01

    Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.

  10. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas

    2016-06-03

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a remarkably high organic content with a high surface area. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt%), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.

  11. Phosphoryl functionalized mesoporous silica for uranium adsorption

    International Nuclear Information System (INIS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  12. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  13. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  14. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  15. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  16. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  17. Assessment of surface acidity in mesoporous materials containing aluminum and titanium

    Science.gov (United States)

    Araújo, Rinaldo S.; Maia, Débora A. S.; Azevedo, Diana C. S.; Cavalcante, Célio L., Jr.; Rodríguez-Castellón, E.; Jimenez-Lopez, A.

    2009-04-01

    The surface acidity of mesoporous molecular sieves of aluminum and titanium was evaluated using four different techniques: n-butylamine volumetry, cyclohexylamine thermodesorption, temperature-programmed desorption of ammonia and adsorption of pyridine. The nature, strength and concentration of the acid sites were determined and correlated to the results of a probe reaction of anthracene oxidation to 9,10-anthraquinone (in liquid phase). In general, the surface acidity was highly influenced by the nature, location and coordination of the metal species (Al and Ti) in the mesoporous samples. Moderate to strong Brönsted acid sites were identified for the Al-MCM-41 sample in a large temperature range. For mesoporous materials containing Ti, the acidity was represented by a combination of weak to moderate Brönsted and Lewis acid sites. The Ti-HMS sample exhibits a higher acidity of moderate strength together with a well-balanced concentration of Brönsted and Lewis acid sites, which enhanced both conversion and selectivity in the oxidation reaction of anthracene.

  18. Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides

    Directory of Open Access Journals (Sweden)

    Shany Gamliel

    2016-11-01

    Full Text Available In recent years, hybrid organic–inorganic perovskite light absorbers have attracted much attention in the field of solar cells due to their optoelectronic characteristics that enable high power conversion efficiencies. Perovskite-based solar cells’ efficiency has increased dramatically from 3.8% to more than 20% in just a few years, making them a promising low-cost alternative for photovoltaic applications. The deposition of perovskite into a mesoporous metal oxide is an influential factor affecting solar cell performance. Full coverage and pore filling into the porous metal oxide are important issues in the fabrication of highly-efficient mesoporous perovskite solar cells. In this work, we carry out a structural and quantitative investigation of CH3NH3PbI3 pore filling deposited via sequential two-step deposition into two different mesoporous metal oxides—TiO2 and Al2O3. We avoid using a hole conductor in the perovskite solar cells studied in this work to eliminate undesirable end results. Filling oxide pores with perovskite was characterized by Energy Dispersive X-ray Spectroscopy (EDS in Transmission Electron Microscopy (TEM on cross-sectional focused ion beam (FIB lamellae. Complete pore filling of CH3NH3PbI3 perovskite into the metal oxide pores was observed down to X-depth, showing the presence of Pb and I inside the pores. The observations reported in this work are particularly important for mesoporous Al2O3 perovskite solar cells, as pore filling is essential for the operation of this solar cell structure. This work presents structural and quantitative proof of complete pore filling into mesoporous perovskite-based solar cells, substantiating their high power conversion efficiency.

  19. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  20. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: apcdwang@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)

    2016-04-15

    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  1. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  2. Synthesis, Characterization, and Catalytic Activity of Pd(II Salen-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Rotcharin Sawisai

    2017-01-01

    Full Text Available Salen ligand synthesized from 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde was used as a palladium chelating ligand for the immobilization of the catalytic site. Mesoporous silica supported palladium catalysts were prepared by immobilizing Pd(OAc2 onto a mesoporous silica gel through the coordination of the imine-functionalized mesoporous silica gel. The prepared catalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, inductivity couple plasma (ICP, nitrogen adsorption-desorption, and Fourier transform infrared (FT-IR spectroscopy. The solid catalysts showed higher activity for the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosylallene with aromatic amines compared with the corresponding homogenous catalyst. The heterogeneous catalytic system can be easily recovered by simple filtration and reused for up to five cycles with no significant loss of catalytic activity.

  3. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    Science.gov (United States)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  4. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    Science.gov (United States)

    Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  5. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Mohd Sokri

    2016-03-01

    Full Text Available Polysilazanes functionalized with alkoxy groups were designed and synthesized as single source precursors for fabrication of micro and mesoporous amorphous silica-based materials. The pyrolytic behaviors during the polymer to ceramic conversion were studied by the simultaneous thermogravimetry-mass spectrometry (TG-MS analysis. The porosity of the resulting ceramics was characterized by the N2 adsorption/desorption isotherm measurements. The Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopic analyses as well as elemental composition analysis were performed on the polymer-derived amorphous silica-based materials, and the role of the alkoxy group as a sacrificial template for the micro and mesopore formations was discussed from a viewpoint to establish novel micro and mesoporous structure controlling technologies through the polymer-derived ceramics (PDCs route.

  6. Pt Catalyst Supported within TiO2 Mesoporous Films for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Huang, Dekang; Zhang, Bingyan; Bai, Jie; Zhang, Yibo; Wittstock, Gunther; Wang, Mingkui; Shen, Yan

    2014-01-01

    In this study, dispersed Pt nanoparticles into mesoporous TiO 2 thin films are fabricated by a facile electrochemical deposition method as electro-catalysts for oxygen reduction reaction. The mesoporous TiO 2 thin films coated on the fluorine-doped tin oxide glass by screen printing allow a facile transport of reactants and products. The structural properties of the resulted Pt/TiO 2 electrode are evaluated by field emission scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements are performed to study the electrochemical properties of the Pt/TiO 2 electrode. Further study demonstrates the stability of the Pt catalyst supported within TiO 2 mesoporous films for the oxygen reduction reaction

  7. Architecture-dependent distribution of Mesopores in steamed Zeolite crystals as visualized by FIB-SEM Tomography

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; de Winter, D.A.M.|info:eu-repo/dai/nl/304838616; Aramburo, L.R.; Lebbink, M.N.|info:eu-repo/dai/nl/304834246; Post, J.A.|info:eu-repo/dai/nl/074120050; Drury, M.R.|info:eu-repo/dai/nl/304829315; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    Break on through: Steaming-induced mesopores of individual ZSM-5 crystals were studied by a combination of focused ion beam (FIB) and scanning electron microscopy (SEM) tomography (see picture). In this manner, quantitative insight into the width, length, morphology, and distribution of mesopores

  8. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    Science.gov (United States)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  9. Facile synthesis and application of a carbon foam with large mesopores

    KAUST Repository

    Fu, Liling

    2013-01-01

    By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries. © 2013 the Owner Societies.

  10. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Fan, Xiaohong; Chen, Aoling [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhang, Hengiang [School of Chemistry and Chemical Engineering, Hebei Normal University for Nationalities, Chengde 067000 (China); Shan, Yongkui, E-mail: agkong@chem.ecnu.edu.cn [School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2017-02-15

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphical abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.

  11. Study of Horseradish Peroxidase Fixed on Mesoporous Materials as a Chemical Reaction Catalyst

    Science.gov (United States)

    Gao, Mengdan; Dai, Rongji

    2017-12-01

    Nanostructured mesoporous materials is a new type of porous materials, which has been widely used. It has excellent capability in enzymes immobilization, but modification on the chemical bonds of the enzyme reduce the enzymatic activity and rarely used in chemical reactions. The horseradish peroxidase was immobilized on the mesoporous materials with appropriate aperture and its activity and stability was evaluated when catalyzing the nitration reaction of amines and oxidation reaction of thiourea. The optimum mesoporous material to fix the horseradish peroxidase can be obtained by mixing polyoxyethylene - polyoxypropylene-pol, yoxyethylene(P123), 1,3,5-trimethylbenzene(TMB), and tetramethoxysilane (TMOS) at a ratio of 10:1:1, whose surface area and pore volume and pore diameter calculated by BET and BJH model were 402.903m2/g, 1.084cm2/g, 1.084cm2/g respectively. The horseradish peroxidase, immobilized on the mesoporous materials, was applied for catalyzing the nitration reaction of anilines and oxidation reaction of thiourea, produced a high product yield and can be recycled. Thus, it is a strong candidate as a catalysts for oxidation reactions, to be produced at industral scale, due to its high efficiency and low cost.

  12. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoqing, E-mail: yxq-886@163.com [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Hong [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guoqing; Li, Xinxi [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Dingcai [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Fu, Ruowen, E-mail: cesfrw@mail.sysu.edu.cn [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-01-15

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g{sup −1} for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g{sup −1}). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m{sup 2} g{sup −1}, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite.

  13. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Huang, Hong; Zhang, Guoqing; Li, Xinxi; Wu, Dingcai; Fu, Ruowen

    2015-01-01

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g −1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g −1 ). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m 2  g −1 , which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite

  14. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Cecilia C. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Urbano, Bruno F., E-mail: burbano@udec.cl [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Campos, Cristian H. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Rivas, Bernabé L. [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Reyes, Patricio [Department of Physical Chemistry, Faculty of Chemical Science, University of Concepción (Chile)

    2015-02-15

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, {sup 29}Si and {sup 13}C solid state NMR, and N{sub 2} adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point.

  15. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  16. Au and AuCu Nanoparticles Supported on SBA-15 Ordered Mesoporous Titania-Silica as Catalysts for Methylene Blue Photodegradation

    Directory of Open Access Journals (Sweden)

    Isabel Barroso-Martín

    2018-05-01

    Full Text Available The photocatalytic degradation of methylene blue (MB dye has been performed under UV irradiation in aqueous suspension, employing photocatalysts based on Au (1.5 wt % and AuCu (Au/Cu = 1, 2.0 wt %, and supported on SBA-15-ordered mesoporous silica, with and without titania (Si/Ti = 3, in order to evaluate the versatility of this mesoporous support in this type of reaction of great impact from the environmental point of view. Samples were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption-desorption at −196 °C, and X-ray photoelectron spectroscopy (XPS, so as to study their structural, optical, and chemical properties. All the prepared catalysts were found to be active in the test reaction. The bimetallic AuCu-based catalysts attained very high MB degradation values, in particular AuCu/SBA-15 titania-silica sample reached 100% of dye oxidation after the monitored reaction period (120 min.

  17. Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Cao, Zhiqin; Qin, Mingli; Jia, Baorui; Zhang, Lin; Wan, Qi; Wang, Mingshan; Volinsky, Alex A.; Qu, Xuanhui

    2014-01-01

    Mesoporous Cr 2 O 3 with a high specific surface area of 162 m 2 g −1 is prepared by the solution combustion method. The mesoporous Cr 2 O 3 has a sheet structure, which consists of nanoparticles with an average size of 20 nm. As an anode electrode material for rechargeable lithium-ion batteries, the mesoporous Cr 2 O 3 nanoparticles display enhanced electrochemical performance. Stable and reversible capacity of 480 mA h g −1 after 55 cycles is demonstrated. The enhanced electrochemical performance of the Cr 2 O 3 can be attributed to the high surface area and morphological characteristics of mesoporous materials

  18. Soft-Template Synthesis of Mesoporous Anatase TiO2 Nanospheres and Its Enhanced Photoactivity

    Directory of Open Access Journals (Sweden)

    Xiaojia Li

    2017-11-01

    Full Text Available Highly crystalline mesoporous anatase TiO2 nanospheres with high surface area (higher than P25 and anatase TiO2 are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2% than Degussa P25. The rate constant of the mesoporous anatase TiO2 (0.024 min−1 reported here is 364% higher than that of P25 (0.0066 min−1, for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS scavengers indicated that mesoporous anatase TiO2 generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO2 arises from the following synergistic effects in the reported sample: (i high surface area; (ii improved crystallinity; (iii narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material; and (iv greater ROS generation under UV-light.

  19. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers.

    Science.gov (United States)

    Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei

    2017-10-04

    Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor

    International Nuclear Information System (INIS)

    Zhang Huidong; Zhang Ping; Ye Kaiqi; Sun Yinghui; Jiang Shimei; Wang Yue; Pang Wenqin

    2006-01-01

    Luminescent Schiff-base groups have been successfully grafted on the surface of mesoporous material MCM-48. The grafted Schiff-base groups were employed to prepare luminescent Schiff-base-Zn complex that was covalently bound to the MCM-48 surface. These luminescent mesoporous materials were characterized with X-ray, UV-VIS and emission spectroscopic methods. Experimental results demonstrated that MCM-48 modified with functional groups exhibited novel luminescent property. The chemosensing property of modified MCM-48 sample was investigated. It was demonstrated that the fluorescence of MCM-48 solid with Schiff-base groups could be completely quenched by Cu 2+ cation and this mesoporous material was suitable for sensing Cu 2+ cation in aqueous media

  1. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  2. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng; Fu, Liling; Duan, Xiaonan; Choi, Brian Hyun; Abraham, Michael; Giannelis, Emmanuel P.

    2011-01-01

    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing

  3. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  4. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  5. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    International Nuclear Information System (INIS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-01-01

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q max ) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q max of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation

  6. Highly crystalline mesoporous C{sub 60} with ordered pores. A class of nanomaterials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Benzigar, Mercy R.; Joseph, Stalin; Ilbeygi, Hamid [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Park, Dae-Hwan; Talapaneni, Siddulu Naidu [Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia); Sarkar, Sujoy; Chandra, Goutam; Umapathy, Siva; Srinivasan, Sampath [Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science (IISc), Bangalore (India); Vinu, Ajayan [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia)

    2018-01-08

    Highly ordered mesoporous C{sub 60} with a well-ordered porous structure and a high crystallinity is prepared through the nanohard templating method using a saturated solution of C{sub 60} in 1-chloronaphthalene (51 mg mL{sup -1}) as a C{sub 60} precursor and SBA-15 as a hard template. The high solubility of C{sub 60} in 1-chloronaphthalene helps not only to encapsulate a huge amount of the C{sub 60} into the mesopores of the template but also supports the oligomerization of C{sub 60} and the formation of crystalline walls made of C{sub 60}. The obtained mesoporous C{sub 60} exhibits a rod-shaped morphology, a high specific surface area (680 m{sup 2} g{sup -1}), tuneable pores, and a highly crystalline wall structure. This exciting ordered mesoporous C{sub 60} offers high supercapacitive performance and a high selectivity to H{sub 2}O{sub 2} production and methanol tolerance for ORR. This simple strategy could be adopted to make a series of mesoporous fullerenes with different structures and carbon atoms as a new class of energy materials. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Fargol Hasani Bijarbooneh

    2013-09-01

    Full Text Available One-dimensional (1D TiO2 nanostructures are very desirable for providing fascinating properties and features, such as high electron mobility, quantum confinement effects, and high specific surface area. Herein, 1D mesoporous TiO2 nanofibres were prepared using the electrospinning method to verify their potential for use as the photoelectrode of dye-sensitized solar cells (DSSCs. The 1D mesoporous nanofibres, 300 nm in diameter and 10-20 μm in length, were aggregated from anatase nanoparticles 20-30 nm in size. The employment of these novel 1D mesoporous nanofibres significantly improved dye loading and light scattering of the DSSC photoanode, and resulted in conversion cell efficiency of 8.14%, corresponding to an ∼35% enhancement over the Degussa P25 reference photoanode.

  8. A novel, efficient and facile method for the template removal from mesoporous materials

    KAUST Repository

    Chen, Lu

    2014-11-12

    © 2014, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH. A new catalytic-oxidation method was adopted to remove the templates from SBA-15 and MCM-41 mesoporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template’s property and textural property. The samples were characterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectroscopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.

  9. Template-free synthesis of mesoporous nanoring-like Zn-Co mixed oxides with high lithium storage performance

    Science.gov (United States)

    Lu, Lun; Gao, Yan-Li; Yang, Zhi-Zheng; Wang, Cheng; Wang, Jin-Guo; Wang, Hui-Yuan; Jiang, Qi-Chuan

    2018-04-01

    Mesoporous nanoring-like Zn-Co mixed oxides are synthesized via a simple template-free solvothermal method with a subsequent annealing process. The ring-like nanostructures with hollow interiors are formed under the complexing effects of potassium sodium tartrate. Numerous mesopores are generated after the precursor is annealed at 500 °C. When applied as anode materials, the mesoporous nanoring-like Zn-Co mixed oxides can deliver a high discharge capacity of 1102 mAh g-1 after 200 cycles at 500 mA g-1. Even when the current density is increased to 2 A g-1, the mixed oxides can still retain a reversible capacity of 761 mAh g-1. Such high cycling stability and rate capability are mainly derived from the unique mesoporous ring-like nanostructures and the synergistic effects between Zn and Co based oxides.

  10. Rapid removal of bisphenol A on highly ordered mesoporous carbon.

    Science.gov (United States)

    Sui, Qian; Huang, Jun; Liu, Yousong; Chang, Xiaofeng; Ji, Guangbin; Deng, Shubo; Xie, Tao; Yu, Gang

    2011-01-01

    Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg x min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40 degrees C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13.

  11. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  12. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    Science.gov (United States)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  13. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  14. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  15. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  16. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  17. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  18. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  19. Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.

    Science.gov (United States)

    Chen, Aibing; Xia, Kechan; Zhang, Linsong; Yu, Yifeng; Li, Yuetong; Sun, Hexu; Wang, Yuying; Li, Yunqian; Li, Shuhui

    2016-09-06

    A novel "dissolution-capture" method for the fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules (N-HMSCCs) with high capability for supercapacitor is developed. The fabrication process is performed by depositing mesoporous silica on the surface of the polyacrylonitrile nanospheres, followed by a dissolution-capture process occurring in the polyacrylonitrile core and silica shell. The polyacrylonitrile core is dissolved by dimethylformamide treatment to form a hollow cavity. Then, the polyacrylonitrile is captured into the mesochannel of silica. After carbonization and etching of silica, N-HMSCCs with uniform mesopore size are produced. The N-HMSCCs show a high specific capacitance of 206.0 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH due to its unique hollow nanostructure, high surface area, and nitrogen content. In addition, 92.3% of the capacitance of N-HMSCCs still remains after 3000 cycles at 5 A g(-1). The "dissolution-capture" method should give a useful enlightenment for the design of electrode materials for supercapacitor.

  20. Mesoporous wormholelike carbon with controllable nanostructure for lithium ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Li, Xinxi; Li, Zhenghui; Zhang, Guoqing; Wu, Dingcai

    2015-01-01

    Highlights: • Wormholelike carbon (WMC) with controllable nanostructure is prepared by sol–gel method. • The reversible capacity of WMC is much higher than that of many other reported nanocarbons. • The effect of pore diameter on Li storage capacity is investigated. - Abstract: A class of mesoporous wormholelike carbon (WMC) with controllable nanostructure was prepared by sol–gel method and then used as the anode material of lithium-ion batteries. Based on the experimental results, it is found that the nanostructure of the as-prepared WMC plays an important role in the electrochemical performances. A suitable mesopore size is necessary for a high performance carbon-based anode material since it can not only guarantee effective mass transport channels but also provide large surface area. As a result, F30 with a mesopore size of 4.4 nm coupled with high surface area of 1077 m 2 g −1 shows a reversible capacity of 630 mAh g −1 , much higher than commercial graphite and many other reported nanocarbons

  1. Efficiency enhancement in dye sensitized solar cells using dual function mesoporous silica as scatterer and back recombination inhibitor

    Science.gov (United States)

    Tanvi; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

    2016-08-01

    In the present work, we report the usage of mesoporous silica for improving light harvesting as well as for suppression of back recombination without affecting the extent of dye loading on TiO2 films. Synthesized mesoporous SiO2 was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer Emmett and Teller measurement, Scanning electron microscopy and Transmission electron microscopy. DSSCs were fabricated by incorporating different wt% of mesoporous SiO2 in TiO2 paste. An improvement of 50% was observed for devices fabricated using 0.75 wt% of mesoporous SiO2. The mechanism behind the improvement was investigated using electrochemical impedance spectroscopy and UV-Vis spectroscopy.

  2. Ageing-induced enhancement of open porosity of mesoporous silica films studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Oshima, Nagayasu; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi

    2006-01-01

    We show that ageing of the silica sol in a closed vessel enhanced the open porosity of calcined mesoporous silica film studied by positron. Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was used to estimate the mesopore size. 2-dimensional PALS (2D-PALS) and ortho-positronium time-of-flight (Ps-TOF) were used to evaluate the open porosity, interconnectivity and tortuosity of mesopores in the silica films. Results revealed that little change in pore size but significant enhancement of open porosity and/or pore interconnectivity occurred in the silica film deposited after the precursor solution aged for a relative longer time

  3. Application of Mesoporous Carbon and Modified Mesopo-rous Carbon for the Research on Treatment of NPEOs%介孔碳及其改性材料对壬基酚聚氧乙烯醚吸脱附性能的研究

    Institute of Scientific and Technical Information of China (English)

    翟彬; 高雅

    2017-01-01

    针对难降解物质壬基酚聚氧乙烯醚的特性拟开发一种新型介孔碳材料对其进行吸附处理.采用软模板法合成介孔碳,并针对壬基酚聚氧乙烯醚的特性,在合成过程中添加六亚甲基四胺,制备出介孔碳-NH2吸附材料,并将其吸脱附性能与介孔碳材料进行对比.结果显示:对于介孔碳材料来说,最适吸附剂量为0.04 g/L,最适壬基酚聚氧乙烯醚初始质量浓度为800 mg/L,最适转速为200 r/min,最适pH值为3.对于介孔碳-NH2来说,最适吸附剂量为0.08 g/L,最适壬基酚聚氧乙烯醚初始质量浓度为800 mg/L,最适转速为200 r/min,最适pH值为3.准一级方程用于拟合介孔碳及介孔碳-NH2对壬基酚聚氧乙烯醚的吸附过程更为符合实际实验.介孔碳及介孔碳-NH2的吸附等温线用Freundlich方程拟合更为准确.并且介孔碳-NH2具有最优的再生性和最优的吸附效果.%In this paper, mesoporous carbon adsorbents for wastewater treatment were applied for the characteristics of refractory materials. Soft template was used to synthesis mesoporous carbon, and modified mesoporous carbon was made according to the characteristics of NPEOs in this method by adding hexamethylene tetramine during the synthesis of mesoporous carbon-NH2, the modified mesoporous carbon was obtained. The influences of different adsorption conditions were optimized. For mesoporous carbon, the optimums of adsorbent dose, NPEOs initial concentration, rotating speed, and pH were 0.04 g/L, 800 mg/L, 200 r/min, and 3, respectively. Mesoporous carbon-NH2 showed the highest NPEOs adsorption capacity at adsorbent dose of 0.08 g/L, NPEOs initial concentration of 1000 mg/L, rotating speed at 1000 r/min, and Ph at 3. Lagergren adsorption kinetics fitted mesoporous carbon and mesoporous carbon-NH2 adsorption of NPEOs accuratly. And Freundlich was more accurate than the Langmuir model for mesoporous carbon and mesoporous carbon-NH2. Moreover, mesoporous carbon-NH2 has

  4. Simple synthesis of mesoporous FeNi/graphitic carbon nanocomposite catalysts and study on their activities in catalytic cracking of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yangang, E-mail: ygwang8136@gmail.com [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Yuting; Yao, Mingcui [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Qin, Hengfei; Kang, Shifei; Li, Xi [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Zuo, Yuanhui; Zhang, Xiaodong [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Cui, Li-Feng, E-mail: lifeng.cui@gmail.com [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2015-11-01

    Mesoporous FeNi alloy/graphitic carbon nanocomposite catalysts with different Fe/Ni molar ratios have been synthesized through a simple solid–liquid grinding/templating method using mesoporous silica SBA-15 as the template. Metal nitrates and natural soybean oil were respectively used as the magnetic particle precursors and carbon source, which can be infiltrated into the silica template after simple impregnation, grinding and subsequent heat treatment. X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy and thermogravimetric analysis techniques were used to characterize the samples. It is observed that high contents of FeNi alloy nanoparticles with the sizes of 3–6 nm are well dispersed into the walls of graphitic mesoporous carbon matrix, and the resulting nanocomposites have a uniform mesostructure with a high specific surface area and large pore volume. Because of these properties, the obtained FeNi/graphitic carbon nanocomposites can be used as novel catalysts for the catalytic cracking of toluene and exhibit a higher activity and stability than FeNi/commercial activated carbon (AC) catalyst. After a period of 810 min reaction at 700 °C, the toluene conversion on the FeNi/graphitic carbon nanocomposites can be maintained at a level of more than 75% and this value is 2.5 times as high as that of the FeNi/AC catalyst. - Highlights: • Mesoporous FeNi alloy/graphitic carbon nanocomposites (FeNi/GCN) were synthesized. • High contents of FeNi alloy nanoparticles are well embedded into the graphitic carbon walls. • The obtained FeNi/GCN catalysts have a high surface area and uniform mesostructure. • The FeNi/GCN catalysts exhibited excellent catalytic performance in the cracking of toluene.

  5. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration.

    Science.gov (United States)

    Pan, Jia Hong; Zhang, Xiwang; Du, Alan J; Bai, Hongwei; Ng, Jiawei; Sun, Darren

    2012-05-28

    A mesoporous ZnO hemisphere array has been prepared via a topotactic transition of Zn(4)(OH)(6)CO(3)·H(2)O (ZCHH) by chemical bath deposition. Each hemisphere is comprised of a radially oriented nanoflake shell grown on the hemispherical interior. Reaction time-dependent SEM analysis shows that the morphological formation of ZCHH involves a deposition-growth-secondary growth-redeposition procedure. Upon calcination, ZCHH readily decomposes to nanocrystalline wurtzite-phase ZnO without significant change in morphology, and the release of CO(2) and H(2)O from ZCHH creates an additional mesoporous structure in both hemispherical interior and nanoflake shell. A similar process but without using a substrate has been developed for synthesis of mesoporous ZnO hollow microspheres in powder form. Both the elaborated superstructured photocatalysts consisting of mesoporous nanoflakes have been demonstrated to exhibit excellent performances in the photocatalytic membrane filtration.

  6. Biomineralizing synthesis of mesoporous hydroxyapatite-calcium pyrophosphate polycrystal using ovalbumin as biosurfactant

    International Nuclear Information System (INIS)

    Zhao Hongshi; He Wen; Wang Yingjun; Yue Yuanzheng; Gao Xingguo; Li Zhengmao; Yan Shunpu; Zhou Weijia; Zhang Xudong

    2008-01-01

    Mesoporous polycrystals of hydroxyapatite-calcium pyrophosphate (HA-CPP) are synthesized via a biomineralizing route using ovalbumin as natural biosurfactant. The mesoporous structure of HA-CPP is characterized by means of X-ray diffraction (XRD), N 2 adsorption-desorption isotherms (NADI), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), atom force microscopy (AFM), polarization microscopy (PLM) and stereomicroscopy. The results show that the crystalline grains with an average diameter of 13.2 nm are uniformly distributed along the protein molecule chains, and this results in microsphere-like particles with diameters of 200-300 nm. The highly ordered pores involved in microspheres are found to be approximately 6.6 nm by small-angle XRD. The formation of lyotropic calcium liquid crystal (CLC) plays a key role in the formation and stabilization of the mesoporous structure. A schematic illustration is used to reveal the mechanism of protein-medicated HA-CPP biomineralization, which employs the protein tertiary structure to explain the formation of the porous particles

  7. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  8. Fabrication of mesoporous silica nanoparticles by sol gel method followed various hydrothermal temperature

    Science.gov (United States)

    Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah

    2018-04-01

    Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.

  9. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  10. Novel chiral core-shell silica microspheres with trans-(1R,2R)-diaminocyclohexane bridged in the mesoporous shell: synthesis, characterization and application in high performance liquid chromatography.

    Science.gov (United States)

    Wu, Xiabing; You, Linjun; Di, Bin; Hao, Weiqiang; Su, Mengxiang; Gu, Yu; Shen, Lingling

    2013-07-19

    Novel chiral core-shell silica microspheres with trans-(1R,2R)-diaminocyclohexane (DACH) moiety bridged in the mesoporous shell were synthesized using layer-by-layer method. The chiral mesoporous shell around the nonporous silica core was formed by the co-condensation of N,N'-bis-[(triethoxysilyl)propyl]-trans-(1R,2R)-bis-(ureido)-cyclohexane (DACH-BS) and tetraethoxysilane (TEOS) using octadecyltrimethylammonium chloride (C18TMACl) and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (P123) as the templates. The functionalized core-shell silica microspheres were characterized and tested as chiral stationary phases for high performance liquid chromatography (HPLC). R/S-1,1'-bi-2,2'-naphthol, R/S-6,6'-dibromo-1,1'-bi-2-naphthol and R/S-1,1'-bi-2,2'-phenanthrol were enantioseparated rapidly on the column packed with the DACH core-shell silica particles. Moreover, the column packed with core-shell particles exhibited better performance than the column packed with the DACH functionalized periodic mesoporous organosilicas. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  12. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  13. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Hansen, T. W.; Kustova, Marina

    2007-01-01

    , the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite...... as was confirmed by SEM analysis. Moreover, the maximum activity for the mesoporous zeolites is found at higher Fe concentrations than for the conventional zeolites. This also illustrates that the mesoporous zeolites allow a better dispersion of the metal component than the conventional zeolites. Finally...

  14. Mesoporous titanium phosphates and related molecular sieves ...

    Indian Academy of Sciences (India)

    Unknown

    phosphate using a dilute H2O2 oxidant supports the tetrahedral coordination of Ti in ... production of H2 by photo-reduction of water under UV light irradiation. ... have been extensively studied and used as acid catalysts, adsorbents and ion ... mesoporous silica materials is also of outstanding interest because of their ...

  15. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello S.; Van Der Made, Alexander W.; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Fengshou

    2014-01-01

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a

  16. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water

    DEFF Research Database (Denmark)

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea

    2017-01-01

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA).......Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA)....

  17. Drug Loading of Mesoporous Silicon

    Science.gov (United States)

    Moffitt, Anne; Coffer, Jeff; Wang, Mengjia

    2011-03-01

    The nanostructuring of crystalline solids with low aqueous solubilities by their incorporation into mesoporous host materials is one route to improve the bioavailability of such solids. Earlier studies suggest that mesoporous Si (PSi), with pore widths in the range of 5-50 nm, is a candidate for such an approach. In this presentation, we describe efforts to load curcumin into free-standing microparticles of PSi. Curcumin is a compound extracted from turmeric root, which is an ingredient of curry. Curucmin has shown activity against selected cancer cell lines, bacteria, and other medical conditions. However, curcumin has a very low bioavailability due to its extremely low water solubility (0.6 μ g/mL). Incorporation of curcumin was achieved by straightforward loading of the molten solid at 185circ; C. Loading experiments were performed using PSi particles of two different size ranges, 45-75 μ m and 150-250 μ m. Longer loading times and ratio of curcumin to PSi leads to a higher percentage of loaded curcumin in both PSi particle sizes (as determined by weight difference). The extent of curcumin crystallinity was assessed by x-ray diffraction (XRD). The solubility and release kinetics of loaded curcumin from the PSi was determined by extraction into water at 37circ; C, with analysis using UV-VIS spectrometry. NSF-REU and TCU.

  18. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    Science.gov (United States)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  19. Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Fang; Shu, Hongbo; Zhang, Yuanyuan; Wan, Jiajia; Huang, Weihua; Yang, Xiukang; Yu, Ruizhi; Liu, Li; Wang, Xianyou

    2016-01-01

    LiMnPO 4 has been considered as one of the most promising high voltage cathode materials for next-generation lithium ion batteries. However, LiMnPO 4 suffers from intrinsic drawbacks of extremely low electronic conductivity and ionic diffusivity between LiMnPO 4 /MnPO 4 . In this paper, mesoporous LiMnPO 4 nanoparticles are synthesized successfully via a facile glycine-assisted solvothermal rout. The as-prepared mesoporous LiMnPO 4 /C nanoparticles present well-defined abundant mesoporous structure (diameter of 3 ∼ 10 nm), uniform carbon layer (thickness of 3 ∼ 4 nm), high specific surface area (90.1 m 2 /g). As a result, the mesoporous LiMnPO 4 /C nanoparticles achieve excellent electrochemical performance as cathode materials for lithium ion batteries. It demonstrates a high discharge capacity of 167.7, 161.6, 156.4, 148.4 and 128.7 mAh/g at 0.1, 0.5, 1, 2 and 5C, and maintains a discharge capacity of 130.0 mAh/g after 100 cycles at 1C. The good electrochemical performance is attributed to its special interpenetrating mesoporous structure in LiMnPO 4 nanoparticles, which significantly enhances the ionic and electronic transport and additional capacitive behavior to compensate the sluggish kinetics.

  20. Controlled synthesis of mesoporous β-Ni(OH)2 and NiO nanospheres with enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Xing, Shengtao; Wang, Qian; Ma, Zichuan; Wu, Yinsu; Gao, Yuanzhe

    2012-01-01

    Highlights: ► Uniform mesoporous β-Ni(OH) 2 and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH) 2 and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH) 2 and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH) 2 and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  1. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Peng; Zhang, Haitao, E-mail: htzhang@ipe.ac.cn; Zhang, Suojiang, E-mail: sjzhang@ipe.ac.cn; Yuan, Pei [Chinese Academy of Sciences, Beijing Key Laboratory of Ionic Liquids Clean Process Institute of Process Engineering, Key Laboratory of Green Process and Engineering, Institute of Process Engineering (China); Yang, Yang [China Building Materials Academy, State Key Laboratory of Green Building Materials (China); Zhang, Qiang; Zhang, Xixiang [King Abdullah University of Science and Technology, Physical Science and Engineering (Saudi Arabia)

    2016-05-15

    Colloidal mesoporous magnetite nanoparticles with tunable porosity were realized by a simple and scalable solvothermal route with the aid of AOT as ligands. AOT was used to induce the anisotropic crystal growth of smaller nanocrystals and restrain their tight aggregation so as to form more mesoscale pores. Morphologies and microstructures investigation by SEM and TEM revealed that the bigger nanoparticles were composed of smaller nanocrystals with an average size of 18 nm. A possible formation mechanism was proposed for the mesoporous nanoparticles. Study of nitrogen adsorption–desorption isotherm revealed that the Brunauer–Emmett–Teller (BET) specific surface area of mesoporous nanoparticles is up to 209 m{sup 2}/g, resulting from the slit-shaped pores created by the aggregation of polyhedral nanocrystals. Magnetic properties study indicated that the as-prepared nanoparticles are superparamagnetic at room temperature. Optimized mesoporous magnetite nanoparticles exhibit a maximum Cr(VI) ion sorption capacity of 12.9 mmol/g, and its absorption behavior followed a Freundlich model. Microwave absorption study indicated that porous nanoparticles own higher permeability values than that of solid nanoparticles, leading to a higher dielectric loss in the frequency range of 2–18 GHz.Graphical Abstract.

  2. Plutonium sorption to nanocast mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Parsons-Moss, Tashi; Wang, Deborah; Jones, Stephen; Olive, Daniel; Nitsche, Heino [California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Tueysuez, Harun [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2014-09-01

    Nanocast ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes. This paper compares Pu uptake, added as Pu(VI), to both untreated and chemically oxidized CMK-(carbon molecular sieves from KAIST) type mesoporous carbon with that to a commercial amorphous activated carbon. The CMK was synthesized via nanocasting by using cubic ordered mesoporous silica KIT-6 as a hard template, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption. A portion of the CMK was oxidized by treatment with nitric acid, and will be called OX CMK. The three carbon powders have similar particle morphology, and high BET surface areas. The activated carbon is disordered, while the CMK materials show large domains of ordered cubic mesostructure. The CMK material seems to have more oxygen-containing functional groups than the activated carbon, and the oxidation of the CMK increased the density of these groups, especially - COOH, thus lowering the point of zero charge (PZC) of the material. Batch studies of all 3 materials with plutonium solutions, in a 0.1 M NaClO{sub 4} matrix were performed to investigate pH dependence, sorption kinetics, Pu uptake capacities, competition with ethylenediaminetetraacetic acid (EDTA) in solution, and Pu desorption. Both CMK materials demonstrated high Pu sorption from solutions of pH 3 or greater, and the oxidized CMK also showed high sorption from pH 2 solutions. The activated carbon bound less Pu, and at a much slower rate than CMK. All other batch experiments were carried out in pH 4 solutions. The Pu uptake from low-concentration solutions was faster for the oxidized CMK than for untreated CMK, but in more concentrated samples (∝ 250 μM Pu), the Pu uptake kinetics and apparent capacity were the same for oxidized and untreated CMK. The 23-h Pu uptake capacity of the CMK

  3. Surface structural, morphological, and catalytic studies of homogeneously dispersed anisotropic Ag nanostructures within mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Sareen, Shweta [Thapar University, School of Chemistry and Biochemistry (India); Mutreja, Vishal [Maharishi Markandeshwar University, Department of Chemistry (India); Pal, Bonamali; Singh, Satnam, E-mail: ssingh@thapar.edu [Thapar University, School of Chemistry and Biochemistry (India)

    2016-11-15

    Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1–10 wt.%) of Ag loading followed by calcination at 350 °C under H{sub 2} led to change in the morphology of Ag nanoparticles from nanospheres (~7–8 nm) to nanorods (aspect ratio ~12–30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m{sup 2}/g of SBA-15 to 385 m{sup 2}/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.

  4. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    International Nuclear Information System (INIS)

    Gorelik, V.S.; Voinov, Yu.P.; Shchavlev, V.V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2017-01-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  5. Synthesis and characterization of bulky mesoporous silica Pd-MCM-41

    International Nuclear Information System (INIS)

    Nagata, Hidezumi; Nakahira, Atsushi; Hirao, Norie; Baba, Yuji; Onoki, Takamasa; Yamasaki, Yuki

    2008-01-01

    Bulky palladium catalyst supported on mesoporous silica MCM-41 (Pd-MCM-41) was successfully synthesized by hydrothermal hot-pressing method. In this study, the structure of the palladium species in Pd-MCM-41 bulk before and after heat-treatment process was revealed by X-ray diffraction (XRD), X-ray absorption near edge structure (XANES) and transmission electron microscopy (TEM). Also, the microstructure and mesoporous property of Pd-MCM-41 bulk was discussed. As a result, it was revealed that these dense Pd-MCM-41 bulks possessed a high surface area of over 1000 m 2 /g and the structure of palladium of Pd-MCM-41 bulk is almost equal to palladium (0) metal. (author)

  6. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Science.gov (United States)

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    Science.gov (United States)

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  8. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  9. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Yura; Choi, Jin-Yeong [Department of Chemistry, Keimyung University (Korea, Republic of); Park, Heai-Ku [Department of Chemical Engineering, Keimyung University (Korea, Republic of); Bae, Jae Young [Department of Chemistry, Keimyung University (Korea, Republic of); Lee, Chang-Seop, E-mail: surfkm@kmu.ac.kr [Department of Chemistry, Keimyung University (Korea, Republic of)

    2016-10-15

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared by sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.

  10. Preparation of mesoporous Ag-containing TiO{sub 2} heterojunction film and its photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. Y., E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Qiao, J. L. [Jilin Agricultural University, College of Horticulture (China); Cui, X. Y. [Mudanjiang Medical University, School of Public Health (China); Zhong, J. S. [Hangzhou Dianzi University, College of Materials and Environmental Engineering (China); Xu, Y. B.; Zhang, S. H.; Zhang, Q. H.; Chang, P.; Li, M.; Zhang, C.; Gao, S. M., E-mail: gaosm@ustc.edu [Ludong University, School of Chemistry and Materials Science (China)

    2015-03-15

    Mesoporous Ag/TiO{sub 2} heterojunction films (Ag-MTHF) with enhanced photocatalytic activity were synthesized by a three-step approach including an electrochemical anodization technique followed by successive ionic layer adsorption and reaction (SILAR) and solvothermal methods. The distribution of Ag nanoparticles on the inner structure of the mesoporous TiO{sub 2} film was confirmed by field emission scanning electron (FE-SEM) and transmission electron microscopes (TEM). The formation progress of the novel mesoporous Ag/TiO{sub 2} nanojunction film with Ag average diameter of 17 nm was illuminated. The formed nanojunction between Ag and TiO{sub 2} nanoparticles largely enhanced the photocatalytic degradation of methyl orangey (MO), and the corresponding mechanism was proposed.

  11. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dengchao; Ni Wenbin; Pang Huan; Lu Qingyi; Huang Zhongjie [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China); Zhao Jianwei, E-mail: zhaojw@nju.edu.c [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China)

    2010-09-01

    Mesoporous nickel oxide with a porous structure exhibiting a bimodal pore size distribution (2.6 and 30.3 nm diameter pores) has been synthesized in this paper. Firstly, a mesoporous precursor of coordination complex Ni{sub 3}(btc){sub 2}.12H{sub 2}O (btc = 1,3,5-benzenrtricarboxylic acid) is synthesized based on the metal-organic coordination mechanism by a hydrothermal method. Then mesoporous NiO with a bimodal size distribution is obtained by calcining the precursor in the air, and characterized by transmission electron microscopy and N{sub 2} adsorption measurements. Such unique multiple porous structure indicates a promising application of the obtained NiO as electrode materials for supercapacitors. The electrochemical behavior has been investigated by cyclic voltammogram, electrochemical impedance spectra and chronopotentiometry in 3 wt.% KOH aqueous electrolyte. The results reveal that the prepared NiO has high-capacitance retention at high scan rate and exhibits excellent cycle-life stability due to its special mesoporous character with bimodal size distribution.

  13. Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO{sub 2} modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanhong; Yang, Jinquan; Wu, Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-05-30

    The potential application of Al-incorporated mesoporous SiO{sub 2} (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K{sub 3}[Fe(CN){sub 6}] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L{sup -1} HClO{sub 4} and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples. (author)

  14. Electrochemistry and determination of epinephrine using a mesoporous Al-incorporated SiO{sub 2} modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yanhong; Yang Jinquan [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: kbwu@mail.hust.edu.cn

    2008-05-30

    The potential application of Al-incorporated mesoporous SiO{sub 2} (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K{sub 3}[Fe(CN){sub 6}] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L{sup -1} HClO{sub 4} and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples.

  15. Barium and manganese-doped zinc silicate rods prepared by mesoporous template route and their luminescence property

    Science.gov (United States)

    Dang, Lingyan; Tian, Chen; Zhao, Shifeng; Lu, Qingshan

    2018-06-01

    Barium and manganese-doped zinc silicates was prepared under hydrothermal treatment by mesoporous template route employing mesoporous silica as an active template. The sample displays a rod-like morphology with a mean diameter of ∼40 nm and a mean length of ∼450 nm, which inherits the characteristics of mesoporous silica. The individual rods show single crystalline and assemble into bundle-like hierarchical structure along the channels of the mesoporous silica. When barium ions together with manganese ions are co-doped in zinc silicate, the green emission corresponding to manganese ions display a significant enhancement, especially for the sample with the barium doping concentration of 0.08, which indicates that an energy transfer from barium to manganese ions takes place. With further increasing barium concentration from 0.08 to 0.10, the recombination between the defects related to barium and the excitation states of the manganese dominates accompanying non-radiative transitions which can reduce the emission efficiency.

  16. In situ synthesis of N and Cu functionalized mesoporous FDU-14 resins and carbons for electrochemical hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kong, AiGuo; Wang, WenJuan; Yang, Fan; Ding, HanMing; Shan, YongKui [Department of Chemistry, East China Normal University, ShangHai 200062 (China)

    2010-07-15

    N and Cu cooperatively functionalized mesoporous resin and carbon materials with bicontinuous cubic structure (FDU-14) were obtained by a novel synthesis method. In this method, block copolymers were used as the templates as well as the precursors for the preparation of these modifying mesoporous materials. The CuC{sub 2}O{sub 4} in the channels of mesoporous FDU-14 resins was gotten by in situ oxidation of the templates in a catalytic redox system containing Cu{sup 2+}, Al{sup 3+}, NO{sub 3}{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-} ions. Simultaneously, the phenol-formaldehyde resin frameworks were in situ functionalized by the amine group resulting from the reduction of NO{sub 3}{sup -}, leading to the formation of N and CuC{sub 2}O{sub 4} modified mesoporous FDU-14 resin materials. Its pyrolysis at the different temperatures resulted in the production of N and Cu cooperatively functionalized mesoporous FDU-14 resin and carbon materials. The structure and composition of these materials were characterized by the X-ray power diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption analysis, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetry analysis, and inductive coupled plasma emission spectroscopy. The electrochemical measurement indicated that N and Cu cooperatively functionalized mesoporous FDU-14 carbon materials possessed the enhanced electrochemical hydrogen storage performance. (author)

  17. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  18. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  19. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  20. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongdong, E-mail: lidongchem@sina.cn [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhu, Yuntao; Liang, Zhiqiang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.

  1. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    International Nuclear Information System (INIS)

    Li, Dongdong; Zhu, Yuntao; Liang, Zhiqiang

    2013-01-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N 2 adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH 3 + on the matrix and -COO − belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate

  2. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    Science.gov (United States)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  3. Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction

    International Nuclear Information System (INIS)

    Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

    2012-01-01

    Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl (U(VI)) ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

  4. Stochastic analysis of capillary condensation in disordered mesopores.

    Science.gov (United States)

    Gommes, Cedric J; Roberts, Anthony P

    2018-05-08

    Most mesoporous materials of practical interest are inherently disordered, which has a significant impact on the condensation and evaporation of vapours in their pores. Traditionally, the effect of disorder is theoretically analyzed in a perturbative approach whereby slight elements of disorder (constriction, corrugation) are added to geometrically ideal pores. We propose an alternative approach, which consists of using a stochastic geometrical model to describe both the porous material and the condensate within the pores. This is done through a multiphase generalisation of the standard Gaussian random field model of disordered materials. The model parameters characterising the condensate provide a low-dimensional approximation of its configuration space, and we use a Derjaguin-Broekhoff-de Boer approximation to calculate the free-energy landscape. Our analysis notably questions the existence of vapour-like metastable states in realistically disordered mesoporous materials. Beyond capillary condensation, our general methodology is applicable to a broad array of confined phenomena.

  5. Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors

    Science.gov (United States)

    Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen

    2013-06-01

    Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform

  6. Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols

    Science.gov (United States)

    Zhou, Zhiwei; Zhang, Jiaqi; Qin, Juan; Li, Dong; Wu, Wenliang

    2018-03-01

    Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M- xNi yCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M-10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M-NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.

  7. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-03-01

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation and CO{sub 2} adsorption properties of aminopropyl-functionalized mesoporous silica microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S.; Doi, H.; Sano, Y.; Tanaka, S.; Miyake, Y. [Hitachi Zosen Corp., Osaka (Japan). Technical Research Institute

    2009-11-15

    Aminopropyl-functionalized mesoporous silica microspheres (AF-MSM) were synthesized by a simple one-step modified Stober method. Dodecylamine (DDA) was used as the catalyst for the hydrolysis and condensation of the silica source and as the molecular template to prepare the ordered mesopores. The mesoporous silica surfaces were modified to aminopropyl groups by the co-condensation of tetraethoxysilane (TEOS) with 3-aminopropyltriethoxysilane (APTES), up to a maximum of 20 mol.% APTES content in the silica source. The particle size, Brunauer-Emmet-Teller (BET) specific surface area, and mesoporous regularity decreased with increasing APTES content. It is believed that this result is caused by a decreasing amount of DDA incorporated into AF-MSM with increasing APTES content. It was also confirmed that the spherical shape and the mesostructure were maintained even if 20 mol.% of APTES was added to the silica source. Moreover, AF-MSM was applied to the CO{sub 2} adsorbent. The breakthrough time of the CO{sub 2} and CO{sub 2} adsorption capacities increased with increasing APTES content. The adsorption capacity of CO{sub 2} for AF-MSM, prepared at 20 mol.% APTES, was 0.54 mmol g{sup -1}. Carbon dioxide adsorbed onto AF-MSM was completely desorbed by heating in a N{sub 2} purge at 423 K for 30 min.

  9. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  10. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-01-01

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO 3 template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO 3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g −1 at a current load of 0.1 A g −1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors

  11. Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2018-03-01

    Full Text Available A sustainable and simple synthesis procedure involving the co-assembly of green phenolic resin and amphiphilic polymer template in water/ethanol mixture at room temperature to synthesize nitrogen doped mesoporous carbon is reported herein. Guanine is proposed as a novel nitrogen-based precursor which is able to create H-bondings both with the phenolic resin and the template allowing the formation of mesoporous carbons with nitrogen atoms uniformly distributed in their framework. The influence of the synthesis procedure, template amount and annealing temperature on the carbon textural properties, structure and surface chemistry were investigated. For several conditions, carbon materials with ordered pore size and high nitrogen content (up to 10.6 at % could be achieved. The phase separation procedure combined with optimal amount of template favor the formation of ordered mesoporous carbons with higher specific surface area while the increase in the temperature induces a decrease in the surface area and amount of heteroatoms (N and O. The electrochemical performances as electrode in supercapacitors were evaluated in acidic medium and the capacitance was closely related to the material conductivity and surface chemistry.

  12. Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan; Xu, Bin; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu

    2015-03-30

    Highlights: • The composites of polyaniline nanofiber and large mesoporous carbon were prepared for supercapacitors. • The large mesoporous carbons were simply prepared by nano-CaCO{sub 3} template method. • The composites exhibit high capacitance and good rate capability and cycle stability. - Abstract: A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO{sub 3} templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g{sup −1} at a current load of 0.1 A g{sup −1} with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.

  13. Selective Synthesis of Mesoporous and Nanorod CeVO4 without Template

    International Nuclear Information System (INIS)

    Zhu Ling; Li Qin; Li Jiayan; Liu Xiangdong; Meng Jian; Cao Xueqiang

    2007-01-01

    A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO 4 with different precursors by sonochemical method. CeVO 4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO 3 ) 3 and NH 4 VO 3 in aqueous solution without any surfactant or template. While mesoporous CeVO 4 with high specific surface area can be prepared with Ce(NO 3 ) 3 , V 2 O 5 and NaOH in the same way. Mesoporous CeVO 4 has a specific surface area of 122 m 2 g -1 and an average pore size of 5.2 nm; CeVO 4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products

  14. Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants

    OpenAIRE

    Libbrecht, Wannes; Verberckmoes, An; Thybaut, Joris; Van Der Voort, Pascal; De Clercq, Jeriffa

    2017-01-01

    Mesoporous carbons have been the subject of various studies, both fundamental and applied. Fundamental studies revealed numerous synthesis routes which can adjust material characteristics as specific surface area, pore volume, pore size or morphology and elemental composition. The indirect synthesis or hard template method was developed first. An extensive collection of template materials exist, which can be impregnated with carbon precursors to provide various hard templated mesoporous carbo...

  15. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    International Nuclear Information System (INIS)

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  16. Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA

    Directory of Open Access Journals (Sweden)

    Jörg Kärger

    2013-07-01

    Full Text Available The presence of mesopores in the interior of microporous particles may significantly improve their transport properties. Complementing previous macroscopic transient sorption experiments and pulsed field gradient NMR self-diffusion studies with such materials, the present study is dedicated to an in-depth study of molecular uptake and release on the individual particles of mesoporous zeolitic specimens, notably with samples of the narrow-pore structure types, CHA and LTA. The investigations are focused on determining the time constants and functional dependences of uptake and release. They include a systematic variation of the architecture of the mesopores and of the guest molecules under study as well as a comparison of transient uptake with blocked and un-blocked mesopores. In addition to accelerating intracrystalline mass transfer, transport enhancement by mesopores is found to be, possibly, also caused by a reduction of transport resistances on the particle surfaces.

  17. Versatility of Evaporation-Induced Self-Assembly (EISA Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2014-03-01

    Full Text Available Evaporation-Induced Self-Assembly (EISA method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs, photocatalytic degradation of organics and splitting of water, and batteries.

  18. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  19. Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Žilková, Naděžda; Park, S.-E.; Čejka, Jiří

    2010-01-01

    Roč. 53, 19-20 (2010), s. 1457-1469 ISSN 1022-5528 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous ZSM-5 * alkylation * disproportionation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.359, year: 2010

  20. Cumene cracking on modified mesoporous material type MCM-41

    African Journals Online (AJOL)

    AlMCM-41 materials, the method of its exchange mode and its grains form were investigated for the mesoporous catalytic activity in the cumene (i.e. isopropylbenzene) cracking reaction. Benzene, propylene and xylene derivatives are the main ...

  1. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Smart Mesoporous Nanomaterials for Antitumor Therapy

    Directory of Open Access Journals (Sweden)

    Marina Martínez-Carmona

    2015-11-01

    Full Text Available The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc. or external (temperature, light, magnetic field, etc. stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.

  3. Intermediate-range order in mesoporous silicas investigated by a high-energy X-ray diffraction technique

    International Nuclear Information System (INIS)

    Wakihara, Toru; Fan, Wei; Ogura, Masaru; Okubo, Tatsuya; Kohara, Shinji; Sankar, Gopinathan

    2008-01-01

    We perform a high-energy X-ray diffraction study comparing bulk amorphous silica with MCM-41 and SBA-15 that are representative mesoporous silicas prepared in basic and acidic conditions, respectively. It is revealed that mesoporous silicas, especially SBA-15, have less ordered structures and contain larger fractions of three- and four-membered rings than does bulk amorphous silica. (author)

  4. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Malgras, Victor; Li, Cuiling; Tang, Jing; Kim, Jung Ho; Yamauchi, Yusuke

    2015-09-14

    A facile method for the fabrication of well-dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core-shell-corona type triblock copolymer [poly(styrene-b-2-vinylpyridine-b-ethylene oxide), PS-b-P2VP-b-PEO] is employed as the pore-directing agent. Negatively charged PtCl4 (2-) ions preferably interact with the protonated P2VP(+) blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Research on the Ordered Mesoporous Silica for Tobacco Harm Reduction

    Science.gov (United States)

    Wang, Y.; Y Li, Z.; Ding, J. X.; Hu, Z. J.; Liu, Z.; Zhou, G.; Huang, T. H.

    2017-12-01

    For reducting tobacco harm, this paper prepared an ordered mesoporous silica by using triblock copolymer Pluronic P123 as template. The property of this material was characterized by the X-ray scattering spectrum(XRD), Transmission electron microscopy(TEM), Scanning electron microscopy (SEM) and Nitrogen adsorption/desorption. Then this ordered mesoporous silica was added into the cigarette filter in order to researching its effect of cigarette harm index. The result shows that the feature of SBA-15 was grain morphology, ordered arrangement, tubular porous 2-D hexagonal structure. The application of SBA-15 in cigarette filter can selectively reduce harmful components in cigarette smoke such as crotonaldehyde, hydrogen cyanide, benzo pyrene and tar. The synthesized SBA-15 could properly reduce cigarette harm index.

  6. Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Planes, Gabriel A. [Departamento de Quimica, Facultad de Ciencias Exactas, Fisicoquimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, 5800, Rio Cuarto (Argentina); Williams, Federico J. [Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina); Soler-Illia, Galo J.A.A. [Gerencia de Quimica, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Corti, Horacio R. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina)

    2011-02-15

    Mesoporous Pt and Pt/Ru catalysts with 2D-hexagonal mesostructure were synthesized using a triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic F127 {sup registered}) template, on a gold support. Large electrochemical surface areas were observed for the catalysts prepared at high overpotentials. Compared to the Pt catalyst, the Pt/Ru alloy containing 3 at% of Ru exhibited lower onset potential and more than three times the limit mass activity for methanol oxidation. This behavior is assigned to the larger pore size of the mesoporous Pt and Pt/Ru catalysts obtained with this template that seems to improve the methanol accessibility to the active sites compared to those obtained using lyotropic liquid crystals. (author)

  7. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.

    Science.gov (United States)

    Lee, In-Gu; Lee, Heejin; Kang, Bo Sung; Kim, Young-Min; Kim, Sang Chai; Jung, Sang-Chul; Ko, Chang Hyun; Park, Young-Kwon

    2018-02-01

    The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

  8. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption

    KAUST Repository

    Shen, Peng; Zhang, Haitao; Zhang, Suojiang; Yuan, Pei; Yang, Yang; Zhang, Qiang; Zhang, Xixiang

    2016-01-01

    Abstract: Colloidal mesoporous magnetite nanoparticles with tunable porosity were realized by a simple and scalable solvothermal route with the aid of AOT as ligands. AOT was used to induce the anisotropic crystal growth of smaller nanocrystals and restrain their tight aggregation so as to form more mesoscale pores. Morphologies and microstructures investigation by SEM and TEM revealed that the bigger nanoparticles were composed of smaller nanocrystals with an average size of 18 nm. A possible formation mechanism was proposed for the mesoporous nanoparticles. Study of nitrogen adsorption–desorption isotherm revealed that the Brunauer–Emmett–Teller (BET) specific surface area of mesoporous nanoparticles is up to 209 m2/g, resulting from the slit-shaped pores created by the aggregation of polyhedral nanocrystals. Magnetic properties study indicated that the as-prepared nanoparticles are superparamagnetic at room temperature. Optimized mesoporous magnetite nanoparticles exhibit a maximum Cr(VI) ion sorption capacity of 12.9 mmol/g, and its absorption behavior followed a Freundlich model. Microwave absorption study indicated that porous nanoparticles own higher permeability values than that of solid nanoparticles, leading to a higher dielectric loss in the frequency range of 2–18 GHz. Graphical Abstract: [Figure not available: see fulltext.] © 2016, Springer Science+Business Media Dordrecht.

  9. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites

    International Nuclear Information System (INIS)

    Du Yaying; Fu Yuqin; Shi Yongli; Lue Xiaodan; Lue Changli; Su Zhongmin

    2009-01-01

    Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent nanocomposites were prepared by in situ bulk polymerization. CMS nanoparticles or nanorods with hydroxyl-, mercapto- and sulfonic-functionalized interiors were obtained by different synthetic routes in the nanosize dimensions between 50 and 500 nm. The luminescent Znq 2 complex was successfully introduced in the pores of different mesoporous silicas by chemical adsorption as the driving force. The different internal circumstances of mesoporous silicas had an obvious effect on the luminescence and lifetime of Znq 2 complex. The transparent fluorescent nanocomposites were fabricated from different Znq 2 -CMS and suitable monomers. The Znq 2 -CMS were uniformly dispersed in the polymer matrix without evident aggregation. The photoluminescence properties of Znq 2 -CMS in the transparent matrix exhibited a dependence on the inner surrounding of CMS due to the interaction between Znq 2 -CMS and polymers. The maximum emission peak of the nanocomposites had a red-shift of 28 nm as compared to pure Znq 2 -CMS. - Graphical abstract: Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent fluorescent nanocomposites were prepared by in situ bulk polymerization. The figure shows the synthetic scheme for the Znq 2 -CMS and their transparent bulk nanocomposites.

  10. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption

    KAUST Repository

    Shen, Peng

    2016-05-12

    Abstract: Colloidal mesoporous magnetite nanoparticles with tunable porosity were realized by a simple and scalable solvothermal route with the aid of AOT as ligands. AOT was used to induce the anisotropic crystal growth of smaller nanocrystals and restrain their tight aggregation so as to form more mesoscale pores. Morphologies and microstructures investigation by SEM and TEM revealed that the bigger nanoparticles were composed of smaller nanocrystals with an average size of 18 nm. A possible formation mechanism was proposed for the mesoporous nanoparticles. Study of nitrogen adsorption–desorption isotherm revealed that the Brunauer–Emmett–Teller (BET) specific surface area of mesoporous nanoparticles is up to 209 m2/g, resulting from the slit-shaped pores created by the aggregation of polyhedral nanocrystals. Magnetic properties study indicated that the as-prepared nanoparticles are superparamagnetic at room temperature. Optimized mesoporous magnetite nanoparticles exhibit a maximum Cr(VI) ion sorption capacity of 12.9 mmol/g, and its absorption behavior followed a Freundlich model. Microwave absorption study indicated that porous nanoparticles own higher permeability values than that of solid nanoparticles, leading to a higher dielectric loss in the frequency range of 2–18 GHz. Graphical Abstract: [Figure not available: see fulltext.] © 2016, Springer Science+Business Media Dordrecht.

  11. Hexagonal mesoporous titanosilicates as support for vanadium oxide-Promising catalysts for the oxidative dehydrogenation of n-butane

    Czech Academy of Sciences Publication Activity Database

    Setnička, M.; Čičmanec, P.; Bulánek, R.; Zukal, Arnošt; Pastva, Jakub

    2013-01-01

    Roč. 204, APR 2013 (2013), s. 132-139 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/0196 Institutional support: RVO:61388955 Keywords : mesoporous titanosilicate * hexagonal mesoporous structure * vanadium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.309, year: 2013

  12. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  13. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  14. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng; Wang, Yanbing; Estevez, Luis; Duan, Xiaonan; Anako, Nkechi; Park, Ah-Hyung Alissa; Li, Wen; Jones, Christopher W.; Giannelis, Emmanuel P.

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  15. Controlled synthesis of mesoporous β-Ni(OH){sub 2} and NiO nanospheres with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Shengtao; Wang, Qian [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Ma, Zichuan, E-mail: mazc@vip.163.com [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China); Wu, Yinsu; Gao, Yuanzhe [College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050016 (China)

    2012-09-15

    Highlights: ► Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a simple complexation–precipitation method. ► Both ammonia and citrate played an important role for the formation of mesoporous nanospheres. ► β-Ni(OH){sub 2} and NiO nanospheres showed excellent capacitive properties due to their mesoporous structures and larger surface areas. -- Abstract: Uniform mesoporous β-Ni(OH){sub 2} and NiO nanospheres with hierarchical structures were synthesized by a facile complexation–precipitation method. The effects of ammonia and citrate on the structure and morphology of the products were thoroughly investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements. The results indicated that ammonia played an important role for the formation of flowerlike spheres assembled from nanosheets. The addition of citrate could remarkably reduce the particle sizes and increase the specific surface areas of flowerlike spheres. A possible formation mechanism based on the experimental results was proposed to understand their growing procedures. β-Ni(OH){sub 2} and NiO nanospheres prepared with the addition of citrate showed excellent capacitive properties due to their mesoporous structures and large surface areas, suggesting the importance of controlled synthesis of hierarchical nanostructures for their applications.

  16. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2005-04-15

    The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.

  17. Mesoporous CdS via Network of Self-Assembled Nanocrystals: Synthesis, Characterization and Enhanced Photoconducting Property.

    Science.gov (United States)

    Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim

    2018-01-01

    Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

  18. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window.

    Science.gov (United States)

    Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping

    2018-05-03

    Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.

  19. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  20. Improved Stabilities of Immobilized Glucoamylase on Functionalized Mesoporous Silica Synthesised using Decane as Swelling Agent

    Directory of Open Access Journals (Sweden)

    Reni George

    2013-06-01

    Full Text Available Ordered mesoporous silica, with high porosity was used to immobilize glucoamylase via adsorption and covalent binding. Immobilization of glucoamylase within mesoporous silica was successfully achieved, resulting in catalytically high efficiency during starch hydrolysis. In this study, mesoporous silica was functionalized by co-condensation of tetraethoxysilane (TEOS with organosilane (3-aminopropyl triethoxysilane (APTES in a wide range of molar ratios of APTES: TEOS in the presence of triblock copolymer P123 under acidic hydrothermal conditions. The prepared materials were characterized by Small angle XRD, Nitrogen adsorption – desorption and 29Si MAS solid state NMR. N2 desorption studies showed that pore size distribution decreases due to pore blockage after functionalization and enzyme immobilization. Small angle XRD and 29Si MAS NMR study reveals mesophase formation and Si environment of the materials. The main aim of our work was to study the catalytical activity, effect of pH, temperature storage stability and reusability of covalently bound glucoamylase on mesoporous silica support. The result shows that the stability of enzyme can be enhanced by immobilization.  © 2013 BCREC UNDIP. All rights reservedReceived: 3rd December 2012; Revised: 4th April 2013; Accepted: 20th April 2013[How to Cite: George, R., Gopinath, S., Sugunan, S. (2013. Improved Stabilities of Immobilized Glucoamyl-ase on Functionalized Mesoporous Silica Synthesized using Decane as Swelling Agent. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 70-76. (doi:10.9767/bcrec.8.1.4208.70-76][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4208.70-76] | View in  |

  1. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices.

    Science.gov (United States)

    Wang, Guoxiu; Liu, Hao; Horvat, Josip; Wang, Bei; Qiao, Shizhang; Park, Jinsoo; Ahn, Hyojun

    2010-09-24

    Highly ordered mesoporous Co(3)O(4) nanostructures were prepared using KIT-6 and SBA-15 silica as hard templates. The structures were confirmed by small angle X-ray diffraction, high resolution transmission electron microscopy, and N(2) adsorption-desorption isotherm analysis. Both KIT-6 cubic and SBA-15 hexagonal mesoporous Co(3)O(4) samples exhibited a low Néel temperature and bulk antiferromagnetic coupling due to geometric confinement of antiferromagnetic order within the nanoparticles. Mesoporous Co(3)O(4) electrode materials have demonstrated the high lithium storage capacity of more than 1200 mAh g(-1) with an excellent cycle life. They also exhibited a high specific capacitance of 370 F g(-1) as electrodes in supercapacitors.

  2. Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.F. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico)]. E-mail: chenlf2001@yahoo.com; Norena, L.E. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Navarrete, J. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico)

    2006-06-10

    This work reports the synthesis and surface characterization of a Zr-modified mesoporous MCM-41 solid with an ordered hexagonal arrangement, prepared through a templated synthesis route, using cetyltrimethylammonium chloride as the template. The surface features, crystalline structure, textural properties and surface acidity of the materials were characterized by in situ Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), N{sub 2} physisorption isotherms, {sup 29}Si MAS-NMR and in situ FT-IR of pyridine adsorption. It is evident that the surfactant cations inserted into the network of the solids during the preparation could be removed by calcination of the sample above 500 deg. C. The resultant material showed a large surface area of 680.6 m{sup 2} g{sup -1} with a uniform pore diameter distribution in a very narrow range centered at approximately 2.5 nm. Zirconium incorporation into the Si-MCM-41 framework, confirmed by {sup 29}Si MAS-NMR analysis, increased not only the wall thickness of the mesopores but also the long-range order of the periodically hexagonal structure. Both, Lewis and Broensted acid sites, were formed on the surface of the Zr-modified MCM-41 solid. Compared to Si-MCM-41 on which only very weak Lewis acid sites were formed, the densities of both Lewis and Broensted acid sites and the strength of the acidity on the Zr-modified sample were significantly increased, indicating that the incorporation of zirconium greatly enhances the acidity of the material.

  3. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization

    Science.gov (United States)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad

    2018-02-01

    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  4. Dynamics of molecular rotors confined in two dimensions: transition from a 2D rotational glass to a 2D rotational fluid in a periodic mesoporous organosilica.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Bracco, Silvia; Beretta, Mario; Comotti, Angiolina; Sozzani, Piero; Garcia-Garibay, Miguel A

    2012-02-09

    The motional behavior of p-phenylene-d(4) rotators confined within the 2D layers of a hierarchically ordered periodic mesoporous p-divinylbenzenesilica has been elucidated to evaluate the effects of reduced dimensionality on the engineered dynamics of artificial molecular machines. The hybrid mesoporous material, characterized by a honeycomb lattice structure, has arrays of alternating p-divinylbenzene rotors and siloxane layers forming the molecularly ordered walls of the mesoscopic channels. The p-divinylbenzene rotors are strongly anchored between two adjacent siloxane sheets, so that the p-phenylene rotators are unable to experience translational diffusion and are allowed to rotate about only one fixed axis. Variable-temperature (2)H NMR experiments revealed that the p-phenylene rotators undergo an exchange process between sites related by 180° and a non-Arrhenius temperature dependence of the dynamics, with reorientational rates ranging from 10(3) to 10(8) Hz between 215 to 305 K. The regime of motion changes rapidly at about 280 K indicating the occurrence of a dynamical transition. The transition was also recognized by a steep change in the heat capacity at constant pressure. As a result of the robust lamellar architecture comprising the pore walls, the orientational dynamic disorder related to the phase transition is only realized in two dimensions within the layers, that is in the plane perpendicular to the channel axis. Thus, the aligned rotors that form the organic layers exhibit unique anisotropic dynamical properties as a result of the architecture's reduced dimensionality. The dynamical disorder restricted to two dimensions constitutes a highly mobile fluidlike rotational phase at room temperature, which upon cooling undergoes a transition to a more rigid glasslike phase. Activation energies of 5.9 and 9.5 kcal/mol respectively have been measured for the two dynamical regimes of rotation. Collectively, our investigation has led to the discovery of an

  5. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  6. A flexible, bolaamphiphilic template for mesoporous silicas.

    Science.gov (United States)

    Yuen, Alexander K L; Heinroth, Falk; Ward, Antony J; Masters, Anthony F; Maschmeyer, Thomas

    2013-08-28

    A novel symmetrical bolaamphiphile, containing two N-methylimidazolium head-groups bridged by a 32-methylene linker, was synthesized and characterized. A variety of mesoporous silicas was prepared using the bolaamphiphile as a "soft template". The effects of absolute surfactant concentration and synthesis conditions upon the morphologies of these silicas were investigated. For a given surfactant concentration, particle morphology; pore size; and pore ordering were modified through control of the template to silica-precursor ratio and synthesis conditions. Observed morphologies included: lenticular core-shell nanoparticles and decorticated globules, truncated hexagonal plates, and sheets. In all cases the mesopores are aligned along the shortest axis of the nanomaterial. Decorticated materials displayed surface areas of up to 1200 m(2) g(-1) and pore diameters (D(BJH)) of 24-28 Å. Small-angle X-ray diffraction and transmission electron microscopy measurements revealed that the majority of the materials has elliptical pores arranged in rectangular lattices (c2mm). Adoption of this symmetry group is a result of the template aggregate deformation from a regular hexagonal phase of cylindrical rods to a ribbon phase under the synthetic conditions.

  7. Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process

    Directory of Open Access Journals (Sweden)

    Julien Kiener

    2016-07-01

    Full Text Available Nanocomposites of ordered mesoporous carbon associated with chromium nitride (CrN or vanadium nitride (VN nanoparticles were obtained by a simple one-pot synthesis based on the solvent evaporation induced self-assembly (EISA process using Pluronic triblock surfactant as soft-template and a phenol-based resin (resol as carbon precursor. These nanocomposites were characterized by X-ray diffraction, nitrogen physisorption and Transmission Electron Microscopy (TEM techniques. Electron tomography (or 3D-TEM technique was particularly useful for providing direct insight on the internal architecture of C/CrN nanocomposite. Nanocomposites showed a very well organized hexagonal mesoporous carbon structure and a relatively high concentration of nanoparticles well distributed in the porous network. The chromium and vanadium nitrides/mesoporous carbon nanocomposites could have many potential applications in catalysis, Li-ion batteries, and supercapacitors.

  8. Enhanced photocatalytic properties in well-ordered mesoporous WO3

    KAUST Repository

    Li, Li; Krissanasaeranee, Methira; Pattinson, Sebastian W.; Stefik, Morgan; Wiesner, Ulrich; Steiner, Ullrich; Eder, Dominik

    2010-01-01

    We used polyisoprene-block-ethyleneoxide copolymers as structure-directing agents to synthesise well-ordered and highly-crystalline mesoporous WO 3 architectures that possess improved photocatalytic properties due to enhanced dye-adsorption in absence of diffusion limitation. © 2010 The Royal Society of Chemistry.

  9. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  10. High-performance mesoporous LiFePO₄ from Baker's yeast.

    Science.gov (United States)

    Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong

    2013-03-01

    Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Zhihong [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Song Yan [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)], E-mail: yansong1026@126.com; Tian Yongming [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Liu Lang; Guo Quangui [Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2008-01-25

    Mesoporous carbons (MCs) with high specific surface area and pore volume were synthesized from thermosetting phenol resin (TPR) by using commercial nanosized silica particles as template. Based on the results of thermogravimetric analysis, nitrogen adsorption, mercury adsorption and high-resolution transmission electron microscopy (HRTEM), mechanism of the pore formation of MCs was proposed. Silica particles not only participated in the pore formation of MCs but also influenced the thermosetting process of the carbon precursor. The mechanism of pore formation in the MCs may be described as follows: mesopores were introduced by the removal of silica particles; small mesopores were created by the combination of aperture between TPR and silica particles and opened pores in the matrix generated by the release of small molecules in the carbon during carbonization process; macropores were produced by the aggregation of silica particles and the collapse of carbon wall.

  12. Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template

    International Nuclear Information System (INIS)

    Tang Zhihong; Song Yan; Tian Yongming; Liu Lang; Guo Quangui

    2008-01-01

    Mesoporous carbons (MCs) with high specific surface area and pore volume were synthesized from thermosetting phenol resin (TPR) by using commercial nanosized silica particles as template. Based on the results of thermogravimetric analysis, nitrogen adsorption, mercury adsorption and high-resolution transmission electron microscopy (HRTEM), mechanism of the pore formation of MCs was proposed. Silica particles not only participated in the pore formation of MCs but also influenced the thermosetting process of the carbon precursor. The mechanism of pore formation in the MCs may be described as follows: mesopores were introduced by the removal of silica particles; small mesopores were created by the combination of aperture between TPR and silica particles and opened pores in the matrix generated by the release of small molecules in the carbon during carbonization process; macropores were produced by the aggregation of silica particles and the collapse of carbon wall

  13. Synthesis of three-dimensionally ordered macro-/mesoporous Pt with high electrocatalytic activity by a dual-templating approach

    Science.gov (United States)

    Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan

    2014-01-01

    Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.

  14. Interconnected mesopores and high accessibility in UVM-7-like silicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cabero, Monica [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Hungria, Ana B. [Universidad de Cadiz, Departamento de Ciencia de Materiales, Ingenieria Metalurgica y Quimica Inorganica (Spain); Morales, Jose Manuel [Universitat de Valencia, Institut de Ciencia dels Materials (Spain); Tortajada, Marta; Ramon, Daniel [Biopolis S. L. (Spain); Moragues, Alaina; El Haskouri, Jamal; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro, E-mail: pedro.amoros@uv.es [Universitat de Valencia, Institut de Ciencia dels Materials (Spain)

    2012-08-15

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  15. Macropore-mesopore model of water flow through aggregated porous media

    International Nuclear Information System (INIS)

    Fong, L.; Appelbaum, H.R.

    1980-12-01

    A combined, one-dimensional, macropore-mesopore, hydrologic model was developed for simulating water flow through soils for analysis of data related to water and chemical flow in soils. Flows within the macroporous system as well as interactive flows between macroporous and mesoporous systems were modeled. Computer subroutines were written and incorporated into the existing one-dimensional Terrestrial Ecosystem Hydrologic Model (TEHM) developed at ORNL. Simulation showed that macropore flow effects are important during heavy precipitation and are more significant in soils of comparatively low hydraulic conductivity (5 to 10 cm/d). Increased drainage and decreased lateral flow result from the addition of the macropore model. The effect was more pronounced in soils of large macroporosity. Preliminary results indicate that the model is insensitive to geometrical properties of macropores

  16. Interconnected mesopores and high accessibility in UVM-7-like silicas

    International Nuclear Information System (INIS)

    Pérez-Cabero, Mónica; Hungría, Ana B.; Morales, José Manuel; Tortajada, Marta; Ramón, Daniel; Moragues, Alaina; El Haskouri, Jamal; Beltrán, Aurelio; Beltrán, Daniel; Amorós, Pedro

    2012-01-01

    Nanoparticulated bimodal mesoporous silicas (NBS) have proved to constitute adequate supports in a variety of applications requiring enhanced accessibility to the active sites. Mass-transfer kinetics seems to be highly favoured in UVM-7-derived NBS materials. To understand the mass-diffusion phenomena throughout UVM-7-like supports requires well-grounded knowledge about their pore architecture. 3-D reconstructions of the UVM-7 mesostructure carried out by electron tomography reveal the existence of a true hierarchic connectivity involving both inter- and intra-nanoparticle pores. This connectivity makes self-supported nanoparticulated mesoporous bimodal carbon replicas of the supports feasible to obtaining by nanocasting. Both the temperature-induced mobility of gold nanodomains and the fast and efficient enzyme adsorption in UVM-7-like silicas are examples of non-constrained diffusion processes happening inside such an open network.

  17. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    Science.gov (United States)

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  19. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  20. Acylation Reactions over Zeolites and Mesoporous Catalysts

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Vitvarová, Dana; Čejka, Jiří

    2009-01-01

    Roč. 2, č. 6 (2009), s. 486-499 ISSN 1864-5631 R&D Projects: GA ČR GA104/07/0383; GA ČR GD203/08/H032; GA MPO FT-TA5/005 Institutional research plan: CEZ:AV0Z40400503 Keywords : acylation * ketones * mesoporous materials * shape-selectivity * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.767, year: 2009

  1. Shape-Enhanced Photocatalytic Activities of Thoroughly Mesoporous ZnO Nanofibers

    KAUST Repository

    Ren, Xiaolong; Hou, Huilin; Liu, Zhixiong; Gao, Fengmei; Zheng, Jinju; Wang, Lin; Li, Wenge; Ying, Pengzhan; Yang, Weiyou; Wu, Tao

    2016-01-01

    1D mesoporous materials have attracted extensive interest recently, owning to their fascinating properties and versatile applications. However, it remains as a grand challenge to develop a simple and efficient technique to produce oxide nanofibers

  2. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Systematically controlled pore system of ordered mesoporous carbons using phosphoric acid as the in situ generated catalysts for carbonization and activation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xing; Lee, Chang Hyun; Kim, Jin Hoe; You, Dae Jong; Shon, Jeong Kuk; Kim, Ji Man [Dept. of Chemistry, Sungkyunkwan University, Suwon (Korea, Republic of); Pak, Chan Ho [Fuel Cell Group, Corporate R and D Center, Samsung SDI Co. Ltd., Yongin (Korea, Republic of)

    2015-08-15

    We report on a facile synthesis of the ordered mesoporous carbon (OMC) materials with systematically controlled microporosity and mesoporosity simultaneously through the nano-replication route using phosphoric acid as the acid catalyst and activation agent. The use of phosphoric acid affects the pore structures of OMC materials, such as the formation of numerous micropores by activation of the carbon framework and the enlargement of mesopores by spontaneous phase separation during the carbonization. The mesopore sizes, surface areas, total pore volumes, and micropore volumes of the OMC materials are highly dependent on the phosphoric acid content and can be systematically controlled in the range 3.7–7.5 nm, 1027–2782 m{sup 2} g{sup -1}, 1.12–3.53 cm{sup 3} g{sup -1} and 0.34–0.95 cm{sup 3} g{sup -1}, respectively. OMC materials with systematically controlled pore structures were successfully synthesized using phosphoric acid as the carbonization catalyst and mesoporous silica materials with cubic Ia3d and 2-D hexagonal mesostructures as the templates. The phosphoric acid in the synthesis of ordered mesoporous carbon materials acts as the chemical activating agent for micropore generation of the carbon framework and pore-expanding agent for controlling of mesopore size, in addition to functioning as the acid catalyst. The present synthesis pathway is very useful for preparing OMC materials with tunable mesopore sizes and well-developed microporosities at the same time.

  4. Easy and General Synthesis of Large-Sized Mesoporous Rare-Earth Oxide Thin Films by 'Micelle Assembly'.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Dai, Pengcheng; Yamauchi, Yusuke

    2015-12-01

    Large-sized (ca. 40 nm) mesoporous Er2O3 thin films are synthesized by using a triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) as a pore directing agent. Each block makes different contributions and the molar ratio of PVP/Er(3+) is crucial to guide the resultant mesoporous structure. An easy and general method is proposed and used to prepare a series of mesoporous rare-earth oxide (Sm2O3, Dy2O3, Tb2O3, Ho2O3, Yb2O3, and Lu2O3) thin films with potential uses in electronics and optical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Yao, Mingming; Hu, Zhonghua; Xu, Zijie; Liu, Yafei; Liu, Peipei; Zhang, Qiang

    2015-01-01

    The ribbon-like NiO was synthesized by a hard-template method combining the calcination, using mesoporous carbon as a hard templat and guanidine hydrochloride as precipitant of weak base, respectively. The nanostructured hierarchical mesoporous ribbon-like NiO exhibits the high specific capacitance of 1260 F g −1 at the current density of 1 A g −1 , and 95% capacity retention at a current density of 10 A g −1 in a testing range of 5000 cycles. - Highlights: • Ribbon-like NiO was prepared by using mesoporous carbon as a hard template. • Typical ribbon-like NiO possesses the hierarchical mesoporous nanostructure. • High specific capacitance of 1260 F g −1 is obtained at a current density of 1 A g −1 . • Excellent electrochemical stability of 95% after 5000 charge–discharge cycles. - Abstract: In this paper, nanostructured hierarchical mesoporous ribbon-like NiO was synthesized by a hard-template method combining the calcination process. Nickel sulfate hexahydrate, guanidine hydrochloride and mesoporous carbon were used as nickel precursors, precipitant of weak base and template, respectively. The resultant NiO samples were characterized by Raman spectroscopy, energy dispersive spectrometer, X-ray diffraction, N 2 adsorption and desorption, scanning electron microscopy and transmission electron microscopy. The electrochemical performances were evaluated by cyclic voltammetry (CV), cyclic chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) in 6 M KOH solution. The typical hierarchical mesoporous ribbon-like NiO shows a good electrochemical performance: a high specific capacitance of 1260 F g −1 at 1 A g −1 , 748 F g −1 at high current density of 20 A g −1 and 95% capacity retention at a current density of 10 A g −1 in a testing range of 5000 cycles

  6. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling; Yuan, En-Hui; Ma, Xiao-Jing [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Lam, Koon-Fung [Department of Chemical Engineering, University College London, Torrington Place, London (United Kingdom); Xue, Qing-Song, E-mail: qsxue@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Zhang, Kun, E-mail: kzhang@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China)

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor is critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.

  7. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere

    Science.gov (United States)

    Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping

    2018-05-01

    Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.

  8. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  9. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Fei; Song, Xiaoping; Yao, Gang; Zhao, Mingshu; Liu, Rui; Xu, Minwei; Sun, Zhanbo

    2012-01-01

    In this paper mesoporous SnO 2 nanospheres with an average diameter of about 83 nm, composed of many tiny primary particles (∼10 nm) and holes, are synthesized on a large scale by a simple hydrothermal route. The as-prepared mesoporous SnO 2 nanospheres were uniformly coated with carbon by a further hydrothermal treatment in glucose aqueous solution. As anode materials for lithium-ion batteries, the core–shell SnO 2 /C nanocomposites exhibit a markedly improved cycling performance.

  10. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    International Nuclear Information System (INIS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-01-01

    Highlights: • Simple and cost effective preparation of MgO nanoparticles loaded mesoporous Al 2 O 3 . • Adsorbents possess high surface area and mesoporous structure. • Higher fluoride removal capacity of MgO loaded Al 2 O 3 than that of pure Al 2 O 3 . • Faster fluoride adsorption kinetics of MgO loaded Al 2 O 3 from water. - Abstract: MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F − using batch adsorption method. MgO nanoparticle loading on mesoporous Al 2 O 3 enhances the F − adsorption capacity of Al 2 O 3 from 56% to 90% (initial F − concentration = 10 mg L −1 ). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F − adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al 2 O 3 was 37.35 mg g −1 . It was also observed that, when the solutions having F − concentration of 5 mg L −1 and 10 mg L −1 was treated with 40MgO@Al 2 O 3 , the F − concentration in treated water became <1 mg L −1 , which is well below the recommendation of WHO

  11. Tailoring of the Nanotexture of Mesoporous Silica Films and their Functionalized Derivatives for Selectively Harvesting Low Molecular Weight Protein

    Science.gov (United States)

    Hu, Ye; Bouamrani, Ali; Tasciotti, Ennio; Li, Li; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    We present a fast, efficient and reliable system based on mesoporous silica chips to specifically fractionate and enrich the low molecular weight proteome. Mesoporous silica thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different templates and concentrations in the precursor solution, various pore size distributions, pore structures and connectivity were obtained and applied for selective recovery of low mass proteins. In combination with mass spectrometry and statistic analysis, we demonstrated the correlation between the nanophase characteristics of the mesoporous silica thin films and the specificity and efficacy of low mass proteome harvesting. In addition, to overcome the limitations of the pre-functionalization method in polymer selection, plasma ashing was used for the first time for the treatment of the mesoporous silica surface prior to chemical modification. Surface charge modifications by different functional groups resulted in a selective capture of the low molecular weight proteins from serum sample. In conclusion our study demonstrates that the ability to tune the physico-chemical properties of mesoporous silica surfaces, for a selective enrichment of the low molecular weight proteome from complex biological fluids, has the potential to promote proteomic biomarker discovery. PMID:20014864

  12. Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method

    Science.gov (United States)

    Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin

    2008-12-01

    A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.

  13. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors

    Science.gov (United States)

    Lim, Eunho; Jo, Changshin; Lee, Jinwoo

    2016-04-01

    In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.

  14. Preparation of mesoporous MnO2/C catalyst for n-hexyl acetate synthesis

    International Nuclear Information System (INIS)

    Yang Zeheng; Pan Yanmei; Mei Zhousheng; Zhang Weixin

    2012-01-01

    A mesoporous MnO 2 /C composite was prepared by impregnating self-made porous carbon spheres with manganese nitrate aqueous solution and subsequently reacting with KMnO 4 aqueous solution. It was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), the Brunauer-Emmett-Teller (BET) surface area and the Barrett-Joyner-Halenda (BJH) pore size distribution. The as-prepared mesoporous MnO 2 /C composite was used as catalyst for the synthesis of n-hexyl acetate, and the effects of MnO 2 loading and esterification reaction parameters on the esterification rate were investigated. The results prove that MnO 2 loading has a significant effect on the catalytic activity and that the mesoporous MnO 2 /C composite exhibits high catalytic activity with an esterification rate of 96.42% under the conditions below: MnO 2 loading (73.09 wt%), catalyst dosage (0.1% in total weight), acetic acid/n-hexanol molar ratio (2:1), reaction temperature (130 °C) and reaction time (5 h).

  15. Tuning Structure and Properties of Graded Triblock Terpolymer-Based Mesoporous and Hybrid Films

    KAUST Repository

    Phillip, William A.

    2011-07-13

    Despite considerable efforts toward fabricating ordered, water-permeable, mesoporous films from block copolymers, fine control over pore dimensions, structural characteristics, and mechanical behavior of graded structures remains a major challenge. To this end, we describe the fabrication and performance characteristics of graded mesoporous and hybrid films derived from the newly synthesized triblock terpolymer, poly(isoprene-b-styrene-b-4-vinylpyridine). A unique morphology, unachievable in diblock copolymer systems, with enhanced mechanical integrity is evidenced. The film structure comprises a thin selective layer containing vertically aligned and nearly monodisperse mesopores at a density of more than 1014 per m2 above a graded macroporous layer. Hybridization via homopolymer blending enables tuning of pore size within the range of 16 to 30 nm. Solvent flow and solute separation experiments demonstrate that the terpolymer films have permeabilities comparable to commercial membranes, are stimuli-responsive, and contain pores with a nearly monodisperse diameter. These results suggest that moving to multiblock polymers and their hybrids may open new paths to produce high-performance graded membranes for filtration, separations, nanofluidics, catalysis, and drug delivery. © 2011 American Chemical Society.

  16. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  17. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook

    Directory of Open Access Journals (Sweden)

    Song Y

    2016-12-01

    Full Text Available Yuanhui Song, Yihong Li, Qien Xu, Zhe Liu Wenzhou Institute of Biomaterials and Engineering (WIBE, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China Abstract: With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment. Keywords: mesoporous silica nanoparticle, drug delivery system, controlled release, stimuli-responsive, chemotherapy

  18. Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Nguyen, Van Hoa; Lamiel, Charmaine; Shim, Jae-Jin

    2015-01-01

    Highlights: • Hierarchical mesoporous graphene@Ni-Co-S arays have been decorated on Ni foam. • The electrode exhibits a high specific capacitance of 9.2 F cm −1 at 100 mA cm −1 . • The electrode presents large electroactive surface area and excellent structural stability. - Abstract: Hierarchical mesoporous graphene and ternary nickel cobalt sulfide (Ni-Co-S) arrays on nickel foam were designed and fabricated by chemical vapor deposition and electrodeposition for supercapacitor applications. The electrodes exhibited rapid electron and ion transport, large electroactive surface area, and excellent structural stability owing to the highly conductive, mesoporous nature of graphene and the Ni-Co-S nanosheets, as well as to the open framework of the three-dimensional nanoarchitectures. The specific capacitance of the obtained electrode was as high as 9.2 F cm −1 at a high current density of 100 mA cm −1 , indicating promising applications as an efficient electrode for electrochemical capacitors

  19. Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate

    Science.gov (United States)

    Khezri, Khezrollah; Ghasemi, Moosa; Fazli, Yousef

    2018-05-01

    Mesoporous diatomite particles were employed to prepare different poly(styrene-co-butyl acrylate)/diatomite nanocomposites. Diatomite nanoplatelets were used for in situ copolymerization of styrene and butyl acrylate by SR&NI ATRP to synthesize well-defined poly(styrene-co-butyl acrylate) nanocomposites. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to increase of conversion from 73 to 89%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 17,115 to 20,343 g·mol-1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.14 to 1.37. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.26 to 39.61°C by adding 3 wt% of mesoporous diatomite nanoplatelets.

  20. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  1. Structure and Optical Properties of Doped SiO2 Mesoporous Glasses

    Directory of Open Access Journals (Sweden)

    G. Hernández-Padrón

    2011-01-01

    Full Text Available Monolithic mesoporous silica glasses were synthesized. The presence of Cu2+ and Fe3+ cations during the synthesis of sol-gel precursors leads to different morphologies and pore sizes. The materials are characterized via IR and Raman scattering spectra to detect surface groups and -Si-O-Si- rings (i.e., 3–6 Si atoms and morphology is examined through electron microscopy. N2 sorption isotherms reveal details of the mesoporous structure of the materials, which are endowed with significantly large surface areas and pore volumes. Vapor percolation occurs in these samples because of a void arrangement consisting of pore bulges delimited by narrower necks. The optical characterization shows the luminescence spectrum and thermoluminescent behavior subjected to successive exposures of beta particles.

  2. Structural and surface properties of highly ordered mesoporous magnesium-aluminium composite oxides derived from facile synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dahai, E-mail: pandahai@foxmail.com; Dong, Zhaoyang; He, Min; Chen, Wei; Chen, Shuwei; Yu, Feng; Fan, Binbin; Cui, Xingyu; Li, Ruifeng, E-mail: rfli@tyut.edu.cn

    2017-01-15

    Highly ordered mesoporous magnesium-aluminium composite oxides (denoted as OMMA-x) with a variety of n{sub Al}/n{sub Mg} ratios have been successfully synthesized via a facile strategy, and a salt effect was proposed to explain the formation mechanism. The incorporation of Mg can significantly improve the structural and surface properties of ordered mesoporous alumina (OMA) material. The resultant OMMA-x exhibited a much more ordered 2-D hexagonal mesostructure, a narrower pore size distribution, a higher specific surface area and pore volume, and a stronger basicity than those of OMA. More importantly, the highly homogeneous incorporation of Mg at the atomic level and the formation of framework Mg−O−Al bonds could effectively suppress the formation of crystalline alumina during the calcination process. As a result, OMMA-x demonstrated a superior thermal stability. For example, the ordered mesostructure of OMMA-8 could be well maintained with a high surface area of 182 m{sup 2}/g even after thermal treatment at 1000 °C. - Graphical abstract: A schematic procedure to illustrate the preparation of highly ordered mesoporous Mg-Al composite oxides (OMMA-x) with highly homogeneously dispersed Mg species and enhanced structural stability. - Highlights: • Mesoporous Mg-Al composite oxides with excellent structural and surface properties. • A highly homogeneous incorporation of Mg into the mesoporous framework of alumina. • A superior structural stability up to 1000 °C coupled with a large surface area. • A salt effect from the addition of Mg(NO{sub 3}){sub 2}·6H{sub 2}O to explain the formation mechanism.

  3. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  4. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  5. Preparation of mesoporous silica films SBA-15 over different substrates

    International Nuclear Information System (INIS)

    Campos, V.O.; Sousa, E.M.B. de; Macedo, W.A.A.

    2010-01-01

    Mesoporous materials have been target of frequent interest due to its wide application possibilities, for example development of gas sensors, catalysis, molecules transportation, pharmaceuticals release, synthesis of auto-organized nanostructures, among others. The possibilities of application are enhanced when such materials are disposed in the form of thin and ultrathin films. In this work the preparation of mesoporous SBA-15 silica films is explored by means of the dipcoating technique of a sol-gel on different substrates (glass slides, stainless steel, copper), using the surfactant poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol), known as P123, a block copolymer. Synthesis parameters surfactant concentration, aging time and temperature were investigated. In this work we present the morphological and structural characterization of the prepared films, which were obtained using atomic force microscopy and x-ray fluorescence and diffraction. (author)

  6. Synthesis of mesoporous hydroxyapatite using a modified hard-templating route

    International Nuclear Information System (INIS)

    Xia Zhiguo; Liao Libing; Zhao Senlin

    2009-01-01

    Mesoporous polycrystals of hydroxyapatite-calcium are synthesized via a modified hard-templating route. The structure properties of hydroxyapatite-calcium are characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and N 2 adsorption-desorption isotherms. Wide-angle X-ray diffraction and Fourier transform infrared spectroscopy measurements reveal that the crystalline grains consist of highly crystalline pure hydroxyapatite phases. Transmission electron microscopy results show that rod-like hydroxyapatite-calcium grains with an average diameter of about 100 nm long and about 20 nm wide are uniformly distributed, which are also observed with an average pore size of 2-3 nm. Based on N 2 adsorption-desorption isotherms investigation, the pore size, surface area and pore volume of mesoporous hydroxyapatite-calcium are 2.73 nm, 42.43 m 2 g -1 and 0.12 cm 3 g -1 , respectively.

  7. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  8. Ordered Mesoporous Carbons as Novel and Efficient Adsorbent for Dye Removal from Aqueous Solution

    OpenAIRE

    Phuong T. Dang; Hoa T. H. Nguyen; Canh D. Dao; Giang H. Le; Quang K. Nguyen; Kien T. Nguyen; Hoa T. K. Tran; Tuyen V. Nguyen; Tuan A. Vu

    2016-01-01

    Ordered mesoporous carbons (OMCs) were successfully synthesized by using hard template and soft template methods. These materials were characterized by XRD, TEM, and N2 adsorption-desorption Brunauer-Emmett-Teller (BET). From the obtained results, it is revealed that the obtained OMCs samples showed high surface area (>1000 m2/g) with high pore volume, mainly mesopore volume (1.2–2.4 cm3/g). Moreover, OMCs samples had similar structure of the SBA-15 silica and exhibited high MB adsorption cap...

  9. Synthesis and characterization of Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method

    International Nuclear Information System (INIS)

    Jiang Tingshun; Zhao Qian; Chen Kangmin; Tang Yajing; Yu Longbao; Yin Hengbo

    2008-01-01

    Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal were synthesized by using cetyltrimethyl ammonium bromide as a template and by a novel microwave irradiation method. These samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N 2 physical adsorption. The experimental results show that Co (Ni or Cu)-MCM-41 mesoporous molecular sieves were successfully synthesized. When the as-synthesized samples were calcined at 550 deg. C for 10 h, the template was effectively removed. Under microwave irradiation condition, Co-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 745.7-1188.8 m 2 /g and average pore sizes in a range of 2.46-2.75 nm; Ni-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 625.8-1161.3 m 2 /g and average pore sizes of ca. 2.7 nm; Cu-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 601.6-1142.9 m 2 /g and average pore sizes in a range of 2.46-2.76 nm. On the other hand, with increasing the introduced metal amount, the specific surface area and pore volume of the synthesized Co (Ni or Cu)-MCM-41 mesoporous molecular sieves became small, and the mesoporous ordering of the samples became poor. Under the comparable synthesis conditions, the synthesized Co-MCM-41 mesoporous molecular sieve has a bigger specific surface area and a more uniform pore distribution as compared with the synthesized Ni-MCM-41and Cu-MCM-41 mesoporous molecular sieves

  10. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  11. Pore ordering in mesoporous matrices induced by different directing agents

    Czech Academy of Sciences Publication Activity Database

    Putz, A.-M.; Cecilia, S.; Ianasi, C.; Dudás, Z.; Székely, N. K.; Plocek, Jiří; Sfarloaga, P.; Sacarescu, L.; Almásy, L.

    2015-01-01

    Roč. 22, č. 2 (2015), s. 321-331 ISSN 1380-2224 Institutional support: RVO:61388980 Keywords : Mesoporous silica * MCM-41 * Dodecyl-trimethyl ammonium bromide * Hexadecyl-trimethylammonium bromide Subject RIV: CA - Inorganic Chemistry Impact factor: 1.385, year: 2015

  12. Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Xinyue Huang

    2014-01-01

    Full Text Available In this study we have investigated the suitability of a number of different mesoporous silica nanoparticle structures for carrying a drug cargo. We have fully characterized the nanoparticles in terms of their physical parameters; size, surface area, internal pore size and structure. These data are all required if we are to make an informed judgement on the suitability of the structure for drug delivery in vivo. With these parameters in mind, we investigated the loading/ unloading profile of a model therapeutic into the pore structure of the nanoparticles. We demonstrate that the release can be controlled by capping the pores on the nanoparticles to achieve temporal control of the unloading. We have also examined the rate and mechanism of the degradation of the nanoparticles over an extended period of time. The eventual dissolution of the nanoparticles after cargo release is a desirable property for a drug delivery system.

  13. Importance of Micropore-Mesopore Interfaces in Carbon Dioxide Capture by Carbon-Based Materials.

    Science.gov (United States)

    Durá, Gema; Budarin, Vitaliy L; Castro-Osma, José A; Shuttleworth, Peter S; Quek, Sophie C Z; Clark, James H; North, Michael

    2016-08-01

    Mesoporous carbonaceous materials (Starbons®) derived from low-value/waste bio-resources separate CO2 from CO2 /N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8-32 % versus 73 %) yet adsorb up to 65 % more CO2 . The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three-four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  15. Fabrication and photocatalysis of mesoporous ZnWO4 with PAMAM as a template

    International Nuclear Information System (INIS)

    Lin Shen; Chen Jiebo; Weng Xiulan; Yang Liuyi; Chen Xinqin

    2009-01-01

    Mesoporous ZnWO 4 was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO 4 is composed of aggregated ZnWO 4 nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed

  16. Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores

    Directory of Open Access Journals (Sweden)

    Nikola Ž. Knežević

    2014-06-01

    Full Text Available Core/shell nanoparticles, containing magnetic iron-oxide (maghemite core and mesoporous shell with radial porous structure, were prepared by dispersing magnetite nanoparticles and adding tetraethylorthosilicate to a basic aqueous solution containing structure-templating cetyltrimethylammonium bromide and a pore-swelling mesithylene. The material is characterized by SEM and TEM imaging, nitrogen sorption and powder X-ray diffraction. Distinctive features of the prepared material are its high surface area (959 m2/g, wide average pore diameter (12.4 nm and large pore volume (2.3 cm3/g. The material exhibits radial pore structure and the high angle XRD pattern characteristic for maghemite nanoparticles, which are obtained upon calcination of the magnetite-containing material. The observed properties of the prepared material may render the material applicable in separation, drug delivery, sensing and heterogeneous catalysis.

  17. Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yingchun [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Faculty of Chemical and Life Sciences, Qujing Normal University, Qujing 655000 (China); Zhai Zhongbiao [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Kunming Metallurgy Research Institute, Kunming 650031 (China); He Jiao; Li Bin; Li Junjie [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Wang Jiaqiang, E-mail: jqwang@ynu.edu.cn [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China)

    2010-07-20

    Anatase mesoporous titania with novel morphologies were synthesized by using the skins of tomatoes, bulb onions, grapes, and garlic bulbs, respectively, as templates and used for the photodegradation of Gentian violet, methyl violet, xylenol orange, and Rhodamine B under UV light. The samples were characterized by a combination of various physicochemical techniques, such as X-ray diffraction, SEM, HRTEM, N{sub 2} adsorption/desorption, diffuse reflectance UV-Vis, and FT-IR. It was found that all of the synthesized mesoporous titania samples exhibited similar morphologies to those of the original templates. The photoactivity of P25 TiO{sub 2} for the four dyes is nearly the same while the mesoporous titania samples synthesized by using the four skins as templates exhibited varied photoactivities for the four dyes.

  18. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  19. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  20. Mesoporous anatase TiO_2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chu, Liang; Qin, Zhengfei; Zhang, Qiaoxia; Chen, Wei; Yang, Jian; Yang, Jianping; Li, Xing’ao

    2016-01-01

    Graphical abstract: The photoelectrodes of DSSCs consisted of mesoporous anatase TiO_2 microspheres with interconnected nanoparticles. The interconnected nanoparticles enhance dye-loading capacity and charge transport. - Highlights: • The mesoporous anatase TiO_2 microspheres were synthesized by a template-free, one-step fast solvothermal process. • The mesoporous anatase TiO_2 microspheres with interconnected nanoparticles have the advantages of large surface area and connected-structure for electron transfer. • The mesoporous anatase TiO_2 microspheres were further utilized as efficient photoelectrodes for dye-sensitized solar cells. - Abstract: Mesoporous anatase TiO_2 microspheres with interconnected nanostructures meet both large surface area and connected-structure for electron transfer as ideal nano/micromaterials for application in solar cells, energy storage, catalysis, water splitting and gas sensing. In this work, mesoporous anatase TiO_2 microspheres consisting of interconnected nanoparticles were synthesized by template-free, one-step fast solvothermal process, where urea was used as capping agent to control phase and promote oriented growth. The morphology was assembled by nucleation-growth-assembly-mechanism. The mesoporous anatase TiO_2 microspheres with interconnected nanoparticles were further utilized as efficient photoelectrodes of dye-sensitized solar cells (DSSCs), which were beneficial to capacity of dye loading and charge transfer. The power conversion efficiency (PCE) based on the optimized thickness of TiO_2 photoelectrodes was up to 7.13% under standard AM 1.5 G illumination (100 mW/cm"2).

  1. Mesoporous templated silicas: stability, pore size engineering and catalytic activation

    International Nuclear Information System (INIS)

    Vansant, Etienne

    2003-01-01

    The Laboratory of Adsorption and Catalysis has focused its research activities on the synthesis and activation of new porous materials. In the past few years, we have succeeded in developing easy and reproducible pathways to synthesize a huge variety of mesoporous crystalline materials. Points of interest in the synthesis of Mesoporous Templated Silicas are (i) stabilization of the structure, to withstand hydrothermal, thermal and mechanical pressure, (ii) pore size engineering to systematically control the pore size, pore volume and the ratio micro/mesopores and (iii) ease and reproducibility of the synthesis procedure, applying green principles, such as template recuperation. By carefully adapting the synthesis conditions and composition of the synthesis gel, using surfactants (long chain quaternary ammonium ions) and co-templates (long chain amines, alcohols or alkanes), the pore size of the obtained materials can be controlled from 1.5 to 7.0 nm, retaining the very narrow pore size distribution. Alternatively, materials with combined micro- and mesoporosity can be synthesized, using neutral surfactants (triblock copolymers). Hereby, the optimization of the SBA-15 and SBA-16 synthesis is being done in order to create mesoporous materials with microporous walls. The second research line is the controlled activation of MTS materials, by grafting or incorporation of catalytic active centers. We have developed for this purpose the Molecular Designed Dispersion method, which uses metal diketonate complexes as precursors. It is shown that in all cases the dispersion of the metal oxides on the surface is much better compared to the conventional grafting techniques. We have studied and published activation with V, Ti, Mo, Fe, Al and Cr species on different MTS materials. The structure and location of the active metal ion is the subject of an extensive spectroscopic investigation, using FT-IR, FT-Raman, UV-Vis DR coupled with selective chemisorption experiments and

  2. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  4. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  5. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template

    International Nuclear Information System (INIS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-01-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 o C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 o C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 o C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 o C for 12 d or steam-treated at 600 o C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO 2 with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: → Increasing aging temperature improved the hydrothermal stability of materials. →Addition of NaF enhanced the polymerization degree of silicates. → Mesoporous SiO 2 and Fe-SiO 2 obtained have remarkable hydrothermal stability.

  6. One-step synthesis of mesoporous silica–graphene composites by ...

    Indian Academy of Sciences (India)

    Administrator

    reaction of the –COOH group of GO and the silanol (Si–OH) of silica. The Raman spectra of the ... Graphene; graphene oxide; mineral silica; silica; mesoporous silica; hydrothermal reduction. 1. Introduction .... mer's method which uses a combination of potassium ... tional groups both on the basal planes and the edges. The.

  7. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  8. Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Jin Yi; Yang Xiaoling; Li Chunzhong

    2008-01-01

    Mesoporous TiO 2 /polypyrrole (PPy)-based nanocomposite for electrorheological fluid was synthesized through one-pot method. By exploiting the combination conductivity of PPy and high dielectric constant of TiO 2 , the ER fluid exhibited an enhanced effect. The shear stress was 3.3 times as high as that of mesoporous TiO 2 . Powder X-ray diffraction (XRD), TEM and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the as-made samples. Using a modified rotational viscometer, the electrorheological effect was measured. Dielectric spectra were also given to explain the mechanism

  9. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  10. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.

    Science.gov (United States)

    Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi

    2011-01-25

    A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.

  11. Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors

    International Nuclear Information System (INIS)

    Wang, Dongming; Tan, Yiwei

    2014-01-01

    The development of nanostructured electrodes for electrochemical biosensors is of significant interest for modern detection, portable devices, and enhanced performance. However, development of such sensors still remains challenging due to the time-consuming, detriment-to-nature, and costly modifications of both electrodes and enzymes. In this work, we report a simple one-step approach to fabricating high-performance, direct electron transfer (DET) based nanoporous enzyme-embedded electrodes by electrodeposition coupled with recent progress in potential-controlled interfacial surfactant assemblies. In contrast to those previously electrodeposited mesoporous materials that are not bioactive, we imparted the biofunctionality to electrodeposited mesoporous thin films by means of the amphiphilic phospholipid templates strongly interacting with enzymes. Thus, phospholipid-templated mesoporous ZnO films covalently inlaid with the pristine enzymes were prepared by simple one-step electrodeposition. We further demonstrate two examples of such hybrid film electrodes embedded with alcohol dehydrogenase (ADH) and glucose oxidase (GOx), which are effectively employed as electrochemical biosensors for amperometric sensing of ethanol and glucose without using any electron relays. The favorable mass transport and large contact surface area provided by nanopores play an important role in improving the performance of these two biosensors, such as excellent sensitivities, low detection limits, and fast response. The matrix mesoporous films acting as effective electronic bridges are responsible for DET between enzyme molecules and metal electrode

  12. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  13. Unexpected nitrile formation in bio-based mesoporous materials (Starbons®).

    Science.gov (United States)

    Attard, Jennifer; Milescu, Roxana; Budarin, Vitaliy; Matharu, Avtar S; Clark, James H

    2018-01-16

    The bio-based mesoporous materials made from polysaccharides, Starbons® can be modified by two different routes to give high levels of N-content, unexpectedly including significant quantities of nitrile groups which can improve the materials performance in applications including metal capture.

  14. Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions

    Science.gov (United States)

    Choma, Jerzy; Jedynak, Katarzyna; Fahrenholz, Weronika; Ludwinowicz, Jowita; Jaroniec, Mietek

    2014-01-01

    Soft-templating method was used to prepare mesoporous carbons. The synthesis in the presence of hydrochloric and citric acids involved resorcinol and formaldehyde as carbon precursors and triblock copolymer Pluronic F127 as a template. The as-synthesized samples underwent carbonization in flowing nitrogen at various temperatures; namely 600 °C, 700 °C and 800 °C. Two routes were used to develop microporosity in the mesoporous carbons studied. The first one involved introduction of tetraethyl orthosilicate to the reaction system. After silica dissolution with NaOH, an increase in microporosity was observed. The second method, chemical activation with KOH at 700 °C, was explored as an alternative approach to create microporosity. It is noteworthy that the TEOS addition not only led to the development of microporosity but also to some improvement of mesoporosity. The post-synthesis KOH activation resulted in more significant increase in the microporosity as compared to the samples obtained by TEOS-assisted synthesis. The mesopore volume was somewhat lower for activated carbons as compared to that in mesoporous carbons. Both methods resulted in micro-mesoporous carbons with good adsorption properties; for instance, in the case of carbons prepared in the presence of TEOS, the best sample exhibited BET surface area of 1463 m2/g and the total pore volume of 1.31 cm3/g. For the KOH activated carbons the best adsorption parameters were as follows: the specific surface area = 1906 m2/g, and the total pore volume = 0.98 cm3/g. Both procedures used for microporosity development afforded carbons with good adsorption properties that can be useful for applications such as CO2 adsorption, air and water purification.

  15. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    OpenAIRE

    Bayram Kilic; Sunay Turkdogan; Aykut Astam; Oguz Can Ozer; Mansur Asgin; Hulya Cebeci; Deniz Urk; Selin Pravadili Mucur

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode...

  16. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  17. Influence of heat-treatment on lithium ion anode properties of mesoporous carbons with nanosheet-like walls

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-15

    Highlights: ► Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ► Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ► Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.

  18. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  19. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadnezhad, Gholamhossein, E-mail: mohammadnezhad@cc.iut.ac.ir; Dinari, Mohammad, E-mail: dinari@cc.iut.ac.ir; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-08-15

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA.

  20. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    Mohammadnezhad, Gholamhossein; Dinari, Mohammad; Soltani, Roozbeh; Bozorgmehr, Zahra

    2015-01-01

    Graphical abstract: - Highlights: • The surface of mesoporous carbon, FDU-15, was modified by 3-mercaptopropyl-trimethoxysilane. • Nanocomposites of PMMA and modified FDU-15 were prepared by solution polymerization. • XRD shows that modified mesoporous FDU-15 has an ordered hexagonal mesostructure. • TEM and SEM images confirm the presence of large pores and ordered mesostructure. • Mechanical data indicated improvement in the tensile strength and modulus. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters, ordered mesoporous carbons are suitable for applications in many areas of modern science and technology. In the present investigation, an ultrasonic irradiation was used for the modification of the mesoporous carbon FDU-15. Three nanocomposite films of the poly(methyl methacrylate) (PMMA) and modified FDU-15 were prepared by solution polymerization technique. The surface morphology and thermal and mechanical properties of the hybrid materials were evaluated by different methods. X-ray diffraction patterns showed that modified mesoporous FDU-15 had an ordered hexagonal mesostructure. Transmission electron microscopy (TEM) and field emission-scanning electron microscopy images confirmed the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Thermogravimetric analysis data also revealed that the onset of decomposition temperature of the nanocomposites was higher than that of pristine PMMA, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images showed the well-ordered hexagonal arrays of mesopores FDU-15. Mechanical data indicated the improvement in the tensile strength and modulus with the modified FDU-15 loading. The film containing 1 wt.% of modified FDU-15 had a tensile strength of the order of 42 MPa, relative to the 28 MPa of the pristine PMMA