WorldWideScience

Sample records for period wave forces

  1. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere

    International Nuclear Information System (INIS)

    Li Ziliang

    2008-01-01

    By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction

  2. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas

    Science.gov (United States)

    Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta

    2018-04-01

    Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.

  3. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...... of the determination of the junction-receptance. The influence of such a disorder is illustrated by a simple example...

  4. Spiral waves in excitable media due to noise and periodic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Guoyong, E-mail: g-y-yuan@sohu.com [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China); Xu Lin [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Xu Aiguo; Wang Guangrui [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Yang Shiping [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China)

    2011-09-15

    Highlights: > Excitable media jointly driven by periodic forcing and Gaussian white noise. > The joint driving leads to many unique tip motions. > New type of spiral wave breakup occurs between entrainment bands with 1:1 and 2:1. > Arnold tongues for different noise intensities exhibit stochastic resonance. > Fourier spectrum analysis can interpret tip motions and formation of entrainments. - Abstract: We investigate the jointly driven effects of external periodic forcing and Gaussian white noise on meandering spiral waves in excitable media with FitzHugh-Nagumo local dynamics. Interesting phenomena resulted from various forcing periods are found, for example, piece-wise line drift, intermittent straight-line drift and so on. We also observe new type of breakup of spiral wave between entrainment bands with 1:1 and 2:1. It is believed that the occurrence of the new type is relevant to the appearance of local bidirectional propagation window. There exist optimized noise intensities which can induce the broadest entrainments and Arnold tongues. Such a phenomenon is referred to as stochastic resonance. It is also observed that the noise makes significant effects on the spiral wave with straight-line drift. Via the tip Fourier spectrum, the varying of tip motion with external periods on the resonance band is interpreted.

  5. New advances in the forced response computation of periodic structures using the wave finite element (WFE) method

    OpenAIRE

    Mencik , Jean-Mathieu

    2014-01-01

    International audience; The wave finite element (WFE) method is investigated to describe the harmonic forced response of onedimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur.Within theWFE framework, the dynamic behavior of periodic structures is described in ...

  6. On nonlinear periodic drift waves

    International Nuclear Information System (INIS)

    Kauschke, U.; Schlueter, H.

    1990-09-01

    Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)

  7. Effect of various periodic forces on Duffing oscillator

    Indian Academy of Sciences (India)

    Bifurcations and chaos in the ubiquitous Duffing oscillator equation with different external periodic forces are studied numerically. The external periodic forces considered are sine wave, square wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave, rectangular wave with amplitude-dependent ...

  8. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo

    2012-01-01

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  9. Phase synchronization of baroclinic waves in a differentially heated rotating annulus experiment subject to periodic forcing with a variable duty cycle.

    Science.gov (United States)

    Read, P L; Morice-Atkinson, X; Allen, E J; Castrejón-Pita, A A

    2017-12-01

    A series of laboratory experiments in a thermally driven, rotating fluid annulus are presented that investigate the onset and characteristics of phase synchronization and frequency entrainment between the intrinsic, chaotic, oscillatory amplitude modulation of travelling baroclinic waves and a periodic modulation of the (axisymmetric) thermal boundary conditions, subject to time-dependent coupling. The time-dependence is in the form of a prescribed duty cycle in which the periodic forcing of the boundary conditions is applied for only a fraction δ of each oscillation. For the rest of the oscillation, the boundary conditions are held fixed. Two profiles of forcing were investigated that capture different parts of the sinusoidal variation and δ was varied over the range 0.1≤δ≤1. Reducing δ was found to act in a similar way to a reduction in a constant coupling coefficient in reducing the width of the interval in forcing frequency or period over which complete synchronization was observed (the "Arnol'd tongue") with respect to the detuning, although for the strongest pulse-like forcing profile some degree of synchronization was discernible even at δ=0.1. Complete phase synchronization was obtained within the Arnol'd tongue itself, although the strength of the amplitude modulation of the baroclinic wave was not significantly affected. These experiments demonstrate a possible mechanism for intraseasonal and/or interannual "teleconnections" within the climate system of the Earth and other planets that does not rely on Rossby wave propagation across the planet along great circles.

  10. Wave Forces on Windturbine Foundations

    DEFF Research Database (Denmark)

    Larsen, Brian Juul; Frigaard, Peter

    A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested....

  11. Wave Forces on Crown Walls

    DEFF Research Database (Denmark)

    Pedersen, Jan; Burcharth, H. F.

    1993-01-01

    This paper presents some of the results from a large parametric laboratory study including more than 200 long-duration model tests. The study addresses both the wave forces imposed on the breakwater crown wall as well as the performance of the structure in reducing the wave overtopping. The testing...

  12. Wave Forces on Offshore Windturbine Foundations

    DEFF Research Database (Denmark)

    Larsen, Brian Juul; Frigaard, Peter

    The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations.......The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations....

  13. Multiphase patterns in periodically forced oscillatory systems

    International Nuclear Information System (INIS)

    Elphick, C.; Hagberg, A.; Meron, E.

    1999-01-01

    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π fronts separating states with a phase shift of π and π/2 fronts separating states with a phase shift of π/2. We find a type of front instability where a stationary π front 'decomposes' into a pair of traveling π/2 fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2 fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,hor-ellipsis) where stationary π fronts decompose into n traveling π/n fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased. copyright 1999 The American Physical Society

  14. Evolution of wave turbulence under "gusty" forcing.

    Science.gov (United States)

    Annenkov, S Y; Shrira, V I

    2011-09-09

    We consider nonlinear evolution of a random wave field under gusty forcing, fluctuating around a constant mean. Here the classical wave turbulence theory that assumes a proximity to stationarity is not applicable. We show by direct numerical simulation that the self-similarity of wave field evolution survives under fluctuating forcing. The wave field statistical characteristics averaged over fluctuations of forcing evolve as if there were a certain constant "effective wind." The results justify the use of the kinetic equations with forcing averaged over gusts as a good first approximation.

  15. Solitary wave and periodic wave solutions for Burgers, Fisher ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 1. Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (′/)-expansion method. Jalil Manafian Mehrdad Lakestani. Volume 85 Issue 1 July 2015 pp 31-52 ...

  16. Hydrodynamic Forces from Steep Waves in Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Loevoll, A.

    1996-12-31

    The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter {alpha} is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield`s relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs.

  17. Hydrodynamic Forces from Steep Waves in Rivers

    International Nuclear Information System (INIS)

    Loevoll, A.

    1996-01-01

    The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter α is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield's relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs

  18. High-frequency homogenization for travelling waves in periodic media.

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  19. Waves in periodic medium. Atomic matter waves in light crystals

    International Nuclear Information System (INIS)

    Oberthaler, M. K.

    1997-07-01

    This work deals with the propagation of matter waves inside a periodic potential. In analogy to photon optics a potential can be described by a refractive index for matter waves. A real potential leads to a refractive spatial structure while an imaginary potential leads to an absorptive structure. A general theoretical description is given in the framework of Floquet theory. The equivalent approach of dynamical diffraction theory will be treated in detail. The analytic solution for weak potentials are given in a general form so that they are applicable for every kind of wave and medium. For our experiments an open two level atom (metastable Argon) propagating inside a standing light wave was used. Detuning the frequency of the light wave from the atomic resonance leads to a real (refractive) periodic potential. Tuning the laser exact on resonance gives rise to a pure imaginary (absorptive) periodic potential. In analogy to solid state crystals in X-ray and neutron optics we call a standing light wave a light crystal. Tuning the standing light field on resonance we demonstrated experimentally the Borrmann effect. This effect describes the increase of the total transmission through a crystal for Bragg incidence. Furthermore, we confirmed that this effect is coherent and that a sinusoidal wave field is formed inside the crystal. The nodes of the wave field were found to coincide with the maxima of absorption. For a detuned standing light field a refractive crystal was realized, for which the expected Pendelloesung effect was demonstrated. In this case the maximum of the wave field inside the crystal was found at the steepest gradient of the potential as predicted by dynamical diffraction theory. Superposing an absorptive and a refractive light crystal a complex light crystal was realized. With such a crystal the violation of Friedel's law was demonstrated in a very clear way. (author)

  20. Attractors of the periodically forced Rayleigh system

    Directory of Open Access Journals (Sweden)

    Petre Bazavan

    2011-07-01

    Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.

  1. Periodic solutions for one dimensional wave equation with bounded nonlinearity

    Science.gov (United States)

    Ji, Shuguan

    2018-05-01

    This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.

  2. Wave forces on cylinder submerged horizontally in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, H; Sasaki, K; Kobayashi, T; Nomura, N; Kawabe, H; Sugimoto, H

    1976-12-01

    To estimate the wave forces on offshore and/or coastal structures, the ideal method is undoubtedly to obtain the more accurate solution of hydrodynamic equations under suitable boundary conditions. However, in practice, it is difficult to introduce precise solutions under present technical levels because some important problems still remain. Among them is the unsteady boundary layers with separation around the objects. Consequently, every effort is being made in this field to approximate these conditions. Among these approximations, the Diffraction Wave Theory and the Morrison's Method are the most famous means in practice, although both still have some problems. Some problems with the traditional Finite Amplitude Wave Theories such as Stokes and Cnoidal Wave Theories are examined, and by applying additional computed results to the Morrison's formula, the estimated formula for wave forces on a cylinder submerged horizontally in shallow water is introduced. Subsequently, the applicability of the formula and also the specific characteristics of wave forces on a horizontally settled cylinder are investigated in detail, attaching first importance to the distinctions from the vertically settled cylinder, based on the comparison of computed results with experimental results. The experiments were carried out on two different diameters of cylinder, 70 mm and 140 mm, and bottom slopes of the experimental tanks, /sup 1///sub 100/ and /sup 1///sub 30/, under various conditions varying water depth, wave period, wave height and also setting position of cylinder.

  3. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  4. Heat waves and warm periods in Slovakia

    Science.gov (United States)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  5. Controller Synthesis for Periodically Forced Chaotic Systems

    Science.gov (United States)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  6. Rogue periodic waves of the modified KdV equation

    Science.gov (United States)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  7. An experimental study of irregular wave forces on multiple quasi-ellipse caissons

    Science.gov (United States)

    Ren, Xiaozhong; Zhang, Peng; Ma, Yuxiang; Meng, Yufan

    2014-09-01

    An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.

  8. Global Magnetic Variability at Planetary Wave Periods

    Science.gov (United States)

    Forbes, J. M.; Behm, J.

    2017-12-01

    Planetary waves (PW) and PW-tide interactions are thought to introduce multi-day periodicities ( 2-20 days) in the electric fields and currents induced by the wind dynamo mechanism in the ionospheric E-region (ca. 100-150 km), and thus can provide important insights on coupling between the lower atmosphere and the ionosphere. Previous studies have used a relatively small subset of available data to infer the existence of these variations in ground magnetic measurements. In some cases connections were made with contemporaneous measurements of neutral wind dynamics. In the present work, we employ ground-based magnetometer data from over 100 stations from the INTERMAGNET network during 2009 to gain a global perspective on eastward- and westward-propagating and zonally-symmetric oscillations with PW periods. Our presentation describes how the unevenly-spaced global data are re-gridded onto an icosahedral grid prior to analysis, and assesses how gaps in the distribution of points across the grid affect extraction of some parts of the spectrum. Consideration is also given to possible contamination by recurrent magnetic activity at subharmonics of 27 days. The global evolution of several PW components during 2009 are depicted and interpreted.

  9. Free and Forced Vibrations of Periodic Multispan Beams

    Directory of Open Access Journals (Sweden)

    Liping Zhu

    1994-01-01

    Full Text Available In this study, the following two topics are considered for uniform multispan beams of both finite and infinite lengths with rigid transversal and elastic rotational constraints at each support: (a free vibration and the associated frequencies and mode shapes; (b forced vibration under a convected harmonic loading. The concept of wave propagation in periodic structures of Brillouin is utilized to investigate the wave motion at periodic supports of a multispan beam. A dispersion equation and its asymptotic form is obtained to determine the natural frequencies. For the special case of zero rotational spring stiffness, an explicit asymptotic expression for the natural frequency is also given. New expressions for the mode shapes are obtained in the complex form for multispan beams of both finite and infinite lengths. The orthogonality conditions of the mode shapes for two cases are formulated. The exact responses of both finite and infinite span beams under a convected harmonic loading are obtained. Thus, the position and the value of each peak in the harmonic response function can be determined precisely, as well as the occurrence of the so-called coincidence phenomenon, when the response is greatly enhanced.

  10. Solitary wave and periodic wave solutions for Burgers, Fisher ...

    Indian Academy of Sciences (India)

    The generalized (G′/G)-expansion method; Burgers equation; Fisher's equation; ... the travelling wave solutions plays an important role in nonlinear sciences. ... Burgers, Fisher, Huxley equations and combined forms of these equations will ...

  11. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  12. Turbulence modification by periodically modulated scale-depending forcing

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.; Lohse, Detlef; van de Water, W.

    2006-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier-Stokes equations. The forcing is modulated via periodic energy input variations at a frequency $\\omega$. Such forcing of the large-scales is shown to yield a response maximum at

  13. Turbulence modification by periodically modulated scale-dependent forcing

    NARCIS (Netherlands)

    Kuczaj, A.K.; Geurts, B.J.; Lohse, D.; Water, van de W.

    2006-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier-Stokes equations. The forcing is modulated via periodic energy input variations at a frequency !. Such forcing of the large-scales is shown to yield a response maximum at frequencies in

  14. Turbulence modification by periodically modulated scale-dependent forcing

    NARCIS (Netherlands)

    Kuczaj, A.K.; Geurts, B.J.; Lohse, D.; Water, van de W.

    2008-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier–Stokes equations. The forcing is modulated via periodic energy-input variations at a frequency ¿. Harmonically modulated forcing of the large scales is shown to yield a response maximum

  15. Turbulence modification by periodically modulated scale-dependent forcing

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.; Lohse, Detlef; van de Water, W.

    2008-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier–Stokes equations. The forcing is modulated via periodic energy-input variations at a frequency x. Harmonically modulated forcing of the large scales is shown to yield a response maximum

  16. Effect of various periodic forces on Duffing oscillator

    Indian Academy of Sciences (India)

    ω respectively. However, the Fourier series of all the forces except the force sin ωt considered in our study have various frequencies. The frequencies present in the forces and in the periodic solution confined to the left well alone corresponding to the amplitude f = 0.2 are studied by constructing the Fourier series. 352.

  17. Nonlinear periodic space-charge waves in plasma

    International Nuclear Information System (INIS)

    Kovalev, V. A.

    2009-01-01

    A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.

  18. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    Science.gov (United States)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  19. Wave kinematics and response of slender offshore structures. Vol 5: Wave forces and responses

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.M.; Riber, H.J.

    1999-08-01

    A load measuring system (LMS) and a wave measuring system (WMS) has been used on the North Sea platform Tyra. The LMS consists of an instrumented pipe placed vertically in the crest zone of high and steep waves. The WMS consists of an unique sonar system placed on the sea floor. Simultaneous measurements are carried out of the kinematics of waves and currents and the response of the instrumented pipe during a period of five month in the winter 1994/95. Numerical calculations with LIC22 are carried out of the response of the LMS applying the measured wave and current kinematics. The responses are compared to the measured responses of the LMS. The comparison is based on the statistical main properties of the calculated and measured response as the kinematic field is measured 150 metres away from the instrumented pipe. From the analyses the main parameters (reduced velocity V{sub R} and correlation length l{sub c}) for vortex induced vibrations (VIV) are calibrated and the main environmental conditions for VIV are determined. The hydrodynamic coefficients determining the wave and current forces on slender structures are studied (drag coefficient C{sub D} and added mass coefficient C{sub M}). Further, the effect on the drag coefficient due to air blending in the upper part of the wave is determined. (au)

  20. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    International Nuclear Information System (INIS)

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-01-01

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas

  1. Model Testing of Forces in the Reflector Joint and Mooring Forces on Wave Dragon

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter; Tedd, James

    This report aims to present the results of a test series analysing the forces in the redesigned reflector joint and the forces in the main mooring link. The resluts presented are intended to be used by WD project partners, for the design and construction of the joint on the prototype Wave Dragon...... at Nissum Bredning and for future North Sea scale Wave Dragon. Lengths, forces and other dimentions presented are scaled to the North sea Wave Dragon unless otherwise specified....

  2. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  3. Bifurcation of forced periodic oscillations for equations with Preisach hysteresis

    International Nuclear Information System (INIS)

    Krasnosel'skii, A; Rachinskii, D

    2005-01-01

    We study oscillations in resonant systems under periodic forcing. The systems depend on a scalar parameter and have the form of simple pendulum type equations with ferromagnetic friction represented by the Preisach hysteresis nonlinearity. If for some parameter value the period of free oscillations of the principal linear part of the system coincides with the period of the forcing term, then one may expect the existence of unbounded branches of periodic solutions for nearby parameter values. We present conditions for the existence and nonexistence of such branches and estimates of their number

  4. Diffractons: Solitary Waves Created by Diffraction in Periodic Media

    KAUST Repository

    Ketcheson, David I.

    2015-03-31

    A new class of solitary waves arises in the solution of nonlinear wave equations with constant impedance and no dispersive terms. These solitary waves depend on a balance between nonlinearity and a dispersion-like effect due to spatial variation in the sound speed of the medium. A high-order homogenized model confirms this effective dispersive behavior, and its solutions agree well with those obtained by direct simulation of the variable-coefficient system. These waves are observed to be long-time stable, globally attracting solutions that arise in general as solutions to nonlinear wave problems with periodically varying sound speed. They share some properties with known classes of solitary waves but possess important differences as well.

  5. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    Science.gov (United States)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave

  6. Polarization-dependent ponderomotive gradient force in a standing wave

    NARCIS (Netherlands)

    Smorenburg, P.W.; Kanters, J.H.M.; Lassise, A.; Brussaard, G.J.H.; Kamp, L.P.J.; Luiten, O.J.

    2011-01-01

    The ponderomotive force is derived for a relativistic charged particle entering an electromagnetic standing wave with a general three-dimensional field distribution and a nonrelativistic intensity, using a perturbation expansion method. It is shown that the well-known ponderomotive gradient force

  7. Directional bending wave propagation in periodically perforated plates

    DEFF Research Database (Denmark)

    Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo

    2015-01-01

    We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated...... using Mindlin plate elements, is developed to predict relevant wave characteristics such as dispersion, and group velocity variation as a function of frequency and direction of propagation. Experimental tests are conducted through a scanning laser vibrometer, which provides full wave field information...... for the design of phononic waveguides with directional and internal resonant characteristics....

  8. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  9. Period functions for Maass wave forms and cohomology

    CERN Document Server

    Bruggeman, R; Zagier, D; Bruggeman, R W; Zagier, D

    2015-01-01

    The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \\Gamma\\subset\\mathrm{PSL}_2({\\mathbb{R}}). In the case that \\Gamma is the modular group \\mathrm{PSL}_2({\\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serie

  10. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  11. Numerical Simulation of Cylindrical Solitary Waves in Periodic Media

    KAUST Repository

    Quezada de Luna, Manuel; Ketcheson, David I.

    2013-01-01

    We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.

  12. Numerical Simulation of Cylindrical Solitary Waves in Periodic Media

    KAUST Repository

    Quezada de Luna, Manuel

    2013-07-14

    We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.

  13. Generation of intermittent gravitocapillary waves via parametric forcing

    Science.gov (United States)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  14. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  15. Periodic and solitary wave solutions of cubic–quintic nonlinear ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Periodic and solitary wave solutions of cubic–quintic nonlinear reaction-diffusion equation with variable convection coefficients. BHARDWAJ S B SINGH RAM MEHAR SHARMA KUSHAL MISHRA S C. Regular Volume 86 Issue 6 June 2016 pp 1253-1258 ...

  16. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  17. Numerical method for wave forces acting on partially perforated caisson

    Science.gov (United States)

    Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou

    2015-04-01

    The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.

  18. Depth of source from long period P-waves

    International Nuclear Information System (INIS)

    Roy, Falguni

    1986-01-01

    Short period (SP) seismograms are much better than long period (LP) seismograms to get the time resolution needed for the focal depth estimation. However, complex scattering effects due to crustal inhomogeneities and also the multi-pathing of signals usually complicate the short period records. On the other hand the seismograms from long period signals demonstrate clear coherent body waves. Therefore, for intermediate depths (15-60 km) prediction error filtering of LP signals will be useful for identifying the depth phases. Such a study has been carried out in the first part of this report. In a group of 7 events, the p p phases have been extracted from LP signals and the depths so estimated compared well with the published data. For explosions at shallow depths (depth p phases will tend to cancel each other in LP seismograms. As the source depth increases, the cancellation becomes less effective. This feature can be used for the identification of an event as well as for getting an estimate of the source depth. This phenomenon can be successfully exploited for identifying multiple explosions, because at teleseismic distances (Δ > 30 o ) no LP (around 20s period) P waves will be seen in the seismogram due to such events whereas relatively strong SP signals and LP Rayleigh waves will be observed. This phenomenon has been studied for 16 events. For three of these events having m b as high as 6.1 and presumed to be underground explosions, one could not see any P wave on remaining 13 events (which were classified as earthquakes), it was possible to set a threshold value of m b above which an earthquake should produce LP P-wave signals at a given distance. (author)

  19. Acoustic nonlinear periodic waves in pair-ion plasmas

    Science.gov (United States)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  20. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    Science.gov (United States)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  1. Periodicity effects of axial waves in elastic compound rods

    DEFF Research Database (Denmark)

    Nielsen, R. B.; Sorokin, S. V.

    2015-01-01

    Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase......-closure Principle, and their correspondence with stop band formation is shown. Steady-state and transient dynamics of a periodic rod of finite length are analysed numerically and the difference in structural response when excitation is done in either stop- or pass bands is demonstrated. A physical interpretation...

  2. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    Science.gov (United States)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  3. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  4. Co-periodic stability of periodic waves in some Hamiltonian PDEs

    Science.gov (United States)

    Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M.

    2016-10-01

    The stability of periodic traveling wave solutions to dispersive PDEs with respect to ‘arbitrary’ perturbations is still widely open. The focus is put here on stability with respect to perturbations of the same period as the wave, for KdV-like systems of one-dimensional Hamiltonian PDEs. Stability criteria are derived and investigated first in a general abstract framework, and then applied to three basic examples that are very closely related, and ubiquitous in mathematical physics, namely, a quasilinear version of the generalized Korteweg-de Vries equation (qKdV), and the Euler-Korteweg system in both Eulerian coordinates (EKE) and in mass Lagrangian coordinates (EKL). Those criteria consist of a necessary condition for spectral stability, and of a sufficient condition for orbital stability. Both are expressed in terms of a single function, the abbreviated action integral along the orbits of waves in the phase plane, which is the counterpart of the solitary waves moment of instability introduced by Boussinesq. Regarding solitary waves, the celebrated Grillakis-Shatah-Strauss stability criteria amount to looking for the sign of the second derivative of the moment of instability with respect to the wave speed. For periodic waves, the most striking results obtained here can be summarized as: an odd value for the difference between N—the size of the PDE system—and the negative signature of the Hessian of the action implies spectral instability, whereas a negative signature of the same Hessian being equal to N implies orbital stability. Since these stability criteria are merely encoded by the negative signature of matrices, they can at least be checked numerically. Various numerical experiments are presented, which clearly discriminate between stable cases and unstable cases for (qKdV), (EKE) and (EKL).

  5. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  6. Electromagnetic forces and torques in nanoparticles irradiated by plane waves

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.

    2004-01-01

    Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects

  7. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  8. Periodic heat wave determination of thermal diffusivity of clays ...

    African Journals Online (AJOL)

    The responses of Ankaful, Tetegu (# 1 & 2) and Mamfe clays to periodic heat waves were analyzed to deter-mine the thermal diffusivity values. The temperature amplitude attenuated with depth of penetration, while the phase shift increased. The thermal diffusivity values ranged from 3.0 - 9.5 x 10P-7P mP2P/s by amplitude ...

  9. Analysis of Periodic Errors for Synthesized-Reference-Wave Holography

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2009-12-01

    Full Text Available Synthesized-reference-wave holographic techniques offer relatively simple and cost-effective measurement of antenna radiation characteristics and reconstruction of complex aperture fields using near-field intensity-pattern measurement. These methods allow utilization of advantages of methods for probe compensations for amplitude and phasing near-field measurements for the planar and cylindrical scanning including accuracy analyses. The paper analyzes periodic errors, which can be created during scanning, using both theoretical results and numerical simulations.

  10. Stability of elastic columns with periodic retarded follower forces

    Science.gov (United States)

    Ma, Haitao; Butcher, Eric A.

    2005-09-01

    The objective of this work is to present a stability analysis for elastic columns under the influence of periodically varying follower forces whose orientation is retarded, i.e., depends on the position of the system at a previous time. One- and two-degree-of-freedom (dof) discretized systems under the simultaneous influence of both parametric excitation and time-delay, whose effects on such systems have previously been only considered separately, are studied. By employing an orthogonal polynomial approximation, the infinite-dimensional Floquet transition matrix associated with the time-periodic differential-delay system is approximated. The stability criteria that all the eigenvalues (Floquet multipliers) of this matrix must lie within the unit circle is then applied. The stability charts for different combinations of the remaining system parameters are shown, and the previously reported results for the special cases where either the parametric excitation or the time-delay vanishes are verified. Two cases, when the parametric forcing period is equal to or twice the delay period are taken into consideration in this work. For special cases of the single dof system, the numerical stability plots are verified by considering the analytical expressions for the corresponding stability boundaries for an analogous delayed Mathieu equation.

  11. Detectability of periodic gravitational waves by initial interferometers

    International Nuclear Information System (INIS)

    Owen, Benjamin J

    2006-01-01

    I review three recent theoretical developments in neutron star physics predicting that rotating neutron stars could be very strong emitters of periodic gravitational waves. These imply a small but nonzero chance that ground-based interferometers could detect their first periodic signal in the next few years rather than after advanced upgrades. They also imply that upper limits will become astrophysically interesting before advanced upgrades. I discuss the implications for near-future searches and for the astrophysical payoffs of proposed small upgrades to initial interferometers

  12. On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator

    International Nuclear Information System (INIS)

    Guo, Yu; Luo, Albert C.J.

    2015-01-01

    In this paper, analytically predicted are complex periodic motions in the periodically forced, damped, hardening Duffing oscillator through discrete implicit maps of the corresponding differential equations. Bifurcation trees of periodic motions to chaos in such a hardening Duffing oscillator are obtained. The stability and bifurcation analysis of periodic motion in the bifurcation trees is carried out by eigenvalue analysis. The solutions of all discrete nodes of periodic motions are computed by the mapping structures of discrete implicit mapping. The frequency-amplitude characteristics of periodic motions are computed that are based on the discrete Fourier series. Thus, the bifurcation trees of periodic motions are also presented through frequency-amplitude curves. Finally, based on the analytical predictions, the initial conditions of periodic motions are selected, and numerical simulations of periodic motions are carried out for comparison of numerical and analytical predictions. The harmonic amplitude spectrums are also given for the approximate analytical expressions of periodic motions, which can also be used for comparison with experimental measurement. This study will give a better understanding of complex periodic motions in the hardening Duffing oscillator.

  13. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  14. Travelling waves in models of neural tissue: from localised structures to periodic waves

    NARCIS (Netherlands)

    Meijer, Hil Gaétan Ellart; Coombes, Stephen

    2014-01-01

    We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength

  15. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    Science.gov (United States)

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  16. Effect of transient wave forcing on the behavior of arsenic in a sandy nearshore aquifer

    Science.gov (United States)

    Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.

    2016-12-01

    Waves cause large quantities of coastal water to recirculate across the groundwater-coastal water interface in addition to inducing complex groundwater flows in the nearshore aquifer. Due to the distinct chemical composition of recirculating coastal water compared with discharging terrestrial groundwater, wave-induced recirculations and flows can alter geochemical gradients in the nearshore aquifer which may subsequently affect the mobilization and transport of reactive pollutants (e.g., arsenic). The impact of seasonal geochemical and hydrological variability on the occurrence and mobility of arsenic near the groundwater-surface water interface has been shown previously in riverine settings, however, the impact of high frequency geochemical variations (e.g., varying wave conditions) on arsenic mobility in groundwater-surface water environments is unclear. The objective of the study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer to determine the factors regulating its mobility and transport to receiving coastal waters. Field investigations were conducted at a permeable beach on the Great Lakes during a period of intensified wave conditions (wave event). High spatial resolution pore water sampling captured the geochemical conditions in the nearshore aquifer prior to the wave event, immediately after the wave event and over a recovery period of 3 weeks following the wave event. Shifts in pH and redox potential (ORP) gradients in response to varying wave conditions caused shifts in the iron and arsenic distributions in the aquifer. Sediment analysis was combined with the pore water distributions to assess the release of sediment-bound arsenic in response to the varying wave conditions. Insight into the effect of transient forcing on arsenic mobility and transport in groundwater-surface water environments is important for evaluating the potential risks associated with this toxic metalloid. The findings of this

  17. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  18. Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings

    International Nuclear Information System (INIS)

    Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation

  19. The wave attenuation mechanism of the periodic local resonant metamaterial

    Science.gov (United States)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  20. Beam-wave interaction in periodic and quasi-periodic structures. 2. ed.

    International Nuclear Information System (INIS)

    Schaechter, Levi

    2011-01-01

    The main theme of this book is the interaction of electrons with electromagnetic waves in the presence of periodic and quasi-periodic structures in vacuum, in view of applications in the design and operation of particle accelerators. The first part of the book is concerned with the textbook-like presentation of the basic material, in particular reviewing elementary electromagnetic phenomena and electron dynamics. The second part of the book describes the current models for beam-wave interactions with periodic and quasi-periodic structures. This is the basis for introducing, in the last part of the book, a number of particle and radiation sources that rest on these principles, in particular the free-electron laser, wake-field acceleration schemes and a number of other advanced particle accelerator concepts. This second edition brings this fundamental text up-to-date in view of the enormous advances that have been made over the last decade since the first edition was published. All chapters, as well as the bibliography, have been significantly revised and extended, and the number of end-of-chapter exercises has been further increased to enhance this book's usefulness for teaching specialized graduate courses. (orig.)

  1. Diffractons: Solitary Waves Created by Diffraction in Periodic Media

    KAUST Repository

    Ketcheson, David I.; Quezada de Luna, Manuel

    2015-01-01

    A new class of solitary waves arises in the solution of nonlinear wave equations with constant impedance and no dispersive terms. These solitary waves depend on a balance between nonlinearity and a dispersion-like effect due to spatial variation

  2. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  3. Theory of second order tide forces and gravitational wave experiment

    International Nuclear Information System (INIS)

    Tammelo, R.R.

    1989-01-01

    Theory of tide forces square by vector radius is presented. The mechanism of 10 18 time gravitational wave pressure increase in case of radiation from pulsars and 10 15 time one in case of standard burst of radiation from astrophysical catastrophe is proposed. This leads to secular shifts of longitudinally free receivers by 10 -16 cm during 10 5 s in the first case and by 10 -19 cm during 10 s in the second one. A possibility of increase effect modulation is available. It is indicated that it is possible to construct a device which produces more energy at the expense of square tide forces than at the expense of linear ones. 21 refs

  4. Acoustic wave filter based on periodically poled lithium niobate.

    Science.gov (United States)

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  5. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  6. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    Directory of Open Access Journals (Sweden)

    Jeong J. H.

    2015-01-01

    Full Text Available The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization, and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5 plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  7. Periodicity effects on compound waves guided by a thin metal slab sandwiched between two periodically nonhomogeneous dielectric materials

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-10-01

    Surface-plasmon-polariton waves can be compounded when a sufficiently thin metal layer is sandwiched between two half spaces filled with dissimilar periodically nonhomogeneous dielectric materials. We solved the boundary-value problem for compound waves guided by a layer of a homogeneous and isotropic metal sandwiched between a structurally chiral material (SCM) and a periodically multilayered isotropic dielectric (PMLID) material. We found that the periodicities of the PMLID material and the SCM are crucial to excite a multiplicity of compound guided waves arising from strong coupling between the two interfaces.

  8. 3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1998-01-01

    The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...

  9. Chaos in periodically forced Holling type II predator-prey system with impulsive perturbations

    International Nuclear Information System (INIS)

    Zhang Shuwen; Tan Dejun; Chen Lansun

    2006-01-01

    The effect of periodic forcing and impulsive perturbations on predator-prey model with Holling type II functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of prey. The impulsive perturbation is affected by introducing periodic constant impulsive immigration of predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can very easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period doubling cascade, (3) chaos, (4) period halfing cascade, (5) non-unique dynamics

  10. Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations

    International Nuclear Information System (INIS)

    Zhang Shuwen; Tan Dejun; Chen Lansun

    2006-01-01

    The effect of periodic forcing and impulsive perturbations on predator-prey model with Holling type IV functional response is investigated. The periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. The impulsive perturbations are affected by introducing periodic constant impulsive immigration of predator. The dynamical behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing and impulsive perturbation can easily give rise to complex dynamics, including (1) quasi-periodic oscillating, (2) period doubling cascade, (3) chaos, (4) period halfing cascade

  11. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym

    2007-01-01

    In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves

  12. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V; Egorov, Alexey A; Vysloukh, Victor A; Torner, Lluis

    2004-01-01

    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns

  13. A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

    Science.gov (United States)

    Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.

    2018-05-01

    The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

  14. Mode-locking behavior of Izhikevich neurons under periodic external forcing

    Science.gov (United States)

    Farokhniaee, AmirAli; Large, Edward W.

    2017-06-01

    Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic stimulation display rich dynamical states including mode locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated sounds can lead to various forms of n :m mode-locked states, in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of the coupled nonlinear differential equations compared with other existing models, but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for the Izhikevich neurons. Arnold tongue analysis provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. We find these tongues for both class-1 and class-2 excitable neurons in both deterministic and noisy regimes.

  15. Newton force from wave function collapse: speculation and test

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.

  16. Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2009-01-01

    The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.

  17. Periodic and solitary wave solutions of cubic–quintic nonlinear ...

    Indian Academy of Sciences (India)

    Hence, most of the real nonlinear physical equations possess variable ... evolution of the system with time and second term represents the convective flux term. The ... Travelling wave solutions of nonlinear reaction-diffusion equations are.

  18. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  19. Exact periodic waves and their interactions for the (2+1 ...

    Indian Academy of Sciences (India)

    The interaction properties of the periodic waves are in- vestigated numerically and found to be nonelastic. The long wave limit yields some new types of solitary wave solutions. Especially the dromion and the solitoff solutions obtained in this paper possess new types of solution structures which are quite different from the.

  20. Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

    Directory of Open Access Journals (Sweden)

    K. Nielsen

    2006-07-01

    Full Text Available As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted. Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

  1. Breaking wave impact forces on truss support structures for offshore wind turbines

    Science.gov (United States)

    Cieślikiewicz, Witold; Gudmestad, Ove T.; Podrażka, Olga

    2014-05-01

    Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gdańsk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both

  2. Teaching graphical simulations of Fourier series expansion of some periodic waves using spreadsheets

    Science.gov (United States)

    Singh, Iqbal; Kaur, Bikramjeet

    2018-05-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave, half wave rectifier and full wave rectifier signals.

  3. Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures

    Science.gov (United States)

    2016-08-03

    called a nanopteron, is not only motivated theoretically and numerically, but are also visualized experimentally by means of a laser Doppler vibrometer...velocity, which clearly follow the prin- cipal solitary wave (highlighted in red color ). It should be noted that the velocities involved in the

  4. Orbital stability of periodic traveling-wave solutions for the log-KdV equation

    Science.gov (United States)

    Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício

    2017-09-01

    In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.

  5. Analysis of experimental data: The average shape of extreme wave forces on monopile foundations and the NewForce model

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Ghadirian, Amin

    2017-01-01

    Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values are co...... to the average shapes. For more nonlinear wave shapes, higher order terms has to be considered in order for the NewForce model to be able to predict the expected shapes.......Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values...... are compared across the sea states. It is found that the force shapes show a clear similarity when grouped after the values of the normalised peak force, F/(ρghR2), normalised depth h/(gT2p) and presented in a normalised time scale t/Ta. For the largest force events, slamming can be seen as a distinct ‘hat...

  6. Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation

    Science.gov (United States)

    Zou, Li; Tian, Shou-Fu; Feng, Lian-Li

    2017-12-01

    In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.

  7. Dicyclopentadiene Hydrogenation in Trickle Bed Reactor under Forced Periodic Control

    Czech Academy of Sciences Publication Activity Database

    Skála, D.; Hanika, Jiří

    2008-01-01

    Roč. 62, č. 2 (2008), s. 215-218 ISSN 1336-7242 R&D Projects: GA MPO(CZ) FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : periodic control * trickle -bed reactor * dicyclopentadiene Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  8. Asymptotic Behavior of Periodic Wave Solution to the Hirota—Satsuma Equation

    International Nuclear Information System (INIS)

    Wu Yong-Qi

    2011-01-01

    The one- and two-periodic wave solutions for the Hirota—Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure. (general)

  9. Large band gaps of water waves through two-dimensional periodic topography

    International Nuclear Information System (INIS)

    Yang Shaohua; Wu Fugen; Zhong Huilin; Zhong Lanhua

    2006-01-01

    In this Letter, the band structures and band gaps of liquid surface waves propagating over two-dimensional periodic topography was investigated by plane-waves expansion method. The periodic topography drilled by square hollows with square lattice was considered. And the effects of the filling fraction and the orientation of bottom-hollows on the band gaps are investigated in detail

  10. Suppression of lower hybrid wave coupling due to the ponderomotive force

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1980-04-01

    The coupling efficiency from a slow-wave structure to lower hybrid waves is investigated experimentally. At moderate electric field strengths large edge density changes are observed. Wave trajectory modifications and departure from linear coupling are observed consistent with these changes and in good agreement with a simple nonlinear theory that includes the ponderomotive force

  11. Bifurcation analysis of the logistic map via two periodic impulsive forces

    International Nuclear Information System (INIS)

    Jiang Hai-Bo; Li Tao; Zeng Xiao-Liang; Zhang Li-Ping

    2014-01-01

    The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincaré map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map. (general)

  12. Horizontal Coherence of Wave Forces on Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Archetti, Renata; Lamberti, Alberto; Martinelli, Luca

    2001-01-01

    Evaluation of spatial coherence of breaking waves is of great importance and of recent interest.......Evaluation of spatial coherence of breaking waves is of great importance and of recent interest....

  13. Elimination of spiral chaos by periodic force for the Aliev-Panfilov model

    OpenAIRE

    Sakaguchi, Hidetsugu; Fujimoto, Takefumi

    2003-01-01

    Spiral chaos appears in the two dimensional Aliev-Panfilov model. The generation mechanism of the spiral chaos is related to the breathing instability of pulse trains. The spiral chaos can be eliminated by applying periodic force uniformly. The elimination of spiral chaos is most effective, when the frequency of the periodic force is close to that of the breathing motion.

  14. Stochastic resonance in a periodic potential system under a constant force

    International Nuclear Information System (INIS)

    Hu Gang.

    1992-10-01

    An overdamped particle moving in a periodic potential, and subject to a constant force and a stochastic force (i.e., χ = -sin(2πχ) + B + Γ(t),Γ(t) is a white noise) is considered. The mobility of the particle, d /dt, is investigated. The stochastic resonance type of behaviour is revealed. The study of the SR problem can thus be extended to systems with periodic force. (author). 13 refs

  15. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    Science.gov (United States)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  16. Complete classification of discrete resonant Rossby/drift wave triads on periodic domains

    Science.gov (United States)

    Bustamante, Miguel D.; Hayat, Umar

    2013-09-01

    We consider the set of Diophantine equations that arise in the context of the partial differential equation called "barotropic vorticity equation" on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These wavenumbers come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the physically sensible limit when the Rossby deformation radius is infinite. The method is completely new, and relies on mapping the unknown variables via rational transformations, first to rational points on elliptic curves and surfaces, and from there to rational points on quadratic forms of "Minkowski" type (such as the familiar space-time in special relativity). Classical methods invented centuries ago by Fermat, Euler, Lagrange, Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Computationally speaking, our method has a clear advantage over brute-force numerical search: on a 10,0002 grid, the brute-force search would take 15 years using optimised C codes on a cluster, whereas our method takes about 40 min using a laptop. Moreover, the method is extended to generate so-called quasi-resonant triads, which are defined by relaxing the resonant condition on the frequencies, allowing for a small mismatch. Quasi-resonant triads' distribution in wavevector space is robust with respect to physical perturbations, unlike resonant triads' distribution. Therefore, the extended method is really valuable in practical terms. We show that the set of quasi-resonant triads form an intricate network of connected triads, forming

  17. Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Sun Chengfeng; Gao Hongjun

    2009-01-01

    The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.

  18. Unveiling Quasiperiodicity through Nonlinear Wave Mixing in Periodic Media

    International Nuclear Information System (INIS)

    Bahabad, Alon; Arie, Ady; Voloch, Noa; Bruner, Ariel; Eger, David

    2007-01-01

    Quasiperiodicity is the concept of order without translation symmetry. The discovery of quasiperiodic order in natural materials transformed the way scientists examine and define ordered structure. We show and verify experimentally that quasiperiodicity can be observed by scattering processes from a periodic structure, provided the interaction area is of finite width. This is made through a momentum conservation condition, physically realizing a geometrical method used to model quasiperiodic structures by projecting a periodic structure of a higher dimension

  19. Elastic waves at periodically-structured surfaces and interfaces of solids

    Directory of Open Access Journals (Sweden)

    A. G. Every

    2014-12-01

    Full Text Available This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW and interfacial (IW waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.

  20. A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow

    Directory of Open Access Journals (Sweden)

    Zijun CHEN

    2018-02-01

    Full Text Available The problem of aeroelasticity and maneuvering of command surface and gust wing interaction involves a starting flow period which can be seen as the flow of an airfoil attaining suddenly an angle of attack. In the linear or nonlinear case, compressive Mach or shock waves are generated on the windward side and expansive Mach or rarefaction waves are generated on the leeward side. On each side, these waves are composed of an oblique steady state wave, a vertically-moving one-dimensional unsteady wave, and a secondary wave resulting from the interaction between the steady and unsteady ones. An analytical solution in the secondary wave has been obtained by Heaslet and Lomax in the linear case, and this linear solution has been borrowed to give an approximate solution by Bai and Wu for the nonlinear case. The structure of the secondary shock wave and the appearance of various force stages are two issues not yet considered in previous studies and has been studied in the present paper. A self-similar solution is obtained for the secondary shock wave, and the reason to have an initial force plateau as observed numerically is identified. Moreover, six theoretical characteristic time scales for pressure load variation are determined which explain the slope changes of the time-dependent force curve. Keywords: Force, Self-similar solution, Shock-shock interaction, Shock waves, Unsteady flow

  1. DYANA campaign results on long-period atmospheric waves over Thumba and Balasore

    Science.gov (United States)

    Reddi, C. Raghava; Rajeev, K.; Nair, S. Muraleedharan; Subbaraya, B. H.; Rama, G. V.; Appu, K. S.; Narayanan, V.; Apparao, B. V.; Chakravarty, S. C.; Nagpal, O. P.; Perov, S. P.; Kokin, G. A.

    1994-12-01

    The variation with altitude of the spectral amplitudes of the long period waves in the middle atmospheric zonal and meridional wind over Thumba (8.5°N, 76.9°E) and Balasore (21.5°N, 86.9°E) have shown clearly the enhanced dissipation of the atmospheric waves in the lower stratosphere and near the stratopause. The amplitudes are, in general, large for the lower frequency ( <0.1 cycles/day) waves in the troposphere. While propagating through the tropopause into the stratosphere and above, waves with periods in the range of 5-10 days suffer less attenuation. The dissipation of the atmospheric waves is found to be relatively large for frequencies below 0.1 cycles/day. The results are compared with earlier observational studies and theoretical computations on the propagation of equatorial waves through the middle atmosphere.

  2. Measurements of Waves in a Wind-wave Tank Under Steady and Time-varying Wind Forcing.

    Science.gov (United States)

    Zavadsky, Andrey; Shemer, Lev

    2018-02-13

    This manuscript describes an experimental procedure that allows obtaining diverse quantitative information on temporal and spatial evolution of water waves excited by time-dependent and steady wind forcing. Capacitance-type wave gauge and Laser Slope Gauge (LSG) are used to measure instantaneous water surface elevation and two components of the instantaneous surface slope at a number of locations along the test section of a wind-wave facility. The computer-controlled blower provides airflow over the water in the tank whose rate can vary in time. In the present experiments, the wind speed in the test section initially increases quickly from rest to the set value. It is then kept constant for the prescribed duration; finally, the airflow is shut down. At the beginning of each experimental run, the water surface is calm and there is no wind. Operation of the blower is initiated simultaneously with the acquisition of data provided by all sensors by a computer; data acquisition continues until the waves in the tank fully decay. Multiple independent runs performed under identical forcing conditions allow determining statistically reliable ensemble-averaged characteristic parameters that quantitatively describe wind-waves' variation in time for the initial development stage as a function of fetch. The procedure also allows characterizing the spatial evolution of the wave field under steady wind forcing, as well as decay of waves in time, once the wind is shut down, as a function of fetch.

  3. Standing, Periodic and Solitary Waves in (1 + 1)-Dimensional Caudry-Dodd-Gibbon-Sawada-Kortera System

    International Nuclear Information System (INIS)

    Zheng Chunlong; Qiang Jiye; Wang Shaohua

    2010-01-01

    In the paper, the variable separation approach, homoclinic test technique and bilinear method are successfully extended to a (1 + 1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera (CDGSK) system, respectively. Based on the derived exact solutions, some significant types of localized excitations such as standing waves, periodic waves, solitary waves are simultaneously derived from the (1 + 1)-dimensional Caudry-Dodd-Gibbon-Sawada-Kortera system by entrancing appropriate parameters. (general)

  4. Forcing of the ionosphere by waves from below

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2006-01-01

    Roč. 68, 3-5 (2006), s. 479-497 ISSN 1364-6826 R&D Projects: GA ČR GA205/04/2110 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Planetary waves * Tides * Gravity waves * Infrasound Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.448, year: 2006

  5. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Chawla, J. K.; Mishra, M. K.

    2010-01-01

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,σ), where p and σ are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  6. Time domain phenomena of wave propagation in rapidly created plasma of periodic distribution

    International Nuclear Information System (INIS)

    Kuo, S P

    2007-01-01

    Theories, experiments and numerical simulations on the interaction of electromagnetic waves with rapidly created unmagnetized plasmas are presented. In the case that plasma is created uniformly, the frequency of a propagating electromagnetic wave is upshifted. An opposite propagation wave of the same frequency is also generated. In addition, a static current supporting a wiggler magnetic field is also produced in the plasma. When a spatially periodic structure is introduced to the rapidly created plasma, the theory and numerical simulation results show that both frequency-upshifted and downshifted waves are generated. If the plasma has a large but finite dimension in the incident wave propagation direction and is created rapidly rather than instantaneously, the frequency downshifted waves are found to be trapped by the plasma when the plasma frequency is larger than the wave frequency. The wave trapping results in accumulating the frequency-downshifted waves during the finite transient period of plasma creation. Indeed, in the experimental observations the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities, confirming the results of the numerical simulations. The missing of frequency upshifted signals in the experimental observations is explained by the modal field distributions in the periodic structure, indicating that the frequency upshifted modes experience heavier collisional damping of the plasma than the frequency downshifted modes

  7. Modelling alongshore flow in a semi-enclosed lagoon strongly forced by tides and waves

    Science.gov (United States)

    Taskjelle, Torbjørn; Barthel, Knut; Christensen, Kai H.; Furaca, Noca; Gammelsrød, Tor; Hoguane, António M.; Nharreluga, Bilardo

    2014-08-01

    Alongshore flows strongly driven by tides and waves is studied in the context of a one-dimensional numerical model. Observations from field surveys performed in a semi-enclosed lagoon (1.7 km×0.2 km) outside Xai-Xai, Mozambique, are used to validate the model results. The model is able to capture most of the observed temporal variability of the current, but sea surface height tends to be overestimated at high tide, especially during high wave events. Inside the lagoon we observed a mainly uni-directional alongshore current, with speeds up to 1 ms-1. The current varies primarily with the tide, being close to zero near low tide, generally increasing during flood and decreasing during ebb. The observations revealed a local minimum in the alongshore flow at high tide, which the model was successful in reproducing. Residence times in the lagoon were calculated to be less than one hour with wave forcing dominating the flushing. At this beach a high number of drowning casualties have occurred, but no connection was found between them and strong current events in a simulation covering the period 2011-2012.

  8. High-speed landslide mechanism extracted from long-period surface waves

    Science.gov (United States)

    Zhao, Juan

    2016-04-01

    Long-period seismic signals gathered at stations far from landslide area can be used to recover the landslide source force applied on ground during the rapid sliding process. This force history is helpful to improve our ability to deduce the characteristics of the event as well as the dynamic properties of bulk motion. We use source mechanism inversion to analyse two different large landslides. Seismic waves generated by these two events have been recorded respectively by more than 5 stations, with the distance range from 69km to 1325km. The first event is the sudden failure happened at Qianjiangping village (30.97°N, 110.61°E) on 13 July 2003, on the bank of the Qinggan river. The landslide flow brought about 20 million cubic meters rock and soil masses right into the river in a short time. It moved about 250 meters in the main sliding direction of S45°E before stopped by the opposite bank. It is a typical reservoir landslide, which has been compared to the 1963 Vaiont landslide in Italy. The other event is the Xiaolin (120.64°E; 23.16°N) deep-seated landslide, located in southwestern Taiwan and had volume of about 27 million cubic meters. The landslide moved in the westward direction, divided into two streams at about the middle of the run-out, because there had been a small ridge and two valleys extended from the west side of the ridge. The deposit spreading length of this landslide is about 2300 meters. We discuss the different characteristics of the two events in both geological structure and movement mode based on the field survey. Then we show that those differences are also revealed by the source force-time functions from inversion.

  9. Interaction of two walkers: wave-mediated energy and force.

    Science.gov (United States)

    Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-12-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  10. The periodic wave solutions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations

    International Nuclear Information System (INIS)

    Sheng Zhang

    2006-01-01

    More periodic wave solutions expressed by Jacobi elliptic functions for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations are obtained by using the extended F-expansion method. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained

  11. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Yang Qin; Dai Chaoqing; Zhang Jiefang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.

  12. Teaching Graphical Simulations of Fourier Series Expansion of Some Periodic Waves Using Spreadsheets

    Science.gov (United States)

    Singh, Iqbal; Kaur, Bikramjeet

    2018-01-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave,…

  13. The relevance of the whitecapping term in wave forecasting. An analysis for the wave period of the Catalan coast.

    Science.gov (United States)

    Pallares, Elena; Espino, Manuel; Sánchez-Arcilla, Agustín

    2013-04-01

    The Catalan Coast is located in the North Western Mediterranean Sea. It is a region with highly heterogeneous wind and wave conditions, characterized by a microtidal environment, and economically very dependent from the sea and the coastal zone activities. Because some of the main coastal conflicts and management problems occur within a few kilometers of the land-ocean boundary, the level of resolution and accuracy from meteo-oceanographic predictions required is not currently available. The current work is focused on improving high resolution wave forecasting very near the coast. The SWAN wave model is used to simulate the waves in the area, and various buoy data and field campaigns are used to validate the results. The simulations are structured in four different domains covering all the North Western Mediterranean Sea, with a grid resolution from 9 km to 250 meters in coastal areas. Previous results show that the significant wave height is almost always underpredicted in this area, and the underprediction is higher during storm events. However, the error in the peak period and the mean period is almost always constantly under predicted with a bias between one and two seconds, plus some residual error. This systematic error represents 40% of the total error. To improve the initial results, the whiteccaping dissipation term is studied and modified. In the SWAN model, the whitecapping is mainly controlled by the steepness of the waves. Although the by default parameter is not depending on the wave number, there is a new formulation in the last SWAN version (40.81) to include it in the calculations. Previous investigations show that adjusting the dependence for the wave number improved the predictions for the wave energy at lower frequencies, solving the underprediction of the period mentioned before. In the present work different simulations are developed to calibrate the new formulation, obtaining important improvements in the results. For the significant wave

  14. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    Science.gov (United States)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  15. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    International Nuclear Information System (INIS)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-01-01

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  16. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    Science.gov (United States)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  17. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....

  18. Ponderomotive force effects on slow-wave coupling

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1982-01-01

    Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value

  19. Short-period atmospheric gravity waves - A study of their statistical properties and source mechanisms

    Science.gov (United States)

    Gedzelman, S. D.

    1983-01-01

    Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.

  20. Numerical simulation of nonlinear wave force on a quasi-ellipse caisson

    Science.gov (United States)

    Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu

    2011-09-01

    A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.

  1. Wave forcing and morphological changes of New Caledonia lagoon islets: Insights on their possible relations

    Science.gov (United States)

    Aucan, Jérôme; Vendé-Leclerc, Myriam; Dumas, Pascal; Bricquir, Marianne

    2017-10-01

    In the present study, we examine how waves may contribute to the morphological changes of islets in the New Caledonia lagoon. We collected in situ wave data to investigate their characteristics. Three types of waves are identified and quantified: (1) high-frequency waves generated within the lagoon, (2) low-frequency waves originating from swells in the Tasman Sea, and (3) infragravity waves. We found out that high-frequency waves are the dominant forcing on the islets during typical wind events throughout the year, while infragravity waves, likely generated by the breaking of low-frequency waves, dominate during seasonal swell events. During swell events, low-frequency waves can also directly propagate to the islets through channels across the barrier reef, or be tidally modulated across the barrier reef before reaching the islets. Topographic surveys and beach profiles on one islet indicate areas with seasonal morphological changes and other areas with longer, interannual or decadal, erosion patterns. Although more data are needed to validate this hypothesis, we suspect that a relation exists between wave forcing and morphological changes of the islets.

  2. Wave Forces on Offshore Windturbine Foundations on Borkum Riff

    DEFF Research Database (Denmark)

    Larsen, Brian Juul; Lykke Andersen, Thomas; Frigaard, Peter

    This report is a summary of the reports by Juul Larsen and Frigaard (2004) and Lykke Andersen and Frigaard (November 2004) supplied with som additional force measurements on a cone shaped structure and some new force measurements on the concrete tripod....

  3. Chapter 4: Pulsating Wave Loads Section 4.3: 3D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1999-01-01

    The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...

  4. Effects of wave-induced forcing on a circulation model of the North Sea

    Science.gov (United States)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  5. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  6. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  7. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  8. The deuteron bound state wave function with tensor forces

    International Nuclear Information System (INIS)

    Takemasa, Tadashi

    1991-01-01

    A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)

  9. Periodic and solitary-wave solutions of the Degasperis-Procesi equation

    International Nuclear Information System (INIS)

    Vakhnenko, V.O.; Parkes, E.J.

    2004-01-01

    Travelling-wave solutions of the Degasperis-Procesi equation are investigated. The solutions are characterized by two parameters. For propagation in the positive x-direction, hump-like, inverted loop-like and coshoidal periodic-wave solutions are found; hump-like, inverted loop-like and peakon solitary-wave solutions are obtained as well. For propagation in the negative x-direction, there are solutions which are just the mirror image in the x-axis of the aforementioned solutions. A transformed version of the Degasperis-Procesi equation, which is a generalization of the Vakhnenko equation, is also considered. For propagation in the positive x-direction, hump-like, loop-like, inverted loop-like, bell-like and coshoidal periodic-wave solutions are found; loop-like, inverted loop-like and kink-like solitary-wave solutions are obtained as well. For propagation in the negative x-direction, well-like and inverted coshoidal periodic-wave solutions are found; well-like and inverted peakon solitary-wave solutions are obtained as well. In an appropriate limit, the previously known solutions of the Vakhnenko equation are recovered

  10. Complex dynamics and switching transients in periodically forced Filippov prey–predator system

    International Nuclear Information System (INIS)

    Tang, Guangyao; Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: •We develop a Filippov prey–predator model with periodic forcing. •The sliding mode dynamics and its domain have been investigated. •The existence and stability of sliding periodic solution have been discussed. •The complex dynamics are addressed through bifurcation analyses. •Switching transients and their biological implications have been discussed. - Abstract: By employing threshold policy control (TPC) in combination with the definition of integrated pest management (IPM), a Filippov prey–predator model with periodic forcing has been proposed and studied, and the periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. This study aims to address how the periodic forcing and TPC affect the pest control. To do this, the sliding mode dynamics and sliding mode domain have been addressed firstly by using Utkin’s equivalent control method, and then the existence and stability of sliding periodic solution are investigated. Furthermore, the complex dynamics including multiple attractors coexistence, period adding sequences and chaotic solutions with respect to bifurcation parameters of forcing amplitude and economic threshold (ET) have been investigated numerically in more detail. Finally the switching transients associated with pest outbreaks and their biological implications have been discussed. Our results indicate that the sliding periodic solution could be globally stable, and consequently the prey or pest population can be controlled such that its density falls below the economic injury level (EIL). Moreover, the switching transients have both advantages and disadvantages concerning pest control, and the magnitude and frequency of switching transients depend on the initial values of both populations, forcing amplitude and ET

  11. Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.

    2018-04-01

    The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5-6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.

  12. Force-controlled absorption in a fully-nonlinear numerical wave tank

    International Nuclear Information System (INIS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-01-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes

  13. Soliton and periodic solutions for higher order wave equations of KdV type (I)

    International Nuclear Information System (INIS)

    Khuri, S.A.

    2005-01-01

    The aim of the paper is twofold. First, a new ansaetze is introduced for the construction of exact solutions for higher order wave equations of KdV type (I). We show the existence of a class of discontinuous soliton solutions with infinite spikes. Second, the projective Riccati technique is implemented as an alternate approach for obtaining new exact solutions, solitary solutions, and periodic wave solutions

  14. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Nakariakov, Valery M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of)

    2017-08-01

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.

  15. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk

    2017-01-01

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s −1 . Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of the flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s −1 . The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.

  16. Vibration isolation design for periodically stiffened shells by the wave finite element method

    Science.gov (United States)

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  17. Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma

    International Nuclear Information System (INIS)

    Faith, J.; Kuo, S.P.; Huang, J.

    1997-01-01

    Experimental and numerical results of the interaction of electromagnetic waves with rapidly time varying spatially periodic plasmas are presented. It is shown that a number of Floquet modes, each with their own oscillation frequency, are created during the interaction. Included among these modes are downshifted waves which will not exist in the single slab case, and also waves with a larger upshifted frequency than one can obtain with a single plasma layer of the same density. In addition, the periodic structure is characterized by pass and stop bands that are different from those of a single plasma layer, and the frequencies of the downshifted modes falling in the stop band of a single plasma layer. Therefore these waves are trapped within the plasma structure until the plasma decays away. To show this phenomenon a chamber experiment is conducted, with the periodic plasma being produced by a capacitive discharge. The power spectrum recorded for waves interacting with the plasma shows vastly improved efficiency in the downshift mechanism, which the numerical calculations suggest is related to the trapping of the wave within the plasma. Reproducible results are recorded which are found to agree well with the numerical simulation. copyright 1997 The American Physical Society

  18. Stress Wave Propagation due to a Moving Force

    DEFF Research Database (Denmark)

    Rasmussen, K. M.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    1999-01-01

    In this paper the performance of two numerical methods of solving the problem of a time dependent moving force on the surface of an elastic continuum will be evaluated. One method is the finite element method (FEM) formulated in convected coordinates coupled with an absorbing boundary condition...

  19. Elastic-wave propagation and the Coriolis force

    NARCIS (Netherlands)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, E.N.

    2016-01-01

    In a coordinate system fixed with respect to the rotating Earth, the Coriolis force deflects an object sideways relative to its direction of motion. A beautiful demonstration of that effect is the Foucault pendulum, illustrated in figure 1a. As the long pendulum rocks back and forth, the Coriolis

  20. Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction

    Directory of Open Access Journals (Sweden)

    Lin JianJhong

    2009-01-01

    Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.

  1. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  2. Two-Phase Gas-Liquid Flow Structure Characteristics under Periodic Cross Forces Action

    Directory of Open Access Journals (Sweden)

    V. V. Perevezentsev

    2015-01-01

    Full Text Available The article presents a study of two-phase gas-liquid flow under the action of periodic cross forces. The work objective is to obtain experimental data for further analysis and have structure characteristics of the two-phase flow movement. For research, to obtain data without disturbing effect on the flow were used optic PIV (Particle Image Visualization methods because of their noninvasiveness. The cross forces influence was provided by an experimental stand design to change the angular amplitudes and the periods of channel movement cycle with two-phase flow. In the range of volume gas rates was shown a water flow rate versus the inclination angle of immovable riser section and the characteristic angular amplitudes and periods of riser section inclination cycle under periodic cross forces. Data on distribution of average water velocity in twophase flow in abovementioned cases were also obtained. These data allowed us to draw a conclusion that a velocity distribution depends on the angular amplitude and on the period of the riser section roll cycle. This article belongs to publications, which study two-phase flows with no disturbing effect on them. Obtained data give an insight into understanding a pattern of twophase gas-liquid flow under the action of periodic cross forces and can be used to verify the mathematical models of the CFD thermo-hydraulic codes. In the future, the work development expects taking measurements with more frequent interval in the ranges of angular amplitudes and periods of the channel movement cycle and create a mathematical model to show the action of periodic cross forces on two-phase gas-liquid flow.

  3. Estimation of excitation forces for wave energy converters control using pressure measurements

    Science.gov (United States)

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  4. Drag reduction by streamwise traveling wave-like Lorenz Force in channel flow

    International Nuclear Information System (INIS)

    Mamori, Hiroya; Fukagata, Koji

    2011-01-01

    Skin-friction drag reduction effect of traveling wave-like wall-normal Lorenz force in a fully developed turbulent channel flow is investigated by means of direct numerical simulation. A sinusoidal profile of the wall-normal body force is assumed as the Lorenz force. While upstream traveling waves reduce the drag in the case of blowing/suction, standing waves reduce it in the case of present forcing. Visualization of vortical structure under the standing wave-like wall-normal Lorenz force reveals that the near-wall streamwise vortices, which increase the skin-friction drag, disappear and spanwise roller-like vortices are generated instead. Three component decomposition of the Reynolds shear stress indicates that the spanwise roller-like vortices contribute to the negative Reynolds shear stress in the region near the wall, similarly to the case of laminar flows. While the analogy between the wall-normal and streamwise forcings can be expected, the statistics are found to exhibit different behaviors due to the difference in the energy flow.

  5. Control of the long period grating spectrum through low frequency flexural acoustic waves

    International Nuclear Information System (INIS)

    Oliveira, Roberson A; Possetti, Gustavo R C; Kamikawachi, Ricardo C; Fabris, José L; Muller, Marcia; Pohl, Alexandre A P; Marques, Carlos A F; Nogueira, Rogério N; Neves, Paulo T Jr; Cook, Kevin; Canning, John; Bavastri, C

    2011-01-01

    We have shown experimental results of the excitation of long period fiber gratings by means of flexural acoustic waves with a wavelength larger than the grating period, validated by numerical simulations. The effect of the acoustic wave on the grating is modeled with the method of assumed modes, which delivers the strain field inside the grating, then used as the input to the transfer matrix method, needed for calculating the grating spectrum. The experimental and numerical results are found to be in good agreement, even though only the strain-optic effects are taken into account

  6. New binary travelling-wave periodic solutions for the modified KdV equation

    International Nuclear Information System (INIS)

    Yan Zhenya

    2008-01-01

    In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (-) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation

  7. A Study of Stochastic Resonance in the Periodically Forced Rikitake Dynamo

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen Chih-Yuan Tseng

    2007-01-01

    Full Text Available The geodynamo has widely been thought to be an intuitive and selfsustained model of the Earth¡¦s magnetic field. In this paper, we elucidate how a periodic signal could be embedded in the geomagnetic filed via the mechanism of stochastic resonance in a forced Rikitake dynamo. Based on the stochastic resonance observed in the periodically forced Rikitake dynamo, we thus suggest a common triggering for geomagnetic reversal and glacial events. Both kinds of catastrophes may result from the cyclic variation of the Earth¡¦s orbital eccentricity.

  8. Transient chaos in the Lorenz-type map with periodic forcing.

    Science.gov (United States)

    Maslennikov, Oleg V; Nekorkin, Vladimir I; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  9. Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium

    International Nuclear Information System (INIS)

    Mori, W.B.; Katsouleas, T.

    1992-01-01

    A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations

  10. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone

    Science.gov (United States)

    Ke, Ziming; Yankovsky, Alexander E.

    2011-06-01

    A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.

  11. Observations of long-period waves in the nearshore waters of central west coast of India during the fall inter-monsoon period

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Jesbin, G.

    variability in both long period waves and short period waves need more detailed study. Acknowledgments The authors acknowledge the Earth System Science Organization, Ministry of Earth Sciences, New Delhi for providing the financial support to conduct part... Geraldton. Proceedings of the 2009 Pacific Coasts and Ports Conference, Wellington, New Zealand. Mehta, A. V., & Krishnamurti, T. N., 1988. Interannual variability of the 30 to 50 day wave motions. Journal of the Meteorological Society of Japan, 66...

  12. Theoretical Investigation of Peak-Delay Force Reduction for Caissons Exposed to Non-breaking Short-Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction....... The other is the force reduction due to the fact that the peak pressures do not occur simultaneously along the caisson, named peak-delay force reduction. These two reduction effects can also be expected with short-crested waves, as the short-crestedness of waves means the spreading of wave energy over...... a range of incident angles. The peak-delay force reduction, i.e. no simultaneous peak along caisson, is of particular interest because the equipment improvement in construction enables the building of considerably long caissons. In Japan length of caissons exceeds often 100m. This paper will concentrate...

  13. Return Period of a Sea Storm with at Least Two Waves Higher than a Fixed Threshold

    Directory of Open Access Journals (Sweden)

    Felice Arena

    2013-01-01

    Full Text Available Practical applications in ocean engineering require the long-term analysis for prediction of extreme waves, that identify design conditions. If extreme individual waves are investigated, we need to combine long-term statistical analysis of ocean waves with short-term statistics. The former considers the distribution of standard deviation of free surface displacement in the considered location in a long-time span, of order of 10 years or more. The latter analyzes the distribution of individual wave heights in a sea state, which is a Gaussian process in time domain. Recent advanced approaches enable the combination of the two analyses. In the paper the analytical solution is obtained for the return period of a sea storm with at least two individual waves higher than a fixed level. This solution is based on the application of the Equivalent Triangular Storm model for the representation of actual storms. One of the corollaries of the solution gives the exact expression for the probability that at least two waves higher than fixed level are produced during the lifetime of a structure. The previous solution of return period and the relative probability of exceedance may be effectively applied for the risk analysis of ocean structures.

  14. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency

    Science.gov (United States)

    Frusawa, Hiroshi

    2018-06-01

    We have formulated the dielectrophoretic force exerted on micro/nanoparticles upon the application of frequency-modulated (FM) electric fields. By adjusting the frequency range of an FM wave to cover the crossover frequency f X in the real part of the Clausius-Mossotti factor, our theory predicts the reversal of the dielectrophoretic force each time the instantaneous frequency periodically traverses f X . In fact, we observed periodic U-turns of vesicles, leukemia cells, and red blood cells that undergo FM wave dielectrophoresis (FM-DEP). It is also suggested by our theory that the video tracking of the U-turns due to FM-DEP is available for the agile and accurate measurement of f X . The FM-DEP method requires a short duration, less than 30 s, while applying the FM wave to observe several U-turns, and the agility in measuring f X is of much use for not only salty cell suspensions but also nanoparticles because the electric-field-induced solvent flow is suppressed as much as possible. The accuracy of f X has been verified using two types of experiment. First, we measured the attractive force exerted on a single vesicle experiencing alternating-current dielectrophoresis (AC-DEP) at various frequencies of sinusoidal electric fields. The frequency dependence of the dielectrophoretic force yields f X as a characteristic frequency at which the force vanishes. Comparing the AC-DEP result of f X with that obtained from the FM-DEP method, both results of f X were found to coincide with each other. Second, we investigated the conductivity dependencies of f X for three kinds of cell by changing the surrounding electrolytes. From the experimental results, we evaluated simultaneously both of the cytoplasmic conductivities and the membrane capacitances using an elaborate theory on the single-shell model of biological cells. While the cytoplasmic conductivities, similar for these cells, were slightly lower than the range of previous reports, the membrane capacitances obtained

  15. External Periodic Force Control of a Single-Degree-of-Freedom Vibroimpact System

    Directory of Open Access Journals (Sweden)

    Jingyue Wang

    2013-01-01

    Full Text Available A single-degree-of-freedom mechanical model of vibro-impact system is established. Bifurcation and chaos in the system are revealed with the time history diagram, phase trajectory map, and Poincaré map. According to the bifurcation and chaos of the actual vibro-impact system, the paper puts forward external periodic force control strategy. The method of controlling chaos by external periodic force feedback controller is developed to guide chaotic motions towards regular motions. The stability of the control system is also analyzed especially by theory. By selecting appropriate feedback coefficients, the unstable periodic orbits of the original chaotic orbit can be stabilized to the stable periodic orbits. The effectiveness of this control method is verified by numerical simulation.

  16. Quantifying the Attractive Force Exerted on the Pinned Calcium Spiral Waves by Using the Adventive Field

    International Nuclear Information System (INIS)

    Qiu Kang; Tang Jun; Luo Jin-Ming; Ma Jun

    2013-01-01

    The cytosolic calcium system is inhomogenous because of the discrete and random distribution of ion channels on the ER membrane. It is well known that the spiral tip can be pinned by the heterogenous area, and the field can detach the spiral from the heterogeneity. We use the adventive field to counteract the attractive force exerting on the calcium spiral wave by the heterogeneity, then the strength of the adventive field is used to quantify the attractive force indirectly. Two factors determining the attractive force are studied. It is found that: (1) the attractive force sharply increases with size of the heterogeneity for small-size heterogeneity, whereas the force increases to a saturated value for large-size heterogeneity; (2) for large-size heterogeneity, the force almost remains constant unless the level of the heterogeneity vanishes, the force decreases to zero linearly and sharply, and for small-size heterogeneity, the force decreases successively with the level of the heterogeneity. Furthermore, it is found that the forces exist only when the spiral tip is very close to the heterogenous area. Our study may shed some light on the control or suppression of the calcium spiral wave

  17. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...... confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act...

  18. Inheritance of Cell-Cycle Duration in the Presence of Periodic Forcing

    Science.gov (United States)

    Mosheiff, Noga; Martins, Bruno M. C.; Pearl-Mizrahi, Sivan; Grünberger, Alexander; Helfrich, Stefan; Mihalcescu, Irina; Kohlheyer, Dietrich; Locke, James C. W.; Glass, Leon; Balaban, Nathalie Q.

    2018-04-01

    Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several different organisms, including those with known coupling to a circadian clock and those without known coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features that can be compared with the experimental data. By fitting the model to the data, we extract the important parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian clock reduces variability. Our results show that simple correlations can identify systems under periodic forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular processes of growth.

  19. Self-induced dipole force and filamentation instability of a matter wave

    DEFF Research Database (Denmark)

    Saffman, M.

    1998-01-01

    The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....

  20. Effect of Short-Crestedness and Obliquity on Non-Breaking and Breaking Wave Forces Applied to Vertical Caisson Breakwaters

    DEFF Research Database (Denmark)

    Martinelli, Luca; Lamberti, Alberto; Frigaard, Peter

    2007-01-01

    This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under multidirectio......This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under...

  1. Guided elastic waves produced by a periodically joined interface in a rock mass

    CSIR Research Space (South Africa)

    Yenwong Fai

    2012-09-01

    Full Text Available on Computational and Applied Mechanics SACAM2012 Johannesburg, South Africa, 3−5 September 2012 c©SACAM Guided Elastic Waves Produced by a Periodically Joined Interface in a Rock Mass A.S. Yenwong Fai School of Physics University of the Witwatersrand Johannesburg...

  2. Short-period AM CVn systems as optical, X-ray and gravitational-wave sources

    NARCIS (Netherlands)

    Nelemans, G.; Yungelson, L.; Portegies Zwart, S.F.

    2004-01-01

    We model the population of AM CVn systems in the Galaxy and discuss the detectability of these systems with optical, X-ray and gravitational-wave detectors. We concentrate on the short-period (P < 1500 s) systems, some of which are expected to be in a phase of direct-impact accretion. Using a

  3. Experimental Study of Wave Forces on Vertical Circular Cylinders in Long and Short Crested Sea

    DEFF Research Database (Denmark)

    Høgedal, Michael

    on the safe side, as the directional spreading of the wave field Ieads to reduced horizontal velocities and acceleration; in the fluid and hence a reduction of the resultant and in-line wave forces on the structure. The directional spreading of the horizontal velocity field generally causes an increase...... with miniature pressure transducers. The experiments were carried out in the 3-D wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University and in the off-shore basin at the Danish Hydraulic Institute....

  4. Mechanism for boundary crises in quasiperiodically forced period-doubling systems

    International Nuclear Information System (INIS)

    Kim, Sang-Yoon; Lim, Woochang

    2005-01-01

    We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcing ε, a chaotic attractor disappears suddenly via a 'standard' boundary crisis when it collides with the smooth unstable torus. However, when passing a threshold value of ε, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through a new type of boundary crisis when it collides with an invariant 'ring-shaped' unstable set which has no counterpart in the unforced case

  5. Mechanism for boundary crises in quasiperiodically forced period-doubling systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Yoon [Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea, Republic of)]. E-mail: sykim@kangwon.ac.kr; Lim, Woochang [Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea, Republic of)]. E-mail: wclim@kwnu.kangwon.ac.kr

    2005-01-10

    We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcing {epsilon}, a chaotic attractor disappears suddenly via a 'standard' boundary crisis when it collides with the smooth unstable torus. However, when passing a threshold value of {epsilon}, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through a new type of boundary crisis when it collides with an invariant 'ring-shaped' unstable set which has no counterpart in the unforced case.

  6. Ordered and isomorphic mapping of periodic structures in the parametrically forced logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Maranhão, Dariel M., E-mail: dariel@ifsp.edu.br [Departamento de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo (Brazil); Diretoria de Informática, Universidade Nove de Julho, São Paulo (Brazil)

    2016-09-23

    Highlights: • A direct description of the internal structure of a periodic window in terms of winding numbers is proposed. • Periodic structures in parameter spaces are mapped in a recurrent and isomorphic way. • Sequences of winding numbers show global and local organization of periodic domains. - Abstract: We investigate the periodic domains found in the parametrically forced logistic map, the classical logistic map when its control parameter changes dynamically. Phase diagrams in two-parameter spaces reveal intricate periodic structures composed of patterns of intersecting superstable orbits curves, defining the cell of a periodic window. Cells appear multifoliated and ordered, and they are isomorphically mapped when one changes the map parameters. Also, we identify the characteristics of simplest cell and apply them to other more complex, discussing how the topography on parameter space is affected. By use of the winding number as defined in periodically forced oscillators, we show that the hierarchical organization of the periodic domains is manifested in global and local scales.

  7. Long-wave forcing for regional atmospheric modelling

    Energy Technology Data Exchange (ETDEWEB)

    Storch, H. von; Langenberg, H.; Feser, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    A new method, named 'spectral nudging', of linking a regional model to the driving large-scale model simulated or analyzed by a global model is proposed and tested. Spectral nudging is based on the idea that regional-scale climate statistics are conditioned by the interplay between continental-scale atmospheric conditions and such regional features as marginal seas and mountain ranges. Following this 'downscaling' idea, the regional model is forced to satisfy not only boundary conditions, possibly in a boundary sponge region, but also large-scale flow conditions inside the integration area. We demonstrate that spectral nudging succeeds in keeping the simulated state close to the driving state at large scales, while generating smaller-scale features. We also show that the standard boundary forcing technique in current use allows the regional model to develop internal states conflicting with the large-scale state. It is concluded that spectral nudging may be seen as a suboptimal and indirect data assimilation technique. (orig.) [German] Eine neue Methode, genannt 'spektrales nudging', ein Regionalmodell an das durch ein Globalmodell simulierte grossskalige Antriebsfeld zu koppeln, wird vorgestellt und getestet. Das spektrale nudging basiert auf der Annahme, dass regionale Klimastatistik durch die Wechselwirkung zwischen dem kontinental-skaligen atmosphaerischen Zustand und regionalen Gegebenheiten, wie kleinere Seen und Gebirgszuege, bestimmt wird. Demnach muss das Regionalmodell nicht nur die Randbedingungen erfuellen, sondern auch die grossskaligen Zustaende innerhalb des Integrationsgebietes wiedergeben koennen. Wir zeigen, dass durch das spektrale nudging der grossskalige modellierte Zustand nahe an dem des Antriebsfeldes liegt, ohne die Modellierung regionaler Phaenomene zu beeintraechtigen. Ausserdem zeigen wir, dass das Regionalmodell durch die zur Zeit benutzte Antriebstechnik ueber den Modellrand interne Felder produzieren kann

  8. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  9. Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods

    Science.gov (United States)

    Idris, Ahmad; Harahap, Indra S. H.; Ali, Montassir Osman Ahmed

    2018-04-01

    This study evaluated failure probabilities of jack up units on the framework of time dependent reliability analysis using uncertainty from different sea states representing different return period of the design wave. Surface elevation for each sea state was represented by Karhunen-Loeve expansion method using the eigenfunctions of prolate spheroidal wave functions in order to obtain the wave load. The stochastic wave load was propagated on a simplified jack up model developed in commercial software to obtain the structural response due to the wave loading. Analysis of the stochastic response to determine the failure probability in excessive deck displacement in the framework of time dependent reliability analysis was performed by developing Matlab codes in a personal computer. Results from the study indicated that the failure probability increases with increase in the severity of the sea state representing a longer return period. Although the results obtained are in agreement with the results of a study of similar jack up model using time independent method at higher values of maximum allowable deck displacement, it is in contrast at lower values of the criteria where the study reported that failure probability decreases with increase in the severity of the sea state.

  10. MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Apart from the eleven-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high-energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where a strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed periodicities in solar activity indicators related to magnetic flux.

  11. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  12. A new autogenous mobile system driven by vibration without impacts, excited by an impulse periodic force

    Directory of Open Access Journals (Sweden)

    Duong The-Hung

    2018-01-01

    Full Text Available This report describes a new proposed design for autogenous mobile systems which can move without any external mechanisms such as legs or wheels. A Duffing oscillator with a cubic spring, which is excited by an impulse periodic force, is utilized to drive the whole system. The rectilinear motion of the system is performed employing the periodically oscillation of the internal mass interacting without collisions with the main body. Utilizing the nonlinear restoring force of the cubic spring, the system can move in desired directions. When the ratio between the excitation force and the friction force is smaller than 2.5, backward or forward motion can be easily achieved by applying an excitation force in the same desired direction. Different from other vibro-impact drifting devices, no impact needed to drive the new proposed system. This novel structure allows to miniaturize the device as well as to simplify the control algorithm thus can significantly expand applicability of the proposed system.

  13. Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition

    Science.gov (United States)

    Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji

    2017-11-01

    Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.

  14. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  15. Prediction of the shape of inline wave force and free surface elevation using First Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    theory, that is, the most likely time history of inline force around a force peak of given value. The results of FORM and NewForce are linearly identical and show only minor deviations at second order. The FORM results are then compared to wave averaged measurements of the same criteria for crest height......In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... design wave height. As these wave theories super from limitations such as symmetry around the crest, other methods to estimate the wave loads are needed. In the present paper, the First Order Reliability Method, FORM, is used systematically to estimate the most likely extreme wave shapes. Two parameters...

  16. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  17. Magnetization of a warm plasma by the nonstationary ponderomotive force of an electromagnetic wave

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P. K.; Stenflo, L.

    2009-01-01

    It is shown that magnetic fields can be generated in a warm plasma by the nonstationary ponderomotive force of a large-amplitude electromagnetic wave. In the present Brief Report, we derive simple and explicit results that can be useful for understanding the origin of the magnetic fields that are produced in intense laser-plasma interaction experiments.

  18. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    Science.gov (United States)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  19. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    International Nuclear Information System (INIS)

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-01-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays

  20. Large scale modulation of high frequency acoustic waves in periodic porous media.

    Science.gov (United States)

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  1. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  2. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  3. Piezoelectricity induced defect modes for shear waves in a periodically stratified supperlattice

    Science.gov (United States)

    Piliposyan, Davit

    2018-01-01

    Properties of shear waves in a piezoelectric stratified periodic structure with a defect layer are studied for a superlattice with identical piezoelectric materials in a unit cell. Due to the electro-mechanical coupling in piezoelectric materials the structure exhibits defect modes in the superlattice with full transmission peaks both for full contact and electrically shorted interfaces. The results show an existence of one or two transmission peaks depending on the interfacial conditions. In the long wavelength region where coupling between electro-magnetic and elastic waves creates frequency band gaps the defect layer introduces one or two defect modes transmitting both electro-magnetic and elastic energies. Other parameters affecting the defect modes are the thickness of the defect layer, differences in refractive indexes and the magnitude of the angle of the incident wave. The results of the paper may be useful in the design of narrow band filters or multi-channel piezoelectric filters.

  4. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  6. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  7. Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures

    Directory of Open Access Journals (Sweden)

    Benbiao Luo

    2018-01-01

    Full Text Available We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass, including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.

  8. Effects from fully nonlinear irregular wave forcing on the fatigue life of an offshore wind turbine and its monopile foundation

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2013-01-01

    The effect from fully nonlinear irregular wave forcing on the fatigue life of the foundation and tower of an offshore wind turbine is investigated through aeroelastic calculations. Five representative sea states with increasing significant wave height are considered in a water depth of 40 m....... The waves are both linear and fully nonlinear irregular 2D waves. The wind turbine is the NREL 5-MW reference wind turbine. Fatigue analysis is performed in relation to analysis of the sectional forces in the tower and monopile. Impulsive excitation of the sectional force at the bottom of the tower is seen...

  9. New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Ma Hongcai; Ge Dongjie; Yu Yaodong

    2008-01-01

    Based on the Bäcklund method and the multilinear variable separation approach (MLVSA), this paper nds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+1)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution). (general)

  10. On the wave forcing of the semi-annual zonal wind oscillation

    Science.gov (United States)

    Nagpal, O. P.; Raghavarao, R.

    1991-01-01

    Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.

  11. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  12. Directed transport in a periodic tube driven by asymmetric unbiased forces coexisting with spatially modulated noises

    International Nuclear Information System (INIS)

    Li Fengguo; Ai Baoquan

    2011-01-01

    Graphical abstract: The current J as a function of the phase shift φ and ε at a = 1/2π, b = 0.5/2π, k B T = 0.5, α = 0.1, and F 0 = 0.5. Highlights: → Unbiased forces and spatially modulated white noises affect the current. → In the adiabatic limit, the analytical expression of directed current is obtained. → Their competition will induce current reversals. → For negative asymmetric parameters of the force, there exists an optimum parameter. → The current increases monotonously for positive asymmetric parameters. - Abstract: Transport of Brownian particles in a symmetrically periodic tube is investigated in the presence of asymmetric unbiased external forces and spatially modulated Gaussian white noises. In the adiabatic limit, we obtain the analytical expression of the directed current. It is found that the temporal asymmetry can break thermodynamic equilibrium and induce a net current. Their competition between the temporal asymmetry force and the phase shift between the noise modulation and the tube shape will induce some peculiar phenomena, for example, current reversals. The current changes with the phase shift in the form of the sine function. For negative asymmetric parameters of the force, there exists an optimum parameter at which the current takes its maximum value. However, the current increases monotonously for positive asymmetric parameters.

  13. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    Science.gov (United States)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  14. New quasi-periodic waves of the (2+1)-dimensional sine-Gordon system

    International Nuclear Information System (INIS)

    Hu, H.C.; Lou, S.Y.

    2005-01-01

    New exact solutions of the well-known (2+1)-dimensional sine-Gordon system are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon and sine-Gordon equations. Two arbitrary functions are included into the Jacobi elliptic function solutions. By proper selections of the arbitrary functions, new quasi-periodic wave solutions are obtained and displayed graphically

  15. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C

    2009-01-01

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.

  16. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...... metallic film can be significantly enhanced. Based on equivalent circuit theory analysis, periodic arrays of square structured subwavelength apertures are obtained with a 1900-fold transmission enhancement factor when the side length a of the apertures is 10 times smaller than the wavelength (a/λ =0...

  17. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    Science.gov (United States)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  18. Periodic travelling and non-travelling wave solutions of the nonlinear Klein-Gordon equation with imaginary mass

    International Nuclear Information System (INIS)

    Tang Xiaoyan; Shukla, Padma Kant

    2008-01-01

    Exact solutions, including the periodic travelling and non-travelling wave solutions, are presented for the nonlinear Klein-Gordon equation with imaginary mass. Some arbitrary functions are permitted in the periodic non-travelling wave solutions, which contribute to various high dimensional nonlinear structures

  19. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    Science.gov (United States)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  20. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  1. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    Science.gov (United States)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  2. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    International Nuclear Information System (INIS)

    Mitri, F. G.

    2015-01-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries

  3. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  4. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  5. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    Science.gov (United States)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  6. From plane waves to local Gaussians for the simulation of correlated periodic systems

    International Nuclear Information System (INIS)

    Booth, George H.; Tsatsoulis, Theodoros; Grüneis, Andreas; Chan, Garnet Kin-Lic

    2016-01-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  7. From plane waves to local Gaussians for the simulation of correlated periodic systems

    Energy Technology Data Exchange (ETDEWEB)

    Booth, George H., E-mail: george.booth@kcl.ac.uk [Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Chan, Garnet Kin-Lic [Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.

  8. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    Science.gov (United States)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  9. Non-periodic homogenization of 3-D elastic media for the seismic wave equation

    Science.gov (United States)

    Cupillard, Paul; Capdeville, Yann

    2018-05-01

    Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth that can be extracted from seismic records has a limited resolution. As a consequence, one obtains smooth images from waveform inversion, although the Earth holds discontinuities and small scales of various natures. Within the last decade, the non-periodic homogenization method shed light on how seismic waves interact with small geological heterogeneities and `see' upscaled properties. This theory enables us to compute long-wave equivalent density and elastic coefficients of any media, with no constraint on the size, the shape and the contrast of the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first time. The non-periodic homogenization relies on an asymptotic expansion of the displacement and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we show that the practical computation of an upscaled elastic tensor basically requires (i) to solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated with the obtained solution. The elastostatic problem consists in finding the displacements due to local unit strains acting in all directions within the medium to upscale. This is solved using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-element quadrature to perform the convolution in the space domain. We end up with an efficient numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the homogenization. In the case of a finely layered model, our method agrees with results derived from Backus. In a more challenging model composed by a million of small cubes, waveforms computed in the homogenized medium fit reference waveforms very well. Both direct phases and complex diffracted waves are

  10. Quantum mechanical analysis of the equilateral triangle billiard: Periodic orbit theory and wave packet revivals

    International Nuclear Information System (INIS)

    Doncheski, M.A.; Robinett, R.W.

    2002-01-01

    Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by T rev =9μa 2 /4(h/2π) where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60 deg. -60 deg. -60 deg. ) triangle, such as the half equilateral (30 deg. -60 deg. -90 deg.) triangle and other 'foldings', which have related energy spectra and revival structures

  11. A standing pressure wave hypothesis of oscillating forces generated during a steam line break

    International Nuclear Information System (INIS)

    Tinoco, H.

    2001-01-01

    A rapid glance at the figure depicting the net forces acting on the reactor vessel and internals, as obtained through a CFD simulation of a BWR steam line break, reveals an amazing oscillating regularity of these forces which is in glaring contrast to the chaotic behaviour of the steam pressure field in the steam annulus. Assuming that the decompression process excites and maintains standing pressure waves in the annular cylindrical region constituted by the steam annulus, it is possible to reconstruct the net forces acting on the reactor vessel and internals through the contribution of almost only the first dispersive mode. If a Neumann boundary condition is assumed at the section connecting the steam annulus to the steam dome, the frequency predicted is approximately % 5.9 higher than that of the CFD simulations. However, this connecting section allows wave transmission, and a more appropriate boundary condition should be one of the Robin type. Therefore, this section is modelled as an absorbing wall, and the corresponding normal impedance is calculated using the CFD simulations. Week non-linear effects can also be observed in the calculated forces through the presence of the first subharmonic. By the methodology described above, an estimate of the forces acting on the reactor vessel and internals of unit 3 of Forsmark Nuclear Power Plant has been obtained. (author)

  12. Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories

    International Nuclear Information System (INIS)

    Dolesi, R.; Hueller, M.; Nicolodi, D.; Tombolato, D.; Vitale, S.; Wass, P. J.; Weber, W. J.; Evans, M.; Fritschel, P.; Weiss, R.; Gundlach, J. H.; Hagedorn, C. A.; Schlamminger, S.; Ciani, G.; Cavalleri, A.

    2011-01-01

    We present an analysis of Brownian force noise from residual gas damping of reference test masses as a fundamental sensitivity limit in small force experiments. The resulting acceleration noise increases significantly when the distance of the test mass to the surrounding experimental apparatus is smaller than the dimension of the test mass itself. For the Advanced LIGO interferometric gravitational wave observatory, where the relevant test mass is a suspended 340 mm diameter cylindrical end mirror, the force noise power is increased by roughly a factor 40 by the presence of a similarly shaped reaction mass at a nominal separation of 5 mm. The force noise, of order 20 fN/Hz 1/2 for 2x10 -6 Pa of residual H 2 gas, rivals quantum optical fluctuations as the dominant noise source between 10 and 30 Hz. We present here a numerical and analytical analysis for the gas damping force noise for Advanced LIGO, backed up by experimental evidence from several recent measurements. Finally, we discuss the impact of residual gas damping on the gravitational wave sensitivity and possible mitigation strategies.

  13. On possible beneficial ponderomotive force effects on fast wave coupling in tokamaks

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1994-02-01

    Ponderomotive forces at fast wave launching lead in the vicinity of the launching structure in tokamaks at lower hybrid frequencies typically to a boundary plasma density increase. This results in a decrease of the reflection coefficient, and in cases of detached plasmas, to an appearance of a local electric field maximum at a distance of several centimeters from the launching grill structure; this electric field maximum is connected to the reversal of the plasma density gradient near the grill mouth because of ponderomotive force effects. (author) 3 figs., 20 refs

  14. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  15. Estimating Wind and Wave Induced Forces On a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong

    2013-01-01

    -principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....

  16. Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs

    KAUST Repository

    Xu, Yanlong

    2015-08-01

    The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.

  17. Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow......Forcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder...... at the back of the cylinder following the passage of the wave crest. The numerical computations were further analysed in the frequency domain. For a representative example, the secondary load cycle was found to be associated with frequencies above the fifth- and sixth-harmonic force component. For the third...

  18. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  19. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    Science.gov (United States)

    Veltz, Romain; Sejnowski, Terrence J.

    2016-01-01

    Inhibition-stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from inhibitory interneurons, a circuit element found in the hippocampus and the primary visual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the properties of interconnected ISNs, we investigated periodic forcing of ISNs. We show that ISNs can be excited over a range of frequencies and derive properties of the resonance peaks. In particular, we studied the phase-locked solutions, the torus solutions, and the resonance peaks. Periodically forced ISNs respond with (possibly multistable) phase-locked activity, whereas networks with sustained intrinsic oscillations respond more dynamically to periodic inputs with tori. Hence, the dynamics are surprisingly rich, and phase effects alone do not adequately describe the network response. This strengthens the importance of phaseamplitude coupling as opposed to phase-phase coupling in providing multiple frequencies for multiplexing and routing information. PMID:26496044

  20. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    Science.gov (United States)

    Barker, Blake; Jung, Soyeun; Zumbrun, Kevin

    2018-03-01

    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.

  1. Wave propagation in one-dimensional solid-fluid quasi-periodic and aperiodic phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ali, E-mail: alchen@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2012-02-01

    The propagation of the elastic waves in one-dimensional (1D) solid-fluid quasi-periodic phononic crystals is studied by employing the concept of the localization factor, which is calculated by the transfer matrix method. The solid-fluid interaction effect at the interfaces between the solid and the fluid components is considered. For comparison, the periodic systems and aperiodic Thue-Morse sequence are also analyzed in this paper. The splitting phenomenon of the pass bands and bandgaps are discussed for these 1D solid-fluid systems. At last the influences of the material impedance ratios on the band structures of the 1D solid-fluid quasi-periodic phononic crystals arranged as Fibonacci sequence are discussed.

  2. Contribution to the study of standing wave bi-periodical accelerating structures for electrons

    International Nuclear Information System (INIS)

    Fuhrmann, Celso

    1985-01-01

    Experimental results on bi-periodic standing wave accelerating structures are presented. These structures which are characterized by a high effective shunt impedance, are designed for standing wave, high duty cycle electron accelerators. Two types of structures are studied: the on-axis coupled structure and the coaxial coupled structure. The expressions for the dispersion relation, coupling coefficients, phase and group velocity are derived from a coupled resonator model. An experimental method to eliminate the stop-band is put forward. The influence of the coupling slots on the dispersion curves is studied experimentally. The effective shunt impedance and the transit time factor are measured by the field perturbation techniques. Measured parameters are compared with SUPERFISH theoretical calculations. The field perturbation technique is also applied to measure the transverse shunt impedance of the dipole modes which are responsible for the beam breakup phenomenon. (author) [fr

  3. Renal shear wave velocity by acoustic radiation force impulse did not reflect advanced renal impairment.

    Science.gov (United States)

    Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime

    2016-12-01

    Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.

  4. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    Science.gov (United States)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  5. Activity and selectivity control through periodic composition forcing over Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Silveston, P L; Hudgins, R R; Adesina, A A; Ross, G S; Feimer, J L

    1986-01-01

    Data collected under steady-state and periodic composition forcing of the Fischer-Tropsch synthesis over three commonly used catalysts demonstrate that both activity and selectivity can be changed by the latter operating mode. Synthesis of hydrocarbons up to C/sub 7/are favored at the expense of the higher carbon numbers for the Co catalyst, while for the Ru catalyst, only the C/sub 3/ and lower species are favored. Only methane production is stimulated with the Fe catalyst. Fe and Ru catalysts shift production from alkenes to alkanes. Transient data is interpreted in the paper.

  6. Compensation of Wave-Induced Motion and Force Phenomena for Ship-Based High Performance Robotic and Human Amplifying Systems

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2003-09-24

    Learning Controller has little impact due to the variable nature of the wave period. We then introduce a new approach to HAT control, Ship Motion Compensation for Force Control Systems (SMCFCS). This basic approach uses inclinometer and acceleration information from the base of the robot to compensate for ship motion disturbances. Results of the simulation study show over an order of magnitude decrease in the disturbance force reflected back to the operator and an order of magnitude increase in positioning accuracy and resolution.

  7. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    Science.gov (United States)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  8. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  9. On the independent points in the sky for the search of periodic gravitational wave

    International Nuclear Information System (INIS)

    Sahay, S.K.

    2009-01-01

    In the search of the periodic gravitational wave we investigate independent points in the sky assuming the noise power spectral density to be flat. We have made an analysis with different initial azimuths of the Earth for a week data set. The analysis shows significant difference in the independent points in the sky under search. We numerically obtain an approximate relation to make a trade-off between computational cost and sensitivities. We also discuss the feasibility of the coherent search in small frequency band in reference to advanced LIGO. (authors)

  10. Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure

    Directory of Open Access Journals (Sweden)

    Ming-Yau Su

    2009-02-01

    Full Text Available Surface acoustic wave (SAW devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO3 composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen.

  11. A class of periodic solutions of nonlinear wave and evolution equations

    International Nuclear Information System (INIS)

    Kashcheev, V.N.

    1987-01-01

    For the case of 1+1 dimensions a new heuristic method is proposed for deriving dels-similar solutions to nonlinear autonomous differential equations. If the differential function f is a polynomial, then: (i) in the case of even derivatives in f the solution is the ratio of two polynomials from the Weierstrass elliptic functions; (ii) in the case of any order derivatives in f the solution is the ratio of two polynomials from simple exponents. Numerous examples are given constructing such periodic solutions to the wave and evolution equations

  12. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    Science.gov (United States)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  13. Entrainment effects in periodic forcing of the flow over a backward-facing step

    Science.gov (United States)

    Berk, T.; Medjnoun, T.; Ganapathisubramani, B.

    2017-07-01

    The effect of the Strouhal number on periodic forcing of the flow over a backward-facing step (height, H ) is investigated experimentally. Forcing is applied by a synthetic jet at the edge of the step at Strouhal numbers ranging from 0.21 forcing, and locally vertical momentum flux is shown to be qualitatively similar to circulation for all cases considered. Total circulation (and therewith entrainment of momentum and the effect on the reattachment length) is shown to decrease with Strouhal number, whereas this is not predicted by models based on specific low and high frequencies. An empirical model for the (decay of) circulation is derived by tracking vortices in phase-locked data. This model is used to decipher relevant scaling parameters that explain the variations in circulation, entrainment of momentum, and reattachment length. Three regimes of Strouhal number are identified. A low-Strouhal-number regime is observed for which vortices are formed at a late stage relative to the recirculation region, causing a decrease in effectiveness. For high Strouhal numbers, vortices are being reingested into the actuator or are packed so close together that they cancel each other, both decreasing the effectiveness of forcing. In the intermediate regime a vortex train is formed of which the decay of circulation increases for increasing Strouhal number. The scaling of this

  14. Classification of solutions of the forced periodic nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Shlizerman, Eli; Rom-Kedar, Vered

    2010-01-01

    The integrable structure of the periodic one-dimensional nonlinear Schrödinger equation is utilized to gain insights regarding the perturbed near-integrable dynamics. After recalling the known results regarding the structure and stability of the unperturbed standing and travelling waves solutions, two new stability results are presented: (1) it is shown numerically that the stability of the 'outer' (cnoidal) unperturbed solutions depends on their power (the L 2 norm): they undergo a finite sequence of Hamiltonian–Hopf bifurcations as their power is increased. (2) another proof that the 'inner'(dnoidal) unperturbed solutions with multiplicity ≥2 are linearly unstable is presented. Then, to study the global phase-space structure, an energy–momentum bifurcation diagram (PDE-EMBD) that consists of projections of the unperturbed standing and travelling waves solutions to the energy–power plane and includes information regarding their linear stability is constructed. The PDE-EMBD helps us to classify the behaviour near the plane wave solutions: the diagram demonstrates that below some known threshold amplitude, precisely three distinct observable chaotic mechanisms arise: homoclinic chaos, homoclinic resonance and, for some parameter values, parabolic-resonance. Moreover, it appears that the dynamics of the PDE chaotic solutions that exhibit the parabolic-resonance instability may be qualitatively predicted: these exhibit the same dynamics as a recently derived parabolic-resonance low-dimensional normal form. In particular, these solutions undergo adiabatic chaos: they follow the level lines of an adiabatic invariant till they reach the separatrix set at which the adiabatic invariant undergoes essentially random jumps

  15. The wave climate of the Northeast Atlantic over the period 1955-1994: the WASA wave hindcast

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H.; Rosenthal, W.; Stawarz, M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik; Carretero, J.C.; Gomez, M.; Lozano, I.; Serrano, O. [Programa de Clima Maritimo (Puertos del Estado), Madrid (Spain); Reistad, M. [Det Norske Meteorologiske Inst., Bergen (Norway)

    1997-12-31

    The European project ``waves and storms in the North Atlantic`` (WASA) has been set up to prove, or to disprove, hypotheses of a worsening storm and wave climate in the Northeast Atlantic and adjacent seas in the present century. A major obstacle for assessing changes in storm and wave conditions are inhomogeneities in the observational records, both in the local observations and in the analysed products, which usually produce an artificial increase of extreme winds and waves. Therefore, changes in the wave climate were assessed with a state-of-the-art wave model using wind analyses. Within the scope of the WASA project, a 40 year reconstruction (1955-1994) of the wave climate in the North Atlantic was completed using the WAM wave model. The input wind fields were assumed to be reasonably homogeneous with time in the area south of 70 N and east of 20 W, and it was expected that the hindcast wave data would reliably describe the space-time evolution of wave conditions in this area. The results of the hindcast experiment are presented in this article. The main conclusion was that the wave climate in most of the Northeast Atlantic and in the North Sea has undergone significant variations on time scales of decades. Part of variability was found to be related to the North Atlantic oscillation. As a general result we noted an increase of the maximum annual significant wave height over the last 40 years of about 5 to 10 cm/year for large parts of the Northeast Atlantic, north of the North Sea. There was also a slight increase of probabilities of high waves derived from conventional extreme value statistics in northwest approaches to the North Sea. Similar trends of the extreme waves were found in a scenario of future wave climate at a time of doubled C0{sub 2} concentration in the atmosphere. (orig.) 28 refs.

  16. Enhanced Global Monsoon in Present Warm Period Due to Natural and Anthropogenic Forcings

    Directory of Open Access Journals (Sweden)

    Jing Chai

    2018-04-01

    Full Text Available In this study, we investigate global monsoon precipitation (GMP changes between the Present Warm Period (PWP, 1900–2000 and the Little Ice Age (LIA, 1250–1850 by performing millennium sensitivity simulations using the Community Earth System Model version 1.0 (CESM1. Three millennium simulations are carried out under time-varying solar, volcanic and greenhouse gas (GHG forcing, respectively, from 501 to 2000 AD. Compared to the global-mean surface temperature of the cold LIA, the global warming in the PWP caused by high GHG concentration is about 0.42 °C, by strong solar radiation is 0.14 °C, and by decreased volcanic activity is 0.07 °C. The GMP increases in these three types of global warming are comparable, being 0.12, 0.058, and 0.055 mm day−1, respectively. For one degree of global warming, the GMP increase induced by strong GHG forcing is 2.2% °C−1, by strong solar radiation is 2.8% °C−1, and by decreased volcanic forcing is 5.5% °C−1, which means that volcanic forcing is most effective in terms of changing the GMP among these three external forcing factors. Under volcanic inactivity-related global warming, both monsoon moisture and circulation are enhanced, and the enhanced circulation mainly occurs in the Northern Hemisphere (NH. The circulation, however, is weakened in the other two cases, and the GMP intensification is mainly caused by increased moisture. Due to large NH volcanic aerosol concentration in the LIA, the inter-hemispheric thermal contrast of PWP global warming tends to enhance NH monsoon circulation. Compared to the GHG forcing, solar radiation tends to warm low-latitude regions and cause a greater monsoon moisture increase, resulting in a stronger GMP increase. The finding in this study is important for predicting the GMP in future anthropogenic global warming when a change in natural solar or volcanic activity occurs.

  17. Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces

    Science.gov (United States)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team

    2015-06-01

    Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.

  18. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides

    Science.gov (United States)

    Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford

    2018-04-01

    Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.

  19. Measuring the band structures of periodic beams using the wave superposition method

    Science.gov (United States)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  20. Analysis and enhancement of flexural wave stop bands in 2D periodic plates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yubao [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China); The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH – The Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Feng, Leping [The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH – The Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Wen, Jihong, E-mail: wenjihong_nudt1@vip.sina.com [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China); Yu, Dianlong; Wen, Xisen [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China)

    2015-07-17

    The band structure and enhancement of flexural wave stop bands in a 2D periodic plate are investigated. A unified method for analysing and designing the stop band of the plates with various attached structures is proposed. The effect of attached structures is considered based on their equivalent parameters (added equivalent mass and equivalent moment of inertia). The influences of the equivalent parameters on the band structures are studied. Three cases are considered: adding pure equivalent mass, pure equivalent moment of inertia and the combination of these two. The stop bands are enhanced via the multi interaction between the host plate and the attached structure. The enhancement pattern is determined, and several ways to obtain a wider combined stop band are presented. The frequency response functions of corresponding finite periodic plates are calculated to verify the stop bands and their enhancement in a number of typical cases. - Highlights: • A unified method for studying the stop band of the plates with various simplified attached structures is proposed. • The enhancement of flexural wave stop bands in a 2D phononic plate is investigated. • The stop bands are widened via multi interaction between the host plate and the attached structure. • The enhancement pattern is determined and several ways to get a wider stop band are presented.

  1. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  2. Reliability Evaluation of Monolithic Vertical Wall Breakwaters Considering Impulsive Wave Breaking Forces and Failure Modes of the Foundation

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, Jørgen S.; Christiani, E.

    1994-01-01

    Impulsive wave breaking forces on a vertical caisson breakwater has been included by Takahashi et al, (1994) in Goda's wave pressure formula (Goda et al. 1972 and Goda 1974). Based on these formulae a deterministic design method following the Japanese recommendations has been used for the design...

  3. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  4. Persistent fluctuations in synchronization rate in globally coupled oscillators with periodic external forcing

    Science.gov (United States)

    Atsumi, Yu; Nakao, Hiroya

    2012-05-01

    A system of phase oscillators with repulsive global coupling and periodic external forcing undergoing asynchronous rotation is considered. The synchronization rate of the system can exhibit persistent fluctuations depending on parameters and initial phase distributions, and the amplitude of the fluctuations scales with the system size for uniformly random initial phase distributions. Using the Watanabe-Strogatz transformation that reduces the original system to low-dimensional macroscopic equations, we show that the fluctuations are collective dynamics of the system corresponding to low-dimensional trajectories of the reduced equations. It is argued that the amplitude of the fluctuations is determined by the inhomogeneity of the initial phase distribution, resulting in system-size scaling for the random case.

  5. Efficiency of transport in periodic potentials: dichotomous noise contra deterministic force

    Science.gov (United States)

    Spiechowicz, J.; Łuczka, J.; Machura, L.

    2016-05-01

    We study the transport of an inertial Brownian particle moving in a symmetric and periodic one-dimensional potential, and subjected to both a symmetric, unbiased external harmonic force as well as biased dichotomic noise η (t) also known as a random telegraph signal or a two state continuous-time Markov process. In doing so, we concentrate on the previously reported regime (Spiechowicz et al 2014 Phys. Rev. E 90 032104) for which non-negative biased noise η (t) in the form of generalized white Poissonian noise can induce anomalous transport processes similar to those generated by a deterministic constant force F= but significantly more effective than F, i.e. the particle moves much faster, the velocity fluctuations are noticeably reduced and the transport efficiency is enhanced several times. Here, we confirm this result for the case of dichotomous fluctuations which, in contrast to white Poissonian noise, can assume positive as well as negative values and examine the role of thermal noise in the observed phenomenon. We focus our attention on the impact of bidirectionality of dichotomous fluctuations and reveal that the effect of nonequilibrium noise enhanced efficiency is still detectable. This result may explain transport phenomena occurring in strongly fluctuating environments of both physical and biological origin. Our predictions can be corroborated experimentally by use of a setup that consists of a resistively and capacitively shunted Josephson junction.

  6. Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions

    Science.gov (United States)

    Timofeyuk, N. K.

    2018-05-01

    The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.

  7. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  8. A study of wave forces on an offshore platform by direct CFD and Morison equation

    Directory of Open Access Journals (Sweden)

    Zhang D.

    2015-01-01

    The next step is the presentation of 3D multiphase RANS simulation of the wind-turbine platform in single-harmonic regular waves. Simulation results from full 3D simulation will be compared to the results from Morison’s equation. We are motivated by the challenges of a floating platform which has complex underwater geometry (e.g. tethered semi-submersible. In cases like this, our hypothesis is that Morison’s equation will result in inaccurate prediction of forces, due to the limitations of 2D coefficients of simple geometries, and that 3D multiphase RANS CFD will be required to generate reliable predictions of platform loads and motions.

  9. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  10. Spin-wave dispersion of nanostructured magnonic crystals with periodic defects

    Directory of Open Access Journals (Sweden)

    V. L. Zhang

    2016-11-01

    Full Text Available The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.

  11. Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H. Y.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E. T.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pisarski, A.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×1 0-8 Hz /s . Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ˜4 ×1 0-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 ×1 0-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ˜1.5 ×1 0-25.

  12. Current density waves in open mesoscopic rings driven by time-periodic magnetic fluxes

    International Nuclear Information System (INIS)

    Yan Conghua; Wei Lianfu

    2010-01-01

    Quantum coherent transport through open mesoscopic Aharonov-Bohm rings (driven by static fluxes) have been studied extensively. Here, by using quantum waveguide theory and the Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic ring threaded by a time-periodic magnetic flux. We predicate that current density waves could be excited along such an open ring. As a consequence, a net current could be generated along the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop driven by the time-dependent flux. These phenomena could be explained by photon-assisted processes, due to the interaction between the transported electrons and the applied oscillating external fields. We also discuss how the time-average currents (along the ring and the lead) depend on the amplitude and frequency of the applied oscillating fluxes.

  13. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Goertz, Ruediger S., E-mail: ruediger.goertz@uk-erlangen.de; Schuderer, Johanna, E-mail: Johanna@schuderer-floss.de; Strobel, Deike, E-mail: deike.strobel@uk-erlangen.de; Pfeifer, Lukas, E-mail: Lukas.Pfeifer@uk-erlangen.de; Neurath, Markus F., E-mail: Markus.Neurath@uk-erlangen.de; Wildner, Dane, E-mail: Dane.Wildner@uk-erlangen.de

    2016-12-15

    Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.

  14. Acoustic radiation force impulse shear wave elastography (ARFI) of acute and chronic pancreatitis and pancreatic tumor

    International Nuclear Information System (INIS)

    Goertz, Ruediger S.; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F.; Wildner, Dane

    2016-01-01

    Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.

  15. Periodicity in a Conceptual Model of Glacial Cycles in the Absence of Milankovitch Forcing

    Science.gov (United States)

    Hahn, J.; Walsh, J.; Widiasih, E.; McGehee, R.

    2015-12-01

    Previously, McGehee and Widiasih coupled Budyko's Energy Balance Model with dynamics of a latitudinal ice-line incorporating the albedo feedback effect. They reduced this model to a two-dimensional equation of global mean temperature and a latitudinal ice-line. With this conceptual model, we now include dynamics of the ablation and accumulation of ice, to form a three-dimensional system that partitions the regions of the Earth latitudinally into an accumulation zone, ablation zone, and ice-free zone. Motivated by the findings of Abe-Ouchi et al that the fast retreat of ice-sheets is due to an increased rate of ablation via the effects of delayed isostatic rebound, we incorporate a simple switching mechanism to the model which increases the rate of ablation during periods of glacial retreat. This forms a discontinuous system of the Earth's temperature and ice-volume in which we find a stable periodic orbit. This can be interpreted as a intrinsic cycling of the Earth's climate in the absence of Milankovitch forcing.

  16. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  17. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  18. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  19. Wind Magnetic Clouds for the Period 2013 - 2015: Model Fitting, Types, Associated Shock Waves, and Comparisons to Other Periods

    Science.gov (United States)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2018-04-01

    We give the results of parameter fitting of the magnetic clouds (MCs) observed by the Wind spacecraft for the three-year period 2013 to the end of 2015 (called the "Present" period) using the MC model of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990). The Present period is almost coincident with the solar maximum of the sunspot number, which has a broad peak starting in about 2012 and extending to almost 2015. There were 49 MCs identified in the Present period. The modeling gives MC quantities such as size, axial attitude, field handedness, axial magnetic-field strength, center time, and closest-approach vector. Derived quantities are also estimated, such as axial magnetic flux, axial current density, and total axial current. Quality estimates are assigned representing excellent, fair/good, and poor. We provide error estimates on the specific fit parameters for the individual MCs, where the poor cases are excluded. Model-fitting results that are based on the Present period are compared to the results of the full Wind mission from 1995 to the end of 2015 (Long-term period), and compared to the results of two other recent studies that encompassed the periods 2007 - 2009 and 2010 - 2012, inclusive. We see that during the Present period, the MCs are, on average, slightly slower, slightly weaker in axial magnetic field (by 8.7%), and larger in diameter (by 6.5%) than those in the Long-term period. However, in most respects, the MCs in the Present period are significantly closer in characteristics to those of the Long-term period than to those of the two recent three-year periods. However, the rate of occurrence of MCs for the Long-term period is 10.3 year^{-1}, whereas this rate for the Present period is 16.3 year^{-1}, similar to that of the period 2010 - 2012. Hence, the MC occurrence rate has increased appreciably in the last six years. MC Type (N-S, S-N, All N, All S, etc.) is assigned to each MC; there is an inordinately large percentage of All S

  20. Chenciner bubbles and torus break-up in a periodically forced delay differential equation

    Science.gov (United States)

    Keane, A.; Krauskopf, B.

    2018-06-01

    We study a generic model for the interaction of negative delayed feedback and periodic forcing that was first introduced by Ghil et al (2008 Nonlinear Process. Geophys. 15 417–33) in the context of the El Niño Southern Oscillation climate system. This model takes the form of a delay differential equation and has been shown in previous work to be capable of producing complicated dynamics, which is organised by resonances between the external forcing and dynamics induced by feedback. For certain parameter values, we observe in simulations the sudden disappearance of (two-frequency dynamics on) tori. This can be explained by the folding of invariant tori and their associated resonance tongues. It is known that two smooth tori cannot simply meet and merge; they must actually break up in complicated bifurcation scenarios that are organised within so-called resonance bubbles first studied by Chenciner. We identify and analyse such a Chenciner bubble in order to understand the dynamics at folds of tori. We conduct a bifurcation analysis of the Chenciner bubble by means of continuation software and dedicated simulations, whereby some bifurcations involve tori and are detected in appropriate two-dimensional projections associated with Poincaré sections. We find close agreement between the observed bifurcation structure in the Chenciner bubble and a previously suggested theoretical picture. As far as we are aware, this is the first time the bifurcation structure associated with a Chenciner bubble has been analysed in a delay differential equation and, in fact, for a flow rather than an explicit map. Following our analysis, we briefly discuss the possible role of folding tori and Chenciner bubbles in the context of tipping.

  1. An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific

    Science.gov (United States)

    Eriksen, Charles C.; Richman, James G.

    1988-01-01

    Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.

  2. Relativistic reversal of the ponderomotive force in a standing laser wave

    International Nuclear Information System (INIS)

    Pokrovsky, A.L.; Kaplan, A.E.

    2005-01-01

    Effect of relativistic reversal of the ponderomotive force (PF), reported earlier for a collinear configuration of electron and laser standing wave [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett., 95, 053601 (2005)], is studied here theoretically for various types of polarizations of the laser beam. We demonstrated that the collinear configuration, in which the laser wave is linearly polarized with electric field E-vector parallel to the initial electron momentum p-vector 0 , is the optimal configuration for the relativistic reversal. In that case, the transverse PF reverses its direction when the incident momentum is p 0 =mc. The reversal effect vanishes in the cases of circular and linear with E-vector perpendicular p-vector 0 polarizations. We have discovered, however, that the counter-rotating circularly polarized standing waves develop attraction and repulsion areas along the axis of laser, in the laser field whose intensity is homogeneous in that axis, i.e., has no field gradient

  3. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  4. Baroclinic wave configurations evolution at European scale in the period 1948-2013

    Science.gov (United States)

    Carbunaru, Daniel; Burcea, Sorin; Carbunaru, Felicia

    2016-04-01

    The main aim of the study was to investigate the dynamic characteristics of synoptic configurations at European scale and especially in south-eastern part of Europe for the period 1948-2013. Using the empirical orthogonal functions analysis, simultaneously applied to daily average geopotential field at different pressure levels (200 hPa, 300 hPa, 500 hPa and 850 hPa) during warm (April-September) and cold (October-March) seasons, on a synoptic spatial domain centered on Europe (-27.5o lon V to 45o lon E and 32.5o lat N to 72.5o lat N), the main mode of oscillation characteristic to vertical shift of mean baroclinic waves was obtained. The analysis independently applied on 66 years showed that the first eigenvectors in warms periods describe about 60% of the data and in cold season 40% of the data for each year. In comparison secondary eigenvectors describe up to 20% and 10% of the data. Thus, the analysis was focused on the complex evolution of the first eigenvector in 66 years, during the summer period. On average, this eigenvector describes a small vertical phase shift in the west part of the domain and a large one in the eastern part. Because the spatial extent of the considered synoptic domain incorporates in the west part AMO (Atlantic Multidecadal Oscillation) and NAO (North Atlantic Oscillation) oscillations, and in the north part being sensitive to AO (Arctic Oscillation) oscillation, these three oscillations were considered as modulating dynamic factors at hemispherical scale. The preliminary results show that in the summer seasons AMO and NAO oscillations modulated vertical phase shift of baroclinic wave in the west of the area (Northwestern Europe), and the relationship between AO and NAO oscillations modulated vertical phase shift in the southeast area (Southeast Europe). Second, it was shown the way in which this vertical phase shift modulates the overall behavior of cyclonic activity, particularly in Southeastern Europe. This work has been developed

  5. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    Science.gov (United States)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Elgarayhi, A.; Kassem, A. I.

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  6. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2016-01-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are det......The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band......, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures...

  7. Foldover, quasi-periodicity, spin-wave instabilities in ultra-thin films subject to RF fields

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)]. E-mail: mdaquino@unina.it; Bertotti, G. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Serpico, C. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States); Bonin, R. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Guida, G. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)

    2007-09-15

    We study magnetization dynamics in a uniaxial ultra-thin ferromagnetic disk subject to spatially uniform microwave external fields. The rotational invariance of the system is such that the only admissible spatially uniform steady states are periodic (P-modes) and quasi-periodic (Q-modes) modes. The stability of P-modes versus spatially uniform and nonuniform perturbations is studied by using spin-wave analysis and the instability diagram for all possible P-modes is computed. The predictions of the spin-wave analysis are compared with micromagnetic simulations.

  8. Generalized Bilinear Differential Operators, Binary Bell Polynomials, and Exact Periodic Wave Solution of Boiti-Leon-Manna-Pempinelli Equation

    Directory of Open Access Journals (Sweden)

    Huanhe Dong

    2014-01-01

    Full Text Available We introduce how to obtain the bilinear form and the exact periodic wave solutions of a class of (2+1-dimensional nonlinear integrable differential equations directly and quickly with the help of the generalized Dp-operators, binary Bell polynomials, and a general Riemann theta function in terms of the Hirota method. As applications, we solve the periodic wave solution of BLMP equation and it can be reduced to soliton solution via asymptotic analysis when the value of p is 5.

  9. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  10. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    Science.gov (United States)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  11. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  12. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Dental work force strategies during a period of change and uncertainty.

    Science.gov (United States)

    Brown, L J

    2001-12-01

    Both supply and demand influence the ability of the dental work force to adequately and efficiently provide dental care to a U.S. population growing in size and diversity. Major changes are occurring on both sides of the dental care market. Among factors shaping the demand for dental care are changing disease patterns, shifting population demographics, the extent and features of third-party payment, and growth of the economy and the population. The capacity of the dental work force to provide care is influenced by enhancements of productivity and numbers of dental health personnel, as well as their demographic and practice characteristics. The full impact of these changes is difficult to predict. The dentist-to-population ratio does not reflect all the factors that must be considered to develop an effective dental work force policy. Nationally, the dental work force is likely to be adequate for the next several years, but regional work force imbalances appear to exist and may get worse. Against this backdrop of change and uncertainty, future dental work force strategies should strive for short-term responsiveness while avoiding long-term inflexibility. Trends in the work force must be continually monitored. Thorough analysis is required, and action should be taken when necessary.

  14. Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine method

    International Nuclear Information System (INIS)

    Yusufoglu, E.; Bekir, A.; Alp, M.

    2008-01-01

    In this paper, we establish exact solutions for nonlinear evolution equations. The sine-cosine method is used to construct periodic and solitary wave solutions of the Kawahara and modified Kawahara equations. These solutions may be important of significance for the explanation of some practical physical problems

  15. Capability of simultaneous Rayleigh LiDAR and O2 airglow measurements in exploring the short period wave characteristics

    Science.gov (United States)

    Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan

    We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.

  16. Surfing the big WAVE: Insights into the role of WAVE3 as a driving force in cancer progression and metastasis.

    Science.gov (United States)

    Sossey-Alaoui, Khalid

    2013-04-01

    WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Sterl, S.H.; Li, H.M.; Zhong, J.Q.

    2016-01-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ(t) and thermal amplitude δ(t) of the large-scale circulation (LSC) are

  18. Exploration of deep S-wave velocity structure using microtremor array technique to estimate long-period ground motion

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Higashi, Sadanori; Sato, Kiyotaka

    2007-01-01

    In this study, microtremor array measurements were conducted at 9 sites in the Niigata plain to explore deep S-wave velocity structures for estimation of long-period earthquake ground motion. The 1D S-wave velocity profiles in the Niigata plain are characterized by 5 layers with S-wave velocities of 0.4, 0.8, 1.5, 2.1 and 3.0 km/s, respectively. The depth to the basement layer is deeper in the Niigata port area located at the Japan sea side of the Niigata plain. In this area, the basement depth is about 4.8 km around the Seirou town and about 4.1 km around the Niigata city, respectively. These features about the basement depth in the Niigata plain are consistent with the previous surveys. In order to verify the profiles derived from microtremor array exploration, we estimate the group velocities of Love wave for four propagation paths of long-period earthquake ground motion during Niigata-ken tyuetsu earthquake by multiple filter technique, which were compared with the theoretical ones calculated from the derived profiles. As a result, it was confirmed that the group velocities from the derived profiles were in good agreement with the ones from long-period earthquake ground motion records during Niigata-ken tyuetsu earthquake. Furthermore, we applied the estimation method of design basis earthquake input for seismically isolated nuclear power facilities by using normal mode solution to estimate long-period earthquake ground motion during Niigata-ken tyuetsu earthquake. As a result, it was demonstrated that the applicability of the above method for the estimation of long-period earthquake ground motion were improved by using the derived 1D S-wave velocity profile. (author)

  19. On nonlinear changes of the reflection coefficient of the fast wave at LH frequencies due to ponderomotive forces

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1991-09-01

    The nonlinear changes of the reflection coefficient R of fast waves launched by waveguide arrays may be significant even for power densities S in the range of 3 or 4 kW/cm 2 . For the input parameters chosen in the computations, the effects of ponderomotive forces lead to an increase in plasma density in front of the grill , whereas for the slow wave the plasma density always decreases with growing S. For small plasma density in front of the grill, ponderomotive forces thus lead to the decrease of R, whereas for high plasma densities R grows with growing power density S. The heating of the edge plasma by the wave tends to weaken these changes. (Z.S.) 6 figs., 17 refs

  20. Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Chen Lidi

    2005-01-01

    In this paper, an idealized, piecewise linear system is presented to model the vibration of gear transmission systems. Periodic motions in a generalized, piecewise linear oscillator with perfectly plastic impacts are predicted analytically. The analytical predictions of periodic motion are based on the mapping structures, and the generic mappings based on the discontinuous boundaries are developed. This method for the analytical prediction of the periodic motions in non-smooth dynamic systems can give all possible periodic motions based on the adequate mapping structures. The stability and bifurcation conditions for specified periodic motions are obtained. The periodic motions and grazing motion are demonstrated. This model is applicable to prediction of periodic motion in nonlinear dynamics of gear transmission systems

  1. The Anticipation of the ENSO: What Resonantly Forced Baroclinic Waves Can Teach Us (Part II

    Directory of Open Access Journals (Sweden)

    Jean-Louis Pinault

    2018-06-01

    Full Text Available The purpose of the paper is to take advantage of recent work on the study of resonantly forced baroclinic waves in the tropical Pacific to significantly reduce systematic and random forecasting errors resulting from the current statistical models intended to predict El Niño. Their major drawback is that sea surface temperature (SST, which is widely used, is very difficult to decipher because of the extreme complexity of exchanges at the ocean-atmosphere interface. In contrast, El Niño-Southern Oscillation (ENSO forecasting can be performed between 7 and 8 months in advance precisely and very simply from (1 the subsurface water temperature at particular locations and (2 the time lag of the events (their expected date of occurrence compared to a regular 4-year cycle. Discrimination of precursor signals from objective criteria prevents the anticipation of wrong events, as occurred in 2012 and 2014. The amplitude of the events, their date of appearance, as well as their potential impact on the involved regions are estimated. Three types of ENSO events characterize their climate impact according to whether they are (1 unlagged or weakly lagged, (2 strongly lagged, or (3 out of phase with the annual quasi-stationary wave (QSW (Central Pacific El Niño events. This substantial progress is based on the analysis of baroclinic QSWs in the tropical basin and the resulting genesis of ENSO events. As for cold events, the amplification of La Niña can be seen a few months before the maturation phase of an El Niño event, as occurred in 1998 and 2016.

  2. Simultaneous observations of quasi-periodic ELF/VLF wave emissions and electron precipitation by DEMETER satellite: A case study

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Pasmanik, D. L.; Demekhov, A. G.; Santolík, Ondřej; Parrot, M.; Titova, E. E.

    2013-01-01

    Roč. 118, č. 7 (2013), s. 4523-4533 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/11/2280; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : quasi-periodic ELF/VLF emission s in the magnetosphere * wave-particle interactions * demeter spacecraft measurements * whistler-mode waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50179/abstract

  3. On the second-order homogenization of wave motion in periodic media and the sound of a chessboard

    Science.gov (United States)

    Wautier, Antoine; Guzina, Bojan B.

    2015-05-01

    The goal of this study is to better understand the mathematical structure and ramifications of the second-order homogenization of low-frequency wave motion in periodic solids. To this end, multiple-scales asymptotic approach is applied to the scalar wave equation (describing anti-plane shear motion) in one and two spatial dimensions. In contrast to previous studies where the second-order homogenization has lead to the introduction of a single fourth-order derivative in the governing equation, present investigation demonstrates that such (asymptotic) approach results in a family of field equations uniting spatial, temporal, and mixed fourth-order derivatives - that jointly control incipient wave dispersion. Given the consequent freedom in selecting the affiliated lengthscale parameters, the notion of an optimal asymptotic model is next considered in a one-dimensional setting via its ability to capture the salient features of wave propagation within the first Brillouin zone, including the onset and magnitude of the phononic band gap. In the context of two-dimensional wave propagation, on the other hand, the asymptotic analysis is first established in a general setting, exposing the constant shear modulus as sufficient condition under which the second-order approximation of a bi-periodic elastic solid is both isotropic and limited to even-order derivatives. On adopting a chessboard-like periodic structure (with contrasts in both modulus and mass density) as a testbed for in-depth analytical treatment, it is next shown that the second-order approximation of germane wave motion is governed by a family fourth-order differential equations that: (i) entail exclusively even-order derivatives and homogenization coefficients that depend explicitly on the contrast in mass density; (ii) describe anisotropic wave dispersion characterized by the "sin4 θ +cos4 θ" term, and (iii) include the asymptotic model for a square lattice of circular inclusions as degenerate case. For

  4. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    Science.gov (United States)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  5. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.

    Science.gov (United States)

    Dolnik, Milos; Bánsági, Tamás; Ansari, Sama; Valent, Ivan; Epstein, Irving R

    2011-07-21

    We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns with spatial periodic forcing. Wavenumber-locked stripe patterns are the typical resonant structures that labyrinthine patterns exhibit in response to one-dimensional forcing by illumination when images of stripes are projected on a working medium. Our experimental results reveal that segmented oblique, hexagonal and rectangular patterns can also be obtained. However, these two-dimensional resonant structures only develop in a relatively narrow range of forcing parameters, where the unforced stripe pattern is in close proximity to the domain of hexagonal patterns. Numerical simulations based on a model that incorporates the forcing by illumination using an additive term reproduce well the experimental observations. These findings confirm that additive one-dimensional forcing can generate a two-dimensional resonant response. However, such a response is considerably less robust than the effect of multiplicative forcing. This journal is © the Owner Societies 2011

  6. Long-lived force patterns and deformation waves at repulsive epithelial boundaries

    Science.gov (United States)

    Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier

    2017-10-01

    For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

  7. Spiral-wave dynamics in ionically realistic mathematical models for human ventricular tissue: the effects of periodic deformation.

    Science.gov (United States)

    Nayak, Alok R; Pandit, Rahul

    2014-01-01

    We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity θ and the wavelength λ of a plane wave; we show that PD leads to a periodic, spatial modulation of θ and a temporally periodic modulation of λ; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.

  8. Modelling of deformation process for the layer of elastoviscoplastic media under surface action of periodic force of arbitrary type

    Science.gov (United States)

    Mikheyev, V. V.; Saveliev, S. V.

    2018-01-01

    Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.

  9. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    Science.gov (United States)

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  10. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    Directory of Open Access Journals (Sweden)

    Xiaochun Song

    2017-11-01

    Full Text Available Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs, two shear (SH waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  11. Effect of the sub-threshold periodic current forcing on the regularity and the synchronization of neuronal spiking activity

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet; Agaoglu, Sukriye Nihal

    2006-01-01

    We first investigate the amplitude effect of the subthreshold periodic forcing on the regularity of the spiking events by using the coefficient of variation of interspike intervals. We show that the resonance effect in the coefficient of variation, which is dependent on the driving frequency for larger membrane patch sizes, disappears when the amplitude of the subthreshold forcing is decreased. Then, we demonstrate that the timings of the spiking events of a noisy and periodically driven neuron concentrate on a specific phase of the stimulus. We also show that increasing the intensity of the noise causes the phase probability density of the spiking events to get smaller values, and eliminates differences in the phase locking behavior of the neuron for different patch sizes

  12. On the Painleve integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Guiqiong; Li Zhibin

    2005-01-01

    It is proven that generalized coupled higher-order nonlinear Schroedinger equations possess the Painleve property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal's simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests

  13. Experimental and numerical statistics of storm wave forces on a monopile in uni- and multidirectional seas

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Ghadirian, Amin

    2017-01-01

    the straight multiples of the peak frequency. Further, the higher harmonics of the multidirectional wave spectra contain less energy. Both effects can be explained by the second order wave theory. Finally, the computed wave kinematics are used to investigate the dynamic response of an offshore wind turbine...

  14. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  15. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  16. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  18. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  19. Spiral-Wave Dynamics in Ionically Realistic MathematicalModels for Human Ventricular Tissue: The Effects of PeriodicDeformation

    Directory of Open Access Journals (Sweden)

    Alok Ranjan Nayak

    2014-06-01

    Full Text Available We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a ten-Tusscher and Panfilov (the TP06 model and (b ten-Tusscher, Noble, Noble, and Panfilov (theTNNP04 model. We first consider simulations in cable-type domains, in which we calculate the conduction velocity $CV$ andthe wavelength $lambda$ of a plane wave; we show that PD leads to a periodic, spatial modulation of $CV$ and a temporallyperiodic modulation of $lambda$; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety ofspatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS wave, a spiral-turbulence (ST state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses on square and rectangular control meshes. We suggest specific experiments that can test the results of our simulations.

  20. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  1. Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Science.gov (United States)

    Tan, Shurun

    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to

  2. Clam wave energy converter. Report for period July 1979 to December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    Work by the Sea Energy Asociates Ltd - Lanchester Polytechnic Wave Energy Group on the Clam device since the April 1979 feasibility study has shown it to be a well developed and viable device capable of extracting energy economically from sea waves. The experience of the team includes mooring, structural and device tests from 1/100th to 1/10th scale in narrow and wide tanks, Draycote Reservoir and on Loch Ness. Theoretical and semi-empirical modelling has become increasingly important. Recently a test rig to assess a 1/10th scale power take off system, based on a Wells turbine, has been completed. The philosophy of the project team has been to aim for a device as simple as possible, with a small number of moving parts in order to minimise maintenance problems.

  3. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  4. Solitary waves under the competition of linear and nonlinear periodic potentials

    International Nuclear Information System (INIS)

    Rapti, Z; Kevrekidis, P G; Konotop, V V; Jones, C K R T

    2007-01-01

    In this paper, we study the competition of the linear and nonlinear lattices and its effects on the stability and dynamics of bright solitary waves. We consider both lattices in a perturbative framework, whereby the technique of Hamiltonian perturbation theory can be used to obtain information about the existence of solutions, and the same approach, as well as eigenvalue count considerations, can be used to obtain detailed conditions about their linear stability. We find that the analytical results are in very good agreement with our numerical findings and can also be used to predict features of the dynamical evolution of such solutions. A particularly interesting result of these considerations is the existence of a tunable cancellation effect between the linear and nonlinear lattices that allows for increased mobility of the solitary wave

  5. Observational evidence from direct current measurements for propagation of remotely forced waves on the shelf off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Amol, P.; Shankar, D.; Aparna, S.G.; Shenoi, S.S.C.; Fernando, V.; Shetye, S.R.; Mukherjee, A.; Agarvadekar, Y.; Khalap, S.; Satelkar, N.P.

    local response that masks the effect of remote forcing. Forced wave calculations using CTW theory show that remote forcing of the WICC is present at all times, but is most striking when the local winds are weak, as during March–April. The CTW...

  6. Observations of wave activity in the ionosphere over South Africa in geomagnetically quiet and disturbed periods

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Tereza; Mošna, Zbyšek; Burešová, Dalia; Chum, Jaroslav; McKinnell, L.- A.; Athieno, R.

    2012-01-01

    Roč. 50, č. 2 (2012), s. 182-195 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GAP209/12/2440 Institutional support: RVO:68378289 Keywords : Waves in the ionosphere * HF Doppler type sounding * Geomagnetic activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.183, year: 2012 http://www.sciencedirect.com/science/article/pii/S0273117712002591

  7. Nucleon-deuteron breakup quantities calculated with separable interactions including tensor forces and P-wave interactions

    International Nuclear Information System (INIS)

    Bruinsma, J.; Wageningen, R. van

    1977-01-01

    Nucleon-deuteron breakup calculations at a nucleon bombarding energy of 22.7 MeV have been performed with separable interactions including a tensor force and P-wave interactions. Differential cross sections and a selection of polarization quantities have been computed for special regions of the phase space. The influence of a tensor force and P-wave interactions on the differential cross section is of the order of 20%. Large discrepancies between theory and experiment occur for the vector analyzing powers, both for the kinematically complete and for the incomplete situation. The calculations show that there are kinematical situations in which the differential cross sections and the tensor analyzing powers are sufficiently large to make measurements feasible. (Auth.)

  8. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    Science.gov (United States)

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Periodic health examination, 1995 update: 1. Screening for human papillomavirus infection in asymptomatic women. Canadian Task Force on the Periodic Health Examination.

    Science.gov (United States)

    Johnson, K

    1995-02-15

    To develop recommendations for practising physicians on the advisability of screening for human papillomavirus (HPV) infection in asymptomatic women. Visual inspection, Papanicolaou testing, colposcopy or cervicography, use of HPV group-specific antigen, DNA hybridization, dot blot technique, Southern blot technique or polymerase chain reaction followed by physical or chemical therapeutic intervention. Evidence for a link between HPV infection and cervical cancer, sensitivity and specificity of HPV screening techniques, effectiveness of treatments for HPV infection, and the social and economic costs incurred by screening. MEDLINE was searched for articles published between January 1966 to June 1993 with the use of the key words "papillomavirus," "cervix neoplasms," "mass screening," "prospective studies," "prevalence," "sensitivity," "specificity," "human" and "female." Proven cost-effective screening techniques that could lead to decreased morbidity or mortality were given a high value. The evidence-based methods and values of the Canadian Task Force on the Periodic Health Examination were used. Potential benefits are to prevent cervical cancer and eliminate HPV infection. Potential harmful effects include the creation of an unnecessary burden on the health care system and the labelling of otherwise healthy people as patients with a sexually transmitted disease for which therapy is generally ineffective. Potential costs would include expense of testing, increased use of colposcopy and treatment. There is fair evidence to exclude HPV screening (beyond Papanicolaou testing for cervical cancer) in asymptomatic women (grade D recommendation). The report was reviewed by members of the task force and three external reviewers who were selected to represent different areas of expertise. These guidelines were developed and endorsed by the task force, which is funded by Health Canada and the National Health Research and Development Program. The principal author (K.J.) was

  10. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  11. Smooth, cusped, and discontinuous traveling waves in the periodic fluid resonance equation

    Science.gov (United States)

    Kruse, Matthew Thomas

    The principal motivation for this dissertation is to extend the study of small amplitude high frequency wave propagation in solutions for hyperbolic conservation laws begun by A. Majda and R. Rosales in 1984. It was then that Majda and Rosales obtained equations governing the leading order wave amplitudes of resonantly interacting weakly nonlinear high frequency wave trains in the compressible Euler equations. The equations were obtained through systematic application of multiple scales and result in a pair of nonlinear acoustic wave equations coupled through a convolution operator. The extended solutions satisfy a pair of inviscid Burgers' equations coupled via a spatial convolution operator. Since then, many mathematicians have used this technique to extend the time validity of solutions to systems of equations other than the Euler equations and have arrived at similar nonlinear non-local systems. This work attempts to look at some of the basic features of the linear and nonlinear coupled and decoupled non- local equations, offering some analytic solutions and numerical insight into the phenomena associated with these equations. We do so by examining a single non-local linear equation, and then a single equation coupling a Burgers' nonlinearity with a linear convolution operator. The linear case is completely solvable. Analytic solutions are provided along with numerical results showing the fundamental properties of the linear non- local equations. In the nonlinear case some analytic solutions, including steady state profiles and traveling wave solutions, are provided along with a battery of numerical simulations. Evidence indicates the existence of attractors for solutions of the single equation with a single mode kernel. Provided resonant interaction takes place, the profile of the attractor is uniquely dependent on the kernel alone. Hamiltonian equations are obtained for both the linear and nonlinear equations with the condition that the resonant kernel must

  12. Painleve analysis for a forced Korteveg-de Vries equation arisen in fluid dynamics of internal solitary waves

    Directory of Open Access Journals (Sweden)

    Zhang Sheng

    2015-01-01

    Full Text Available In this paper, Painleve analysis is used to test the Painleve integrability of a forced variable-coefficient extended Korteveg-de Vries equation which can describe the weakly-non-linear long internal solitary waves in the fluid with continuous stratification on density. The obtained results show that the equation is integrable under certain conditions. By virtue of the truncated Painleve expansion, a pair of new exact solutions to the equation is obtained.

  13. Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit

    Science.gov (United States)

    Santillán, Moisés

    We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.

  14. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    Science.gov (United States)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  15. The features of inclined force acting on 1D homogeneous elastic lumped line and corresponding modernisation of the wave equations

    CERN Document Server

    Karavashkin, S B

    2002-01-01

    We analyse the exact analytical solutions for 1D elastic lumped lines under action of an external force inclined to the line axis. We show that in this case an inclined wave being described by an implicit function propagates along the line. We extend this conclusion both to free vibrations and to distributed lines. We prove that the presented solution in the form of implicit function is a generalizing for the wave equation. When taken into consideration exactly, the dynamical processes pattern leads to the conclusion that the divergence of a vector in dynamical fields is not zero but proportional to the scalar product of the partial derivative of the given vector with respect to time into the wave propagation direction vector.

  16. Stationary rotary force waves on the liquid-air core interface of a swirl atomizer

    Science.gov (United States)

    Chinn, J. J.; Cooper, D.; Yule, A. J.; Nasr, G. G.

    2016-10-01

    A one-dimensional wave equation, applicable to the waves on the surface of the air-core of a swirl atomizer is derived analytically, by analogy to the similar one-dimensional wave equation derivation for shallow-water gravity waves. In addition an analogy to the flow of water over a weir is used to produce an analytical derivation of the flow over the lip of the outlet of a swirl atomizer using the principle of maximum flow. The principle of maximum flow is substantiated by reference to continuity of the discharge in the direction of streaming. For shallow-water gravity waves, the phase velocity is the same expression as for the critical velocity over the weir. Similarly, in the present work, the wave phase velocity on the surface of the air-core is shown to be the same expression as for the critical velocity for the flow at the outlet. In addition, this wave phase velocity is shown to be the square root of the product of the radial acceleration and the liquid thickness, as analogous with the wave phase velocity for shallow water gravity waves, which is the square root of the product of the acceleration due to gravity and the water depth. The work revisits the weirs and flumes work of Binnie et al. but using a different methodology. The results corroborate with the work of Binnie. High speed video, Laser Doppler Anemometry and deflected laser beam experimental work has been carried out on an oversize Perspex (Plexiglas) swirl atomizer. Three distinctive types of waves were detected: helical striations, low amplitude random ripples and low frequency stationary waves. It is the latter wave type that is considered further in this article. The experimentally observed waves appear to be stationary upon the axially moving flow. The mathematical analysis allows for the possibility of a negative value for the phase velocity expression. Therefore the critical velocity and the wave phase velocity do indeed lead to stationary waves in the atomizer. A quantitative comparison

  17. Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling

    OpenAIRE

    Veltz, Romain; Sejnowski, Terrence J.

    2015-01-01

    International audience; Inhibition stabilized networks (ISNs) are neural architectures with strong positive feedback among pyramidal neurons balanced by strong negative feedback from in-hibitory interneurons, a circuit element found in the hippocampus and the primary vi-sual cortex. In their working regime, ISNs produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In order to understand the proper-ties of interconnected ISNs, we investigated periodic ...

  18. Global paths of time-periodic solutions of the Benjamin-Ono equation connecting arbitrary traveling waves

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, David M.; Wilkening, Jon

    2008-12-11

    We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the other side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one additional bifurcation parameter. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their algebraic structure.

  19. Progress in Computational Physics (PiCP) Volume 1 Wave Propagation in Periodic Media

    CERN Document Server

    Ehrhardt, Matthias

    2010-01-01

    Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computational perspectives of current physical challenges, new numerical techniques for the solution of mathematical wave equations and describes certain real-world applications. With the help of powerful computers and sophisticated methods of numerical mathematics it is possible to simulate many ultramodern devices, e.g. photonic crystals structures,

  20. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Directory of Open Access Journals (Sweden)

    Jiu-Jiu Chen

    2017-11-01

    Full Text Available The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  1. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  2. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  3. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    International Nuclear Information System (INIS)

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-01-01

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T eff ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  4. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Dufour, P.; Bergeron, P. [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Hermes, J. J., E-mail: alexg@nhn.ou.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  5. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  6. Numerical simulation of forced convection over a periodic series of rectangular cavities at low Prandtl number

    International Nuclear Information System (INIS)

    Stalio, E.; Angeli, D.; Barozzi, G.S.

    2011-01-01

    Highlights: → We investigate laminar convective heat transfer in channels with periodic cavities. → Heat transfer rates are lower than for the flat channel. → This is ascribed to the steady circulating motion within the cavities. → Diffusion in a low Prandtl number fluid can locally overcome the heat transfer decrease due to advection only for isothermal boundary conditions. - Abstract: Convective heat transfer in laminar conditions is studied numerically for a Prandtl number Pr = 0.025, representative of liquid lead-bismuth eutectic (LBE). The geometry investigated is a channel with a periodic series of shallow cavities. Finite-volume simulations are carried out on structured orthogonal curvilinear grids, for ten values of the Reynolds number based on the hydraulic diameter between Re m = 24.9 and Re m = 2260. Flow separation and reattachment are observed also at very low Reynolds numbers and wall friction is found to be remarkably unequal at the two walls. In almost all cases investigated, heat transfer rates are smaller than the corresponding flat channel values. Low-Prandtl number heat transfer rates, investigated by comparison with Pr = 0.71 results, are large only for uniform wall temperature and very low Re. Influence of flow separation on local heat transfer rates is discussed, together with the effect of different thermal boundary conditions. Dependency of heat transfer performance on the cavity geometry is also considered.

  7. Wave Forces on Transition Pieces for Bucket Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nezhentseva, Anastasia; Andersen, Thomas Lykke; Andersen, Lars Vabbersgaard

    to a bucket foundation (suction caisson) located at 35 m water depth in the North Sea. Several models of the TPs (wedge-shaped steel flange-reinforced shear panels, conical and doubly curved with or without cutaways) are tested in a wave flume and compared with respect to wave loading. Due to a larger size...

  8. The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes

    Science.gov (United States)

    Grinevich, P. G.; Santini, P. M.

    2018-04-01

    The focusing Nonlinear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, the main physical mechanism for the generation of rogue (anomalous) waves (RWs) in Nature. In this paper we investigate the x-periodic Cauchy problem for NLS for a generic periodic initial perturbation of the unstable constant background solution, in the case of N = 1 , 2 unstable modes. We use matched asymptotic expansion techniques to show that the solution of this problem describes an exact deterministic alternate recurrence of linear and nonlinear stages of MI, and that the nonlinear RW stages are described by the N-breather solution of Akhmediev type, whose parameters, different at each RW appearance, are always given in terms of the initial data through elementary functions. This paper is motivated by a preceding work of the authors in which a different approach, the finite gap method, was used to investigate periodic Cauchy problems giving rise to RW recurrence.

  9. Effects of Sparring Load on Reaction Speed and Punch Force During the Precompetition and Competition Periods in Boxing.

    Science.gov (United States)

    Hukkanen, Esa; Häkkinen, Keijo

    2017-06-01

    Seven, male, national-level boxers (age, 20.3 ± 2.7 years; height, 1.80 ± 0.06 m; mass, 73.8 ± 11.1 kg) participated in this study to investigate the effects of sparring on reaction time and punch force of straight punches measured during the precompetition and competition periods. Heart rate and blood lactate concentrations were also monitored. Sparring load was chosen in accordance with the current rules: 3 × 3-minute bouts with 1-minute break in between. Reaction time of rear straight lengthened (p boxing-specific and explosive strength training.

  10. Gap eigenmode of radially localized helicon waves in a periodic structure

    International Nuclear Information System (INIS)

    Chang, L; Hole, M J; Breizman, B N

    2013-01-01

    An ElectroMagnetic Solver (Chen et al 2006 Phys. Plasmas 13 123507) is employed to model a spectral gap and a gap eigenmode in a periodic structure in the whistler frequency range. A radially localized helicon mode (Breizman and Arefiev 2000 Phys. Rev. Lett. 84 3863) is considered. We demonstrate that the computed gap frequency and gap width agree well with a theoretical analysis, and find a discrete eigenmode inside the gap by introducing a defect to the system's periodicity. The axial wavelength of the gap eigenmode is close to twice the system's periodicity, which is consistent with Bragg's law. Such an eigenmode could be excited by energetic electrons, similar to the excitation of toroidal Alfvén eigenmodes by energetic ions in tokamaks. Experimental identification of this mode is conceivable on the large plasma device (Gekelman et al 1991 Rev. Sci. Instrum. 62 2875). (paper)

  11. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    Science.gov (United States)

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  12. Analytical tools for solitons and periodic waves corresponding to phonons on Lennard-Jones lattices in helical proteins

    DEFF Research Database (Denmark)

    D'ovidio, Francesco; Bohr, Henrik; Lindgård, Per-Anker

    2005-01-01

    We study the propagation of solitons along the hydrogen bonds of an alpha helix. Modeling the hydrogen and peptide bonds with Lennard-Jones potentials, we show that the solitons can appear spontaneously and have long lifetimes. Remarkably, even if no explicit solution is known for the Lennard-Jones...... potential, the solitons can be characterized analytically with a good quantitative agreement using formulas for a Toda potential with parameters fitted to the Lennard-Jones potential. We also discuss and show the robustness of the family of periodic solutions called cnoidal waves, corresponding to phonons...

  13. Long-wavelength instability of periodic flows and whistler waves in electron magnetohydrodynamics

    International Nuclear Information System (INIS)

    Lakhin, V.P.; Levchenko, V.D.

    2003-01-01

    Stability analysis of periodic flows and whistlers with respect to long-wavelength perturbations within the framework of dissipative electron magnetohydrodynamics (EMHD) based on two-scale asymptotic expansion technique is presented. Several types of flows are considered: two-dimensional Kolmogorov-like flow, helical flow, and anisotropic helical flow. It is shown hat the destabilizing effect on the long-wavelength perturbations is due to either the negative resistivity effect related to flow anisotropy or α-like effect to its micro helicity. The criteria of the corresponding instabilities are obtained. Numerical simulations of EMHD equations with the initial conditions corresponding to two types of periodic flows are presented. (author)

  14. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  15. The Dynamics of a Periodically Forced Cortical Microcircuit, With an Application to Schizophrenia

    Science.gov (United States)

    Vierling-Claassen, Dorea; Kopell, Nancy

    2009-01-01

    Synchronous neural activity in the brain in the gamma and beta frequency bands (50-70 Hz)is thought to be important for sensory processing and is altered in schizophrenia. In a previous study, gamma/beta click-train auditory stimuli were used to probe cortical oscillatory activity in control and schizophrenic subjects. We found that control subjects exhibited preferential 40 Hz responses to both 20 and 40 Hz stimulations, while schizophrenic subjects had enhanced 20 Hz responses to the same stimuli [D. Vierling-Claassen, P. Siekmeier, S. Stufflebeam, and N. Kopell, J. Neurophysiol., 99 (2008), p. 2656]. High-dimensional computational network models constructed previously, which were based on evidence of altered inhibition in schizophrenia, numerically generated the entrainment behaviors observed experimentally. However, questions regarding the dynamic origin of model behaviors remained. It was not clear that the 20 Hz response to 40 Hz drive in the schizophrenic network was robust to parameter changes, which would be necessary for the predicted mechanism to explain data from a heterogeneous subject population. In the schizophrenic network we observed 30 Hz drive responses with a frequency component below 30 Hz, for which no analogue appeared in experimental data, and wondered if these were dynamically distinct from the modeled 20 Hz response to 40 Hz drive. We also wished to explore the role of background noise in model behavior. To address these questions, we consider a system of two mutually coupled oscillators representative of neural cells, driven periodically in the gamma/beta frequency band. We show that there is a one-parameter family of discontinuous discrete maps, whose dynamics clarifies issues of robustness, classifies entrainment patterns, and provides insight into the role of excitatory noise.

  16. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    Science.gov (United States)

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  17. Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries

    Science.gov (United States)

    Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao

    2018-06-01

    Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.

  18. Forced solitary Rossby waves under the influence of slowly varying topography with time

    International Nuclear Information System (INIS)

    Yang Hong-Wei; Yin Bao-Shu; Yang De-Zhou; Xu Zhen-Hua

    2011-01-01

    By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg—de Vries (KdV)—Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves. (general)

  19. Lamb wave band gaps in one-dimensional radial phononic crystal plates with periodic double-sided corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2015-11-01

    In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.

  20. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: A study based on satellite altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Hithin, N.K.; SanilKumar, V.; Shanas, P.R.

    The variability of annual maximum and annual mean significant wave height (SWH) and wave period in the Central Arabian Sea is studied using satellite altimeter data from 1996 to 2012 at a deep water (water depth~3500 m) buoy location (15.5°N, 69...

  1. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin, E-mail: laming@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States)

    2017-08-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  2. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    International Nuclear Information System (INIS)

    Laming, J. Martin

    2017-01-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  3. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  4. Development of Discrimination, Detection, and Location Capabilities in Central and Southern Asia Using Middle-Period Surface Waves Recorded by a Regional Array

    National Research Council Canada - National Science Library

    Levshin, Anatoli

    1997-01-01

    .... We present group velocity maps from 10 s to 40 s period for both Rayleigh and Love waves. Broadband waveform data from about 600 events from 1988 - 1995 recorded at 83 individual stations from several global and regional networks...

  5. Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere

    International Nuclear Information System (INIS)

    Stark, B. A.; Musielak, Z. E.; Suess, S. T.

    1996-01-01

    A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating

  6. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

    International Nuclear Information System (INIS)

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2002-01-01

    For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied

  7. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  8. Wave Propagation in a coaxial waveguide with a periodic slot array

    CERN Document Server

    Alesini, D; Garganese, C; Migliorati, M; Palumbo, L

    2001-01-01

    In this paper we present the numerical and experimental study of the electromagnetic elds that propagate in a coaxial waveguide having periodic slots in the inner conductor. The aim of the work is to estimate the e ects of the holes on the phase velocity of the eld propagating in structures like the LHC liner, and to which extent these elds can be considered synchronous with the generating beam. To this end we have performed a numerical analysis by using the MAFIA simulation code, and have obtained, for a given geometry, the ampli- tude of the slowing down of the phase velocity due to the presence of the slot array. We have then performed a set of measurements of this e ect on a simple coaxial resonator, measuring the shift of the resonance frequencies produced by the slots. This shift, related to the phase velocity, has been compared with the results obtained with the simulations.

  9. Modeling waves forced by a drop bouncing on a vibrating bath

    Science.gov (United States)

    Turton, Sam; Rosales, Ruben; Bush, John

    2017-11-01

    We study the wavefield generated by a droplet bouncing on a bath of silicon oil undergoing vertical oscillations. Such droplets may bounce indefinitely below the Faraday threshold, and in certain parameter regimes destabilize into a walking state in which they are propelled by their own wavefield. While previous theoretical models have rationalize the behavior of single droplets, difficulties have arisen in rationalizing the behavior of multi-droplet systems. We here present a refined wave model that allows us to do so. In particular, we give a detailed account of the spatio-temporal decay of the waves, in addition to the couping between the wave amplitude and modulations in the droplet's vertical dynamics. Our analytic model is compared with the results of direct numerical simulations and experiments. We gratefully acknowledge the financial support of the NSF.

  10. Partial wave expansions for arbitrary spin and the role of non-central forces

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1976-09-01

    The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and nondiagonal in orbital angular momentum can be distinguished in observables

  11. Partial wave expansions for arbitrary spin and the role of non-central forces

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1977-01-01

    The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and non-diagonal in orbital angular momentum can be distinguished in observables. (Auth.)

  12. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    Science.gov (United States)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  13. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  14. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  15. Inverse problem for a two-level medium with an inhomgeneously broadened transition in the field of a periodic wave

    International Nuclear Information System (INIS)

    Zabolotskii, A.A.

    1995-01-01

    The inverse problem is considered for a spectral problem, which is formally equivalent to a system of Bloch equations for an inhomogeneously broadened transition interacting with the electric field. Two cases are considered to demonstrate that, for any given frequency interval, one can determine the pulse of the shape which corresponds to the interaction with only this frequency interval. In the general case, the pulse shape is described by a nonlinear periodic wave. The first example is the resonance interaction of light with a gas of two-level atoms. The second example is interaction of a linearly polarized light with the molecular J-J transition, where J much-gt 1. In the latter case, the role of inhomogeneous broadening belongs to the frequency shift induced by the applied magnetic field. 10 refs

  16. Periodic health examination, 1996 update: 1. Prenatal screening for and diagnosis of Down syndrome. Canadian Task Force on the Periodic Health Examination.

    Science.gov (United States)

    Dick, P T

    1996-02-15

    To make recommendations to physicians providing prenatal care on (1) whether prenatal screening for and diagnosis of Down syndrome (DS) is advisable and (2) alternative screening and diagnosis manoeuvres. "Triple-marker" screening of maternal serum levels of alpha-fetoprotein, human chorionic gonadotropin and unconjugated estriol; fetal ultrasonographic examination; amniocentesis; and chorionic villus sampling (CVS). Accuracy of detection of DS in fetuses, and risks to the mother, including psychologic distress, and to the fetus from the screening and diagnostic interventions. A MEDLINE search for relevant articles published from Jan. 1, 1966, to Mar. 31, 1994, with the use of MeSH terms "Down syndrome," "prenatal diagnosis," "screening," "prevention," "amniocentesis," "chorionic villus sampling," "ultrasonography," "anxiety," "depression" and "psychological stress" and a manual search of bibliographies, recent issues of key journals and Current Contents. The evidence-based methods and values of the Canadian Task Force on the Periodic Health Examination were used. A high value was placed on providing pregnant women with the opportunity to determine whether they are carrying a fetus with DS and to make choices concerning the termination of the pregnancy. The economic issues involved are complex and were not considered. Triple-marker screening identifies an estimated 58% of fetuses with DS, but it has an estimated rate of true-positive results of 0.1% and of false-positive results of 3.7% (given a risk cut-off of one chance in 190 of DS). These rates vary with maternal age and the risk cut-off chosen. Women with a known risk of having a fetus with DS (e.g., those who have had a previous child with DS) may benefit from a reduction in anxiety after confirmation that their fetus does not have DS. Screening allows women at low risk of having a child with DS to detect fetuses with the syndrome, but may cause psychologic distress if there is a false-positive screening test

  17. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave

    Czech Academy of Sciences Publication Activity Database

    Zemánek, Pavel; Jonáš, Alexandr; Liška, M.

    2002-01-01

    Roč. 19, č. 5 (2002), s. 1025 - 1034 ISSN 0740-3232 R&D Projects: GA ČR GA101/98/P106; GA ČR GA202/99/0959; GA ČR GA101/00/0974 Institutional research plan: CEZ:AV0Z2065902 Keywords : Gaussian tanding wave Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.688, year: 2002

  18. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    Science.gov (United States)

    Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H

    2013-01-01

    Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward

  19. All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Adhikari, R; Ajith, P; Allen, B; Allen, G; Amin, R S; Anderson, S B; Anderson, W G; Arain, M A; Araya, M; Armandula, H; Armor, P; Aso, Y; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barsotti, L; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Behnke, B; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Bodiya, T P; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A F; Brown, D A; Brunet, G; Bullington, A; Buonanno, A; Burmeister, O; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K C; Cao, J; Cardenas, L; Cardoso, V; Caride, S; Casebolt, T; Castaldi, G; Caudill, S; Cavaglià, M; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Clark, D; Clark, J; Clayton, J H; Cokelaer, T; Conte, R; Cook, D; Corbitt, T R C; Cornish, N; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cutler, R M; Danzmann, K; Daudert, B; Davies, G; Debra, D; Degallaix, J; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drever, R W P; Duke, I; Dumas, J-C; Dwyer, J; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Franzen, A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fyffe, M; Garofoli, J A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Gouaty, R; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harstad, E D; Haughian, E; Hayama, K; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Holt, K; Hosken, D; Hough, J; Huttner, S H; Ingram, D; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kamat, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Ya; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kocsis, B; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Kozhevatov, I; Krishnan, B; Kwee, P; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Lormand, M; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mageswaran, M; Mailand, K; Mandel, I; Mandic, V; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Martin, I W; Martin, R M; Marx, J N; Mason, K; Matichard, F; Matone, L; Matzner, R; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D; McKenzie, K; Mehmet, M; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C J; Meyers, D; Miller, A; Miller, J; Minelli, J; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohanty, S D; Moreno, G; Mors, K; Mossavi, K; Mowlowry, C; Mueller, G; Muhammad, D; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Newton, G; Nishizawa, A; Numata, K; Ochsner, E; O'Dell, J; Ogin, G; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pan, Y; Pankow, C; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Perraca, A; Petrie, T; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Postiglione, F; Principe, M; Prix, R; Quetschke, V; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Rainer, N; Rakhmanov, M; Ramsunder, M; Reed, T; Rehbein, H; Reid, S; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rogan, A M; Rollins, J; Romano, J D; Romie, J H; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Sancho de la Jordana, L; Sandberg, V; Sannibale, V; Santamaria, L; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schediwy, S W; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, L C; Strain, K A; Stuver, A; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Ugolini, D; Urbanek, K; Vahlbruch, H; Van Den Broeck, C; van der Sluys, M V; van Veggel, A A; Vass, S; Vaulin, R; Vecchio, A; Veitch, J D; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zur Mühlen, H; Zweizig, J

    2009-03-20

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1100 Hz and with the frequency's time derivative in the range -5 x 10{-9}-0 Hz s{-1}. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10{-24} are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 10{-6}, the search is sensitive to distances as great as 500 pc.

  20. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  1. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  2. Long Period Seismic Waves

    Science.gov (United States)

    1976-08-01

    Geoffsica, TPHM. No. 5 , p. 161. Vargas, Freddy (To he published in 1976) 1 .-DTSCRP1TNACTON DE EVENTO«; NATHDALE«; Y ARTTFTCT ALES. 2.- CALCULO DEL...seismic risk, bv de - fininn relative weiqht of maximum MM intensity at a pivon distance ponulation density, area feolupy and attenuation of intensity wit...Population densitv, area peolopv and attenuation of intensitv with distance, is presented topether with a map anplvinp theorv to Bo- livia. ^«^a

  3. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

    International Nuclear Information System (INIS)

    Shukla, Anant Kant; Ramamohan, T R; Srinivas, S

    2014-01-01

    In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)

  4. On forced oscillations of a simple model for a novel wave energy converter

    KAUST Repository

    Orazov, Bayram

    2011-05-11

    The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.

  5. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy.

    Science.gov (United States)

    Passeri, D; Dong, C; Angeloni, L; Pantanella, F; Natalizi, T; Berlutti, F; Marianecci, C; Ciccarello, F; Rossi, M

    2014-01-01

    The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers. © 2013 Elsevier B.V. All rights reserved.

  6. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    Science.gov (United States)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  7. Changes in nearshore waves during the active sea/land breeze period off Vengurla, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Singh, J.

    zones with use of mechanized boats and this area is also extensively used for tourism-related activities. Therefore, it is important to un- derstand the changes in wave parameters during the active land/sea breeze system in the nearshore region... and interaction. The wave computations in Delft3D-wave are stable due to the fully implicit schemes that have been implemented. In the Delft3D-wave module, the governing equation of wave transformation is based on action balance spectrum, in ge- ographical space...

  8. P-wave indices in patients with pulmonary emphysema: do P-terminal force and interatrial block have confounding effects?

    Directory of Open Access Journals (Sweden)

    Chhabra L

    2013-05-01

    Full Text Available Lovely Chhabra,1 Vinod K Chaubey,1 Chandrasekhar Kothagundla,1 Rishi Bajaj,1 Sudesh Kaul,1 David H Spodick2 1Department of Internal Medicine, 2Department of Cardiovascular Diseases, University of Massachusetts Medical School, Worcester, MA, USA Introduction: Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60° serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf, amplitude of initial positive component of P-waves in V1 (i-PV1, and interatrial block (IAB have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods: Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (- P wave in V1 or a biphasic (+/- P wave in V1. Results: s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03. s-Ptf also significantly correlated with IAB (P = 0.001; however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23. There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047; however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36. Conclusion: We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by

  9. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    Science.gov (United States)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  10. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  11. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  12. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  13. Analytical results on the periodically driven damped pendulum. Application to sliding charge-density waves and Josephson junctions

    International Nuclear Information System (INIS)

    Azbel, M.Y.; Bak, P.

    1984-01-01

    The differential equation epsilonphi-dieresis+phi-dot-(1/2)α sin(2phi) = I+summation/sub n/ = -infinity/sup infinity/A/sub n/delta(t-t/sub n/) describing the periodically driven damped pendulum is analyzed in the strong damping limit epsilon<<1, using first-order perturbation theory. The equation may represent the motion of a sliding charge-density wave (CDW) in ac plus dc electric fields, and the resistively shunted Josephson junction driven by dc and microwave currents. When the torque I exceeds a critical value the pendulum rotates with a frequency ω. For infinite damping, or zero mass (epsilon = 0), the equation can be transformed to the Schroedinger equation of the Kronig-Penney model. When A/sub n/ is random the pendulum exhibits chaotic motion. In the regular case A/sub n/ = A the frequency ω is a smooth function of the parameters, so there are no phase-locked subharmonic plateaus in the ω(I) curve, or the I-V characteristics for the CDW or Josephson-junction systems. For small nonzero epsilon the return map expressing the phase phi(t/sub n/+1) as a function of the phase phi(t/sub n/) is a one-dimensional circle map. Applying known analytical results for the circle map one finds narrow subharmonic plateaus at all rational frequencies, in agreement with experiments on CDW systems

  14. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  15. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  16. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  17. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing

    Science.gov (United States)

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian

    2015-01-01

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833

  18. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  19. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  20. A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yong Chen; Qi Wang

    2005-01-01

    In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons and Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained

  1. Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force

    Science.gov (United States)

    Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.

    2018-01-01

    We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.

  2. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna; Xiong, Yuan; Moeck, Jonas P.; Chung, Suk-Ho; Roberts, William L.; Cha, Min

    2016-01-01

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  3. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna

    2016-06-23

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  4. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    Science.gov (United States)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).

  5. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010?2012

    OpenAIRE

    Bishop-Williams, Katherine E.; Berke, Olaf; Pearl, David L.; Hand, Karen; Kelton, David F.

    2015-01-01

    Background Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 ?C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat st...

  6. Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions

    Science.gov (United States)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2016-02-01

    Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.

  7. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.

    Science.gov (United States)

    Johansen, Kristoffer; Song, Jae Hee; Prentice, Paul

    2018-05-01

    We describe the design, construction and characterisation of a broadband passive cavitation detector, with the specific aim of detecting low frequency components of periodic shock waves, with high sensitivity. A finite element model is used to guide selection of matching and backing layers for the shock wave passive cavitation detector (swPCD), and the performance is evaluated against a commercially available device. Validation of the model, and characterisation of the swPCD is achieved through experimental detection of laser-plasma bubble collapse shock waves. The final swPCD design is 20 dB more sensitive to the subharmonic component, from acoustic cavitation driven at 220 kHz, than the comparable commercial device. This work may be significant for monitoring cavitation in medical applications, where sensitive detection is critical, and higher frequencies are more readily absorbed by tissue. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Fatigue and extreme wave loads on bottom fixed offshore wind turbines. Effects from fully nonlinear wave forcing on the structural dynamics

    DEFF Research Database (Denmark)

    Schløer, Signe

    2013-01-01

    wind farms. As wind farms are being moved further offshore the wave loads become larger compared to the wind loads and therefore more important in the design of offshore wind turbines. Yet, the water depth is still only shallow or intermediate where the waves should be described by nonlinear irregular...

  9. Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    Science.gov (United States)

    2015-09-30

    Low-Level Profiles, Pressure, Temperature, Humidity Rawinsonde (Kite, Tethered Balloon , Unmanned Aerial vehicle) Wave Characteristics, Wind wave and...Thermistor, Ship intake, Manual Bucket Tropospheric Profiles, 4/day – Pressure, Temperature, Humidity, Wind Vector Rawinsonde (Weather Balloon

  10. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training.

    NARCIS (Netherlands)

    Weerdesteijn, V.G.M.; Groen, B.E.; Swigchem, R. van; Duysens, J.E.J.

    2008-01-01

    Hip fractures are among the most serious consequences of falls in the elderly. Martial arts (MA) fall techniques may reduce hip fracture risk, as they are known to reduce hip impact forces by approximately 30% in experienced fallers. The purpose of this study was to investigate whether hip impact

  11. First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform

    International Nuclear Information System (INIS)

    Abbott, B.; Adhikari, R.; Agresti, J.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.

    2005-01-01

    We perform a wide parameter-space search for continuous gravitational waves over the whole sky and over a large range of values of the frequency and the first spin-down parameter. Our search method is based on the Hough transform, which is a semicoherent, computationally efficient, and robust pattern recognition technique. We apply this technique to data from the second science run of the LIGO detectors and our final results are all-sky upper limits on the strength of gravitational waves emitted by unknown isolated spinning neutron stars on a set of narrow frequency bands in the range 200-400 Hz. The best upper limit on the gravitational-wave strain amplitude that we obtain in this frequency range is 4.43x10 -23

  12. Predictions of Resuspension of Highway Detention Pond Deposits in Interrain Event Periods due to Wind-Induced Currents and Waves

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2009-01-01

    -shear stress induced by the return flow near the bed and waves both generated by the wind. Wind statistics for 30 years have been applied for prediction of the annual discharged bulk of suspended solids and associated pollutants; fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo......(a,h)anthracene and indeno(1,2,3-cd)pyrene (PAHs) and the heavy metals of cadmium, chromium, copper, lead, nickel, and zinc. The current and wave-generated bed-shear stresses entail a discharged bulk of pollutants corresponding to approximately 10% of the annual accumulation of pollutants in the present pond due...

  13. Field observation of morpho-dynamic processes during storms at a Pacific beach, Japan: role of long-period waves in storm-induced berm erosion.

    Science.gov (United States)

    Mizuguchi, Masaru; Seki, Katsumi

    2015-01-01

    Many ultrasonic wave gages were placed with a small spacing across the swash zone to monitor either sand level or water level. Continuous monitoring conducted for a few years enabled the collection of data on the change in wave properties as well as swash-zone profiles. Data sets including two cases of large-scale berm erosion were analyzed. The results showed that 1) shoreline erosion started when high waves with significant power in long-period (1 to 2 min.) waves reached the top of a well-developed berm with the help of rising tide; 2) the beach in the swash zone was eroded with higher elevation being more depressed, while the bottom elevation just outside the swash zone remained almost unchanged; and 3) erosion stopped in a few hours after the berm was completely eroded or the swash-zone slope became uniformly mild. These findings strongly suggest that long waves play a dominant role in the swash-zone dynamics associated with these erosional events.

  14. A high-order perturbation of surfaces method for scattering of linear waves by periodic multiply layered gratings in two and three dimensions

    Science.gov (United States)

    Hong, Youngjoon; Nicholls, David P.

    2017-09-01

    The capability to rapidly and robustly simulate the scattering of linear waves by periodic, multiply layered media in two and three dimensions is crucial in many engineering applications. In this regard, we present a High-Order Perturbation of Surfaces method for linear wave scattering in a multiply layered periodic medium to find an accurate numerical solution of the governing Helmholtz equations. For this we truncate the bi-infinite computational domain to a finite one with artificial boundaries, above and below the structure, and enforce transparent boundary conditions there via Dirichlet-Neumann Operators. This is followed by a Transformed Field Expansion resulting in a Fourier collocation, Legendre-Galerkin, Taylor series method for solving the problem in a transformed set of coordinates. Assorted numerical simulations display the spectral convergence of the proposed algorithm.

  15. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    Science.gov (United States)

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  16. Superfluidity breakdown of periodic matter waves in quasi-one-dimensional annular traps via resonant scattering with moving defects

    Czech Academy of Sciences Publication Activity Database

    Yulin, A.V.; Bludov, Yu.V.; Konotop, V. V.; Kuzmiak, Vladimír; Salerno, M.

    2013-01-01

    Roč. 87, č. 3 (2013) ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Superfluidity * Bose-Einstein condensates * Matter Waves Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.991, year: 2013

  17. Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints

    Directory of Open Access Journals (Sweden)

    Paula B. Garcia-Rosa

    2015-12-01

    Full Text Available The energy cost for producing electricity via wave energy converters (WECs is still not competitive with other renewable energy sources, especially wind energy. It is well known that energy maximising control plays an important role to improve the performance of WECs, allowing the energy conversion to be performed as economically as possible. The control strategies are usually subsequently employed on a device that was designed and optimized in the absence of control for the prevailing sea conditions in a particular location. If an optimal unconstrained control strategy, such as pseudo-spectral optimal control (PSOC, is adopted, an overall optimized system can be obtained no matter whether the control design is incorporated at the geometry optimization stage or not. Nonetheless, strategies, such as latching control (LC, must be incorporated at the optimization design stage of the WEC geometry if an overall optimized system is to be realised. In this paper, the impact of device motion and force constraints in the design of control-informed optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify the connection between the control and the optimal device design. Intuitively, one might expect that if the constraints are very tight, the optimal device shape is the same regardless of incorporating or not the constrained control at the geometry optimization stage. However, this paper tests the hypothesis that the imposition of constraints will limit the control influence on the optimal device shape. PSOC, LC and passive control (PC are considered in this study. In addition, constrained versions of LC and PC are presented.

  18. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung [Severance Children' s Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  19. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    International Nuclear Information System (INIS)

    Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung

    2014-01-01

    To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  20. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses.

    Science.gov (United States)

    Wojcinski, Sebastian; Brandhorst, Kathrin; Sadigh, Gelareh; Hillemanns, Peter; Degenhardt, Friedrich

    2013-01-01

    Acoustic radiation force impulse imaging (ARFI) with Virtual Touch™ tissue quantification (VTTQ) enables the determination of shear wave velocity (SWV) in meters per second (m/s). The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign) and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s) (P breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s"). Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s) (P < 0.001). The best diagnostic accuracy (75.9%) was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved.

  1. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  2. Effect of Difference-frequency Forces on the Dynamics of a Semi-submersible Type FVAWT in Misaligned Wave-wind Condition

    DEFF Research Database (Denmark)

    Wang, Kai; Cheng, Zhengshun; Moan, Torgeir

    2015-01-01

    With increasing interests in the development of offshore floating vertical axis wind turbines (FVAWTs), a large amount of studies on the FVAWTs have been conducted. This paper focuses on evaluating the effect of second-order difference-frequency force on the dynamics of a 5 MW FVAWT in misaligned...... wave-wind condition. The studied FVAWT is composed of a 5 MW Darrieus rotor, a semi-submersible floater and a catenary mooring system. Fully coupled nonlinear time domain simulations were conducted using the state-of-art code Simo- Riflex-DMS. Several misaligned wave-wind conditions were selected...... to investigate the global dynamic responses of the FVAWT, such as the platform motions, structural responses and mooring line tensions. It has been found that the wave-wind misalignment does not significantly affect the mean values of the global responses since the global responses are primarily wind...

  3. T20 measurements for 1H(d searrow,γ)3He and the P-wave component of the nucleon-nucleon force

    International Nuclear Information System (INIS)

    Schmid, G.J.; Chasteler, R.M.; Weller, H.R.; Tilley, D.R.; Fonseca, A.C.; Lehman, D.R.

    1996-01-01

    Measurements of T 20 (θ lab =90 degree) for 1 H(d searrow,γ) 3 He, in the energy range E d (lab)=12.7 endash 19.8 MeV, have been compared with the results of new exact three-body Faddeev calculations using the Paris and Bonn-A nucleon-nucleon (NN) potentials. This comparison indicates a strong sensitivity of the T 20 observable to the p-wave part of the NN force. In particular, we find that the 3 P 1 component of the P-wave interaction is the dominant P-wave term affecting the value of T 20 (θ lab =90 degree) at these energies. This contrasts with the results of polarized N-D scattering studies where the 3 P 0 component has been found to dominate. cents 1996 The American Physical Society

  4. Structure and relative importance of ponderomotive forces and current drive generated by converted fast waves in pre-heated low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K

    2003-05-12

    The generation in low aspect ratio tokamaks (LARTs) of ponderomotive forces and non-inductive current drive by the resonant fast wave-plasma interaction with mode conversion to kinetic Alfven waves (KAWs) and subsequent deposition, mainly by resonant electron Landau damping, is considered. The calculations follow the rigorous solution of the full wave equations upon using a dielectric tensor operator consisting of (i) a parallel conductivity including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped electrons and passing electrons+ions and (ii) perpendicular components provided by the resistive two-fluid model equations. The fast waves are launched by an antenna located on the low field side and extending {+-}45 deg. about the equatorial plane. A parametric investigation of the structure and importance of the various components of the ponderomotive forces and current drive generated in START-like plasmas is carried out and their suitability for supplementing the required non-rf toroidal equilibrium current is demonstrated.

  5. Physical and Biological Controls on the Carbonate Chemistry of Coral Reef Waters: Effects of Metabolism, Wave Forcing, Sea Level, and Geomorphology

    Science.gov (United States)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411

  6. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology.

    Science.gov (United States)

    Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).

  7. Forecasting of resonances vibration equipment with elastic waves coolant and with the external periodic loads on NPP with WWER

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Zaporozhets, M.V.; Fedorov, A.I.

    2015-01-01

    Forecasting are carried out for external loads in relation to the main circulation circuit - dynamic loads caused by the rotation of the MCP, dynamic loads caused by the earthquake, dynamic loads caused by damage to the MCP in the earthquake. A comparison of the response spectrum of one of the variants of the base of the NPP, with the frequency vibration of the primary circuit equipment for NPP with WWER-1000 and self-frequency of elastic waves in the fluid. Analysis of the comparison results shows that the frequency of vibration of the main equipment of the reactor plant and elastic waves are in the frequency band in the spectrum response corresponding to the maximum amplitude of the seismic action [ru

  8. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  9. P wave analysis indices in young healthy men: data from the digital electrocardiographic study in Hellenic Air Force Servicemen (DEHAS).

    Science.gov (United States)

    Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E

    2003-01-01

    P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.

  10. Simultaneous analysis of Grazing Incidence X-Ray reflectivity and X-ray standing waves from periodic multilayer systems

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, Igor Alexandrovich; Chuyev, M.A.; Seregin, A.Y.; Pashayev, E.M.; Louis, Eric; van de Kruijs, Robbert Wilhelmus Elisabeth; Bijkerk, Frederik; Kovalchuk, M.V.

    2012-01-01

    Structural analysis of periodic multilayers with small period thickness (~4 nm) is a challenging task, especially when thicknesses of intermixed interfaces become comparable to individual layer thicknesses. In general, angular dependent X-ray fluorescence measurements, excited by the X-ray standing

  11. The influence of fully nonlinear wave forces on aero-hydro-elastic calculations of monopile wind turbines

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2016-01-01

    The response of an offshore wind turbine tower and its monopile foundation has been investigated when exposed to linear and fully nonlinear irregular waves on four different water depths. The investigation focuses on the consequences of including full nonlinearity in the wave kinematics. The line...

  12. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  13. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses

    Directory of Open Access Journals (Sweden)

    Wojcinski S

    2013-09-01

    Full Text Available Sebastian Wojcinski,1 Kathrin Brandhorst,2 Gelareh Sadigh,3 Peter Hillemanns,1 Friedrich Degenhardt2 1Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany; 2Department of Obstetrics and Gynecology, Franziskus Hospital, Bielefeld, Germany; 3Department of Radiology, Emory University, Atlanta, GA, USA Abstract: Acoustic radiation force impulse imaging (ARFI with Virtual Touch™ tissue quantification (VTTQ enables the determination of shear wave velocity (SWV in meters per second (m/s. The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s (P < 0.001. Focusing on breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s". Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s (P < 0.001. The best diagnostic accuracy (75.9% was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved. Keywords: ARFI VTTQ, elastography, ultrasound, breast imaging

  14. Waves in the seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J

    , steep nonsymmetric cnoidal waves, solitons and random waves. They have different properties too. Any wave form has a wave period (T), wave height (H) and speed (C) which depends on T. Still another type of waves are breaking waves near a coast...

  15. Creutzfeldt-Jakob Disease-Like Periodic Sharp Wave Complexes in Voltage-Gated Potassium Channel-Complex Antibodies Encephalitis: A Case Report.

    Science.gov (United States)

    Savard, Martin; Irani, Sarosh R; Guillemette, Annie; Gosselin-Lefebvre, Stéphanie; Geschwind, Michael; Jansen, Gerard H; Gould, Peter V; Laforce, Robert

    2016-02-01

    Voltage-gated potassium channel-complex antibodies (VGKC-cAbs) encephalitis, a treatable autoantibody encephalopathy, has been previously reported to clinically mimic sporadic Creutzfeldt-Jakob disease. Among available clinical clues to distinguish them, periodic sharp wave complexes, a typical finding in sporadic Creutzfeldt-Jakob disease, have never been reported in association with VGKC-cAbs encephalitis. A 76-year-old man was transferred to a tertiary neurology center with a clinical history of 6-month weight loss, cognitive disturbance, and nonspecific generalized weakness. He had two seizures the month before transfer and then evolved to severe encephalopathy, requiring mechanical ventilation. Periodic sharp wave complexes every 1 to 2 seconds over slowed background were found on EEG, and MRI showed cerebellar and bifrontal cortical T2/FLAIR/DWI hypersignal without restricted diffusion on ADC mapping. Pancorporal positron emission tomography scan was negative. An immunotherapy trial did not improve the patient condition. Therefore, he died after life support withdrawal. Brain autopsy revealed mononuclear neocortex infiltrate without significant spongiosis, and the anti-VGKC test showed a seropositivity of 336 pmol/L (normal, 0-31), 3 month after the patient deceased. This is the first reported case of VGKC-cAbs encephalitis associated with periodic sharp wave complexes on EEG, which further confuse the differential diagnosis with sporadic Creutzfeldt-Jakob disease. However, the cortical DWI hypersignal without restriction seems to remain a way to discriminate these two entities appropriately, when present. These clues are of paramount importance because VGKC-cAbs encephalitis is a treatable disease.

  16. Linear diffraction of light waves on periodically poled domain structures in lithium niobate crystals: collinear, isotropic, and anisotropic geometries

    International Nuclear Information System (INIS)

    Shandarov, S M; Mandel, A E; Akylbaev, T M; Borodin, M V; Savchenkov, E N; Smirnov, S V; Akhmatkhanov, A R; Shur, V Ya

    2017-01-01

    The possible variants of experimental observation of light diffraction on periodically poled domain structures (PPDS) in the lithium niobate crystal with 180-degree domain Y-walls are considered. We experimentally investigated isotropic and anisotropic diffraction of coherent light (λ = 655nm) on the PPDS with spatial period Λ = 8.79 μm produced by poling method in a LiNbO 3 : 5% MgO crystal. The central wavelength of irradiation experiencing a collinear diffraction on these PPDS is estimated as λ c = 455 nm. (paper)

  17. Efficient generation of continuous-wave yellow-orange light using sum-frequency in periodically poled KTP

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter

    We present highly efficient sum-frequency generation between two CW 1064 and 1342 nm laser lines of two Nd:YVO4 lasers using periodically poled KTP. This is an all solid-state light source in the yellow-orange spectral range....

  18. New periodic and soliton wave solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system

    International Nuclear Information System (INIS)

    Borhanifar, A.; Kabir, M.M.; Maryam Vahdat, L.

    2009-01-01

    In this paper, the Exp-function method is used to obtain generalized solitonary solutions and periodic solutions of the Generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

  19. Long-period ground motions at near-regional distances caused by the PL wave from, inland earthquakes: Observation and numerical simulation of the 2004 Mid-Niigata, Japan, Mw6.6 earthquake

    Science.gov (United States)

    Furumura, T.; Kennett, B. L. N.

    2017-12-01

    We examine the development of large, long-period ground motions at near-regional distances (D=50-200 km) generated by the PL wave from large, shallow inland earthquakes, based on the analysis of strong motion records and finite-difference method (FDM) simulations of seismic wave propagation. PL wave can be represented as leaking modes of the crustal waveguide and are commonly observed at regional distances between 300 to 1000 km as a dispersed, long-period signal with a dominant period of about 20 s. However, observations of recent earthquakes at the dense K-NET and KiK-net strong motion networks in Japan demonstrate the dominance of the PL wave at near-regional (D=50-200 km) distances as, e.g., for the 2004 Mid Niigata, Japan, earthquake (Mw6.6; h=13 km). The observed PL wave signal between P and S wave shows a large, dispersed wave packet with dominant period of about T=4-10 s with amplitude almost comparable to or larger than the later arrival of the S and surface waves. Thus, the early arrivals of the long-period PL wave immediately after P wave can enhance resonance with large-scale constructions such as high-rise buildings and large oil-storage tanks etc. with potential for disaster. Such strong effects often occurred during the 2004 Mid Niigata earthquakes and other large earthquakes which occurred nearby the Kanto (Tokyo) basin. FDM simulation of seismic wave propagation employing realistic 3-D sedimentary structure models demonstrates the process by which the PL wave develops at near-regional distances from shallow, crustal earthquakes by constructive interference of the P wave in the long-period band. The amplitude of the PL wave is very sensitive to low-velocity structure in the near-surface. Lowered velocities help to develop large SV-to-P conversion and weaken the P-to-SV conversion at the free surface. Both effects enhance the multiple P reflections in the crustal waveguide and prevent the leakage of seismic energy into the mantle. However, a very

  20. Nuclear forces with Δ excitations up to next-to-next-to-leading order. Part I: Peripheral nucleon-nucleon waves

    International Nuclear Information System (INIS)

    Krebs, H.; Epelbaum, E.; Meissner, U.G.

    2007-01-01

    We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Δ degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading-order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading-order corrections are dominant in most partial waves considered. (orig.)

  1. The dental specialties related articles published in Medical Journal Armed Forces India from 2000 to 2014 over a 15-year period.

    Science.gov (United States)

    Shamim, Thorakkal

    2015-12-01

    There is a paucity of information about the dental specialties related articles published in the Medical Journal Armed Forces India (MJAFI). This study aimed to audit the dental specialities related articles published in MJAFI from 2000 to 2014 over a 15-year period. Bibliometric analysis of sixty issues of MJAFI from 2000 to 2014 were performed using web-based search. The articles published were analyzed for type of article and topic of individual dental specialities. The articles published were also evaluated to identify whether the study was an Armed Forces Medical Research Committee Project or funded research project or not. Out of the total 118 published articles related to dental specialities, original articles (55) and case reports (49) contribute the major share. The highest number of dental specialities related articles was published in 2009 with 16, followed by 2010 with 13 and 2011 with 11 and the least published year was 2013 with 3 articles. Regarding the relationship with dental specialities, the maximum number of published articles were related to oral medicine and radiology (56) followed by oral and maxillofacial surgery (49), orthodontics (23) and prosthodontics (17). Among the articles published in MJAFI, maxillofacial injuries (11) followed by orthodontic treatment (8) and craniofacial deformities (8) form the major attraction of the contributors. Among the 118 dental speciality articles, there were only 4 Armed Forces Medical Research Committee Project articles and 19 funded research project articles. An equal distribution of articles related to clinical dentistry and nonclinical dentistry is maintained for the MJAFI from 2000 to 2014 over a 15-year period.

  2. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  3. Wave Stresses in the Anvil Hammer Rods under Impact Including Ram Mass and Deformation Force of Forgings

    Directory of Open Access Journals (Sweden)

    V. M. Sinitskiy

    2016-01-01

    Full Text Available When operating the anvil hammers there occur impacts of die tooling and as a consequence, virtually instantaneous impact stops of motion of drop hammer parts. Such operating conditions come with accelerated failures of the anvil hammer rods because of emerging significant wave stresses. Engineering practice widely uses variation, difference, and integral methods to calculate wave stresses. However, to use them a researcher has to acquire certain skills, and the special programs should be available. The paper considers a method for estimating the wave stress changes in the anvil hammer rods, which is based on the wave equation of the Laplace transform. It presents a procedure for generating differential equations and their solution using the operator method. These equations describe the wave processes of strain and stress propagation in the anvil hammer rod under non-rigid impact with the compliance obstacle of the drop hammer parts. The work defines how the piston and rod mass and also the mechanical and geometric parameters of the rod influence on the stress level in the rod sealing of the hammer ram. Analysis of the results shows that the stresses in the rod sealing are proportional to the total amount of wave stresses caused by the rod and piston impact included in the total weight of the system. The piston influence on the stresses in the rod under impact is in direct proportion to the ratio of its mass to the mass of the rod. Geometric parameters of the rod and speed of drop parts before the impact influence on the stress value as well. It was found that if the time of impact is less than the time of the shock wave running in forward and backward direction, the impact with a compliance obstacle is equivalent to that of with a rigid obstacle, and the dependence of the wave stresses follows the Zhukovsky formula of direct pressure shock. The presented method of stress calculation can be successfully used to select the optimal mass and the rod

  4. Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magneto rheological dampers

    International Nuclear Information System (INIS)

    Sarrafan, Atabak; Zareh, Seiyed Hamid; Khayyat, Amir Ali Akbar; Zabihollah, Abolghassem

    2012-01-01

    Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feed forward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse dynamics model, and the forward dynamics model of the MR dampers, respectively. The most important characteristic of the proposed intelligent control strategy is its inherent robustness and its ability to handle the non-linear behavior of the system. Besides, no mathematical model needed to calculate forces produced by MR dampers. According to linearized Morison equation, wave-induced forces are determined. The performance of the proposed neuro-fuzzy control system is compared with that of a traditional semi-active control strategy, i.e., clipped optimal control system with LQG-target controller, through computer simulations, while the uncontrolled system response is used as the baseline. It is demonstrated that the design of proposed control system framework is more effective than that of the clipped optimal control scheme with LQG-target controller to reduce the vibration of offshore structure. Furthermore, the control strategy is very important for semi-active control

  5. Response to long-period seismic waves recorded by broadband seismometer and pore pressure sensor at IODP Site C0002, Nankai Trough

    Science.gov (United States)

    Kitada, K.; Araki, E.; Kimura, T.; Saffer, D. M.

    2013-12-01

    Long term in situ monitoring of seismic activity, slow slip event, and pore fluid behavior around mega earthquake zone is important for understanding the processes of earthquake generation and strain accumulation. In order to characterize the response to long-period seismic waves, we compared waveforms and hydroseismograms recorded by broadband seismometer and pore pressure transducers, respectively, which were installed at IODP Site C0002 in the Nankai Trough Kumano Basin. The borehole monitoring system sensor array at Site C0002 is designed to collect multiparameter observations covering a dynamic range of events, including local microearthquakes, low frequency earthquakes, and large-scale earthquakes similar to the Tonankai earthquake. The suite of sensors for the downhole portion of the observatory includes a broadband seismometer (CMG3TBD, Guralp Systems Ltd.) with sampling rate of 100Hz at the depth of 907mbsf, and four pressure ports connected to pressure gauges located at 948mbsf, 917mbsf, 766mbsf, and at the seafloor. The sampling rate of the data logger was set to 1Hz after successful connection to the DONET seafloor cable network for real-time monitoring on 24 Jan 2013. Since then, we processed 12 earthquakes between a moment magnitude of 6.5 to 8.3. In addition to the comparison of long-period surface waves waveform and pressure data, we compared the records with theoretical strain seismograms. The latter were calculated by normal mode summation using the earth model PREM of Dziewonski and Anderson (1981). A Butterworth bandpass filter was applied to the records with cut-off frequencies of 0.003 and 0.1 Hz. Our initial results indicate that the hydroseismograms correspond well with the vertical rather than the horizontal (radial and transverse) components in seismic data. The observed hydroseismogram have a good correlation with the predicted volumetric strain seismogram, especially for the Okhotsk (2013/05/24 14:17UT, Mw8.3, 632km depth), the Chishima

  6. Non-Linear Response to Periodic Forcing of Methane-Air Global and Detailed Kinetics in Continuous Stirred Tank Reactors Close to Extinction Conditions

    Directory of Open Access Journals (Sweden)

    Francesco Saverio Marra

    2015-09-01

    Full Text Available This paper focus on the behavior of a continuous stirred tank reactor (CSTR subject to perturbations of finite amplitude and frequency. Two main objectives are pursued: to determine the extinction line in the equivalence ratio (φ - residence time (τ plane, fixed the thermodynamic state conditions; and to characterize the response of the chemical system to periodic forcing of the residence time. Transient simulations of combustion of methane with air, using both global single-step and detailed chemical kinetic mechanisms, have been conducted and the corresponding asymptotic solutions analyzed. Results indicate very different dynamical behaviors, posing the issue of a proper choice of the kinetic scheme for the numerical study of combustion oscillations.

  7. THE EFFECT OF A TWISTED MAGNETIC FIELD ON THE PERIOD RATIO P{sub 1}/P{sub 2} OF NONAXISYMMETRIC MAGNETOHYDRODYNAMIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K. [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-10-01

    We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order of magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.

  8. Wavenumber locking and pattern formation in spatially forced systems

    International Nuclear Information System (INIS)

    Manor, Rotem; Meron, Ehud; Hagberg, Aric

    2009-01-01

    We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that produce stationary or traveling stripe patterns when unforced and apply forcing aligned with the stripes. Forcing at close to twice the pattern wavenumber selects, stabilizes, or creates resonant stripes locked at half the forcing wavenumber. If the mismatch between the forcing and pattern wavenumber is high we find that the pattern still locks but develops a wave vector component perpendicular to the forcing direction and forms rectangular and oblique patterns. When the unforced system supports traveling waves, resonant rectangular patterns remain stationary but oblique patterns travel in a direction orthogonal to the traveling waves.

  9. Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud

    International Nuclear Information System (INIS)

    Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut

    2008-01-01

    We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility

  10. Topographical effects on wave exciting forces on huge floating structure. 2; Ogata futaishiki kaiyo kozobutsu ni sayosuru haryoku ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y [Hiroshima University, Hiroshima (Japan); Okusu, M [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1997-12-31

    A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.

  11. Topographical effects on wave exciting forces on huge floating structure. 2; Ogata futaishiki kaiyo kozobutsu ni sayosuru haryoku ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y. [Hiroshima University, Hiroshima (Japan); Okusu, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-12-31

    A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.

  12. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  13. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    Science.gov (United States)

    Scully, Malcolm; Trowbridge, John; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter A.

    2018-01-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.

  14. Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization

    International Nuclear Information System (INIS)

    Braginsky, Vladimir B.; Gorodetsky, Mikhail L.; Khalili, Farid Ya.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Thorne, Kip S.

    2003-01-01

    It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if one filters the interferometer output appropriately. No additional noise arises from the test masses' initial quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these conclusions: (i) The interferometer output [the photon number flux N(t) entering the final photodetector] commutes with itself at different times in the Heisenberg picture, [N(t),N(t ' )]=0 and thus can be regarded as classical. (ii) This number flux is linear to high accuracy in the test-mass initial position and momentum operators x o and p o , and those operators influence the measured photon flux N(t) in manners that can easily be removed by filtering. For example, in most interferometers x o and p o appear in N(t) only at the test masses' ∼1 Hz pendular swinging frequency and their influence is removed when the output data are high-pass filtered to get rid of noise below ∼10 Hz. The test-mass operators x o and p o contained in the unfiltered output N(t) make a nonzero contribution to the commutator [N(t),N(t ' )]. That contribution is precisely canceled by a nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained in N(t). This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer's standard quantum limit from test-mass considerations, and independently from photon-noise considerations, and get identically the same result. These conclusions are all true for a far wider class of measurements than just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought experiments that

  15. Attenuation of short-period P, PcP, ScP, and pP waves in the earth's mantle

    International Nuclear Information System (INIS)

    Bock, G.; Clements, J.R.

    1982-01-01

    The parameter t* (ratio of body wave travel time to the average quality factor Q) was estimated under various assumptions of the nature of the earthquake sources for short-period P, PcP, and ScP phases originating from earthquakes in the Fiji-Tonga region and recorded at the Warramunga Seismic Array at Tennant Creek (Northern Territory, Australia). Spectral ratios were calculated for the amplitudes of PcP to P and of pP to P. The data reveal a laterally varying Q structure in the Fiji-Tonga region. The high-Q lithosphere descending beneath the Tonga Island arc is overlain above 350 km depth by a wedgelike zone of high attenuation with an average Q/sub α/ between 120 and 200 at short periods. The upper mantle farther to the west of the Tonga island arc is less attenuating, with Q/sub α/, between 370 and 560. Q/sub α/ is about 500 in the upper mantle on the oceanic side of the subduction zone. The t* estimates of this study are much smaller than estimates from the free oscillation model SL8. This can be partly explained by regional variations of Q in the upper mantle. If no lateral Q variations occur in the lower mantle, a frequency-dependent Q can make the PcP and ScP observations consistent with model SL8. Adopting the absorption band model to describe the frequency dependence of Q, the parameter tau 2 , the cut-off period of the high-frequency end of the absorption band, was determined. For different source models with finite corner frequencies, the average tau 2 for the mantle is between 0.01 and 0.10 s (corresponding to frequencies between 16 and 1.6 Hz) as derived from the PcP data, and between 0.06 and 0.12 s (2.7 and 1.3 Hz), as derived from the ScP data

  16. Numerical Simulations for Nonlinear Waves Interaction with Multiple Perforated Quasi-Ellipse Caissons

    Directory of Open Access Journals (Sweden)

    Xiaozhong Ren

    2015-01-01

    Full Text Available A three-dimensional numerical flume is developed to study cnoidal wave interaction with multiple arranged perforated quasi-ellipse caissons. The continuity equation and the Navier-Stokes equations are used as the governing equation, and the VOF method is adopted to capture the free surface elevation. The equations are discretized on staggered cells and then solved using a finite difference method. The generation and propagation of cnoidal waves in the numerical flume are tested first. And the ability of the present model to simulate interactions between waves and structures is verified by known experimental results. Then cnoidal waves with varying incident wave height and period are generated and interact with multiple quasi-ellipse caissons with and without perforation. It is found that the perforation plays an effective role in reducing wave runup/rundown and wave forces on the caissons. The wave forces on caissons reduce with the decreasing incident wave period. The influence of the transverse distance of multiple caissons on wave forces is also investigated. A closer transverse distance between caissons can produce larger wave forces. But when relative adjacent distance L/D (L is the transverse distance and D is the width of the quasi-ellipse caisson is larger than 3, the effect of adjacent distance is limited.

  17. On some periodicity effects

    DEFF Research Database (Denmark)

    Sorokin, Sergey V.

    2015-01-01

    The talk is concerned with the modelling of wave propagation in and vibration of periodic elastic structures. Although analysis of wave-guide properties of infinite periodic structures is a well establish research subject, some issues have not yet been fully addressed in the literature. The aim o...

  18. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    Science.gov (United States)

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  19. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period

    Science.gov (United States)

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K.

    2015-01-01

    Introduction: Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. Material and Methods: All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. Results: A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Conclusions: Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations. PMID:25657543

  20. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.; Jiang, Houshuo; Farrar, J. Thomas

    2013-01-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley

  1. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    International Nuclear Information System (INIS)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-01-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere

  2. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  3. Topics in numerical relativity : the periodic standing-wave approximation, the stability of constraints in free evolution, and the spin of dynamical black holes

    Science.gov (United States)

    Owen, Robert

    This thesis concerns numerical relativity, the attempt to study Einstein's theory of gravitation using numerical discretization. The goal of the field, the study of gravitational dynamics in cases where symmetry reduction or perturbation theory are not possible, finally seems to be coming to fruition, at least for the archetypal problem of the inspiral and coalescence of binary black hole systems. This thesis presents three episodes that each bear some relationship to this story.Chapters 2 and 3 present previously published work in collaboration with Richard Price and others on the so-called periodic standing-wave (PSW) approximation for binary inspiral. The approximation is to balance outgoing radiation with incoming radiation, stabilizing the orbit and making the problem stationary in a rotating frame. Chapters 2 and 3 apply the method to the problem of co-orbiting charges coupled to a nonlinear scalar field in three dimensions.Chapters 4, 5, and 6 concern the stability of constraint fields in conventional numerical relativity simulations. Chapter 4 (also previously published work, in collaboration with the Caltech numerical relativity group, along with Michael Holst and Lawrence Kidder) presents a method for immediately correcting violations of constraints after they have arisen. Chapters 5 and 6 present methods to ``damp' away constraint violations dynamically in two specific contexts. Chapter 5 (previously published work in collaboration with the Caltech numerical relativity group and Lawrence Kidder) presents a first-order linearly degenerate symmetric hyperbolic representation of Einstein's equations in generalized harmonic gauge. A representation is presented that stabilizes all constraints, including those that appear when the system is written in first-order form. Chapter 6 presents a generalization of the Kidder-Scheel-Teukolsky evolution systems that provides much-improved stability. This is investigated with numerical simulations of a single black hole

  4. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  5. Analysis of a Wave Energy Converter with Particular Focus on the Effects of Power Take-Off Forces on the Structural Responses

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen

    to evaluate the electrical power generated by a given wave energy device from a given wave condition. The first part of this work focuses on the development of such a numerical model. An important task is to quantify the wave-induced load effects to ensure that the input is correct and a safe and robust......Wave energy is regarded as a major and promising renewable energy resource. The most critical factor to the success of deploying a wave energy converter in an ocean environment is the cost. The key factors affecting the costs include the performance, capital costs, operation and maintenance costs...

  6. Influence of excitability on unpinning and termination of spiral waves.

    Science.gov (United States)

    Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2014-11-01

    Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.

  7. Quasitravelling waves

    International Nuclear Information System (INIS)

    Beklaryan, Leva A

    2011-01-01

    A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.

  8. Wind speed, wind direction, air temperature, wave energy spectra, significant wave height, dominant wave period and direction, peak wave period and direction, currents, temperature, conductivity, pressure, sigma-theta, river level, sonar readings, and backscatter data collected at Myrtle Beach in the North Atlantic Ocean from instruments deployed on MOORINGS using platforms NOAA Ship NANCY FOSTER and RV DAN MOORE from 2003-10-01 to 2004-05-01 (NODC Accession 0066109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bottom current, wave and associated observations were collected as part of a larger study to understand the physical processes that control the transport of...

  9. Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis.

    Science.gov (United States)

    Liu, Bo-Ji; Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Zhang, Yi-Feng; Xu, Jun-Mei; Liu, Chang; Liu, Lin-Na; Li, Xiao-Long; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao

    2015-12-01

    The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77-0.84) and 0.84 (95% CI: 0.81-0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56-7.62) and 0.23 (95% CI: 0.17-0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58-52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU’s) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH 3 , CO 2 , formic acid, and benzene

  11. Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach

    Science.gov (United States)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-09-01

    The forces acting on the atoms as well as the stress tensor are crucial ingredients for calculating the structural and dynamical properties of systems in the condensed phase. Here, these derivatives of the total energy are evaluated for the second-order Møller-Plesset perturbation energy (MP2) in the framework of the resolution of identity Gaussian and plane waves method, in a way that is fully consistent with how the total energy is computed. This consistency is non-trivial, given the different ways employed to compute Coulomb, exchange, and canonical four center integrals, and allows, for example, for energy conserving dynamics in various ensembles. Based on this formalism, a massively parallel algorithm has been developed for finite and extended system. The designed parallel algorithm displays, with respect to the system size, cubic, quartic, and quintic requirements, respectively, for the memory, communication, and computation. All these requirements are reduced with an increasing number of processes, and the measured performance shows excellent parallel scalability and efficiency up to thousands of nodes. Additionally, the computationally more demanding quintic scaling steps can be accelerated by employing graphics processing units (GPU's) showing, for large systems, a gain of almost a factor two compared to the standard central processing unit-only case. In this way, the evaluation of the derivatives of the RI-MP2 energy can be performed within a few minutes for systems containing hundreds of atoms and thousands of basis functions. With good time to solution, the implementation thus opens the possibility to perform molecular dynamics (MD) simulations in various ensembles (microcanonical ensemble and isobaric-isothermal ensemble) at the MP2 level of theory. Geometry optimization, full cell relaxation, and energy conserving MD simulations have been performed for a variety of molecular crystals including NH3, CO2, formic acid, and benzene.

  12. Depression and suicidality during the postpartum period after first time deliveries, active component service women and dependent spouses, U.S. Armed Forces, 2007-2012.

    Science.gov (United States)

    Do, Tai; Hu, Zheng; Otto, Jean; Rohrbeck, Patricia

    2013-09-01

    Although suicide is a leading cause of death among new mothers during the postpartum period, there has been limited research on self-harm in the postpartum period and associated risk factors. One potential risk factor for suicidality (completed suicides, suicide attempts, and suicide ideation including thoughts of self harm) during the postpartum period is postpartum depression (PPD). In this study of women who gave birth for the first time between 1 January 2007 and 31 December 2011, 5,267 (9.9% of all who delivered) active component service women and 10,301 (8.2%) dependent spouses received incident PPD diagnoses during the one year postpartum period; 213 (0.4%) service women and 221 (0.2%) dependent spouses were diagnosed with incident suicidality. After adjusting for the effects of other covariates, service women with PPD had 42.2 times the odds to be diagnosed with suicidality in the postpartum period compared to service women without PPD; dependent spouses with PPD had 14.5 times the odds compared to those without PPD. The findings of this report suggest that a history of mental disorders was common among service women and dependent spouses with PPD in the postpartum period, and, in turn, PPD was a strong predictor for suicidality in the postpartum period. These results emphasize the importance of PPD screening during the postpartum period. They also suggest that additional focused screening for suicidal behavior among those already diagnosed with PPD may be warranted.

  13. Wave model downscaling for coastal applications

    Science.gov (United States)

    Valchev, Nikolay; Davidan, Georgi; Trifonova, Ekaterina; Andreeva, Nataliya

    2010-05-01

    Downscaling is a suitable technique for obtaining high-resolution estimates from relatively coarse-resolution global models. Dynamical and statistical downscaling has been applied to the multidecadal simulations of ocean waves. Even as large-scale variability might be plausibly estimated from these simulations, their value for the small scale applications such as design of coastal protection structures and coastal risk assessment is limited due to their relatively coarse spatial and temporal resolutions. Another advantage of the high resolution wave modeling is that it accounts for shallow water effects. Therefore, it can be used for both wave forecasting at specific coastal locations and engineering applications that require knowledge about extreme wave statistics at or near the coastal facilities. In the present study downscaling is applied to both ECMWF and NCEP/NCAR global reanalysis of atmospheric pressure over the Black Sea with 2.5 degrees spatial resolution. A simplified regional atmospheric model is employed for calculation of the surface wind field at 0.5 degrees resolution that serves as forcing for the wave models. Further, a high-resolution nested WAM/SWAN wave model suite of nested wave models is applied for spatial downscaling. It aims at resolving the wave conditions in a limited area at the close proximity to the shore. The pilot site is located in the northern part the Bulgarian Black Sea shore. The system involves the WAM wave model adapted for basin scale simulation at 0.5 degrees spatial resolution. The WAM output for significant wave height, mean wave period and mean angle of wave approach is used in terms of external boundary conditions for the SWAN wave model, which is set up for the western Black Sea shelf at 4km resolution. The same model set up on about 400m resolution is nested to the first SWAN run. In this case the SWAN 2D spectral output provides boundary conditions for the high-resolution model run. The models are implemented for a

  14. Modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Porter, Mason A.; Cvitanovic, Predrag

    2004-01-01

    We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations

  15. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  16. Wave propagation in the Lorenz-96 model

    Directory of Open Access Journals (Sweden)

    D. L. van Kekem

    2018-04-01

    Full Text Available In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F < 0 and odd n, the first bifurcation is again a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.

  17. Ponderomotive Forces in Cosmos

    Science.gov (United States)

    Lundin, R.; Guglielmi, A.

    2006-12-01

    This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various

  18. Evidence at Mesospheric Altitude of Deeply Propagating Atmospheric Gravity Waves Created by Orographic Forcing over the Auckland Islands (50.5ºS) During the Deepwave Project

    Science.gov (United States)

    Pautet, P. D.; Ma, J.; Taylor, M. J.; Bossert, K.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Fritts, D. C.

    2014-12-01

    The DEEPWAVE project recently took place in New Zealand during the months of June and July 2014. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 26 research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On July 14th, a research flight was conducted over the Auckland Islands, a small sub Antarctic archipelago located ~450km south of New Zealand. Moderate southwesterly tropospheric wind (~25m/s) was blowing over the rugged topography of the islands, generating mountain wave signature at the flight altitude. Spectacular small-scale gravity waves were simultaneously observed at the mesopause level using the USU Advanced Mesospheric Temperature Mapper (AMTM). Their similarity with the model-predicted waves was striking. This presentation will describe this remarkable case of deep wave propagation and compare the measurements obtained with the instruments on-board the aircraft with forecasting and wave propagation models.

  19. Using magnetic coils to produce periodically applied forces to maintain the high speed movement of bodies and vehicles, particularly in tubes evacuated of air

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    An arrangement is described in which a body is accelerated or maintained in motion along a track that passes through a number of annular electromagnet coils, the length of the body being substantially less than the distance between two adjacent coils. A series if electronmagnetically produced force pulses is applied to the body as it passes through successive coils, by the use of an automatic switch operated by the body. Control is provided so that each coil is de-energized at or before maximum magnetic flux linkage is attained between coil and body, the arrangement being such that the body is accelerated into the coil, but leaves it at a much reduced flux linkage. The possible uses of such an arrangement are mentioned: these include the acceleration of bullets, incorporating D and T in pellet form in their concave noses, to obtain a nuclear fusion reaction. (U.K.)

  20. Development of the 'SEA-Clam' wave energy device for small scale use. Report for period 1st August 1983 - 31st March 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    The Report presented covers the work of the Sea Energy Associates Ltd./Coventry (Lanchester) Polytechnic Wave Energy Group on the development of the SEA Clam concept from a 290 metre long, 45 000 tonne displacement unit rated at 10 MW to a smaller unit, typically 500 to 1000 kW, for island or remote coastal communities. Productivity measurements, flexible bag development, and work on the Wells' turbine which has been concentrated on the outline design and costing of an engineered unit for this application are discussed.

  1. Evidence for infragravity wave-tide resonance in deep oceans.

    Science.gov (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  2. Waves in separated two-phase flow

    International Nuclear Information System (INIS)

    Pols, R.M.

    1998-06-01

    This dissertation presents an integral approach to the modelling of co-current flow of liquid and gas for a class of non-linear wave problems. Typically the liquid phase and the gas phase are decoupled and the liquid is depth averaged. The resulting non-linear shallow water equations are solved to predict the behaviour of the finite amplitude waves. The integral approach is applied to the modelling of two-dimensional waves in a horizontal and slightly inclined rectangular channel, two-dimensional waves in a vertical pipe and three-dimensional waves in a horizontal tube. For flow in a horizontal or slightly inclined channel the liquid is driven by the interfacial shear from the gas phase and the surface is subject to extensive wave action. For thin liquid films the pressure in the liquid may be taken as hydrostatic and gravity acts as a restoring force on the liquid. Roll wave solutions to the non-linear shallow water equations are sought corresponding to an interfacial shear stress dependent on the liquid film height. Wave solutions are shown to exist but only for parameters within a defined range dependent on the channel inclination, interfacial roughness and linear dependence on the liquid film height of the shear stresses. Such solutions are discontinuous and are pieced together by a jump where mass and momentum are conserved. The model calculations on wave height and wave velocity are compared with experimental data. The essentially two-dimensional analysis developed for stratified horizontal flow can be extended to quasi three-dimensional flow in the case of shallow liquid depth for a circular pipe. In this case the liquid depth changes with circumferential position and consequently modifies the interfacial shear exerted on the liquid surface creating a wave spreading mechanism alongside changing the wave profile across the pipe. The wave spreading mechanism supposes a wave moving in axial direction at a velocity faster than the liquid thereby sweeping liquid

  3. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  4. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.

    2013-08-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley, and the steep topography surrounding the basin steers the dominant wind patterns and consequently the wave climate. At large scales, the model results indicated that the primary seasonal variability in waves was due to the monsoonal wind reversal. During the winter, monsoon winds from the southeast generated waves with mean significant wave heights in excess of 2. m and mean periods of 8. s in the southern Red Sea, while in the northern part of the basin waves were smaller, shorter period, and from northwest. The zone of convergence of winds and waves typically occurred around 19-20°N, but the location varied between 15 and 21.5°N. During the summer, waves were generally smaller and from the northwest over most of the basin. While the seasonal winds oriented along the axis of the Red Sea drove much of the variability in the waves, the maximum wave heights in the simulations were not due to the monsoonal winds but instead were generated by localized mountain wind jets oriented across the basin (roughly east-west). During the summer, a mountain wind jet from the Tokar Gap enhanced the waves in the region of 18 and 20°N, with monthly mean wave heights exceeding 2. m and maximum wave heights of 14. m during a period when the rest of the Red Sea was relatively calm. Smaller mountain gap wind jets along the northeast coast created large waves during the fall and winter, with a series of jets providing a dominant source of wave energy during these periods. Evaluation of the wave model results against observations from a buoy and satellites found that the spatial resolution of the wind model significantly affected the quality of the wave model results. Wind forcing from a 10-km grid produced higher skills for waves than winds from a

  5. Quantum anticentrifugal force

    International Nuclear Information System (INIS)

    Cirone, M.A.; Schleich, W.P.; Straub, F.; Rzazewski, K.; Wheeler, J.A.

    2002-01-01

    In a two-dimensional world, a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anticentrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional δ-function potential. In a counterintuitive way, the attractive force pushes the particle away from the location of the δ-function potential. As a consequence, the particle is localized in a band-shaped domain around the origin

  6. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    Science.gov (United States)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  7. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  8. Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2016-12-01

    Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.

  9. Influence of winds on temporally varying short and long period gravity waves in the near shore regions of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Glejin, J.; SanilKumar, V.; Nair, T.M.B.; Singh, J.

    pro- vided by the NOAA-CIRES (Cooperative Institute for Re- search in the Environmental Sciences) Climate Diagnostics Center in Boulder, Colorado (http://www.cdc.noaa.gov/). To determine the sea/land breeze system at Ratnagiri during the study period...

  10. Attributing anthropogenic impact on regional heat wave events using CAM5 model large ensemble simulations

    Science.gov (United States)

    Lo, S. H.; Chen, C. T.

    2017-12-01

    Extreme heat waves have serious impacts on society. It was argued that the anthropogenic forcing might substantially increase the risk of extreme heat wave events (e.g. over western Europe in 2003 and over Russia in 2010). However, the regional dependence of such anthropogenic impact and the sensitivity of the attributed risk to the definition of heat wave still require further studies. In our research framework, the change in the frequency and severity of a heat wave event under current conditions is calculated and compared with the probability and magnitude of the event if the effects of particular external forcing, such as due to human influence, had been absent. In our research, we use the CAM5 large ensemble simulation from the CLIVAR C20C+ Detection and Attribution project (http://portal.nersc.gov/c20c/main.html, Folland et al. 2014) to detect the heat wave events occurred in both historical all forcing run and natural forcing only run. The heat wave events are identified by partial duration series method (Huth et al., 2000). We test the sensitivity of heat wave thresholds from daily maximum temperature (Tmax) in warm season (from May to September) between 1959 and 2013. We consider the anthropogenic effect on the later period (2000-2013) when the warming due to human impact is more evident. Using Taiwan and surrounding area as our preliminary research target, We found the anthropogenic effect will increase the heat wave day per year from 30 days to 75 days and make the mean starting(ending) day for heat waves events about 15-30 days earlier(later). Using the Fraction of Attribution Risk analysis to estimate the risk of frequency of heat wave day, our results show the anthropogenic forcing very likely increase the heat wave days over Taiwan by more than 50%. Further regional differences and sensitivity of the attributed risk to the definition of heat wave will be compared and discussed.

  11. Wave propagation in the Lorenz-96 model

    Science.gov (United States)

    van Kekem, Dirk L.; Sterk, Alef E.

    2018-04-01

    In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.

  12. Therapeutic efficiency of decimeter range waves and their effect on cerebral circulation in patients during recovery period after surgery performed on intracranial arteries

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, D.P.; Strelkova, N.I.; Streltsova, E.N.

    The goal of this work was to evaluate the therapeutic effect of an electromagnetic field in the decimeter range on focal neurologic symptoms and cerebral circulation in patients recovering from surgery on intracranial arteries. This treatment led to regression of focal neurologic symptoms and improved cerebral circulation in 86.3% of patients who tolerated this procedure rather well. This approach was recommended as a method of choice for rehabilitative treatment during the postsurgical period. 7 references, 1 figure.

  13. Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators

    International Nuclear Information System (INIS)

    Lanford, O E III; Mintchev, S M

    2015-01-01

    Travelling waves are an important class of signal propagation phenomena in extended systems with a preferred direction of information flow. We study the generation of travelling waves in unidirectional chains of coupled oscillators communicating via a phase-dependent pulse-response interaction borrowed from mathematical neuroscience. Within the context of such systems, we develop a widely applicable, jointly numerical and analytical methodology for deducing existence and stability of periodic travelling waves. We provide careful numerical studies that support the existence of a periodic travelling wave solution as well as the asymptotic relaxation of a single oscillator to the wave when it is forced with the wave profile. Using this evidence as an assumption, we analytically prove global stability of waves in the infinite chain, with respect to initial perturbations of downstream sites. This rigorous stability result suggests that asymptotic relaxation to the travelling wave occurs even when the forcing is perturbed from the wave profile, a property of the motivating system that is supported by previous work as well as the convergence of the more sophisticated numerical algorithm that we propose in order to compute a high-precision approximation to the solution. We provide additional numerical studies that show that the wave is part of a one-parameter family, and we illustrate the structural robustness of this family with respect to changes in the coupling strength. (paper)

  14. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  15. Influence of the excitation force estimator methodology within a predictive controller framework on the overall cost of energy minimisation of a wave energy converter

    DEFF Research Database (Denmark)

    Ferri, Francesco; Ambühl, Simon; Kofoed, Jens Peter

    2015-01-01

    A large amount of energy is freely roaming around the world each day, without us being able to exploit it: wave energy is a largely untapped source of renewable energy, which can have a substantial influence in the future energy mix. The reason behind the inability of using this free resource is ...

  16. Sensitivity of growth characteristics of tidal sand ridges and long bed waves to formulations of bed shear stress, sand transport and tidal forcing : A numerical model study

    NARCIS (Netherlands)

    Yuan, Bing; de Swart, Huib E.; Panadès, Carles

    2016-01-01

    Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal

  17. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  18. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  19. Can a brief period of double J stenting improve the outcome of extracorporeal shock wave lithotripsy for renal calculi sized 1 to 2 cm?

    Science.gov (United States)

    Sharma, Rakesh; Das, Ranjit Kumar; Basu, Supriya; Dey, Ranjan Kumar; Gupta, Rupesh; Deb, Partha Pratim

    2017-01-01

    Purpose Extracorporeal shock wave lithotripsy (ESWL) is an established modality for renal calculi. Its role for large stones is being questioned. A novel model of temporary double J (DJ) stenting followed by ESWL was devised and outcomes were assessed. Materials and Methods The study included 95 patients with renal calculi sized 1 to 2 cm. Patients were randomized into 3 groups. Group 1 received ESWL only, whereas group 2 underwent stenting followed by ESWL. In group 3, a distinct model was applied in which the stent was kept for 1 week and then removed, followed by ESWL. Procedural details, analgesic requirements, and outcome were analyzed. Results Eighty-eight patients (male, 47; female, 41) were available for analysis. The patients' mean age was 37.9±10.9 years. Stone profile was similar among groups. Group 3 received fewer shocks (mean, 3,155) than did group 1 (mean, 3,859; p=0.05) or group 2 (mean, 3,872; p=0.04). The fragmentation rate was similar in group 3 (96.7%) and groups 1 (81.5%, p=0.12) and 2 (87.1%, p=0.16). Overall clearance in group 3 was significantly improved (83.3%) compared with that in groups 1 (63.0%, p=0.02) and 2 (64.5%, p=0.02) and was maintained even in lower pole stones. The percentage successful outcome in groups 1, 2, and 3 was 66.7%, 64.5%, and 83.3%, respectively (p=0.21). The analgesic requirement in group 2 was higher than in the other groups (p=0.00). Group 2 patients also had more grade IIIa (2/3) and IIIB (1/2) complications. Conclusions Stenting adversely affects stone clearance and also makes the later course uncomfortable. Our model of brief stenting followed by ESWL provided better clearance, comfort, and a modest improvement in outcome with fewer sittings and steinstrasse in selected patients with large renal calculi. PMID:28261679

  20. Can a brief period of double J stenting improve the outcome of extracorporeal shock wave lithotripsy for renal calculi sized 1 to 2 cm?

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2017-03-01

    Full Text Available Purpose: Extracorporeal shock wave lithotripsy (ESWL is an established modality for renal calculi. Its role for large stones is being questioned. A novel model of temporary double J (DJ stenting followed by ESWL was devised and outcomes were assessed. Materials and Methods: The study included 95 patients with renal calculi sized 1 to 2 cm. Patients were randomized into 3 groups. Group 1 received ESWL only, whereas group 2 underwent stenting followed by ESWL. In group 3, a distinct model was applied in which the stent was kept for 1 week and then removed, followed by ESWL. Procedural details, analgesic requirements, and outcome were analyzed. Results: Eighty-eight patients (male, 47; female, 41 were available for analysis. The patients’ mean age was 37.9±10.9 years. Stone profile was similar among groups. Group 3 received fewer shocks (mean, 3,155 than did group 1 (mean, 3,859; p=0.05 or group 2 (mean, 3,872; p=0.04. The fragmentation rate was similar in group 3 (96.7% and groups 1 (81.5%, p=0.12 and 2 (87.1%, p=0.16. Overall clearance in group 3 was significantly improved (83.3% compared with that in groups 1 (63.0%, p=0.02 and 2 (64.5%, p=0.02 and was maintained even in lower pole stones. The percentage successful outcome in groups 1, 2, and 3 was 66.7%, 64.5%, and 83.3%, respectively (p=0.21. The analgesic requirement in group 2 was higher than in the other groups (p=0.00. Group 2 patients also had more grade IIIa (2/3 and IIIB (1/2 complications. Conclusions: Stenting adversely affects stone clearance and also makes the later course uncomfortable. Our model of brief stenting followed by ESWL provided better clearance, comfort, and a modest improvement in outcome with fewer sittings and steinstrasse in selected patients with large renal calculi.