WorldWideScience

Sample records for period theoretical calculations

  1. Positron lifetime calculation for the elements of the periodic table.

    Science.gov (United States)

    Campillo Robles, J M; Ogando, E; Plazaola, F

    2007-04-30

    Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes.

  2. Positron lifetime calculation for the elements of the periodic table

    International Nuclear Information System (INIS)

    Robles, J M Campillo; Ogando, E; Plazaola, F

    2007-01-01

    Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes

  3. Calculation of positron characteristics for elements of the periodic table

    International Nuclear Information System (INIS)

    Campillo Robles, J M; Ogando, E; Plazaola, F

    2011-01-01

    Positron characteristics have been calculated in bulk and monovacancies for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, and different parametrizations for the positron enhancement factor and correlation energy. As it is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The results obtained have been compared with selected experimental lifetime data, which confirms the calculated theoretical trends. Positron binding energies to a monovacancy have been calculated also for most of the elements of the periodic table. The binding energy shows a periodic behaviour with atomic number too.

  4. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  5. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  6. Generalized Bloch Theorem for Complex Periodic Potentials - A Powerful Application to Quantum Transport Calculations

    International Nuclear Information System (INIS)

    Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T

    2007-01-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data

  7. Fluorescein isothiocyanate: Molecular characterization by theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No 69, Lleida E-25001 (Spain); Jacquemin, Denis [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: denis.jacquemin@fundp.ac.be; Perpete, Eric A. [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium); Aleman, Carlos [Departament d' Enginyeria Quimica, E. T. S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu

    2008-12-10

    Quantum mechanical calculations have been used to investigate the conformation, molecular geometry, basicity and spectroscopic properties of fluorescein isothiocyanate in both the gas-phase and aqueous solution. Specifically, calculations have been performed considering the neutral, monoanionic and dianionic forms of this important fluorescent compound. Results reveal that for the neutral form multiple conformational states are possible, all them with significant contributions, and the stability of the different conformers is similar in the gas-phase and aqueous solution. Calculation of the excitation energies revealed that spectroscopic properties are very sensitive to the relaxation effect in solution. A good agreement has been reached obtained between the experimental and theoretical values derived from time-dependent density functional theory methods for the neutral form, whereas for charged species the calculations fail to accurately reproduce the measured trends.

  8. Theoretical calculation of solid particles deposition from the air

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2002-03-01

    Full Text Available This paper presents the calculation of harmful substance deposition (air pollution from the point source (Slanèo, et al., 2001 using equation (1. The point source shall be understood as e.g. chimneys of factory, heat plant, incinerator, boiler plant, local heating plant, etc.The theoretical calculation of concentration (1, or deposition (8 is based on the study of transfer and dispersion of pollution in air (Slanèo, et al., 2000a. The movement of pollution in air consists of a movement of the air itself and a relative movement of pollution particles and air, while the movement of harmful substance in the smoke trail is under the influence of turbulent diffusion, convection and gravitation. Molecular diffusion is not important in this process. When calculating concentrations (1 and deposition (8 of air pollution on a particular place near the source, it is assumed that the air speed is constant, the direction of wind does not change with the height and the source of air pollution is time-constant. The change in the wind speed with the height depends on the stability class of atmosphere (temperature gradient (Slanèo, et al., 2000a and it is calculated using equation (10.The theoretical calculation of concentration and or deposition of harmful substance from the point source (1 and (8 shall be applied if the harmful substance particles, which leave the source, have the same density (composition, shape (spherical and size.The experimental observations of dust deposition showed the significance of 0.1-20 µm particles. The application of equation (1 to calculate the concentration is conditioned, in addition to the recognition of source parameters and meteorological conditions, by the recognition of the particle sedimentation speed, which changes with the size of particle radius (2.For a practical calculation of deposition it is therefore necessary to know the differential distribution function f(r of particle radii, which can be made on the basis

  9. Theoretical calculation possibilities of the computer code HAMMER

    International Nuclear Information System (INIS)

    Onusic Junior, J.

    1978-06-01

    With the aim to know the theoretical calculation possibilities of the computer code HAMMER, developed at Savanah River Laboratory, a analysis of the crytical cells assembly of the kind utilized in PWR reactors is made. (L.F.S.) [pt

  10. Theoretical calculations of positron lifetimes for metal oxides

    International Nuclear Information System (INIS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2004-01-01

    Our recent positron lifetime measurements for metal oxides suggest that positron lifetimes of bulk state in metal oxides are shorter than previously reported values. We have performed theoretical calculations of positron lifetimes for bulk and vacancy states in MgO and ZnO using first-principles electronic structure calculations and discuss the validity of positron lifetime calculations for insulators. By comparing the calculated positron lifetimes to the experimental values, it wa found that the semiconductor model well reproduces the experimental positron lifetime. The longer positron lifetime previously reported can be considered to arise from not only the bulk but also from the vacancy induced by impurities. In the case of cation vacancy, the calculated positron lifetime based on semiconductor model is shorter than the experimental value, which suggests that the inward relaxation occurs around the cation vacancy trapping the positron. (author)

  11. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    Science.gov (United States)

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  12. Theoretical Calculations of Atomic Data for Spectroscopy

    Science.gov (United States)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  13. Assessment of theoretical and experimental results in the calculation of atmospheric dilution factors in the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Quintana, E.E.; Tossi, M.H.; Telleria, D.M.

    1990-01-01

    Collective doses produced during the normal working of the Atucha I Nuclear Power Plant are calculated using annual atmospheric factors. This work studies the behaviour of the dilution factors in different periods of the year in order to fit the calculated dose model applying factors from seasonal, monthly or weekly periods. The Radiation Protection Group of the C.N.E.A. have carried out continuous environmental monitoring in the surroundings of the Atucha I Nuclear Power Plant. These studies include the measurement of air tritium concentration, radionuclide that is found principally as tritiated water vapour. This isotope, normally released by the nuclear power plant was used as a tracer to assess the atmospheric dilution factors. Factors were calculated by two methods: an experimental one, based on environmental measurements of the tritium concentration in the surroundings of the nuclear power plant and another one by applying a theoretical model based on information from the micrometeorological tower located in the mentioned place. To carry out the environmental monitoring, four monitoring stations in the surroundings of the power plant were chosen. Three of them are approximately one kilometer from the plant and the fourth is 7.5 km away, near the city of Lima. To condense and collect the atmospheric water vapour, an overcooling system was used. The measurement was performed by liquid scintillation counting, previous alkaline electrolytical enrichment of the samples. The theoretical model uses hourly values of direction and wind intensity, as well as the atmospheric dispersive properties. Values obtained during the period 1976 to 1988 allowed, applying statistical tests, to validate the theoretical model and to observe seasonal variation of the dilution factors throughout the same year and between different years. Finally, results and graphics are presented showing that the behaviour of the dilution factors in different periods of the year. It is recommended to

  14. Calculation of period processing solution syrup in vacuum apparatus

    Directory of Open Access Journals (Sweden)

    A. A. Slavyanskii

    2016-01-01

    Full Text Available Important and crucial element in the management of the technological flow of production of sugar product standards is the period of time the enrichment of massecuite, since its neutralization in the process of crystal formation in vacuum apparatus, excess sugar solution. Although currently proposed and implemented in the industry, including as a front-end accompany the process, a number of ways in the real world sugar production in many cases have to resort to the services of an experienced operator. It is obvious that in any case it is necessary to have a surround-dependent glucose solution data on time for the excess sugar solution into the vacuum apparatus. With regard to the period of the enrichment of depleted sucrose solution are entered into this substance excess sucrose solution, it should be noted that this problem is theoretically still insufficiently developed. It is obvious that for practical purposes it is desirable to have a simple and convenient for engineering calculation of sugar processing time dependencies of the specified volume of water from the operating parameters of the process (the required concentration of sucrose, temperature of the solution stirring. The problem is the quantitative analysis of sucrose crystallization in vacuum apparatus, including the timing of enrichment solution to the excess syrup, period of time processing massecuite total this apparatus has been investigated in many works. However, due to its importance to the task of obtaining commercial sugar high standards this issue required further in-depth examination. In the article to support the enrichment process solution sucrose due to neutralize this solvent system in vacuum apparatus, from the standpoint of diffusion theory provides a more reasonable compared to known so far, quantitative analysis of this process. Where as sucrose crystals team are considering a system of balls, uniformly distributed in vacuum apparatus. On the basis of the solution

  15. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  16. Calculation of coupling factor for double-period accelerating structure

    International Nuclear Information System (INIS)

    Bian Xiaohao; Chen Huaibi; Zheng Shuxin

    2005-01-01

    In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)

  17. Review of theoretical calculations of hydrogen storage in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2001-02-01

    In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)

  18. Theoretical calculations of positron annihilation characteristics in inorganic solids -- Recent advances and problems

    Science.gov (United States)

    Sob, M.; Sormann, H.; Kuriplach, J.

    Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is

  19. Theoretical model simulations for the global Thermospheric Mapping Study (TMS) periods

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    Theoretical and semiempirical models of the solar UV/EUV and of the geomagnetic driving forces affecting the terrestrial mesosphere and thermosphere have been used to generate a series of representative numerical time-dependent and global models of the thermosphere, for the range of solar and geoamgnetic activity levels which occurred during the three Thermospheric Mapping Study periods. The simulations obtained from these numerical models are compared with observations, and with the results of semiempirical models of the thermosphere. The theoretical models provide a record of the magnitude of the major driving forces which affected the thermosphere during the study periods, and a baseline against which the actual observed structure and dynamics can be compared.

  20. Review on theoretical calculation of the magnetite solubility

    International Nuclear Information System (INIS)

    Kim, Myongjin; Kim, Hongpyo

    2013-01-01

    FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study

  1. Dye incorporation in polyphosphate gels: synthesis and theoretical calculations

    Directory of Open Access Journals (Sweden)

    Jordan Del Nero

    2003-06-01

    Full Text Available In this work we described theoretical calculations on the electronic structure and optical properties of the dyes crystal violet and malachite green based in semiempirical methods (Parametric Method 3 and Intermediate Neglect of Differential Overlap / Spectroscopic - Configuration Interaction and the synthesis of a new hybrid material based upon the incorporation of these dyes in an aluminum polyphosphate gel network. The samples are nearly transparent, free-standing thick films. The optical properties of the entrapped dyes are sensitive to chemical changes within the matrix caused either by gel aging or external stimulli such as exposition to acidic and basic vapors that can percolate within the matrix. Our theoretical modeling is in good agreement with the experimental results for the dyes.

  2. Theoretical calculations on layered perovskites: implications for photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2014-12-01

    Full Text Available The application of first-principles calculations to the study of layered perovskites is reviewed here, with an emphasis on properties relevant to the use of these materials in photocatalysis. First, the accuracies of the theoretical methods in common use for the study of layered perovskites are compared. The main body of the article then reviews studies of the bulk atomic and electronic structures of pure and doped perovskites; first-principles thermodynamics studies; studies of surfaces and studies of adsorption on surfaces.

  3. 15 CFR 325.4 - Calculating time periods.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Calculating time periods. 325.4 Section 325.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS EXPORT TRADE CERTIFICATES...

  4. Theoretical calculation of zero field splitting parameters of Cr{sup 3+} doped ammonium oxalate monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com

    2015-06-15

    Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.

  5. Development of a power-period calculation unit for nuclear reactor Control

    International Nuclear Information System (INIS)

    Martin, J.

    1966-10-01

    The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [fr

  6. Medication competency of nurses according to theoretical and drug calculation online exams: A descriptive correlational study.

    Science.gov (United States)

    Sneck, Sami; Saarnio, Reetta; Isola, Arja; Boigu, Risto

    2016-01-01

    Medication administration is an important task of registered nurses. According to previous studies, nurses lack theoretical knowledge and drug calculation skills and knowledge-based mistakes do occur in clinical practice. Finnish health care organizations started to develop a systematic verification processes for medication competence at the end of the last decade. No studies have yet been made of nurses' theoretical knowledge and drug calculation skills according to these online exams. The aim of this study was to describe the medication competence of Finnish nurses according to theoretical and drug calculation exams. A descriptive correlation design was adopted. Participants and settings All nurses who participated in the online exam in three Finnish hospitals between 1.1.2009 and 31.05.2014 were selected to the study (n=2479). Quantitative methods like Pearson's chi-squared tests, analysis of variance (ANOVA) with post hoc Tukey tests and Pearson's correlation coefficient were used to test the existence of relationships between dependent and independent variables. The majority of nurses mastered the theoretical knowledge needed in medication administration, but 5% of the nurses struggled with passing the drug calculation exam. Theoretical knowledge and drug calculation skills were better in acute care units than in the other units and younger nurses achieved better results in both exams than their older colleagues. The differences found in this study were statistically significant, but not high. Nevertheless, even the tiniest deficiency in theoretical knowledge and drug calculation skills should be focused on. It is important to identify the nurses who struggle in the exams and to plan targeted educational interventions for supporting them. The next step is to study if verification of medication competence has an effect on patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation Procedures of Random Uncertainties in Theoretical Calculations of Cross Sections and Rate Coefficients

    International Nuclear Information System (INIS)

    Kokoouline, V.; Richardson, W.

    2014-01-01

    Uncertainties in theoretical calculations may include: • Systematic uncertainty: Due to applicability limits of the chosen model. • Random: Within a model, uncertainties of model parameters result in uncertainties of final results (such as cross sections). • If uncertainties of experimental and theoretical data are known, for the purpose of data evaluation (to produce recommended data), one should combine two data sets to produce the best guess data with the smallest possible uncertainty. In many situations, it is possible to assess the accuracy of theoretical calculations because theoretical models usually rely on parameters that are uncertain, but not completely random, i.e. the uncertainties of the parameters of the models are approximately known. If there are one or several such parameters with corresponding uncertainties, even if some or all parameters are correlated, the above approach gives a conceptually simple way to calculate uncertainties of final cross sections (uncertainty propagation). Numerically, the statistical approach to the uncertainty propagation could be computationally expensive. However, in situations, where uncertainties are considered to be as important as the actual cross sections (for data validation or benchmark calculations, for example), such a numerical effort is justified. Having data from different sources (say, from theory and experiment), a systematic statistical approach allows one to compare the data and produce “unbiased” evaluated data with improved uncertainties, if uncertainties of initial data from different sources are available. Without uncertainties, the data evaluation/validation becomes impossible. This is the reason why theoreticians should assess the accuracy of their calculations in one way or another. A statistical and systematic approach, similar to the described above, is preferable.

  8. Development of a power-period calculation unit for nuclear reactor Control; Etude et realisation d'un ensemble de calcul puissance periode pour le controle d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The apparatus studied is a digital calculating assembly which makes it possible to prepare and to present numerically the period and power of a nuclear reactor during operation, from start-up to nominal power. The pulses from a fission chamber are analyzed continuously, using real time. A small number of elements is required because of the systematic use of a calculation technique comprising the determination of a base 2 logarithm by a linear approximation. The accuracy obtained for the period is of the order of 14%; the response time of the order of the calculated period value. An approximate value of the power (30%) is given at each calculation cycle together with the power thresholds required for the control. (author) [French] L'appareil etudie est un ensemble de calcul digital permettant d'elaborer et d'afficher numeriquement la periode et la puissance, d'un reacteur nucleaire lors de son fonctionnement depuis le demarrage jusqu'a la puissance nominale. Il traite en temps reel, de facon continue, les impulsions en provenance d'une chambre de fission. Grace a l'utilisation systematique d'une technique de calcul, la determination d'un logarithme a base 2 par approximation lineaire, un nombre reduit d'elements est utilise. La precision obtenue sur la periode est de l'ordre de 14 pour cent, le temps de reponse de l'ordre de la valeur de la periode calculee. Un ordre de grandeur de la puissance (30 pour cent) est donne a chaque cycle de calcul ainsi que des seuils de puissance necessaires au controle. (auteur)

  9. Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data

    Science.gov (United States)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.

  10. Non-periodic pseudo-random numbers used in Monte Carlo calculations

    Science.gov (United States)

    Barberis, Gaston E.

    2007-09-01

    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 1013 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 1013 numbers and that they are not correlated.

  11. Non-periodic pseudo-random numbers used in Monte Carlo calculations

    International Nuclear Information System (INIS)

    Barberis, Gaston E.

    2007-01-01

    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 10 13 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 10 13 numbers and that they are not correlated

  12. Dielectric response of periodic systems from quantum Monte Carlo calculations.

    Science.gov (United States)

    Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola

    2005-11-11

    We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.

  13. About possibilities using of theoretical calculation methods in radioecology

    International Nuclear Information System (INIS)

    Demoukhamedova, S.D.; Aliev, D.I.; Alieva, I.N.

    2002-01-01

    Full text: Increasing the radiation level into environment is accompanied by accumulation of radioactive compounds into organism and/or their migration into biosphere. Radiotoxins are accumulated into irradiated plants and animals in result of violation of exchanging processes. The are play an important role at the pathogenesis of irradiation. To date, there is well known that even small quantity of the pesticides capable intensified the radiation effect. To understand the mechanism of radiation effect on physiologically active compounds and their complexes, the knowledge of such molecules three-dimensional organization and electron structure is essential. This work is devoted to study the pesticides of carbamate range, i.e. 'sevin' and its derivatives the physiological activity of which has been connected with cholinesterase degradation. Spatial organization and conformational possibilities of the pesticides has been studied using a method of the theoretical conformational analysis on the base of computational program worked out in laboratory of Molecular Biophysics at the Baku State University. Quantum-chemical methods CNDO/2, AM1 and PM3 and complex programs 'LEV' were used in studies of electronic structures of 'sevin' and number of its analogues. Charge distribution on the atoms, optimization of geometrical electrooptic parameters, as well as molecular electrostatic potentials, electron density and nuclear forces were calculated. Visual maps and surface of valence electron density distribution in the given plane and surface of electron-nuclear forces distribution projection were constructed. The geometrical and energetic characteristics, charges on the atoms of investigated pesticides, as well as the maps and relief of the valence electron density distribution on the atoms have been received. According to calculation results, the changing of charge distribution in naphthalene ring is observed. The conclusion was made that the carbonyl group is essential for

  14. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  15. Graph theoretical calculation of systems reliability with semi-Markov processes

    International Nuclear Information System (INIS)

    Widmer, U.

    1984-06-01

    The determination of the state probabilities and related quantities of a system characterized by an SMP (or a homogeneous MP) can be performed by means of graph-theoretical methods. The calculation procedures for semi-Markov processes based on signal flow graphs are reviewed. Some methods from electrotechnics are adapted in order to obtain a representation of the state probabilities by means of trees. From this some formulas are derived for the asymptotic state probabilities and for the mean life-time in reliability considerations. (Auth.)

  16. Effects of aerosol polydispersity on theoretical calculations of unattached fractions of radon progeny

    International Nuclear Information System (INIS)

    Bandi, F.; Khan, A.; Phillips, C.R.

    1987-01-01

    Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol

  17. THEORETICAL CEPHEID PERIOD-LUMINOSITY AND PERIOD-COLOR RELATIONS IN SPITZER IRAC BANDS

    International Nuclear Information System (INIS)

    Ngeow, Chow-Choong; Marconi, Marcella; Musella, Ilaria; Cignoni, Michele; Kanbur, Shashsi M.

    2012-01-01

    In this paper, the synthetic period-luminosity (P-L) relations in Spitzer's IRAC bands, based on a series of theoretical pulsation models with varying metal and helium abundance, were investigated. Selected sets of these synthetic P-L relations were compared to the empirical IRAC band P-L relations recently determined from Galactic and Magellanic Clouds Cepheids. For the Galactic case, synthetic P-L relations from model sets with (Y = 0.26, Z = 0.01), (Y = 0.26, Z = 0.02), and (Y = 0.28, Z = 0.02) agree with the empirical Galactic P-L relations derived from the Hubble Space Telescope parallaxes. For Magellanic Cloud Cepheids, the synthetic P-L relations from model sets with (Y = 0.25, Z = 0.008) agree with both of the empirical Large Magellanic Cloud (LMC) and Small Magellanic Cloud P-L relations. Analysis of the synthetic P-L relations from all model sets suggested that the IRAC band P-L relations may not be independent of metallicity, as the P-L slopes and intercepts could be affected by the metallicity and/or helium abundance. We also derive the synthetic period-color (P-C) relations in the IRAC bands. Non-vanishing synthetic P-C relations were found for certain combinations of IRAC band filters and metallicity. However, the synthetic P-C relations disagreed with the [3.6]-[8.0] P-C relation recently found for the Galactic Cepheids. The synthetic [3.6]-[4.5] P-C slope from the (Y = 0.25, Z = 0.008) model set, on the other hand, is in excellent agreement to the empirical LMC P-C counterpart, if a period range 1.0 < log (P) < 1.8 is adopted.

  18. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    Science.gov (United States)

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  19. THEORETICAL CEPHEID PERIOD-LUMINOSITY AND PERIOD-COLOR RELATIONS IN SPITZER IRAC BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Ngeow, Chow-Choong [Graduate Institute of Astronomy, National Central University, Jhongli City 32001, Taiwan (China); Marconi, Marcella; Musella, Ilaria [Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli (Italy); Cignoni, Michele [Department of Astronomy, Bologna University, via Ranzani 1, 40127 Bologna (Italy); Kanbur, Shashsi M. [Department of Physics, State University of New York at Oswego, Oswego, NY 13126 (United States)

    2012-02-01

    In this paper, the synthetic period-luminosity (P-L) relations in Spitzer's IRAC bands, based on a series of theoretical pulsation models with varying metal and helium abundance, were investigated. Selected sets of these synthetic P-L relations were compared to the empirical IRAC band P-L relations recently determined from Galactic and Magellanic Clouds Cepheids. For the Galactic case, synthetic P-L relations from model sets with (Y = 0.26, Z = 0.01), (Y = 0.26, Z = 0.02), and (Y = 0.28, Z = 0.02) agree with the empirical Galactic P-L relations derived from the Hubble Space Telescope parallaxes. For Magellanic Cloud Cepheids, the synthetic P-L relations from model sets with (Y = 0.25, Z = 0.008) agree with both of the empirical Large Magellanic Cloud (LMC) and Small Magellanic Cloud P-L relations. Analysis of the synthetic P-L relations from all model sets suggested that the IRAC band P-L relations may not be independent of metallicity, as the P-L slopes and intercepts could be affected by the metallicity and/or helium abundance. We also derive the synthetic period-color (P-C) relations in the IRAC bands. Non-vanishing synthetic P-C relations were found for certain combinations of IRAC band filters and metallicity. However, the synthetic P-C relations disagreed with the [3.6]-[8.0] P-C relation recently found for the Galactic Cepheids. The synthetic [3.6]-[4.5] P-C slope from the (Y = 0.25, Z = 0.008) model set, on the other hand, is in excellent agreement to the empirical LMC P-C counterpart, if a period range 1.0 < log (P) < 1.8 is adopted.

  20. Gaussian elimination methods for calculating classical periodic trajectories in two dimensions

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1991-08-01

    A Gaussian-elimination method for calculating classical periodic trajectories is formulated for a two-dimensional system. Two variants of the theory are obtained, one assuming that the period of the motion is fixed and the other assuming that the total energy is fixed. Comparisons are made between various approaches. 14 refs

  1. Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.

    2000-01-01

    Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays

  2. Positron lifetime calculation of the elements of the periodic table

    International Nuclear Information System (INIS)

    Campillo, J.M.; Plazaola, F.

    2001-01-01

    The classification of the elements has been one of the major achievements of Science. Since then the resulting periodic order has been most strikingly reflected in a quantitative manner by most of the physical properties of the elements. The aim of this paper is to show the strong relation between the atomic volume and the positron lifetime of the elements of the periodic table. The differences between the BN, LDA and GGA schemes of calculations are pointed out too. (orig.)

  3. Life time calculations for LCF loading combined with tensional hold periods

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, A.; Piel, D.

    1983-01-01

    The life time in high amplitude strain cycling with tensional hold periods is analysed presuming that creep failure damage is life determining. The life fraction rule (LFR) is used to calculate the life time consumpted during the dwell period in strain controlled tests as well as during tensional hold time stress cycles. It follows from the present investigation that stress relaxation occurring during the strain hold periods plays the dominant influence upon the relationship between life and dwell time. For strong stress relaxation (e.g. high temperature) less damage is accumulated as compared to suppressed relaxation (low temperature). The damage in stress relaxation is calculated by means of the LFR and the results are compared to experiments conducted on Zircaloy-4 and the austenitic stainless stell Type AISI 304. From the very good agreement between both it is concluded that under the loading conditions considered, creep failure damage is the main life determining damage contribution. (orig.)

  4. On the return period and design in a multivariate framework

    Directory of Open Access Journals (Sweden)

    G. Salvadori

    2011-11-01

    Full Text Available Calculating return periods and design quantiles in a multivariate environment is a difficult problem: this paper tries to make the issue clear. First, we outline a possible way to introduce a consistent theoretical framework for the calculation of the return period in a multi-dimensional environment, based on Copulas and the Kendall's measure. Secondly, we introduce several approaches for the identification of suitable design events: these latter quantities are of utmost importance in practical applications, but their calculation is yet limited, due to the lack of an adequate theoretical environment where to embed the problem. Throughout the paper, a case study involving the behavior of a dam is used to illustrate the new concepts outlined in this work.

  5. Theoretical statistics of zero-age cataclysmic variables

    International Nuclear Information System (INIS)

    Politano, M.J.

    1988-01-01

    The distribution of the white dwarf masses, the distribution of the mass ratios and the distribution of the orbital periods in cataclysmic variables which are forming at the present time are calculated. These systems are referred to as zero-age cataclysmic variables. The results show that 60% of the systems being formed contain helium white dwarfs and 40% contain carbon-oxygen white dwarfs. The mean dwarf mass in those systems containing helium white dwarfs is 0.34. The mean white dwarf mass in those systems containing carbon-oxygen white dwarfs is 0.75. The orbital period distribution identifies four main classes of zero-age cataclysmic variables: (1) short-period systems containing helium white dwarfs, (2) systems containing carbon-oxygen white dwarfs whose secondaries are convectively stable against rapid mass transfer to the white dwarf, (3) systems containing carbon-oxygen white dwarfs whose secondaries are radiatively stable against rapid mass transfer to the white dwarf and (4) long period systems with evolved secondaries. The white dwarf mass distribution in zero-age cataclysmic variables has direct application to the calculation of the frequency of outburst in classical novae as a function of the mass of the white dwarf. The method developed in this thesis to calculate the distributions of the orbital parameters in zero-age cataclysmic variables can be used to calculate theoretical statistics of any class of binary systems. This method provides a theoretical framework from which to investigate the statistical properties and the evolution of the orbital parameters of binary systems

  6. Elementary calculation of the shutdown delay of a pile; Calcul elementaire de la periode d'extinction d'une pile

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J

    1949-04-01

    This study analyzes theoretically the progress of the shutdown of a nuclear pile (reactor) when a cadmium rod is introduced instantaneously. For simplification reasons, the environment of the pile is considered as homogenous and only thermal neutrons are considered (delayed neutrons are neglected). Calculation is made first for a plane configuration (plane vessel, plane multiplier without reflector, and plane multiplier with reflector), and then for a cylindrical configuration (multiplier without reflector, multiplier with infinitely thick reflector, finite cylindrical piles without reflector and with reflector). The self-sustain conditions are calculated for each case and the multiplication length and the shutdown delay are deduced. (J.S.)

  7. PBE-DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    Science.gov (United States)

    Saïl, K.; Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-12-01

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units ( n = 1-11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6-31 G( d, p) level of theory and the Perdew-Burke-Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E gap, V oc, and V bi) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies ( E ex), the maximal absorption wavelength (λmax), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  8. Calculational-theoretical studies of the system of local automated regulators and lateral ionization chambers

    International Nuclear Information System (INIS)

    Aleksakov, A.N.; Emel'yanov, I.Ya.; Nikolaev, E.V.; Panin, V.M.; Podlazov, L.N.; Rogova, V.D.

    1987-01-01

    Methods of engineering synthesis of the systems for nuclear reactor local automated power regulation and radial-azimuthal energy distribution stabilization operating according to lateral ionization chamber signals are described. Results of calculational-theoretical investigations into the system efficiency and peculiarities of its reaction to some perturbations typical of the RBMK type reactors are considered

  9. 34 CFR 691.63 - Calculation of a grant for a payment period.

    Science.gov (United States)

    2010-07-01

    ... grade level progression. A student may not progress to the next year during a payment period. The... 34 Education 3 2010-07-01 2010-07-01 false Calculation of a grant for a payment period. 691.63... MATHEMATICS ACCESS TO RETAIN TALENT GRANT (NATIONAL SMART GRANT) PROGRAMS Determination of Awards § 691.63...

  10. Measurements and theoretical calculations of diffused radiation and atmosphere lucidity

    International Nuclear Information System (INIS)

    Pelece, I.; Iljins, U.; Ziemelis, I.

    2009-01-01

    Align with other environment friendly renewable energy sources solar energy is widely used in the world. Also in Latvia solar collectors are used. However, in Latvia because of its geographical and climatic conditions there are some specific features in comparison with traditional solar energy using countries. These features lead to the necessity to pay more attention to diffused irradiance. Another factor affecting the received irradiance of any surface is lucidity of atmosphere. This factor has not been studied in Latvia yet. This article deals with evaluation of diffused irradiance, and also of lucidity of atmosphere. The diffused irradiance can be measured directly or as a difference between the global irradiance and the beam one. The lucidity of atmosphere can be calculated from the measurements of both global and beam irradiance, if the height of the sun is known. Therefore, measurements of both global and beam irradiance have been carried out, and the diffused irradiance calculated as a difference between the global irradiance and the beam one. For measuring of the global irradiance the dome solarimeter has been used. For measuring of the direct irradiance tracking to sun pirheliometer has been used. The measurements were performed in Riga from October 2008 till March 2009. The measurements were executed automatically after every 5 minutes. The obtained results have been analyzed taking into account also the data on nebulosity from the State agency Latvian Environment, Geology and Meteorology Agency. Also efforts to calculate theoretically the diffused irradiance from the height of the sun and the data of the nebulosity have been done. These calculated values have been compared with the measured ones. Good accordance is obtained. (author)

  11. Correlation between experimental data of protonation of aromatic compounds at (+) atmospheric pressure photoionization and theoretically calculated enthalpies.

    Science.gov (United States)

    Ahmed, Arif; Lim, Dongwon; Choi, Cheol Ho; Kim, Sunghwan

    2017-06-30

    The theoretical enthalpy calculated from the overall protonation reaction (electron transfer plus hydrogen transfer) in positive-mode (+) atmospheric-pressure photoionization (APPI) was compared with experimental results for 49 aromatic compounds. A linear relationship was observed between the calculated ΔH and the relative abundance of the protonated peak. The parameter gives reasonable predictions for all the aromatic hydrocarbon compounds used in this study. A parameter is devised by combining experimental MS data and high-level theoretical calculations. A (+) APPI Q Exactive Orbitrap mass spectrometer was used to obtain MS data for each solution. B3LYP exchange-correlation functions with the standard 6-311+G(df,2p) basis set was used to perform density functional theory (DFT) calculations. All the molecules with ΔH toluene clusters produced protonated ions, regardless of the desolvation temperature. For molecules with ΔH >0, molecular ions were more abundant at typical APPI desolvation temperatures (300°C), while the protonated ions became comparable or dominant at higher temperatures (400°C). The toluene cluster size was an important factor when predicting the ionization behavior of aromatic hydrocarbon ions in (+) APPI. The data used in this study clearly show that the theoretically calculated reaction enthalpy (ΔH) of protonation with toluene dimers can be used to predict the protonation behavior of aromatic compounds. When compounds have a negative ΔH value, the types of ions generated for aromatic compounds could be very well predicted based on the ΔH value. The ΔH can explain overall protonation behavior of compounds with ΔH values >0. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Theoretical background and user's manual for the computer code on groundwater flow and radionuclide transport calculation in porous rock

    International Nuclear Information System (INIS)

    Shirakawa, Toshihiko; Hatanaka, Koichiro

    2001-11-01

    In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)

  13. Progress in theoretical calculation of transactinium isotope nuclear data

    International Nuclear Information System (INIS)

    Salvy, J.

    1984-05-01

    Considerable progress has been made in effective use of nuclear theory for evaluation purposes. During the past few years, a number of basic improvements have developed in nuclear models commonly used for data evaluation. Actinide data evaluation can also use such improvements, but in the actinide region a further complication arises from the presence of fission competition. Nevertheless, systematic prescriptions for calculating even predicting neutron cross sections within an extended actinide region are available. Many efforts in several laboratorie are currently devoted to improving nuclear codes to be used for evaluation purposes. However at the present time numerous basic parameters associated with the neutron-induced fission process as well as neutron and gamma-ray competition have to be predetermined as input. Systematic studies of the behaviour of these parameters have been initiated with the aim of finding general trends hopefully useful for extrapolation in cases where direct information is lacking. Such trends can emerge from suitable examination of a large number of coherent experimental data, coherent theoretical results, or a combination these. This seems at the present time to be the most promising means for improving the actinide data evaluation. The aim of this paper is only to review briefly some of the main improvements either achieved or under way. The concern will be theoretical aspects useful for evaluating actinide data in the restricted incident neutron energy range from 10 KeV to 20 MeV. It is intended to focus on examples of systematics and on some improvements expected from microscopic methods under development

  14. New theoretical development for the calculating of physical properties of D2O

    International Nuclear Information System (INIS)

    Moreira, Osvaldo

    2011-01-01

    In this work we have developed a new method for calculating the physical properties of heavy water, D 2 O, using the Helmholtz free energy state function, A = U − T S, exclusively for this molecule. The state function has been calculated as ā = ā 0 +ā 1 (specific dimensionless values), where ā 0 is related to the properties of heavy water in gaseous state and ā 1 describes the liquid state. The canonical variables of the state function are absolute temperature and volume. To calculate the physical properties defining absolute pressure and temperature, here a variable change method was developed, based on the solution of a differential equation (function ζ) using numerical algorithms (scaling and Newton-Raphson). Physical quantities calculated are: density ϱ(specific volume υ), specific enthalpy h and entropy s. The results obtained agree completely with the values calculated by the National Institute of Standards and Technology (NIST). In this report it has also proposed an adjustment function to calculate the saturation absolute temperature of heavy water as a function of the pressure: T s (p) = exp[a·b(p)], where a is a vector of constant coefficients and b a vector function of pressure, using theoretical values and extending the wording proposed by the Oak Ridge National Laboratory. The new setting has an error less than 0.03%. (author)

  15. Theoretical calculations of hardness and metallicity for multibond hexagonal 5d transition metal diborides with ReB2 structure

    International Nuclear Information System (INIS)

    Yang Jun; Gao Fa-Ming; Liu Yong-Shan

    2017-01-01

    The hardness, electronic, and elastic properties of 5d transition metal diborides with ReB 2 structure are studied theoretically by using the first principles calculations. The calculated results are in good agreement with the previous experimental and theoretical results. Empirical formulas for estimating the hardness and partial number of effective free electrons for each bond in multibond compounds with metallicity are presented. Based on the formulas, IrB 2 has the largest hardness of 21.8 GPa, followed by OsB 2 (21.0 GPa) and ReB 2 (19.7 GPa), indicating that they are good candidates as hard materials. (paper)

  16. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    International Nuclear Information System (INIS)

    Cerny, M; Pokluda, J

    2009-01-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.

  17. Calculating the Fee-Based Services of Library Institutions: Theoretical Foundations and Practical Challenges

    Directory of Open Access Journals (Sweden)

    Sysіuk Svitlana V.

    2017-05-01

    Full Text Available The article is aimed at highlighting features of the provision of the fee-based services by library institutions, identifying problems related to the legal and regulatory framework for their calculation, and the methods to implement this. The objective of the study is to develop recommendations to improve the calculation of the fee-based library services. The theoretical foundations have been systematized, the need to develop a Provision for the procedure of the fee-based services by library institutions has been substantiated. Such a Provision would protect library institution from errors in fixing the fee for a paid service and would be an informational source of its explicability. The appropriateness of applying the market pricing law based on demand and supply has been substantiated. The development and improvement of accounting and calculation, taking into consideration both industry-specific and market-based conditions, would optimize the costs and revenues generated by the provision of the fee-based services. In addition, the complex combination of calculation leverages with development of the system of internal accounting together with use of its methodology – provides another equally efficient way of improving the efficiency of library institutions’ activity.

  18. Calculation of nonstationary gas-dynamic flows with periodic local supply of energy

    International Nuclear Information System (INIS)

    Mikhailova, N.V.; Myshetskaya, E.E.; Rakhimov, A.T.; Favorskii, A.P.

    The paper considers the motion of a flow of gas with local supply of energy periodic in time. Solution of the problem in one-dimensional formulation in the approximation of an ideal nonviscous non-heat-conducting gas is carried out by numerical methods. The possibility of emergence of the flow into a periodic regime is established and the rate of this process is calculated. The character of the periodic structure is investigated in dependence on the frequency of the superimposition of perturbations and the Mach number in unperturbed flow of the gas

  19. PBE–DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    International Nuclear Information System (INIS)

    Saïl, K.; Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-01-01

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units (n = 1–11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6–31 G(d, p) level of theory and the Perdew–Burke–Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E gap , V oc , and V bi ) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies (E ex ), the maximal absorption wavelength (λ max ), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs

  20. PBE–DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saïl, K., E-mail: sailkari7@yahoo.com; Bassou, G. [Université Djillali Liabès, Laboratoire de Microscopie, Microanalyse de la Matière et Spectroscopie Moléculaire (L2MSM), Faculté des Sciences Exactes (Algeria); Gafour, M. H. [Centre Universitaire Ahmed Zabana de Rélizane, Institut des Sciences Exactes et Sciences de la Nature et de la Vie, Département de Chimie (Algeria); Miloua, F. [Université Djillali Liabès, Laboratoire de Microscopie, Microanalyse de la Matière et Spectroscopie Moléculaire (L2MSM), Faculté des Sciences Exactes (Algeria)

    2015-12-15

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units (n = 1–11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6–31 G(d, p) level of theory and the Perdew–Burke–Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E{sub gap}, V{sub oc}, and V{sub bi}) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies (E{sub ex}), the maximal absorption wavelength (λ{sub max}), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  1. Self-condensation of n-(N-propyl)butanimine: NMR and mass spectral analyses and investigation by theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)

    2012-07-01

    The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)

  2. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  3. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  4. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  5. Theoretical calculations of the reaction cross-sections for proton-induced reactions on natural copper using ALICE-IPPE code

    International Nuclear Information System (INIS)

    Alharbi, A.A.; Azzam, A.

    2012-01-01

    A theoretical study of the nuclear-reaction cross sections for proton-induced reactions on 63 Cu and 65 Cu was performed in the proton energy range from threshold values up to 50 MeV. The produced nuclei were different isotopes of Zn, Cu, Ni, Co and Mn, some of which have important applications. The reaction cross-section calculations were performed using the ALICE-IPPE code, which depends on the pre-equilibrium compound nucleus model. This code is suitable for the studied energy and isotopic mass ranges. Approximately 14 excitation functions for the different reactions have been constructed from the calculated cross-section values. The excitation function curves for the proton reactions with natural copper targets have been constructed from those for enriched targets using the natural abundance of the copper isotopes. Comparisons between the calculated excitation functions with those previously experimentally measured are given whenever the experimental values were available. Some statistical parameters were introduced to control the quality of the fitting between both the experimental and the theoretical calculated cross-section values. - Highlights: ► We performed reaction cross section calculations using ALICE-IPPE code. ► We constructed 14 excitation functions for nat Cu(p,xn)Zn,Cu,Ni,Co,Mn reactions. ► The available experimental data were fitted to the performed ALICE-IPPE calculations. ► Statistical parameters were introduced to control the quality of the fitting. ► The code failed to fit the experimental data for reactions with large nucleon emissions.

  6. 34 CFR 686.22 - Calculation of a grant for a payment period.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Calculation of a grant for a payment period. 686.22 Section 686.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION TEACHER EDUCATION ASSISTANCE FOR COLLEGE AND HIGHER EDUCATION...

  7. Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations

    International Nuclear Information System (INIS)

    Pan, Wenxiao; Zhang, Dongju; Zhan, Jinhua

    2011-01-01

    Highlights: → We study the inclusion mechanism of TCDD with β-CD by theoretical methods. → Clearly, the formation of inclusion complex is an energetically driven process. → The inclusion complex can be detected by IR and Raman techniques. → The results imply that β-CD may be used as a host molecule to enrich TCDD molecules. - Abstract: The rapid enrichment and detection of trace polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are currently challenging issues in the field of environmental science. In this paper, by performing quantum chemistry (QM) calculations and molecular dynamics (MD) simulations, we studied the inclusion complexation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a representative PCDD molecule, with β-cyclodextrin (β-CD), one of the widely used compounds in supramolecular chemistry. The calculated results reveal that the stable inclusion complex can be formed in both the gas phase and solvent, which proposes that β-CD may serve as a potential substrate enriching TCDD. The calculated vibrational spectra indicate that the infrared (IR) and Raman spectroscopy may be suitable for the detection of β-CD-modified TCDD. The present theoretical results may be informative to environmental scientists who are devoting themselves to developing effective methods for detection and treatment of POPs.

  8. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    International Nuclear Information System (INIS)

    Nowak, S.H.; Banaś, D.; Błchucki, W.; Cao, W.; Dousse, J.-Cl.; Hönicke, P.; Hoszowska, J.; Jabłoński, Ł.; Kayser, Y.; Kubala-Kukuś, A.; Pajek, M.; Reinhardt, F.; Savu, A.V.; Szlachetko, J.

    2014-01-01

    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage

  9. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanlin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Shi, Jin; Chen, Hongche [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dong, Wenbo, E-mail: wbdong@fudan.edu.cn [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC–MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO·) was also studied and H{sub 2}O{sub 2} was added to produce HO·. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO·. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16 h irradiation. - Highlights: • Photodegradation of 4-t-BP, an endocrine disrupting chemical, has been investigated. • 3 stable byproducts were identified from photolysis and oxidation processes. • 5 transient by-products were concluded from LFP experiments. • The theoretical calculation was performed to confirm the byproducts. • 4-t-BP was degraded with increasing efficiency: 254 nm < H{sub 2}O{sub 2}/313 nm < H{sub 2}O{sub 2}/254 nm.

  10. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    Science.gov (United States)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  11. Physical explanation of the periodic table.

    Science.gov (United States)

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  12. Theoretical calculation and evaluation of complete neutron data for natural niobium

    International Nuclear Information System (INIS)

    Ma Gonggui; Zou Yiming; Wang Shiming

    1990-07-01

    An evaluation of a complete neutron nuclear data for natural niobium has been finished on the data measured by experiments up to 1989 and theoretical calculations with program MUP2 and AUJP. The purpose of present work is to build CENDL-2 databank (Chinese Evaluation Nuclear Data Library, second version) which replaces the CENDL-1 (first version of CENDL). The neutron energy for niobium is in the range of 10 -5 eV to 20 MeV. Data of cross section include total, elastic, nonelastic, total elastic, inelastic cross section to 13 discrete levels, inelastic continuum, (n,2n), (n,3n), (n,n ' α) + (n,αn ' ), (n,n ' p) + (n,pn ' ), (n,n ' d) + (n,dn ' ), (n,p), (n,d), (n,t), (n,α) and capture cross sections. Data for MT 251,252 and 253 as well as angular distributions and energy spectra of secondary neutrons are also given

  13. Integral parameters for the Godiva benchmark calculated by using theoretical and adjusted fission spectra of 235U

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1987-05-01

    The theoretical and adjusted Watt spectrum representations for 235 U are used as weighting functions to calculate K eff and θ f 28 /θ f 25 for the benchmark Godiva. The results obtained show that the values of K eff and θ f 28 /θ f 25 are not affected by spectrum form change. (author) [pt

  14. Field-theoretic calculation of kinetic helicity flux

    Indian Academy of Sciences (India)

    Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...

  15. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

    International Nuclear Information System (INIS)

    Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

    1982-01-01

    A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

  16. Joint experimental--theoretical program in plasma physics of controlled fusion for the period January 1, 1975--December 31, 1975

    International Nuclear Information System (INIS)

    Fried, B.D.; Dawson, J.M.; Weng, A.Y.; Chen, F.F.

    1975-01-01

    Summaries of research work during this report period are given for the following topics: (1) theoretical studies, (2) laser-plasma studies, (3) computer simulation of plasmas, and (4) experiments on plasma properties and plasma heating. (U.S.)

  17. CDW-EIS theoretical calculations of projectile deflection for single ionization in highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    2003-01-01

    We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections

  18. Theoretical calculation of G-value

    International Nuclear Information System (INIS)

    Sato, Shin

    1979-01-01

    The slowing down spectra of secondary electrons seem to be the most important concept in the case of considering the initial process of radiation chemistry. This paper is described on the consideration for it and the approximation method used. G-value can be determined by the result of integration of the product of the whole slowing down spectrum and the total production cross section of a product to be determined over electron energy. After the relation of G-value to electron beam irradiation and γ-ray decomposition are described, the calculated and experimental values are compared, unexpected agreement is obtained. The reason why the plausible G-values were obtained to such extent by rough calculation is not known. From these G-values, the production of O 3 from O 2 , the radiolysis of NO, the chemical ionization of excited acetylene and others were estimated. The most interesting object in radiation chemistry is the condensing phase. A simple but important problem in radiation chemistry is the definition of the ionization in condensing phase. That is, it is of problem that what distance electrons have to come away from their original molecule to regard as the ionization. The considerations on the size of spur produced in water by γ-irradiation, the distribution of ion pairs in a spur, and Jesse effect are also made. (Wakatsuki, Y.)

  19. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    Science.gov (United States)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more

  20. Adsorption of F2C=CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    International Nuclear Information System (INIS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-01-01

    Graphical abstract: - Highlights: • Adsorption of F 2 C=CFCl on TiO 2 unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F 2 C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol −1 depending on the anchor point. • Theory and experiment converge on the CF 2 moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO 2 ) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F 2 C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO 2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti 4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol −1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  1. Treatment of delocalized electron transfer in periodic and embedded cluster DFT calculations: The case of Cu on ZnO (10(1)0).

    Science.gov (United States)

    Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti

    2015-12-15

    We assess the consequences of the interface model-embedded-cluster or periodic-slab model-on the ability of DFT calculations to describe charge transfer (CT) in a particularly challenging case where periodic-slab calculations indicate a delocalized charge-transfer state. Our example is Cu atom adsorption on ZnO(10(1)0), and in fact the periodic slab calculations indicate three types of CT depending on the adsorption site: full CT, partial CT, and no CT. Interestingly, when full CT occurs in the periodic calculations, the calculated Cu atom adsorption energy depends on the underlying ZnO substrate supercell size, since when the electron enters the ZnO it delocalizes over as many atoms as possible. In the embedded-cluster calculations, the electron transferred to the ZnO delocalizes over the entire cluster region, and as a result the calculated Cu atom adsorption energy does not agree with the value obtained using a large periodic supercell, but instead to the adsorption energy obtained for a periodic supercell of roughly the same size as the embedded cluster. Different density functionals (of GGA and hybrid types) and basis sets (local atom-centered and plane-waves) were assessed, and we show that embedded clusters can be used to model Cu adsorption on ZnO(10(1)0), as long as care is taken to account for the effects of CT. © 2015 Wiley Periodicals, Inc.

  2. A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ilyas, Bahaa M., E-mail: bahaastring@gmail.com [Department of Physics, University Of Dohuk (Iraq); Elias, Badal H. [Laboratory of Theoretical Physics, Department of Physics, Faculty of Sciences, University of Dohuk (Iraq)

    2017-04-01

    The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl{sub 3} and CsCdCl{sub 3} unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl{sub 3} and CsPbCl{sub 3} is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl{sub 3} is Γ–R indirect band gap insulator, while CsPbCl{sub 3} is an insulator with a direct band gap Γ–Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl{sub 3}, and Cd-p states and Cs-p states for the CsCdCl{sub 3} in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0–20 GPa and 0–40 GPa for the CsCdCl{sub 3} and CsPbCl{sub 3} respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame’s constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl{sub 3} (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For

  3. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials

    Science.gov (United States)

    Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue

    2018-01-01

    Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.

  4. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    Science.gov (United States)

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  5. Graph theoretical models for calculating the reliablility of power plants. Pt. 4

    International Nuclear Information System (INIS)

    Vetterkind, D.W.

    1978-01-01

    With the aid of mathematical formalisms from the theory of stochastical networks, approximation equations are derived for the expectation value as well as for the scattering of period-related availability of series systems consisting of deteriorating and/or non-deteriorating components. In this context, successive operating times of deteriorating components are described by the time-dependent Poisson process while successive operating times of non-deteriorating components are described by the time-independent Poisson process. In addition provision is made in the model to include in the calculation an existing trend of the expectation value of components successive failure times. (orig./RW) [de

  6. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    Science.gov (United States)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  7. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  8. Substituent effect on redox potential of nitrido technetium complexes with Schiff base ligand. Theoretical calculations

    International Nuclear Information System (INIS)

    Takayama, T.; Sekine, T.; Kudo, H.

    2003-01-01

    Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)

  9. Calculations of Changes in Reactivity during some regular periods of operation of JEN-1 MOD Reactor

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1973-01-01

    By a Point-Reactor model and Perturbation Theory, changes in reactivity during some regular operating periods of JEN-1 MOD Reactor have been calculated and compared with available measured values. they were in good agreement. Also changes in reactivity have been calculated during operations at higher power levels than the present one, concluding some practical consequences for the case of increasing the present power of this reactor. (Author)

  10. Mathematical model and computer programme for theoretical calculation of calibration curves of neutron soil moisture probes with highly effective counters

    International Nuclear Information System (INIS)

    Kolev, N.A.

    1981-07-01

    A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)

  11. ARTICLES: Thermohydrodynamic models of the interaction of pulse-periodic radiation with matter

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Malyuta, D. D.; Mezhevov, V. S.; Pis'mennyĭ, V. D.

    1987-02-01

    Experimental and theoretical investigations were made of the processes of drilling and deep melting of metals by pulsed and pulse-periodic laser radiation. Direct photography of the surface revealed molten metal splashing due to interaction with single CO2 laser pulses. A proposed thermohydrodynamic model was used to account for the experimental results and to calculate the optimal parameters of pulse-periodic radiation needed for deep melting. The melt splashing processes were simulated numerically.

  12. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-01-01

    Full Text Available Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss’s and Stokes’s theorems have been related to Green’s theorem in a novel way.

  13. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  14. Kind of approximate theoretical calculating formula of heat-exchange area for the vertical U-bend tube natural-circuit steam generator

    International Nuclear Information System (INIS)

    Luo Mingkun; Wang Fei; Huang Wei; Zhang Wenqi; Zhao Shan; Lu Lianghong

    2001-01-01

    A kind of approximate theoretical calculating formula of the vertical U-bend tube natural-circuit steam generator is deduced by using an approximate method, the results of this formula is compared with the heat exchanging areas of the real vertical U-bend tube natural-circuit steam generators, the absolute errors of them are below 8%

  15. Relativistic calculations of one-photon bound-free transition amplitudes in hydrogenic atoms

    International Nuclear Information System (INIS)

    Simo, E.; Kwato Njock, M.G.

    2005-04-01

    Photoionization transition matrix of hydrogenic systems are investigated theoretically within the framework of the tensorial formalism with relativistic arguments. Calculations are carried out exactly, without approximation. We derive continuum second-order Dirac-Coulomb Sturmian functions. The numerical simulation of our results is performed in the dipole approximation. We test our theory on selected nucleus from the Periodic Table. The results of the fully relativistic calculations are compared with those of the quasi-relativistic calculations. A conclusion is drawn about the level of reliability of the quite simplified quasi-relativistic approach. (author)

  16. Theoretical calculations of L alpha one x-ray emission intensity ratios for uranium in various matrices: a comparison with experimental values

    International Nuclear Information System (INIS)

    Anderson, L.D.

    1976-01-01

    The U L/sub α1/ x-ray emission intensity ratios (I/sub lambda/sub L//I sub lambda/sub L/, sub 100 percent/sub UO 2 /) in various matrices were calculated using the fundamental parameters formula of Criss and Birks and mass absorption coefficients calculated from a formula developed by Dewey. The use of the intensity ratio made it unnecessary to know the fluorescence yield for the U L/sub III/ level, the probability of emission of the U L/sub α1/ line, and the jump ratios for the three absorption edges of uranium. Also, since an intensity ratio was used, the results are independent of the x-ray tube current and the spectral distribution of the x-ray tube. A method is presented to calculate the intensity ratios for x-ray tube voltages other than the value (45 kV) used in the calculations. The theoretical results are calculated and compared with the experimental results obtained for 141 matrices. Difficulties due to oxidation of some of the metal powders used in the sample preparation, to small concentrations of uranium, and to an excessively large number of elements present in some of the samples resulted in the invalidation of the experimental results for 91 of the matrices. For the remaining 50 matrices, the theoretical and experimental values agreed to within +-5 percent relative error for 36 matrices; to within +-5 percent to +- 10 percent for 7 matrices; to within +-10 percent to +-20 percent for 6 matrices; and was greater than +-20 percent for 1 matrix

  17. Gibbs energies of protonation and complexation of platinum and vanadate metal ions with naringenin and phenolic acids: Theoretical calculations associated with experimental values

    International Nuclear Information System (INIS)

    Fazary, Ahmed E.; Alshihri, Ayed S.; Alfaifi, Mohammad Y.; Saleh, Kamel A.; Elbehairi, Serag Eldin I.; Fawy, Khaled F.; Abd-Rabboh, Hisham S.M.

    2016-01-01

    Highlights: • The experimental thermodynamic equilibrium and stability constants of vanadium and platinum complexes involving naringin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined. • The theoretical calculations of the free energy changes associated with the ligand protonation, and metal ion–ligand complex formation equilibria using density function theory calculations, providing a complete picture of the microscopic equilibria of the studied complex systems. - Abstract: The Experimental thermodynamic equilibrium (pK_a values) and stability (log β) constants of vanadium and platinum binary and mixed ligand complexes involving naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid were determined at 310.15 K in 0.16 mol·dm"−"3 KCl aqueous solutions using pH-potentiometric technique and by means of two estimation models (HYPERQUAD 2008 and Bjerrum–Calvin). The theoretical calculations of overall protonation and stability constants of the metal complex species in solution were predicted as the free energy change associated with the ligand protonation, and metal ion–ligand complex formation equilibria (species solvation/de-solvation) using ab initio and density function theory (DFT) calculations. The usage of the experimental potentiometry technique and theoretical predictions provides a complete picture of the microscopic equilibria of the studied systems (vanadium/platinum–naringenin–phenolic acid). Specifically, this theoretically DFT predications would be useful to determine the most real protonation constants of the studied bioligands in which the binding sites changes due to the ligand protonation/deprotonation equilibria. Also, the complexing capacities of vanadium and platinum towards naringenin, ferulic acid, p-coumaric acid, caffeic acid, vanillic acid, sinapic acid, and gallic acid in solutions were evaluated and discussed. From the

  18. Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

    Directory of Open Access Journals (Sweden)

    N. Dadashzadeh

    2013-09-01

    Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.

  19. Single and dual cation sites in zeolites: Theoretical calculations and FTIR spectroscopic studies on CO adsorption on K-FER

    Czech Academy of Sciences Publication Activity Database

    Garrone, E.; Bulánek, R.; Frolich, K.; Areán, C. O.; Delgado, M. R.; Palomino, G. T.; Nachtigallová, Dana; Nachtigall, Petr

    2006-01-01

    Roč. 110, č. 45 (2006), s. 22542-22550 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/06/0324 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational dynamics * IR spectroscopy * periodic DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  20. Neutron capture cross section measurements and theoretical calculation for the {sup 186}W(n,γ){sup 187}W reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2017-08-01

    Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.

  1. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment

    International Nuclear Information System (INIS)

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-01-01

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca 2+ in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  2. Theoretical Calculations of the Effect on Lattice Parameters of Emptying the Coolant Channels in a D{sub 2}O- Moderated and Cooled Natural Uranium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Weissglas, P [The Swedish State Power Board, Stockholm (Sweden)

    1960-11-15

    The purpose of the present study was to evaluate theoretically the effect of coolant boiling and subsequent void formation in a pressurized D{sub 2}O moderated and cooled reactor. The fuel rods were arranged in a cluster geometry and clad in Zr-2. The coolant was separated from the moderator by a Zr-2 shroud. In this geometry the following problems have been given special attention: l) calculation of the effective resonance integral, 2) thermal disadvantage factors, 3) fast fission effects, 4) leakage effects, 5) changes in epithermal absorption. No account has up to now been taken of the variation of these effects with position in the reactor and burnup. Some comparisons of the theoretical methods and measurements have been attempted. It is concluded that at the present time it is not possible to calculate the void coefficient with any accuracy but it may be possible to give an upper limit from theoretical consideration.

  3. Theoretical Analysis of Moving Reference Planes Associated with Unit Cells of Nonreciprocal Lossy Periodic Transmission-Line Structures

    Directory of Open Access Journals (Sweden)

    S. Lamultree

    2017-04-01

    Full Text Available This paper presents a theoretical analysis of moving reference planes associated with unit cells of nonreciprocal lossy periodic transmission-line structures (NRLSPTLSs by the equivalent bi-characteristic-impedance transmission line (BCITL model. Applying the BCITL theory, only the equivalent BCITL parameters (characteristic impedances for waves propagating in forward and reverse directions and associated complex propagation constants are of interest. An infinite NRLSPTLS is considered first by shifting a reference position of unit cells along TLs of interest. Then, a semi-infinite terminated NRLSPTLS is investigated in terms of associated load reflection coefficients. It is found that the equivalent BCITL characteristic impedances of the original and shifted unit cells are mathematically related by the bilinear transformation. In addition, the associated load reflection coefficients of both unit cells are mathematically related by the bilinear transformation. However, the equivalent BCITL complex propagation constants remain unchanged. Numerical results are provided to show the validity of the proposed theoretical analysis.

  4. Theoretical model for calculation of molecular stopping power

    International Nuclear Information System (INIS)

    Xu, Y.J.

    1984-01-01

    A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field

  5. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  6. Metamaterial-based theoretical description of light scattering by metallic nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada); Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, 268 Grosvenor Street, London N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London N6A 3K7 (Canada)

    2015-05-14

    We have experimentally and theoretically investigated the light-matter interaction in metallic nano-hole array structures. The scattering cross section spectrum was measured for three samples each having a unique nano-hole array radius and periodicity. Each measured spectrum had several peaks due to surface plasmon polaritons. The dispersion relation and the effective dielectric constant of the structure were calculated using transmission line theory and Bloch's theorem. Using the effective dielectric constant and the transfer matrix method, the surface plasmon polariton energies were calculated and found to be quantized. Using these quantized energies, a Hamiltonian for the surface plasmon polaritons was written in the second quantized form. Working with the Hamiltonian, a theory of scattering cross section was developed based on the quantum scattering theory and Green's function method. For both theory and experiment, the location of the surface plasmon polariton spectral peaks was dependant on the array periodicity and radii of the nano-holes. Good agreement was observed between the experimental and theoretical results. It is proposed that the newly developed theory can be used to facilitate optimization of nanosensors for medical and engineering applications.

  7. Experimental-theoretical approach to carbon monoxide density calculation at the incipient stage of the fire indoors

    Science.gov (United States)

    Puzach, S. V.; Suleykin, E. V.; Akperov, R. G.; Nguyen, T. D.

    2017-11-01

    A new experimental-theoretical approach to the toxic gases concentrations assessment in case of fire indoors is offered. The analytical formulas for calculation of CO average volume density are received. These formulas do not contain the geometrical sizes of the room and surfaces dimensions of combustible materials and, therefore, are valid under conditions of as a small-scale fire as a large-scale fire. A small-scale experimental installation for modeling fire thermal and gas dynamics in the closed or open thermodynamic system has been designed. The results of the experiments on determining dependencies of CO average volume density from average volume temperature and oxygen average volume density as well as dependencies of specific coefficients of CO emission and specific mass rates of the combustible material gasification from the time of tests during the burning of wood, transformer oil and PVC cables shield are presented. The results of numerical experiments on CO density calculation in small and large scale rooms using the proposed analytical solutions, integral, zone and field models for calculation of fire thermal and gas dynamics are presented. The comparison with the experimental data obtained by the authors and given in the literature has been performed. It is shown that CO density calculation in the full-scale room at the incipient stage of the fire can be carried out taking into account only the experimental dependences of CO from temperature or O2 density, that have been obtained from small-scale experiments. Therefore the solution of the equation of carbon monoxide mass conservation law is not necessary.

  8. Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl.

    Science.gov (United States)

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2005-01-30

    The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase

  9. Adsorption of F{sub 2}C=CFCl on TiO{sub 2} nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Nicola, E-mail: tasinato@unive.it; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-10-30

    Graphical abstract: - Highlights: • Adsorption of F{sub 2}C=CFCl on TiO{sub 2} unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F{sub 2}C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol{sup −1} depending on the anchor point. • Theory and experiment converge on the CF{sub 2} moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO{sub 2}) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F{sub 2}C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO{sub 2} nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti{sup 4+} of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol{sup −1} according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  10. Theoretical calculation of saturated absorption for multilevel atoms

    International Nuclear Information System (INIS)

    O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.

    1998-01-01

    We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement

  11. Evaluation of covariance in theoretical calculation of nuclear data

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki

    1981-01-01

    Covariances of the cross sections are discussed on the statistical model calculations. Two categories of covariance are discussed: One is caused by the model approximation and the other by the errors in the model parameters. As an example, the covariances are calculated for 100 Ru. (author)

  12. Theoretical calculation of the spectra, the EPR g-factors and the magnetic susceptibilities of Cu2+ ion in Cs2CuCl4

    International Nuclear Information System (INIS)

    Shuen Wei Li.

    1991-08-01

    The crystal-field and spin-orbit matrix for d 1 or d 9 configuration with D 2 symmetry has been derived. By diagonalizing the matrix, the energy level of C 2+ u in Cs 2 CuCl 4 and its eigenfunctions have been obtained with the aid of the approximate SCF d-orbit. Furthermore, by suing the eigenfunctions, the EPR g-factors and the magnetic susceptibilities at different temperatures have been calculated. The calculated results are in good agreement with the experimental findings. The calculation only needs two adjustable parameters and can give more theoretical results than those of previous work which introduced 11 adjustable parameters. (author). 16 refs, 3 tabs

  13. Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations

    Science.gov (United States)

    Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay

    2017-04-01

    Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic

  14. Theoretical calculation of shakeup intensities using Xa--SW wave functions

    International Nuclear Information System (INIS)

    Tse, J.S.; Loubriel, G.

    1981-01-01

    The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment

  15. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    Science.gov (United States)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  16. Aperiodic superconducting phase boundary of periodic micronetworks in a magnetic field

    International Nuclear Information System (INIS)

    Nori, F.; Niu, Q.

    1988-01-01

    We study flux quantization in periodic arrays with two elementary cells having an irrational ratio of areas. In particular, we calculate the superconducting-normal phase boundary T/sub c/(H) and we analyze the origin of its overall and fine structure as a function of the network size. We discuss our theoretical results, exploiting the electronic tight-binding analogy to the Ginzburg-Landau equations, and compare them with the experimental ones

  17. Vibrational, structural and electronic properties investigation by DFT calculations and molecular docking studies with DNA topoisomerase II of strychnobrasiline type alkaloids: A theoretical approach for potentially bioactive molecules

    Science.gov (United States)

    Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.

    2017-10-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.

  18. Short-range order in alloys of nickel with the elements of group VIII of the periodic table

    International Nuclear Information System (INIS)

    Khwaja, F.A.

    1981-08-01

    Experimental measurements of the diffuse X-ray scattering intensity were performed on alloys of Ni with Rh and Os. The atomic short-range order (SRO) parameters αsub(i) and the size-effect parameters βsub(i) were calculated from these measurements. It is established that SRO and size-effect exist in Ni-Rh and Ni-Os alloys analogously as in a few other alloys of Ni with the elements of group VIII of the periodic table. The experimental data was interpreted theoretically by calculating the interaction energies from the pseudo-potentials and the effective valencies of the individual components of the systems studied. It was found that theoretically calculated values of the interaction energies for these alloys are inconsistent with the experimentally determined sign of the SRO parameter. (author)

  19. Simulation of electron transport in GaAs/AlAs superlattices with a small number of periods for the THz frequency range

    International Nuclear Information System (INIS)

    Pavelyev, D. G.; Vasilev, A. P.; Kozlov, V. A.; Koschurinov, Yu. I.; Obolenskaya, E. S.; Obolensky, S. V.; Ustinov, V. M.

    2016-01-01

    The electron transport in superlattices based on GaAs/AlAs heterostructures with a small number of periods (6 periods) is calculated by the Monte Carlo method. These superlattices are used in terahertz diodes for the frequency stabilization of quantum cascade lasers in the range up to 4.7 THz. The band structure of superlattices with different numbers of AlAs monolayers is considered and their current–voltage characteristics are calculated. The calculated current–voltage characteristics are compared with the experimental data. The possibility of the efficient application of these superlattices in the THz frequency range is established both theoretically and experimentally.

  20. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    Science.gov (United States)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  1. The MSINDO-sCIS and MSINDO-UCIS methods. Procedures for the calculation of properties of excited states in molecules and periodic systems by a semiempirical approach

    International Nuclear Information System (INIS)

    Gadaczek, Immanuel Patrick

    2013-01-01

    Theoretical background, parameterization and performance of the newly developed semiempirical configuration interaction singles (CIS) method MSINDO-sCIS (scaled configuration interaction singles) are presented. The CIS Hamiltonian is modified by scaling of the Coulomb and exchange integrals and a semiempirical correction of the diagonal elements. For a recently proposed benchmark set of 28 medium-sized organic molecules, vertical excitation energies for singlet and triplet states have been calculated and statistically evaluated. A full reparameterization of the MSINDO method for both ground and excited state properties was performed. The results of the reparameterized MSINDO-sCIS method are compared to the currently best semiempirical method for excited states, OM3-CISDTQ by Thiel et al., and to other standard methods, such as time-dependent density- functional theory. The mean absolute deviation with respect to the theoretical best estimates (TBEs) for MSINDO-sCIS is 0.44 eV, comparable to the OM3 method but significantly smaller than for Zerner's INDO/S. The computational effort is strongly reduced compared to OM3-CISDTQ and OM3-MRCISD, since only single excitations are taken into account. Higher excitations are implicitly included by parameterization and the empirical correction term. By application of the Davidson-Liu block diagonalization method high computational efficiency is achieved. Furthermore it is demonstrated, that the MSINDO-sCIS method correctly describes charge-transfer (CT) states, that represent a crucial problem for time-dependent density functional theory (TD-DFT) methods. Additionally this method is extended to open-shell systems by the UCIS (unrestricted CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The sCIS/UCIS equations are solved for a cluster with periodic

  2. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  3. STELLAR PULSATIONS AND PERIOD CHANGES IN THE SX PHOENICIS STAR XX CYGNI

    International Nuclear Information System (INIS)

    Yang, X. H.; Fu, J. N.; Zha, Q.

    2012-01-01

    Time-series photometric observations were made for the SX Phoenicis star XX Cyg between 2007 and 2011 at the Xinglong Station of National Astronomical Observatories of China. With the light curves derived from the new observations, we do not detect any secondary maximum in the descending portion of the light curves of XX Cyg, as reported in some previous work. Frequency analysis of the light curves confirms a fundamental frequency f 0 = 7.4148 cycles day –1 and up to 19 harmonics, 11 of which are newly detected. However, no secondary mode of pulsation is detected from the light curves. The O–C diagram, produced from 46 newly determined times of maximum light combined with those derived from the literature, reveals a continuous period increase with the rate of (1/P)(dP/dt) = 1.19(13) × 10 –8 yr -1 . Theoretical rates of period change due to the stellar evolution were calculated with a modeling code. The result shows that the observed rate of period change is fully consistent with period change caused by evolutionary behavior predicted by standard theoretical models.

  4. Periodic subsystem density-functional theory

    International Nuclear Information System (INIS)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-01-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed

  5. Periodic subsystem density-functional theory

    Science.gov (United States)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  6. Postseismic viscoelastic surface deformation and stress. Part 1: Theoretical considerations, displacement and strain calculations

    Science.gov (United States)

    Cohen, S. C.

    1979-01-01

    A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.

  7. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)

    1982-06-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.

  8. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    International Nuclear Information System (INIS)

    Kashiwagi, H.

    1982-01-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)

  9. Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic Table of Elements, with Use of Rhodium

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2011-01-01

    Full Text Available In the earlier study (Khazan A. Upper Limit in Mendeleev's Periodic Table - Element No.155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010 the author showed how Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in order to calculate, with high precision, all other elements conceivable in the Table. Here we obtain the same result, with use of fraction linear functions (adjacent hyperbolas.

  10. Sibutramine characterization and solubility, a theoretical study

    Science.gov (United States)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  11. FROM THE HISTORY OF PHYSICS: How Gamow calculated the temperature of the background radiation or a few words about the fine art of theoretical physics

    Science.gov (United States)

    Chernin, Artur D.

    1994-08-01

    In a paper published in 1953, i.e., more than a decade before the observational discovery of the cosmic microwave background radiation, George Gamow predicted theoretically the temperature of this radiation. He estimated it to be 7 K, which is very close to the subsequently measured value of about 3 K. Gamow found the present temperature of the background radiation on the basis of general formulas of cosmological dynamics. This prediction was in no way related to primordial nucleosynthesis.This circumstance has and is still causing misunderstanding in those cases in which the authors have raised doubts about Gamow's results, although an actual error has never been demonstrated. A detailed analysis makes it possible to understand how Gamow's calculation is possible. The problem lies in the fact that Gamow makes a certain additional implicit assumption which allows him to dispense with information on nucleosynthesis. This assumption is discussed in the context of the state of cosmology in the period from the fifties to the seventies, and of the current status of this branch of science.

  12. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    Science.gov (United States)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  13. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    International Nuclear Information System (INIS)

    Baum, O I; Omelchenko, A I; Sobol, E N; Zheltov, G I; Romanov, G S; Romanov, O G

    2013-01-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method. (paper)

  14. Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations.

    Science.gov (United States)

    Laun, Joachim; Vilela Oliveira, Daniel; Bredow, Thomas

    2018-02-22

    Consistent basis sets of double- and triple-zeta valence with polarization quality for the fifth period have been derived for periodic quantum-chemical solid-state calculations with the crystalline-orbital program CRYSTAL. They are an extension of the pob-TZVP basis sets, and are based on the full-relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2-SVP and def2-TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self-consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob-DZVP and pob-TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  16. Theoretical calculations of electron-impact and radiative processes in atoms

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1975-01-01

    Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated

  17. A Conceptual Model for Calculating the Return of Costs Invested in the Creation of an Economic Security Service, During a Short-Term Period

    Directory of Open Access Journals (Sweden)

    Melikhova Tetiana O.

    2018-02-01

    Full Text Available The article is aimed at suggesting methods for calculating the short-term period of return of costs invested in creation of an economic security service. The article considers approaches to calculation of the period of return of costs, advanced at the level of enterprise, which build the methodical basis for definition of such period. At the level of structural subdivisions of enterprise, which do not produce products, it is suggested to use conditional money flow as a source of financing advanced costs. The calculation of the short-term return on investment at the enterprise level provides for: allocation of expenses for the permanent and the replacement parts during the year; determination of the production of money flow and the money flow accumulated during the year. Annual depreciation payments are the basis of fixed costs. Methods of determination of the gross, net, valid, and specified periods of return of costs, advanced during the year for introduction of an economic security service at enterprise, have been suggested.

  18. Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic Table of Elements, with Use of Rhodium

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2011-01-01

    Full Text Available In the earlier study (Khazan A. Upper Limit in Mendeleev’s Periodic Table — Ele- ment No. 155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010 the author showed how Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in or- der to calculate, with high precision, all other elements conceivable in the Table. Here we obtain the same result, with use of fraction linear functions (adjacent hyperbolas.

  19. fp shell spectroscopy: numerical calculations and theoretical aspects

    International Nuclear Information System (INIS)

    Pasquini, E.A.

    1976-01-01

    The fp shell spectroscopy is reviewed and the fsup(n) model is introduced. It is shown that the two-body Hamiltonian monopolar terms play a very important part in the behavior of these spectra, and that realistic interactions do not reproduce them. The detailed study of the following nuclei was undertaken: 47 Ca, 48 Ca, 49 Ca, 56 Ni, 48 Sc, 50 Sc, 50 Ti, 46 Ti, 50 Cr, 47 V and 49 Cr. It is shown that very precise values of the few parameters defining the monopolar contributions could be extracted from the comparison between calculations and experimental data. The study of the binding energies of all the nuclei from 40 Ca to 56 Ni shows that it is necessary to introduce three-body forces. The results also reveal the effect of nondiagonal multipoles which are well reproduced by realistic interactions. A better understanding of the electromagnetic behavior of the fsup(n) nuclei of their conjugaison properties and of the relation between 42 Sc and 48 Sc was obtained. Several calculations of two-body transfer amplitudes were proposed [fr

  20. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  1. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.

    Science.gov (United States)

    Kajiya, Daisuke; Saitow, Ken-ichi

    2013-08-07

    Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of

  2. Theoretical Study of the Vibration Suppression on a Mistuned Bladed Disk Using a Bi-periodic Piezoelectric Network

    Science.gov (United States)

    Li, Lin; Deng, Pengcheng; Liu, Jiuzhou; Li, Chao

    2018-03-01

    The paper deals with the vibration suppression of a bladed disk with a piezoelectric network. The piezoelectric network has a different period (so called bi-period) from that of the bladed disk and there is no inductor in it. The system is simulated by an electromechanical lumped parameter model with two DOFs per sector. The research focuses on suppressing the amplitude magnification or reducing the vibration localization of the mistuned bladed disk. The dynamic equations of the system are derived. Both mechanical mistuning and electrical mistuning have been taken into account. The Modified Modal Assurance Criterion (MMAC) is used to evaluate the vibration suppression ability of the bi-periodic piezoelectric network. The Monte Carlo simulation is used to calculate the MMAC of the system with the random mistuning. As a reference, the forced responses of the bladed disk with and without the piezoelectric network are given. The results show that the piezoelectric network would effectively suppress amplitude magnification induced by mistuning. The vibration amplitude is even smaller than that of the tuned system. The robustness analysis shows that the bi-periodic piezoelectric network can provide a reliable assurance for avoiding the forced response amplification of the mistuned bladed disk. The amplified response induced by the mechanical mistuning with standard deviation 0.2 can be effectively suppressed through the bi-periodic piezoelectric network.

  3. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  4. Theoretical calculation of rapid x-ray transients and radius expansion

    International Nuclear Information System (INIS)

    Starrfield, S.; Sparks, W.; Truran, J.; Kenyon, S.

    1984-01-01

    We present the results of a calculation of a thermonuclear runaway on a 10 km neutron star which produced a precursor, radius expansion, and after the envelope had begun to shrink, a seconds x-ray burst about 2500 second later. Although such an event has not yet been observed, decreasing the initial envelope mass should bring the calculations into better agreement with the observations

  5. Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13 ≤ Z ≤ 80

    International Nuclear Information System (INIS)

    Costa, A M; Martins, M C; Santos, J P; Indelicato, P; Parente, F

    2006-01-01

    Energies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac-Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβ h 1 /Kβ h 3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations

  6. Supercomputer requirements for theoretical chemistry

    International Nuclear Information System (INIS)

    Walker, R.B.; Hay, P.J.; Galbraith, H.W.

    1980-01-01

    Many problems important to the theoretical chemist would, if implemented in their full complexity, strain the capabilities of today's most powerful computers. Several such problems are now being implemented on the CRAY-1 computer at Los Alamos. Examples of these problems are taken from the fields of molecular electronic structure calculations, quantum reactive scattering calculations, and quantum optics. 12 figures

  7. Theoretical calculation of pKa reveals an important role of Arg205 in the activity and stability of Streptomyces sp. N174 chitosanase.

    Science.gov (United States)

    Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R

    2000-08-18

    Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.

  8. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  9. Effects of pH value on growth morphology of LaPO{sub 4} nanocrystals: investigated from experiment and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyan; Zhang, Zhongju [Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao (China); Zhang, Luo; Wang, Xin [Ocean University of China, Institute of Material Science and Engineering, Qingdao (China)

    2016-05-15

    The morphologies of the materials have strong effects on their performance in particular applications. In our experiment, we synthesized LaPO{sub 4} successfully by the typical hydrothermal method in acidic conditions. The morphologies, preferred orientation and crystal facets are characterized by scanning electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Combining the experimental findings, the surface energies of two major surfaces, (110) and (031) planes, were calculated using density functional theory methods. The theoretical calculations on the slabs surface energies were performed to simulate the shape of nanoparticles by the Wulff construction. The experimental results indicate that LaPO{sub 4} prepared in this work shows rodlike structure. The equilibrium shape of clava with large length-diameter ratio is achieved. With increasing hydrogen ion concentration in solutions, the morphologies present as sticks and their length-diameter ratios tend bigger, which is consistent with experimental results to a great extent. (orig.)

  10. Nonempirical electron-correlation calculations on ALik and Alik+1+ clusters formed with elements from the second and third periods

    International Nuclear Information System (INIS)

    Mebel', A.M.; Klimenko, N.M.; Charkin, O.P.

    1988-01-01

    Several basic sets have been used (from 3-21 G A * to DZHD + P A ) with electron correlation in the Meller-Plesset MP3 approximation in nonempirical calculations on ALi k+1 + and ALi K+1 + lithium clusters (CLi 2 , CLi 3 + , NLi 3 , NLi 4 + , OLi 2 , OLi 3 + , etc.) formed with elements from the second and third periods in the lowest singlet states. A study has been made on the effects of the approximation on the results. Several reference systems are used to show that the SCF/3-21G A * approximation describes the lithide geometry satisfactorily, while MP3/DZHD + P A gives a satisfactory description of the affinity of Ali k for Li + . These approximations have been taken as optimal for calculations on the other compounds. The Li + affinities are highest for NLi 3 and PLi 3 (90 and 84 kcal correspondingly) and decrease as A varies along the subgroups from the second to the third and the lower sp periods, as well as when A varies in each period from the middle to the start or end. The affinities of the analogous compounds for Na + are less by 5-10 kcal than those for Li + . The values are compared with the proton affinities for the related hydrides AK k

  11. Clusters of DNA damage induced by ionizing radiation: Formation of short DNA fragments. I. Theoretical modeling

    International Nuclear Information System (INIS)

    Holley, W.R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber composed of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and δ rays due to knock-on collisions involving energy transfers > 100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of circ OH, circ H, e aq , etc.; circ OH attack on sugar molecules leading to strand breaks; circ OH attack on bases; direct ionization of the sugar molecules leading to strand breaks; direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 hp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA. 27 refs., 7 figs

  12. Constituent period in theoretization of minimalism in architecture

    Directory of Open Access Journals (Sweden)

    Stevanović Vladimir

    2012-01-01

    Full Text Available The paper analyzes architectural discourse that is formed around the term minimalism, between 1976 and 1999, a period that I consider constitutive for theorization of the term. The presentation is directed by two hypotheses: I minimalism in architecture does not have a continuous stream of origin, development, and is not a style, direction, movement, school, genre or trend in terms of how it is defined in disciplines such as art history, aesthetics and art theory II the fact that it's rare for an architect to declare himself a minimalist suggests that minimalism in architecture is actually a product or construct of an architectural discourse that emerged from the need to consolidate the existing obvious and widespread formal idiom in architecture partly during and after post-modernism. It is indicative that the writing of history of minimalism in architecture, in its most intensive period - the nineties, takes place mainly in three cities: London, Barcelona and Milan. In this sense, we can examine how each of these centers emphasized its role, through the ambition of minimalism in architecture to appear as an authentic local creation.

  13. Adhesion strength of Ni film on Ti substrate characterized by three-point bend test, peel test and theoretic calculation

    International Nuclear Information System (INIS)

    Ren, F.Z.; Liu, P.; Jia, S.G.; Tian, B.H.; Su, J.H.

    2006-01-01

    Electroplating was employed to fabricate the Ni film on the Ti substrate. Adhesion strength of Ni film on Ti substrate was determined using the three-point bend technique that was proposed in standard mechanics test. The experimental results demonstrate that the interface fracture energies obviously increase with the roughness of Ti substrates, and are independence with the thickness of Ni films. Moreover, the adhesion strength of Ni film on Ti substrate was also measured by peel test, and was evaluated by Miedema model of experiential electron theory. The intrinsic interface fracture energy measured by three-point bend test is reasonable agreement with that obtained by theoretical calculation of Miedema model, and is roughly comparable to that by peel test

  14. Theoretical Issues

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen

    2007-04-01

    The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

  15. Production of medical radioisotope 153Sm in the Tehran Research Reactor (TRR) through theoretical calculations and practical tests

    International Nuclear Information System (INIS)

    Forughi, Sh.; Hamidi, S.; Khalafi, H.; Sheibani, Sh.; Shahidi, A.

    2013-01-01

    Highlights: ► Production of 153 Sm isotope by neutron activation in a nuclear reactor was studied. ► Optimal parameters for weight and irradiation time were found. ► This study led to an empirical correction factor (kf). ► Kf enhanced the production procedure of the 153 Sm radioisotope. ► The results led to nearly 60% decrease in the amount of material used in the production process. - Abstract: The feasibility of producing 2000–3000 mCi 153 Sm by irradiation of 152 Sm in 5 MW TRR was studied via TRR core simulation. In this study the cross-section of 152 Sm (n,γ) 153 Sm reaction from ENDF/B library was used. The effective activation cross section for production of 153 Sm is obtained using the neutron spectra in different irradiation channel of the core. The activity of the simulated samples is calculated using the obtained fluxes and cross sections. Then samples were prepared and irradiated under different conditions and fluxes. The final production’s specific activity was measured by the standard dose calibrator ISOMED 1010. By comparison of the theoretical calculations and actual measurements, an empirical correction factor (K f ) was obtained, which is helpful in production procedure of the 153 Sm radioisotope. The optimal weight of the samples and irradiation time was studied according to the flux calculations based on the location of the sample and saturated activity calculation. In order to test the proposed conditions, samples were prepared and were irradiated under the proposed conditions. According to the compared results with the initial irradiation condition, the new proposed sample which weighed 4 mg of Sm 2 O 3 is acceptable for the labeling, therefore this study led to nearly 60% decrease in the amount of material used in the production process

  16. Scientific periodical publications rating's calculation and analysis

    Directory of Open Access Journals (Sweden)

    B. E. Nikitin

    2017-01-01

    Full Text Available The article considers the constructing problem of the food industry journals aggregate ratings. The streamlines of the seventeen magazines on four bibliometric indexes (SCIENCE INDEX, five-year impact factor RISC given the translated version without self-citations, h-index over 10 years and Herfindahl index, which are used in the scientific electronic library elibrary.ru was used as initial data. The statement of the problem refers to multi-criteria decision-making problems. Ranking the journals in these indexes are different from each other because bibliometric indicators account different aspects of the journals. The classical approach to thisproblems solution is based on generalized criterion building in the form of an additive convolution. However, this approach requires adherence to a number of regular conditions that may not always be performed when the practical problems solution. The reductionspossibility of the considered formulation in the form of multi-criteria decision-making tasks to the problem of collective choice. The aggregated ratings of the reporting journals are calculated by using the three social choice rules – Board procedure, Copeland procedures and Kemeny median heuristic procedures. On the basis of Spearman's rank correlation determined the quantitative evaluation of the degree of intimacy built in magazines. In particular, calculated on the basis of procedure, Board and Kemeny median aggregate ratings reporting in the logs coincided. The results showed that the constructed ordering of journals on the basis of social choice rules are in good agreement with the scientific electronic library (eLIBRARY bibliometric indicators.

  17. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  18. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    Science.gov (United States)

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  19. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  20. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  1. Application of the method of integral equations to calculating the electrodynamic characteristics of periodically corrugated waveguides

    International Nuclear Information System (INIS)

    Belov, V.E.; Rodygin, L.V.; Fil'chenko, S.E.; Yunakovskii, A.D.

    1988-01-01

    A method is described for calculating the electrodynamic characteristics of periodically corrugated waveguide systems. This method is based on representing the field as the solution of the Helmholtz vector equation in the form of a simple layer potential, transformed with the use of the Floquet conditions. Systems of compound integral equations based on a weighted vector function of the simple layer potential are derived for waveguides with azimuthally symmetric and helical corrugations. A numerical realization of the Fourier method is cited for seeking the dispersion relation of azimuthally symmetric waves of a circular corrugated waveguide

  2. Wireless Information-Theoretic Security in an Outdoor Topology with Obstacles: Theoretical Analysis and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Dagiuklas Tasos

    2011-01-01

    Full Text Available This paper presents a Wireless Information-Theoretic Security (WITS scheme, which has been recently introduced as a robust physical layer-based security solution, especially for infrastructureless networks. An autonomic network of moving users was implemented via 802.11n nodes of an ad hoc network for an outdoor topology with obstacles. Obstructed-Line-of-Sight (OLOS and Non-Line-of-Sight (NLOS propagation scenarios were examined. Low-speed user movement was considered, so that Doppler spread could be discarded. A transmitter and a legitimate receiver exchanged information in the presence of a moving eavesdropper. Average Signal-to-Noise Ratio (SNR values were acquired for both the main and the wiretap channel, and the Probability of Nonzero Secrecy Capacity was calculated based on theoretical formula. Experimental results validate theoretical findings stressing the importance of user location and mobility schemes on the robustness of Wireless Information-Theoretic Security and call for further theoretical analysis.

  3. Concerning the problem of polygraphic wire calculation: theoretical aspects, software, practical implementation

    Directory of Open Access Journals (Sweden)

    Selkina A. V.

    2016-05-01

    Full Text Available the article analyzes the problems arising while organizing the workflow in printing companies. We suggest to address these problems by means of implementing computer-based accounting systems. Online and offline calculators used by printing enterprises for accounting are discussed. The author outlined the functional and specified requirements to such software. They were considered in the calculation module of accounting polygraphic wire used for block bonding. The software allows to increase the calculation process speed, to reduce the amount of errors in calculation and to decrease the labour intensity of the accounting process.

  4. 20 CFR 1002.267 - How is compensation during the period of service calculated in order to determine the employee's...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false How is compensation during the period of service calculated in order to determine the employee's pension benefits, if benefits are based on compensation? 1002.267 Section 1002.267 Employees' Benefits OFFICE OF THE ASSISTANT SECRETARY FOR VETERANS' EMPLOYMENT AND TRAINING SERVICE, DEPARTMENT OF...

  5. Stochastic and collisional diffusion in two-dimensional periodic flows

    International Nuclear Information System (INIS)

    Doxas, I.; Horton, W.; Berk, H.L.

    1990-05-01

    The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs

  6. TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    International Nuclear Information System (INIS)

    Moura, K.F.; Maul, J.; Albuquerque, A.R.; Casali, G.P.; Longo, E.; Keyson, D.; Souza, A.G.; Sambrano, J.R.; Santos, I.M.G.

    2014-01-01

    In this study, a microwave assisted solvothermal method was used to synthesize TiO 2 with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another

  7. A novel lattice energy calculation technique for simple inorganic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Banerjee, Priyabrata [Surface Engineering and Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209 (India)

    2017-01-01

    In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.

  8. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  9. Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny.

    Science.gov (United States)

    Habegger, Maria L; Motta, Philip J; Huber, Daniel R; Dean, Mason N

    2012-12-01

    Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73-285cm total length). Theoretical bite force ranged from 36 to 2128N at the most anterior bite point, and 170 to 5914N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible

  10. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor

    International Nuclear Information System (INIS)

    Hellmann, Robert

    2009-01-01

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  11. Revision of standard molar enthalpies of formation of glycine and L-alanine in the gaseous phase on the basis of theoretical calculations

    International Nuclear Information System (INIS)

    Dorofeeva, Olga V.; Ryzhova, Oxana N.

    2009-01-01

    The standard molar enthalpies of formation of urea, glycine, and L-alanine in the gaseous phase at 298.15 K were calculated by the high-level Gaussian-3X method. The agreement with the available experimental data is very good for urea and glycine and, thus, supports the high accuracy of calculated values. A significant discrepancy between theoretical and experimental enthalpy of formation values for L-alanine provides a reason to reconsider the experimental data previously used to derive the standard molar enthalpy of formation of L-alanine in the gaseous phase at 298.15 K. To obtain a more reliable value of enthalpy of sublimation at 298.15 K, the heat capacity values of gaseous L-alanine were calculated by standard statistical thermodynamics formulae using molecular parameters determined from B3LYP/cc-pVTZ calculations. With the obtained value of C p,m 0 (L-alanine, g, 298.15 K) = 112.6 ± 4.0 J . K -1 . mol -1 the original published experimental values of enthalpy of sublimation of L-alanine were readjusted to the reference temperature: Δ cr g H m (L-alanine, 298.15 K) = 135.2 ± 2.0 kJ . mol -1 . This value, together with the experimental enthalpy of formation of solid L-alanine, Δ f H m 0 (L-alanine, cr, 298.15 K) = -560.0 ± 1.0 kJ . mol -1 [S.N. Ngauv, R. Sabbah, M. Laffitte, Thermochim. Acta 20 (1977) 371-380; I. Contineanu, D.I. Marchidan, Rev. Roum. Chim. 29 (1984) 43-48], gives a new value for the enthalpy of formation of L-alanine in the gaseous phase, Δ f H m 0 (L-alanine, g, 298.15 K) = -424.8 ± 2.0 kJ . mol -1 , which is in good agreement with our theoretical G3X result, -427.6 ± 4.0 kJ . mol -1 . The same procedure for glycine allowed us to improve the literature value of the enthalpy of formation for this compound, Δ f H m 0 (glycine, g, 298.15 K) = -393.7 ± 1.5 kJ . mol -1 . As a result a set of self-consistent thermochemical data for glycine and L-alanine is proposed

  12. THEORETICAL AND PRACTICAL CONSIDERATIONS REGARDING THE COST CALCULATION USING DIRECT COSTING

    Directory of Open Access Journals (Sweden)

    Cristina Aurora, Bunea-Bontaş

    2012-01-01

    Full Text Available The definition of the cost of production as applied to inventories refers to the acquisition and production cost, and its determination involves many considerations. This article emphasizes a comparative approach of the calculation of production cost under direct costing and absorption costing, and examines the impact of using these calculation systems on the financial performance of the companies presented in the income statement.

  13. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    Science.gov (United States)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  14. On precipitation monitoring with theoretical statistical distributions

    Science.gov (United States)

    Cindrić, Ksenija; Juras, Josip; Pasarić, Zoran

    2018-04-01

    A common practice in meteorological drought monitoring is to transform the observed precipitation amounts to the standardised precipitation index (SPI). Though the gamma distribution is usually employed for this purpose, some other distribution may be used, particularly in regions where zero precipitation amounts are recorded frequently. In this study, two distributions are considered alongside with the gamma distribution: the compound Poisson exponential distribution (CPE) and the square root normal distribution (SRN). They are fitted to monthly precipitation amounts measured at 24 stations in Croatia in the 55-year-long period (1961-2015). At five stations, long-term series (1901-2015) are available and they have been used for a more detailed investigation. The accommodation of the theoretical distributions to empirical ones is tested by comparison of the corresponding empirical and theoretical ratios of the skewness and the coefficient of variation. Furthermore, following the common approach to precipitation monitoring (CLIMAT reports), the comparison of the empirical and theoretical quintiles in the two periods (1961-1990 and 1991-2015) is examined. The results from the present study reveal that it would be more appropriate to implement theoretical distributions in such climate reports, since they provide better evaluation for monitoring purposes than the current empirical distribution. Nevertheless, deciding on an optimal theoretical distribution for different climate regimes and for different time periods is not easy to accomplish. With regard to Croatian stations (covering different climate regimes), the CPE or SRN distribution could also be the right choice in the climatological practice, in addition to the gamma distribution.

  15. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  16. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  17. Theoretical Calculations on Sediment Transport on Titan, and the Possible Production of Streamlined Forms

    Science.gov (United States)

    Burr, D. M.; Emery, J. P.; Lorenz, R. D.

    2005-01-01

    The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.

  18. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Laitinen, Riikka; Grohganz, Holger

    2013-01-01

    . In this study, the co-amorphous drug mixture containing naproxen (NAP) and indomethacin (IND) was investigated using infrared spectroscopy (IR) and quantum mechanical calculations. The structures of both drugs were optimized as monomer, homodimer and heterodimer using density functional theory and used...... for the calculation of IR spectra. Conformational analysis confirmed that the optimized structures were suitable for the theoretical prediction of the spectra. Vibrational modes from the calculation could be matched with experimentally observed spectra for crystalline and amorphous NAP and IND, and it could be shown...... that both drugs exist as homodimers in their respective individual amorphous form. With the results from the experimental single amorphous drugs and theoretical homodimers, a detailed analysis of the experimental co-amorphous and theoretical heterodimer spectra was performed and evaluated. It is suggested...

  19. Torsional energy levels of CH3OH+/CH3OD+/CD3OD+ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations

    International Nuclear Information System (INIS)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-01-01

    The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling

  20. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    Science.gov (United States)

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  1. Cluster model calculations of alpha decays across the periodic table

    International Nuclear Information System (INIS)

    Merchant, A.C.; Buck, B.

    1988-10-01

    The cluster model of Buck, Dover and Vary has been used to calculate partial widths for alpha decay from the ground states of all nuclei for which experimental measurements exist. The cluster-core potential is represented by a simple three-parameter form having fixed diffuseness, a radius which scales as A 1/3 and a depth which is adjusted to fit the Q-value of the particular decay. The calculations yield excellent agreement with the vast majority of the available data, and some typical examples are presented. (author) [pt

  2. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo

    2012-01-01

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  3. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    Science.gov (United States)

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. NMR investigation and theoretical calculations of the effect of solvent on the conformational analysis of 4',7-di-hydroxy-8-prenylflavan

    Directory of Open Access Journals (Sweden)

    Alcântara Antônio Flávio de Carvalho

    2004-01-01

    Full Text Available The NMR conformational study of 4',7-di-hydroxy-8-prenylflavan 1 was carried out in acetone-d6, DMSO-d6 and CDCl3 which enabled the proposition of three conformations, namely 1a, 1b and 1c, differing in the position of the prenyl group. Geometry optimizations performed using AM1 method showed that 1a (deltaHf = -86.2 kcal/mol is as stable as 1b (deltaHf = -85.1 kcal/mol and 1c (deltaHf = -85.4 kcal/mol. When the solvent was included, the calculations showed that the solute-solvent interactions could be explained either in the light of the electronic intermolecular delocalization or the electrostatic character between solute and solvent. Theoretical calculations (HF/6-31G*, deltaFT/BLYP/6-31G*, and deltaFT/B3LYP/6-31G* showed that the combination of these types of interactions present in each solute-solvent system, dependent on the chemical properties of the solvent, lead to different spatial arrangements of the prenyl group, which in turn determined the conformation of 1.

  5. Numerical calculation of the Fresnel transform.

    Science.gov (United States)

    Kelly, Damien P

    2014-04-01

    In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.

  6. Supplier Contribution to Profit Calculation and Supplier’s Expense Levels

    Directory of Open Access Journals (Sweden)

    Danilo Dorović

    2015-05-01

    Full Text Available Suppliers of goods present a very important cost object for trading companiessuch as retail. There is, however, no theoretical explanation as to how to calculate a contribution to profits generated from an individual supplier. This calculation is the subject of the paper. There is no calculation that shows how goods, provided from the supplier, create profit through gross margin and how the supplier`s behavior influences the costs (like delivery terms, costs of keeping specific goods fresh…. The final costs further decrease the profit generated by suppliers. As they have long found it illogical to calculate contribution to profit from suppliers in a production company, trading companies have long ignored it, as well. The Activity Based Costing (ABC, as the up-to-date system, still does not possess the cost hierarchy for suppliers as the cost object. The aim of the paper is to present a proposal for creating the cost hierarchy for suppliers in a trade company through creating a theoretical financial model as a method. The model also offers a theoretical explanation of how to calculate the contribution from a supplier or a group of suppliers. It is based on empirically evident activities in any supermarket or hypermarket, which makes it possible to create explanatory theoretical research.

  7. Periodicity and quasi-periodicity for super-integrable hamiltonian systems

    International Nuclear Information System (INIS)

    Kibler, M.; Winternitz, P.

    1990-01-01

    Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a commensurability condition is imposed on an angular momentum component

  8. Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework

    International Nuclear Information System (INIS)

    Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A.; Garcia, F.; Goncalves, M.

    2002-01-01

    Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V MAS /WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, τ c is presented for all possible cases of spontaneous nuclear break-up such that -7.30 10 τ c [S] 10 (τ/τ c ) > -17.0, where τ is the total half-life of the parent nucleus. (author)

  9. Theoretical calculations of the deposition of non-spherical particles in the upper airways of the human lung

    International Nuclear Information System (INIS)

    Sturm, Robert; Hofmann, Werner

    2009-01-01

    In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)

  10. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  11. The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile

    International Nuclear Information System (INIS)

    Sen, Pinar; Yildiz, S. Zeki; Atalay, Yusuf; Dege, Necmi; Demirtas, Günes

    2014-01-01

    A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile (6) derivative has been synthesized starting from BF 3 –OEt 2 complex and 4-(2-meso-dipyrromethene-phenoxy)phthalonitrile (5) which was prepared by the oxidation of 4-(2-meso-dipyrromethane-phenoxy)phthalonitrile (4). The final product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. The original compounds prepared in the reaction pathway were characterized by the combination of FT-IR, 1 H and 13 C NMR, UV–vis, MS and HRMS spectral data. The final product (6) was obtained as single crystal which crystallized in the triclinic space group P-1 with a=7.9411 (6) Å, b=9.0150 (6) Å, c=14.419 (1) Å, α=74.917 (5)°, β=86.824 (6)°, γ=84.109 (5)° and Z=2. The crystal structure has intermolecular C–H···F–B and C–H···N interactions. These interactions construct bifurcated hydrogen bonds in the crystal structure. In this study, It has been calculated; molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound by using B3LYP method with 6–311++G(dp) basis set, and the electronic spectral characterization was investigated for the target product, as well. - Highlights: • A novel 4-(2-meso-BOBIPY-phenoxy)phthalonitrile derivative has been synthesized. • The title product exhibit noticeable spectroscopic properties which were examined by its absorption and fluorescence emission spectra. • The final product (6) was obtained as single crystal which crystallized in the triclinic space group. • Molecular structure, vibrational frequencies, 1 H and 13 C NMR chemical shifts and HOMO and LUMO energies of the title compound were calculated theoretically. • The electronic spectral characterization was investigated, as well. • The title compound is also open to prepare further BODIPY substituted oligomeric molecules via on it

  12. Theoretical development and first-principles analysis of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.

  13. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  14. Electronic structure and thermal decomposition of 5-aminotetrazole studied by UV photoelectron spectroscopy and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rui M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, Antonio A.; Costa, Maria L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-03-18

    Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 {sup o}C, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: {yields} Electronic structure of 5ATZ studied by photoelectron spectroscopy. {yields} Gas-phase 5-ATZ exists mainly as the 2H-tautomer. {yields} Thermal decomposition of 5ATZ gives N{sub 2}, NH{sub 2}CN, HN{sub 3} and HCN, at 245 {sup o}C. {yields} HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 {+-} 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N{sub 2}, HN{sub 3} and NH{sub 2}CN as the primary products, and HCN from the decomposition of a intermediate CH{sub 3}N{sub 3} compound. The reaction barriers for the formation of HN{sub 3} and N{sub 2} from 2H-5ATZ are predicted to be {approx}228 and {approx}150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH{sub 3}N{sub 3} carbene intermediate is also investigated.

  15. Theoretical Approaches to Lignin Chemistry

    OpenAIRE

    Shevchenko, Sergey M.

    1994-01-01

    A critical review is presented of the applications of theoretical methods to the studies of the structure and chemical reactivity of lignin, including simulation of macromolecular properties, conformational calculations, quantum chemical analyses of electronic structure, spectra and chemical reactivity. Modern concepts of spatial organization and chemical reactivity of lignins are discussed.

  16. Structural and theoretical investigations of 3,4,5-triamino-1,2,4-triazolium salts

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gregory W. [Propulsion Research Laboratory XD22, Marshall Space Flight Center, AL 35812 (United States); Hawkins, Tommy W.; Hall, Leslie A.; Boatz, Jerry A.; Brand, Adam J. [AFRL/PRSP Space and Missile Propulsion Division, 10 East Saturn Boulevard, Edwards AFB, CA 93524 (United States)

    2005-10-01

    Reactions using the high nitrogen heterocycle 3,4,5-triamino-1,2,4-triazole (guanazine) with strong acids (HNO{sub 3}, HClO{sub 4}, and ''HN(NO{sub 2}){sub 2}'') resulted in a family of highly stable salts. All of the salts were characterized using spectroscopic as well as single crystal X-ray diffraction studies. The X-ray structures were compared to that obtained from theoretical calculations (MP2/6-311+G(d, p) level). Initial safety testing (impact, friction) was carried out on all of the new materials. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. There Is No Further Gain from Calculating Disease Activity Score in 28 Joints with High Sensitivity Assays of C-Reactive Protein Because of High Intraindividual Variability of CRP: A Cross Sectional Study and Theoretical Consideration

    DEFF Research Database (Denmark)

    Jensen Hansen, Inger Marie; Asmussen Andreasen, Rikke; Antonsen, Steen

    Background/Purpose: The threshold for reporting of C-reactive protein (CRP) differs from laboratory to laboratory. Moreover, CRP values are affected by the intra individual biological variability.[1] With respect to disease activity score in 28 joints (DAS28) and Rheumatoid Arthritis (RA), precise...... threshold for reporting CRP is important due to the direct effects of CRP on calculating DAS28, patient classification and subsequent treatment decisions[2] Methods: This study consists of two sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 with regard...... to the biological variation and reporting limit for CRP and a cross sectional study of all RA patients from our department (n=876) applying our theoretical results. In the second section, we calculate DAS28 twice with actual CRP and CRP=9, the latter to elucidate the positive consequences of changing the lower...

  18. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: Theoretical and experimental studies

    Science.gov (United States)

    Dai, J.; Belomestnykh, S.; Ben-Zvi, I.; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 104 to 109 provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  19. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  20. Experimental and theoretical burnup investigations on model arrangements with solid burnable poisons

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  1. Experimental and theoretical investigations on solid burnable poison burnup of model arrangements

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments reported here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  2. Research in theoretical nuclear physics. Final report, April 1, 1993 - March 31, 1996

    International Nuclear Information System (INIS)

    Udagawa, Takeshi

    1997-08-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of April 1, 1993 to March 31, 1996. The work done covers three separate areas, low energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the various subjects are spread among different areas, they are all based on two techniques that they have developed in previous years. These techniques are: (a) a powerful method for continuum-random-phase-approximation (CRPA) calculations of the nuclear response; and, (b) the direct reaction approach to complete and incomplete fusion reactions, which enables them to describe on a single footing all the different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on a single theoretical framework. In this report, the authors first summarize their achievements in these three areas, and then present final remarks

  3. TMX tandem-mirror experiments and thermal-barrier theoretical studies

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

    1982-01-01

    This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions

  4. Distillation Calculation for the Separation of {sup 13}CH{sub 4} from LNG

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    For the purpose of {sup 13}CH{sub 4} production from LNG, the theoretical number of stages and the number of distillation column required for the separation of {sup 13}CH{sub 4} from {sup 12}CH{sub 4}/{sup 13}CH{sub 4} mixture of containing 1%-{sup 13}CH{sub 4} are calculated. Assuming the ideal liquid mixture of containing 1%-{sup 13}CH{sub 4} are calculated. Assuming the ideal liquid mixture of {sup 12}CH{sub 4} and {sup 13}CH{sub 4}, the theoretical number of stages are calculated by smoker equation and FUG method. Using the correlation between the minimum theoretical number of stages and the optimum theoretical number of stages, the number of distillation groups is calculated. From this calculation, we know that 6 groups of distillation tower with 600 stages per one column are needed for the production of 90%-{sup 13}CH{sub 4}. (author). 5 refs., 5 figs., 4 tabs.

  5. A suggested periodic table up to Z≤ 172, based on Dirac-Fock calculations on atoms and ions.

    Science.gov (United States)

    Pyykkö, Pekka

    2011-01-07

    Extended Average Level (EAL) Dirac-Fock calculations on atoms and ions agree with earlier work in that a rough shell-filling order for the elements 119-172 is 8s Periodic Table develops further that of Fricke, Greiner and Waber [Theor. Chim. Acta 1971, 21, 235] by formally assigning the elements 121-164 to (nlj) slots on the basis of the electron configurations of their ions. Simple estimates are made for likely maximum oxidation states, i, of these elements M in their MX(i) compounds, such as i = 6 for UF(6). Particularly high i are predicted for the 6f elements.

  6. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  7. Ab initio theory and calculations of X-ray spectra

    International Nuclear Information System (INIS)

    Rehr, J.J.; Kas, J.J.; Prange, M.P.; Sorini, A.P.; Takimoto, Y.; Vila, F.

    2009-01-01

    There has been dramatic progress in recent years both in the calculation and interpretation of various x-ray spectroscopies. However, current theoretical calculations often use a number of simplified models to account for many-body effects, in lieu of first principles calculations. In an effort to overcome these limitations we describe in this article a number of recent advances in theory and in theoretical codes which offer the prospect of parameter free calculations that include the dominant many-body effects. These advances are based on ab initio calculations of the dielectric and vibrational response of a system. Calculations of the dielectric function over a broad spectrum yield system dependent self-energies and mean-free paths, as well as intrinsic losses due to multielectron excitations. Calculations of the dynamical matrix yield vibrational damping in terms of multiple-scattering Debye-Waller factors. Our ab initio methods for determining these many-body effects have led to new, improved, and broadly applicable x-ray and electron spectroscopy codes. (authors)

  8. Theoretical Simulations of Materials for Nuclear Energy Applications

    International Nuclear Information System (INIS)

    Abrikosov, A.; Ponomareva, A.V.; Nikonov, A.Y.; Barannikova, S.A.; Dmitriev, A.I.

    2014-01-01

    We have demonstrated that state-of-the art theoretical calculations have a capability to predict thermodynamic and mechanical properties of materials with very high accuracy, comparable to the experimental accuracy. Considering Fe-Cr alloys, we have investigated the effect of multicomponent alloying on their phase stability, and we have shown that alloying elements Ni, Mn, and Mo, present in RPV steels, reduce the stability of low-Cr steels against binodal, as well as spinodal decomposition. Considering Zr-Nb alloys, we have demonstrated a possibility of obtaining their elastic moduli from ab initio electronic structure calculations. We argue that theoretical simulations represent valuable tool for a design of new materials for nuclear energy applications

  9. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  10. Calculating zeros: Non-equilibrium free energy calculations

    International Nuclear Information System (INIS)

    Oostenbrink, Chris; Gunsteren, Wilfred F. van

    2006-01-01

    Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations

  11. Monte Carlo simulation for theoretical calculations of damage and sputtering processes

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1984-01-01

    The radiation damage accompanying ion irradiation and the various problems caused with it should be determined in principle by resolving Boltzmann's equations. However, in reality, those for a semi-infinite system cannot be generally resolved. Moreover, the effect of crystals, oblique incidence and so on make the situation more difficult. The analysis of the complicated phenomena of the collision in solids and the problems of radiation damage and sputtering accompanying them is possible in most cases only by computer simulation. At present, the methods of simulating the atomic collision phenomena in solids are roughly classified into molecular dynamics method and Monte Carlo method. In the molecular dynamics, Newton's equations are numerically calculated time-dependently as they are, and it has large merits that many body effect and nonlinear effect can be taken in consideration, but much computing time is required. The features and problems of the Monte Carlo simulation and nonlinear Monte Carlo simulation are described. The comparison of the Monte Carlo simulation codes calculating on the basis of two-body collision approximation, MARLOWE, TRIM and ACAT, was carried out through the calculation of the backscattering spectra of light ions. (Kako, I.)

  12. Theoretical investigations on the high light yield of the LuI3:Ce scintillator

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Iskandarova, I.M.; Scherbinin, A.V.; Markov, I.A.; Bagatur'yants, A.A.; Potapkin, B.V.; Srivastava, A.M.; Vartuli, J.S.; Duclos, S.J.

    2009-01-01

    The extremely high scintillation efficiency of lutetium iodide doped by cerium is explained as a result of at least three factors controlling the energy transfer from the host matrix to activator. We propose and theoretically validate the possibility of a new channel of energy transfer to excitons and directly to cerium, namely the Auger process when Lu 4f hole relaxes to the valence band hole with simultaneous creation of additional exciton or excitation of cerium. This process should be efficient in LuI 3 , and inefficient in LuCl 3 . To justify this channel, we perform calculations of density of states using a periodic plane-wave density functional approach. The second factor is the increase of the efficiency of valence hole capture by cerium in the row LuCl 3 -LuBr 3 -LuI 3 . The third one is the increase of the efficiency of energy transfer from self-trapped excitons to cerium ions in the same row. The latter two factors are verified by cluster ab initio calculations. We estimate either the relaxation of these excitations and barriers for the diffusion of self-trapped holes (STH) and self-trapped exciton (STE). The performed estimations theoretically justify the high LuI 3 :Ce 3+ scintillator yield.

  13. Experimental And Theoretical High Energy Physics Research At UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Robert D. [University of California Los Angeles

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  14. Theoretical Work for the Fast Zero-Power Reactor FR-0

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1965-08-15

    The theoretical part of the fast reactor physics work in Sweden, has mainly been connected with the FR-0 reactor. The report describes the principal features of this reactor, evaluation of cross sections, calculations of critical masses, reactivity of the air gap and of control rods and calculations of neutron generation time and effective beta values. Carlson codes in spherical and in cylindrical geometry are used to evaluate critical masses and fluxes. In cases when reactivity changes are calculated, complementary methods are perturbation theory and variational calculus. The agreement with experiments is in some cases good, especially the determination of critical mass, but in other cases discrepancies are observed, e.g. the activation of U-238 in the reflector is much larger than the theoretical spectrum predicts.

  15. A systematic theoretical study of the electronic structures of porphyrin dimers: DFT and TD-DFT calculations on diporphyrins linked by ethane, ethene, ethyne, imine, and azo bridges.

    Science.gov (United States)

    Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P

    2013-11-21

    Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences

  16. Multi-dimensional fission-barrier calculations from Se to the SHE; from the proton to the neutron drip lines

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Bengtsson, Ragnar; Iwamoto, Akira

    2003-01-01

    We present fission-barrier-height calculations for nuclei throughout the periodic system based on a realistic theoretical model of the multi-dimensional potential-energy surface of a fissioning nucleus. This surface guides the nuclear shape evolution from the ground state, over inner and outer saddle points, to the final configurations of separated fission fragments. We have previously shown that our macroscopic-microscopic nuclear potential-energy model yields calculated 'outer' fission-barrier heights (E B ) for even-even nuclei throughout the periodic system that agree with experimental data to within about 1.0 MeV. We present final results of this work. Just recently we have enhanced our macroscopic-microscopic nuclear potential-energy model to also allow the consideration of axially asymmetric shapes. This shape degree of freedom has a substantial effect on the calculated height (E A ) of the inner peak of some actinide fission barriers. We present examples of fission-barrier calculations by use of this model with its redetermined constants. Finally we discuss what the model now tells us about fission barriers at the end of the r-process nucleosynthesis path. (author)

  17. Effect of terrestrial radiation on brightness temperature at lunar nearside: Based on theoretical calculation and data analysis

    Science.gov (United States)

    Wei, Guangfei; Li, Xiongyao; Wang, Shijie

    2015-02-01

    Terrestrial radiation is another possible source of heat in lunar thermal environment at its nearside besides the solar illumination. On the basis of Clouds and the Earth's Radiant Energy System (CERES) data products, the effect of terrestrial radiation on the brightness temperature (TBe) of the lunar nearside has been theoretically calculated. It shows that the mafic lunar mare with high TBe is more sensitive to terrestrial radiation than the feldspathic highland with low TBe value. According to the synchronous rotation of the Moon, we extract TBe on lunar nearside using the microwave radiometer data from the first Chinese lunar probe Chang'E-1 (CE-1). Consistently, the average TBe at Mare Serenitatis is about 1.2 K while the highland around the Geber crater (19.4°S, 13.9°E) is relatively small at ∼0.4 K. Our results indicate that there is no significant effect of terrestrial radiation on TBe at the lunar nearside. However, to extract TBe accurately, effects of heat flow, rock abundance and subsurface rock fragments which are more significant should be considered in the future work.

  18. Sleep-induced periodic breathing and apnea: a theoretical study.

    Science.gov (United States)

    Khoo, M C; Gottschalk, A; Pack, A I

    1991-05-01

    To elucidate the mechanisms that lead to sleep-disordered breathing, we have developed a mathematical model that allows for dynamic interactions among the chemical control of respiration, changes in sleep-waking state, and changes in upper airway patency. The increase in steady-state arterial PCO2 accompanying sleep is shown to be inversely related to the ventilatory response to CO2. Chemical control of respiration becomes less stable during the light stage of sleep, despite a reduction in chemoresponsiveness, due to a concomitant increase in "plant gain" (i.e., responsiveness of blood gases to ventilatory changes). The withdrawal of the "wakefulness drive" during sleep onset represents a strong perturbation to respiratory control: higher magnitudes and rates of withdrawal of this drive favor instability. These results may account for the higher incidence of periodic breathing observed during light sleep and sleep onset. Periodic ventilation can also result from repetitive alternations between sleep onset and arousal. The potential for instability is further compounded if the possibility of upper airway occlusion is also included. In systems with high controller gains, instability is mediated primarily through chemoreflex overcompensation. However, in systems with depressed chemoresponsiveness, rapid sleep onset and large blood gas fluctuations trigger repetitive episodes of arousal and hyperpnea alternating with apneas that may or may not be obstructive. Between these extremes, more complex patterns can arise from the interaction between chemoreflex-mediated oscillations of shorter-cycle-duration (approximately 36 s) and longer-wavelength (approximately 60-80 s) state-driven oscillations.

  19. Amplitude calculation near a period-doubling bifurcation: An example

    DEFF Research Database (Denmark)

    Wiesenfeld, K.; Pedersen, Niels Falsig

    1987-01-01

    For the rf-driven Josephson junction, the dynamical behavior is studied near a period-doubling transition. The center-manifold theorem simplifies the problem and enables us to study only a first-order system, the parameters of which are expressed in terms of the Josephson-junction parameters....

  20. Improved scFv Anti-HIV-1 p17 Binding Affinity Guided from the Theoretical Calculation of Pairwise Decomposition Energies and Computational Alanine Scanning

    Directory of Open Access Journals (Sweden)

    Panthip Tue-ngeun

    2013-01-01

    Full Text Available Computational approaches have been used to evaluate and define important residues for protein-protein interactions, especially antigen-antibody complexes. In our previous study, pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants has indicated the key specific residues in the complementary determining regions (CDRs of scFv anti-p17. In this present investigation in order to determine whether a specific side chain group of residue in CDRs plays an important role in bioactivity, computational alanine scanning has been applied. Molecular dynamics simulations were done with several complexes of original scFv anti-p17 and scFv anti-p17mutants with HIV-1 p17 epitope variants with a production run up to 10 ns. With the combination of pairwise decomposition residue interaction and alanine scanning calculations, the point mutation has been initially selected at the position MET100 to improve the residue binding affinity. The calculated docking interaction energy between a single mutation from methionine to either arginine or glycine has shown the improved binding affinity, contributed from the electrostatic interaction with the negative favorably interaction energy, compared to the wild type. Theoretical calculations agreed well with the results from the peptide ELISA results.

  1. Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Instituto Superior de Ciencias e Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    2002-01-01

    Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V{sub MAS}/WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, {tau}{sub c} is presented for all possible cases of spontaneous nuclear break-up such that -7.30 <{approx_equal} log{sub 10} {tau}{sub c} [S] <{approx_equal} 27.50 and log {sub 10}({tau}/{tau}{sub c}) > -17.0, where {tau} is the total half-life of the parent nucleus. (author)

  2. Improved acid neutralisation capacity assessment of iron carbonates by titration and theoretical calculation

    International Nuclear Information System (INIS)

    Weber, P.A.; Thomas, J.E.; Skinner, W.M.; Smart, R.St.C.

    2004-01-01

    The acid neutralisation capacity (ANC) of a rock sample containing significant amounts of Fe carbonates, as conducted to determine net acid production potential (NAPP), can be a difficult parameter to determine. Various ANC tests are available to determine the ANC of carbonates. This work does not attempt to create another ANC test protocol; rather, it provides a refinement for existing tests. Results showed that a significant lag period may be needed (up to 432 h) after standard Sobek-type ANC tests for the complete hydrolysis of Fe associated with the ANC testing of siderite. This lag occurred even with standard industry modifications that include the addition of 2 drops of H 2 O 2 at pH 4.5 during the back-titration. In this work the authors used a modification to the Sobek ANC test (the Modified Sobek ANC test) that included filtering and the addition of H 2 O 2 at pH 4.5. This test was further modified by the continuance of this H 2 O 2 addition (the H 2 O 2 ANC test) until there was no subsequent pH drop (which is due to Fe hydrolysis reactions), thereupon the back titration was continued to pH 7.0. Results indicated that the ANC for siderite (after 0 h) using the H 2 O 2 ANC test was similar to the ANC determined after 432 h lag by the Modified Sobek ANC test. This modification reduces the uncertainty related to static-test results for samples containing Fe carbonates. The test is simple to use, has industry application, and provides a better indication of the NAPP. The Modified Sobek ANC results for calcite and dolomite and the H 2 O 2 ANC test for siderite were in good agreement with the mineralogical carbonate ANC (ANC carb ). ANC carb was determined by calculation based on electron probe micro-analysis. Although lower than both the ANC carb and the ANC determined by titration, the chemical ANC calculated from the ions present in the ANC digestion liquor also provided a good indication of the overall acid neutralisation capacity of the sample

  3. Periodic Arrays of Film-Coupled Cubic Nanoantennas as Tunable Plasmonic Metasurfaces

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that a two-dimensional periodic array of metallic nanocubes in close proximity to a metallic film acts as a metasurface with tunable absorbance. The presence of a metallic film underneath the array of plasmonic nanocubes leads to an impedance matched plasmonic metasurface enhancing up to 4 times the absorbance of incident radiation, in the spectral region below 500 nm. The absorbance spectrum is weakly dependent on the angle of incidence and state of polarization of incident light a functionality which can find application in thermo-photovoltaics. Our calculations are based on a hybrid layer-multiple-scattering (hLMS method based on a discrete-dipole approximation (DDA/T-matrix point matching method.

  4. Theoretical investigation into the existence of molecules in planetary nebulae

    International Nuclear Information System (INIS)

    Carlson, W.J.

    1980-01-01

    Calculations of chemical kinetic equilibrium molecular abundances in the neutral regions of planetary nebulae are presented. The development of these abundances during the expansion of the nebula is calculated. The physical parameters in the neutral regions following the formation of the nebula by the ejection of the envelope of a long peiod variable star have been taken from available dynamical models. Similarly, the temperature and luminosity of the central star as a function of time have been taken from available theoretical calculations. The thermal equilibrium has been solved independently. The temperatures in the shell and later in the condensations which develop are in the range from 30 to 250 K. Number densities range from 10 7 for the youngest model calculated to 2 x 10 4 for neutral condensations in a 10,000 year old nebula. It is shown that, for a typical nebula containing 0.2 Msub solar, molecules are expected to be the dominant form for only a short period early in the expansion phase. Subsequently, the condensations are not sufficiently optically thick to permit the continued existence of a preponderance of molecules. The molecular abundances in the later models are similar to those in diffuse interstellar clouds. The expectation arising from those results is that little molecular material will be injected into the interstellar medium by planetary nebulae. There is, however, a remarkable resemblance between the conditions in the model calculated at very early stages of the expansion and conditions deduced from observations for proto-planetary nebulae

  5. Thinking soap But Speaking ‘oaps’. The Sound Preparation Period: Backward Calculation From Utterance to Muscle Innervation

    Directory of Open Access Journals (Sweden)

    Nora Wiedenmann

    2010-04-01

    Full Text Available

    In this article’s model—on speech and on speech errors, dyscoordinations, and disorders—, the time-course from the muscle innervation impetuses to the utterance of sounds as intended for canonical speech sound sequences is calculated backward. This time-course is shown as the sum of all the known physiological durations of speech sounds and speech gestures that are necessary to produce an utterance. The model introduces two internal clocks, based on positive or negative factors, representing certain physiologically-based time-courses during the sound preparation period (Lautvorspann. The use of these internal clocks show that speech gestures—like other motor activities—work according to a simple serialization principle: Under non-default conditions,
    alterations of the time-courses may cause speech errors of sound serialization, dyscoordinations of sounds as observed during first language acquisition, or speech disorders as pathological cases. These alterations of the time-course are modelled by varying the two internal-clock factors. The calculation of time-courses uses as default values the sound durations of the context-dependent Munich PHONDAT Database of Spoken German (see Appendix 4. As a new, human approach, this calculation agrees mathematically with the approach of Linear Programming / Operations Research. This work gives strong support to the fairly old suspicion (of 1908 of the famous Austrian speech error scientist Meringer [15], namely that one mostly thinks and articulates in a different serialization than is audible from one’s uttered sound sequences.

  6. Gaps in the spectrum of a periodic quantum graph with periodically distributed delta '-type interactions

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Khrabustovskyi, A.

    2015-01-01

    Roč. 48, č. 25 (2015), s. 255201 ISSN 1751-8113 Institutional support: RVO:61389005 Keywords : periodic quantum graphs * delta'-type interactions * spectral gaps Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  7. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  8. Theoretical aspects of the optical model

    International Nuclear Information System (INIS)

    Mahaux, C.

    1980-01-01

    We first recall the definition of the optical-model potential for nucleons and the physical interpretation of the main related quantities. We then survey the recent theoretical progress towards a reliable calculation of this potential. The present limitations of the theory and some prospects for future developments are outlined. (author)

  9. Mathematica for Theoretical Physics Classical Mechanics and Nonlinear Dynamics

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by students and researchers alike. A...

  10. 42 CFR 403.253 - Calculation of benefits.

    Science.gov (United States)

    2010-10-01

    ... the gross premiums are computed to provide coverage. (iv) Reserve for future contingent benefits means... the loss ratio calculation period. (iii) Net premium means the level portion of the gross premium used... period, to— (B) The total policy reserve at the last day of the loss ratio calculation period: and (ii...

  11. On the Necessity of Using Element No.155 in the Chemical Physical Calculations: Again on the Upper Limit in the Periodic Table of Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2010-10-01

    Full Text Available It is shown how the properties of different elements of the Periodic System of Elements can be obtained using the properties of the theoretically predicted heaviest element No.155 (it draws the upper principal limit of the Table, behind which stable elements cannot exist. It is suggested how the properties of element No.155 can be used in the synthesis of superheavy elements. An analysis of nuclear reactions is also produced on the same basis.

  12. Theoretical spectroscopic study of the conjugate microcystin-LR-europium cryptate

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Julio G.; Dutra, Jose Diogo L.; Costa Junior, Nivan B. da; Freire, Ricardo O., E-mail: rfreire@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Quimica; Alves Junior, Severino; Sa, Gilberto F. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Quimica Fundamental

    2013-02-15

    In this work, theoretical tools were used to study spectroscopic properties of the conjugate microcystin-LR-europium cryptate. The Sparkle/AM1 model was applied to predict the geometry of the system and the INDO/S-CIS model was used to calculate the excited state energies. Based on the Judd-Ofelt theory, the intensity parameters were predicted and a theoretical model based on the theory of the 4f-4f transitions was applied to calculate energy transfer and backtransfer rates, radiative and non-radiative decay rates, quantum efficiency and quantum yield. A detailed study of the luminescent properties of the conjugate Microcystin-LR-europium cryptate was carried out. The results show that the theoretical quantum yield of luminescence of 23% is in good agreement with the experimental value published. This fact suggests that this theoretical protocol can be used to design new systems in order to improve their luminescence properties. The results suggest that this luminescent system may be a good conjugate for using in assay ELISA for detection by luminescence of the Microcystin-LR in water. (author)

  13. Scientific and technical conference Thermophysical experimental and calculating and theoretical studies to justify characteristics and safety of fast reactors. Thermophysics-2012. Book of abstracts

    International Nuclear Information System (INIS)

    Kalyakin, S.G.; Kukharchuk, O.F.; Sorokin, A.P.

    2012-01-01

    The collection includes abstracts of reports of scientific and technical conference Thermophysics-2012 which has taken place on October 24-26, 2012 in Obninsk. In abstracts the following questions are considered: experimental and calculating and theoretical studies of thermal hydraulics of liquid-metal cooled fast reactors to justify their characteristics and safety; physico-chemical processes in the systems with liquid-metal coolants (LMC); physico-chemical characteristics and thermophysical properties of LMC; development of models, computational methods and calculational codes for simulating processes of of hydrodynamics, heat and mass transfer, including impurities mass transfer in the systems with LMC; methods and means for control of composition and condition of LMC in fast reactor circuits on impurities and purification from them; apparatuses, equipment and technological processes at the work with LMC taking into account the ecology, including fast reactors decommissioning; measuring techniques, sensors and devices for experimental studies of heat and mass transfer in the systems with LMC [ru

  14. Detection limit calculations for different total reflection techniques

    International Nuclear Information System (INIS)

    Sanchez, H.J.

    2000-01-01

    In this work, theoretical calculations of detection limits for different total-reflection techniques are presented.. Calculations include grazing incidence (TXRF) and gracing exit (GEXRF) conditions. These calculations are compared with detection limits obtained for conventional x-ray fluorescence (XRF). In order to compute detection limits the Shiraiwa and Fujino's model to calculate x-ray fluorescence intensities was used. This model made certain assumptions and approximations to achieve the calculations, specially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows to analyze the different sources of background and the influence of the excitation geometry, which contribute to the understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing exit is carried out. Here a good agreement with the theoretical predictions of the reversibility principle is found, showing that detection limits are similar for both techniques. (author)

  15. The role of ab initio electronic structure calculations in studies of the strength of materials

    International Nuclear Information System (INIS)

    Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.

    2004-01-01

    In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed

  16. Floods in Serbia in the 1999-2009 period: Hydrological analysis and flood protection measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2010-01-01

    Full Text Available The review on greatest floods recorded in Vojvodina and central Serbia within the period from 1999 to 2009 is given in this paper. For 13 hydrological stations, that recorded the greatest floods for the present period, probability of occurrence of these floods has been accomplished. Based on analysis of time series of discharge and water level maximum, performed by applying probability theory and mathematical statistics, and calculated theoretical probability distribution function of floods, probability of occurrence of flood has been obtained. Most often the best agreement with the empirical distribution function had a Log-Pearson III, Pearson III distribution. These results can be used for dimensioning of hydro-technical objects for flood protection. The most significant causes for floods recorded in this period were melting of snow and intensive rainfall. In this paper the current situation of flood protection and future development of flood protection measures were also presented. .

  17. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    Science.gov (United States)

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.

  18. Ab-initio theoretical predictions of structural properties of semiconductors

    International Nuclear Information System (INIS)

    Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.

    1983-01-01

    Calculations of the total energies of Si, GaP and C together with related structural properties are presented. The results show good agreement with experimental values (differences of less than 6%). They also agree with other recent theoretical results. Calculations for Si and GaP have already been reported and are given here as a reference. (L.C.) [pt

  19. Theoretical study of reaction dynamics in radiation chemistry

    International Nuclear Information System (INIS)

    Tachiya, Masanori

    2008-01-01

    The period from late 1950's to early 1970's was golden age of radiation chemistry. During this period the hydrated electron was discovered, various new phenomena were found in ionic processes in liquid hydrocarbons, and the trapped electron and electron tunneling were discovered in organic glasses. In those days radiation chemistry was a vast treasure-house of theoretical problems. We could find not only problems special to radiation chemistry but also many problems interesting as general physical chemistry. In this review I explain how some theoretical problems discovered in the field of radiation chemistry have evolved into those of general physical chemistry, with special emphasis on my own work. (author)

  20. Augmented wave ab initio EFG calculations: some methodological warnings

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario; Petrilli, Helena M.

    2007-01-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO 2 . The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects

  1. Augmented wave ab initio EFG calculations: some methodological warnings

    Energy Technology Data Exchange (ETDEWEB)

    Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br

    2007-02-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.

  2. Theoretical study of a melting curve for tin

    International Nuclear Information System (INIS)

    Feng, Xi; Ling-Cang, Cai

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the melting curve of polymorphic material Sn. (condensed matter: structure, thermal and mechanical properties)

  3. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  4. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  5. A theoretical study on Love wave sensors in a structure with multiple viscoelastic layers on a piezoelectric substrate

    International Nuclear Information System (INIS)

    Liu, Jiansheng

    2014-01-01

    A theoretical method is used to analyze the performance of Love wave sensors with multiple viscoelastic guiding layers on a piezoelectric substrate. The method is based upon the theoretical model for multi-elastic-layer piezoelectric Love waves and the Maxwell–Weichert model for viscoelastic materials. The relationship between sensor performance and the characteristics of Love waves is discussed. Numerical calculation is completed for a Love wave delay line consisting of a viscoelastic SU-8 layer, an elastic SiO 2 layer, an ST-90°X quartz substrate and two interdigital transducers (IDTs) with a period of 40 μm deposited on the substrate surface. The calculated results prove that a Love wave sensor with such a two-layer structure can achieve better performance than a Love wave sensor with only one (visco)elastic or elastic guiding layer. Some interesting abnormal phenomena, such as an oscillation in mass velocity sensitivity (S mv ), are predicted at the area where tail-raising occurs in the propagation velocity. The method and the numerical results presented in this work may help in the development of a high-performing Love wave sensor with multiple layers. (papers)

  6. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  7. Theoretical predictions for vehicular headways and their clusters

    Science.gov (United States)

    Krbálek, Milan

    2013-11-01

    This paper presents a derivation of analytical predictions for steady-state distributions of netto time gaps among clusters of vehicles moving inside a traffic stream. Using the thermodynamic socio-physical traffic model with short-ranged repulsion between particles (originally introduced in Krbálek and Helbing 2004 Physica A 333 370) we first derive the time-clearance distribution in the model and confront it with relation to the theoretical criteria for the acceptability of analytical clearance distributions. Consecutively, the approximating statistical distributions for the so-called time multi-clearances are calculated by means of the theory of functional convolutions. Moreover, all the theoretical surmises used during the above-mentioned calculations are evaluated by the statistical analysis of traffic data. The mathematical predictions acquired in this paper are thoroughly compared with relevant empirical quantities and discussed in the context of traffic theory.

  8. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  9. Condensed, solution and gas phase behaviour of mono- and dinuclear 2,6-diacetylpyridine (dap) hydrazone copper complexes probed by X-ray, mass spectrometry and theoretical calculations.

    Science.gov (United States)

    Neto, Brenno A D; Viana, Barbara F L; Rodrigues, Thyago S; Lalli, Priscila M; Eberlin, Marcos N; da Silva, Wender A; de Oliveira, Heibbe C B; Gatto, Claudia C

    2013-08-28

    We describe the synthesis of novel mononuclear and dinuclear copper complexes and an investigation of their behaviour in solution using mass spectrometry (ESI-MS and ESI-MS/MS) and in the solid state using X-ray crystallography. The complexes were synthesized from two widely used diacetylpryridine (dap) ligands, i.e. 2,6-diacetylpyridinebis(benzoic acid hydrazone) and 2,6-diacetylpyridinebis(2-aminobenzoic acid hydrazone). Theoretical calculations (DFT) were used to predict the complex geometries of these new structures, their equilibrium in solution and energies associated with the transformations.

  10. Dimethyl methylphosphonate adsorption and decomposition on MoO2 as studied by ambient pressure x-ray photoelectron spectroscopy and DFT calculations

    Science.gov (United States)

    Head, Ashley R.; Tsyshevsky, Roman; Trotochaud, Lena; Yu, Yi; Karslıoǧlu, Osman; Eichhorn, Bryan; Kuklja, Maija M.; Bluhm, Hendrik

    2018-04-01

    Organophosphonates range in their toxicity and are used as pesticides, herbicides, and chemical warfare agents (CWAs). Few laboratories are equipped to handle the most toxic molecules, thus simulants such as dimethyl methylphosphonate (DMMP), are used as a first step in studying adsorption and reactivity on materials. Benchmarked by combined experimental and theoretical studies of simulants, calculations offer an opportunity to understand how molecular interactions with a surface changes upon using a CWA. However, most calculations of DMMP and CWAs on surfaces are limited to adsorption studies on clusters of atoms, which may differ markedly from the behavior on bulk solid-state materials with extended surfaces. We have benchmarked our solid-state periodic calculations of DMMP adsorption and reactivity on MoO2 with ambient pressure x-ray photoelectron spectroscopy studies (APXPS). DMMP is found to interact strongly with a MoO2 film, a model system for the MoO x component in the ASZM-TEDA© gas filtration material. Density functional theory modeling of several adsorption and decomposition mechanisms assist the assignment of APXPS peaks. Our results show that some of the adsorbed DMMP decomposes, with all the products remaining on the surface. The rigorous calculations benchmarked with experiments pave a path to reliable and predictive theoretical studies of CWA interactions with surfaces.

  11. Theoretical comparative studies on transport properties of pentacene, pentathienoacene, and 6,13-dichloropentacene.

    Science.gov (United States)

    Zhang, Xu; Yang, Xiaodi; Geng, Hua; Nan, Guangjun; Sun, Xingwen; Xi, Jinyang; Xu, Xin

    2015-05-05

    Pentacene derivative 6,13-dichloropentacene (DCP) is one of the latest additions to the family of organic semiconductors with a great potential for use in transistors. We carry out a detailed theoretical calculation for DCP, with systematical comparison to pentacene, pentathienoacene (PTA, the thiophene equivalent of pentacene), to gain insights in the theoretical design of organic transport materials. The charge transport parameters and carrier mobilities are investigated from the first-principles calculations, based on the widely used Marcus electron transfer theory and quantum nuclear tunneling model, coupled with random walk simulation. Molecular structure and the crystal packing type are essential to understand the differences in their transport behaviors. With the effect of molecule modification, significant one-dimensional π-stacks are found within the molecular layer in PTA and DCP crystals. The charge transport along the a-axis plays a dominant role for the carrier mobilities in the DCP crystal due to the strong transfer integrals within the a-axis. Pentacene shows a relatively large 3D mobility. This is attributed to the relatively uniform electronic couplings, which thus provides more transport pathways. PTA has a much smaller 3D mobility than pentacene and DCP for the obvious increase of the reorganization energy with the introduction of thiophene. It is found that PTA and DCP exhibit lower HOMO (highest occupied molecular orbital) levels and better environmental stability, indicating the potential applications in organic electronics. © 2015 Wiley Periodicals, Inc.

  12. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  13. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  14. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  15. 3. Theoretical Physics Division

    International Nuclear Information System (INIS)

    For the period September 1980 - Aug 1981, the studies in theoretical physics divisions have been compiled under the following headings: in nuclear physics, nuclear structure, nuclear reactions and intermediate energies; in particle physics, NN and NantiN interactions, dual topological unitarization, quark model and quantum chromodynamics, classical and quantum field theories, non linear integrable equations and topological preons and Grand unified theories. A list of publications, lectures and meetings is included [fr

  16. Nonparametric Inference for Periodic Sequences

    KAUST Repository

    Sun, Ying

    2012-02-01

    This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation.We also propose a nonparametric test of the null hypothesis that the data have constantmean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures. © 2012 American Statistical Association and the American Society for Quality.

  17. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  18. Theoretical Provision of Tax Transformation

    Directory of Open Access Journals (Sweden)

    Feofanova Iryna V.

    2016-05-01

    Full Text Available The article is aimed at defining the questions, giving answers to which is necessary for scientific substantiation of the tax transformation in Ukraine. The article analyzes the structural-logical relationships of the theories, providing substantiation of tax systems and transformation of them. Various views on the level of both the tax burden and the distribution of the tax burden between big and small business have been systematized. The issues that require theoretical substantiation when choosing a model of tax system have been identified. It is determined that shares of both indirect and direct taxes and their rates can be substantiated by calculations on the basis of statistical data. The results of the presented research can be used to develop the algorithm for theoretical substantiation of tax transformation

  19. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  20. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    Science.gov (United States)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  1. Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study

    Directory of Open Access Journals (Sweden)

    Valbonë V. Mehmeti

    2017-08-01

    Full Text Available The corrosion behavior of mild steel in 0.1 M aqueous sulfuric acid medium has been studied using weight loss, potentiodynamic polarization measurements, quantum chemical calculations, and molecular dynamic simulations in the presence and absence of 4-methyl-4H-1,2,4-triazole-3-thiol and 2-mercaptonicotinic acid. Potentiodynamic measurements indicate that these compounds mostly act as mixed inhibitors due to their adsorption on the mild steel surface. The goal of the study was to use theoretical calculations to better understand the inhibition. Monte Carlo simulation was used to calculate the adsorption behavior of the studied molecules onto Fe (1 1 1 and Fe2O3 (1 1 1 surface. The molecules were also studied with the density functional theory (DFT, using the B3LYP functional in order to determine the relationship between the molecular structure and the corrosion inhibition behavior. More accurate adsorption energies between the studied molecules and iron or iron oxide were calculated by using DFT with periodic boundary conditions. The calculated theoretical parameters gave important assistance into the understanding the corrosion inhibition mechanism expressed by the molecules and are in full agreement with the experimental results.

  2. The heat of formation of the acetyl cation: a theoretical evaluation

    Science.gov (United States)

    Smith, Brian J.; Radom, Leo

    1990-12-01

    Ab initio molecular orbital calculations have been used to obtain the heat of formation of the acetyl cation. In one set of calculations, the reverse activation barrier for the production of acetyl cation from acetaldehyde has been shown to be significantly different zero and the value obtained (9.8 kJ mol-1 at 298 K) has been used to correct the [Delta]Hof298 (CH3CO+) value derived from appearance energy measurements. In a second set of calculations, [Delta]H°f298 (CH3CO+) has been obtained from the calculated heats of a number of reactions involving the acetyl cation together with experimental heats of formation for the species involved. The best theoretical estimate for [Delta]H°f298 (CH3CO+), obtained as a mean of results from the two approaches, is 658 kJ mol-1. The best theoretical estimate for [Delta]H°f0(CH3CO+), obtained in a similar manner, is 665 kJ mol-1.

  3. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  4. Improved theoretical model of InN optical properties

    International Nuclear Information System (INIS)

    Ferreira da Silva, A.; Chubaci, J.F.D.; Matsuoka, M.; Freitas, J.A. Jr.; Tischler, J.G.; Baldissera, G.; Persson, C.

    2014-01-01

    The optical properties of InN are investigated theoretically by employing the projector augmented wave (PAW) method within Green's function and the screened Coulomb interaction approximation (GW o ). The calculated results are compared to previously reported calculations which use local density approximation combined with the scissors-operator approximation. The results of the present calculation are compared with reported values of the InN bandgap and with low temperature near infrared luminescence measurements of InN films deposited by a modified Ion Beam Assisted Deposition technique. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Calculation of ex-core detector responses

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)

    2005-07-01

    The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)

  6. Theoretical and numerical studies of TWR based on ESFR core design

    International Nuclear Information System (INIS)

    Zhang, Dalin; Chen, Xue-Nong; Flad, Michael; Rineiski, Andrei; Maschek, Werner

    2013-01-01

    Highlights: • The traveling wave reactor (TWR) is studied based on the core design of the European Sodium-cooled Fast Reactor (ESFR). • The conventional fuel shuffling technique is used to produce a continuous radial fuel movement. • A stationary self sustainable nuclear fission power can be established asymptotically by only loading natural or depleted uranium. • The multi-group deterministic neutronic code ERANOS is applied. - Abstract: This paper deals with the so-called traveling wave reactor (TWR) based on the core design of the European Sodium-cooled Fast Reactor (ESFR). The current concept of TWR is to use the conventional radial fuel shuffling technique to produce a continuous radial fuel movement so that a stationary self sustainable nuclear fission power can be established asymptotically by only loading fertile material consisting of natural or depleted uranium. The core design of ESFR loaded with metallic uranium fuel without considering the control mechanism is used as a practical application example. The theoretical studies focus mainly on qualitative feasibility analyses, i.e. to identify out in general essential parameter dependences of such a kind of reactor. The numerical studies are carried out more specifically on a certain core design. The multi-group deterministic neutronic code ERANOS with the JEFF3.1 data library is applied as a basic tool to perform the neutronics and burn-up calculations. The calculations are performed in a 2-D R-Z geometry, which is sufficient for the current core layout. Numerical results of radial fuel shuffling indicate that the asymptotic k eff parabolically varies with the shuffling period, while the burn-up increases linearly. Typical shuffling periods investigated in this study are in the range of 300–1000 days. The important parameters, e.g. k eff , the burn-up, the power peaking factor, and safety coefficients are calculated

  7. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.

    1994-01-01

    Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)

  8. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)

    1994-01-01

    Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).

  9. Theoretical Study of the Compound Parabolic Trough Solar Collector

    OpenAIRE

    Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen

    2012-01-01

    Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  10. Theoretical study of the lowest-lying electronic states of Aluminium monoiodide

    International Nuclear Information System (INIS)

    Taher, F.; Kabbani, A.; Ani-El Houte, W.

    2004-01-01

    Full text.The spectroscopic study of Aluminium monohalides, especially the Aluminium monoiodide, is important for monitoring such species in high temperature fast-flow reactors. Theoretical calculations of AlI are not available, whereas several studies have been done for the other aluminium monohalides. In this work, CAS-SCF/MRCI calculations are performed for the lowest-lying electronic states of AlI in a range of internuclear distance between 2.30 A and 2.80 A. Ab-initio calculations have been effectuated by using the computational chemistry program Molpro. The basis set used in this study for aluminium atom is that used by Langhoff for aluminium monohalides, of contractions using atomic natural orbitals and a pseudopotential is used for iode. Accurate theoretical spectroscopic constants and potential curves are obtained for the ground state X 1 Σ + and the first excited states a 3 Π and A 1 Π. The calculated values of Te, ωe, ωexe and re of these states are compatible with the experimental results. An ordering of states is represented for the lowest five predicted singlet and lowest five predicted triplet states. These results provide a big support to determine the analogy in the ordering of the electronic states in AlF, AlBr and AlI respectively at lower energies. These theoretical results identify a set of electronic singlet and triplet states unobserved experimentally

  11. MCNP calculation for calibration curve of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Tan Chunming; Wu Zhifang; Guo Xiaojing; Xing Guilai; Wang Zhentao

    2011-01-01

    Due to the compositional variation of the sample, linear relationship between the element concentration and fluorescent intensity will not be well maintained in most X-ray fluorescence analysis. To overcome this, we use MCNP program to simulate fluorescent intensity of Fe (0∼100% concentration range) within binary mixture of Cr and O which represent typical strong absorption and weak absorption conditions respectively. The theoretic calculation shows that the relationship can be described as a curve determined by parameter p and value of p can be obtained with given absorption coefficient of substrate elements and element under detection. MCNP simulation results are consistent with theoretic calculation. Our research reveals that MCNP program can calculate the Calibration Curve of X-ray fluorescence very well. (authors)

  12. Tautomers and Acid Dissociation Constants of 6-Selenoguanine from Density Functional Theoretical Calculations

    International Nuclear Information System (INIS)

    Kim, Yong Seong; Jang, Yun Hee; Cho, Hyun; Hwang, Sun Gu

    2010-01-01

    The relative stabilities of the tautomers of SeG were calculated. In the aqueous phase, amino-seleno form was the major tautomer of neutral SeG with a minor contribution from the other amino-seleno form. The presence of the selenolic form was negligible from the calculations. The microscopic and macroscopic pKa values in the aqueous phase were calculated from this scheme. The calculated pKa value was in good agreement with the experimental data. These results demonstrated that this method could predict and explain the acid-base properties of SeG and could be used to understand the behavior of the species. A number of analogues of nucleic acid bases have been the target of extensive studies because of their importance in many biological studies. The oxygen of both purine and pyrimidine bases is substituted with sulfur or selenium to produce an important class of analogues. 6-Selenoguanine (SeG) has a significant activity against L5178Y lymphoma cells. However, the detailed mechanism of the antiplastic action is not known yet. Information on the acid dissociation constants and the tautomerism of the molecules is required to provide a molecular level understanding of biological processes. Proton-transfer in the nucleic acid pairs and the presence of the tautomeric equilibrium play an important role in the mispair formation during the DNA replication

  13. Theoretical calculations of oxygen relaxation in YBa2Cu3O6+x ceramics

    Science.gov (United States)

    Mi, Y.; Schaller, R.; Sathish, S.; Benoit, W.

    1991-12-01

    A two-dimensional theoretical model of stress-induced point-defect relaxation in a layered structure is presented, with a detailed discussion of the special case of YBa2Cu3O6+x. The experimental results of oxygen relaxation in YBa2Cu3O6+x can be explained qualitatively by this model.

  14. Theoretical and experimental study of resonant inelastic X-ray scattering for NiO

    International Nuclear Information System (INIS)

    Kotani, A.; Matsubara, M.; Uozumi, T.; Ghiringhelli, G.; Fracassi, F.; Dallera, C.; Tagliaferri, A.; Brookes, N.B.; Braicovich, L.

    2006-01-01

    Resonant inelastic X-ray scattering (RIXS) spectra for Ni 2p to 3d excitation and 3d to 2p de-excitation of NiO are studied both theoretically and experimentally. Theoretical calculations with a single impurity Anderson model (SIAM) describe the charge transfer (CT) and d-d excitations in RIXS, and detailed study is made for the CT energy. High resolution RIXS measurements reveal the precise d-d excitation structure and its polarization dependence, and they are well reproduced by the SIAM calculation

  15. Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case

    Science.gov (United States)

    Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard

    2017-09-01

    A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.

  16. Theoretical study of nuclear physics with strangeness at Nankai University

    International Nuclear Information System (INIS)

    Ning Pingzhi

    2007-01-01

    Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the properties of kaonic nuclei. (authors)

  17. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    Science.gov (United States)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  18. Cubic scaling GW: Towards fast quasiparticle calculations

    Czech Academy of Sciences Publication Activity Database

    Liu, P.; Kaltak, M.; Klimeš, Jiří; Kresse, G.

    2016-01-01

    Roč. 94, č. 16 (2016), s. 165109 ISSN 2469-9950 Institutional support: RVO:61388955 Keywords : MEAN-FIELD THEORY * ELECTRONIC-STRUCTURE CALCULATIONS * AUGMENTED- WAVE METHOD Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.836, year: 2016

  19. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.

    Science.gov (United States)

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-15

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.

  20. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    Science.gov (United States)

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  1. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  2. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  3. Observation and Theoretical Description of Periodic Geometric Rearrangement in Electronically Excited Nonstoichiometric Sodium-Fluoride Clusters

    Czech Academy of Sciences Publication Activity Database

    Vajda, Š.; Lupulescu, C.; Merli, A.; Budzyn, F.; Wöste, L.; Hartmann, M.; Pittner, Jiří; Bonačič-Koutecký, V.

    2002-01-01

    Roč. 89, č. 21 (2002), s. 213404.1-213404.4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z4040901 Keywords : alkali-halide clusters * Wigner distribution approach * ab initio Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.323, year: 2002

  4. Commuting periodic operators and the periodic Wigner function

    International Nuclear Information System (INIS)

    Zak, J

    2004-01-01

    Commuting periodic operators (CPO) depending on the coordinate x-hat and the momentum p-hat operators are defined. The CPO are functions of the two basic commuting operators exp(i x-hat 2π/a) and exp(i/h p-hat a), with a being an arbitrary constant. A periodic Wigner function (PWF) w(x, p) is defined and it is shown that it is applicable in a normal expectation value calculation to the CPO, as done in the original Wigner paper. Moreover, this PWF is non-negative everywhere, and it can therefore be interpreted as an actual probability distribution. The PWF w(x, p) is shown to be given as an expectation value of the periodic Dirac delta function in the phase plane. (letter to the editor)

  5. The zonal tidal effect on the variation in the rotation rate of the Earth with a fluid core II. Numerical calculation and comparisons

    Science.gov (United States)

    Zhang, Han-Wei; Zheng, Yong; Du, Lan; Pan, Guan-Song

    The tidal variation in Earth rotation rate is a periodical response to solar-lunar tide generating potential (TGP). Some theoretical formulae are given here based on Doodson development of TGP including the variations in Earth rotation rate, LOD and UT1. Finally the zonal tidal effect on the variation in the fluid core Earth rotation rate is calculated according to the formula deduced by Xi Qinwen (1995). The calculation shows that the results in this paper are well consistent with the ones in IERS (96), which indicates the correctness of the theoretical formula we deduced. It is also shown that the effects from the high frequency parts are relatively small, within the observing precision so far; relatively large effects due to the lower parts, which should be able to be seperated from the observed data, are actually difficult to make because of the influence from some non-tidal factors as well as short time span data.

  6. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  7. Theoretical and Conceptual Frameworks Used in Research on Family-School Partnerships

    Science.gov (United States)

    Yamauchi, Lois A.; Ponte, Eva; Ratliffe, Katherine T.; Traynor, Kevin

    2017-01-01

    This study investigated the theoretical frameworks used to frame research on family-school partnerships over a five-year period. Although many researchers have described their theoretical approaches, little has been written about the diversity of frameworks used and how they are applied. Coders analyzed 215 journal articles published from 2007 to…

  8. Theoretical storage capacity for solar air pretreatment liquid collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donggen; Zhang, Xiaosong; Yin, Yonggao [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2008-08-15

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. At T{sub r} = 60{sup o}C and X{sub in} 2.33 kg/kg, theoretical calculation discovers when Y{sub in} drops from 29 to 14 g/kg, the SC{sub max} increase 50% compared with ASMR{sup *} being around 26-27. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str.sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (author)

  9. Theoretical and computational analyses of LNG evaporator

    Science.gov (United States)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  10. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  11. Bioactivity of Isoflavones: Assessment through a Theoretical Model as a Way to Obtain a “Theoretical Efficacy Related to Estradiol (TERE)”

    Science.gov (United States)

    Campos, Maria da Graça R.; Matos, Miguel Pires

    2010-01-01

    The increase of human life span will have profound implications in Public Health in decades to come. By 2030, there will be an estimated 1.2 billion women in post-menopause. Hormone Replacement Therapy with synthetic hormones is still full of risks and according to the latest developments, should be used for the shortest time possible. Searching for alternative drugs is inevitable in this scenario and science must provide physicians with other substances that can be used to treat the same symptoms with less side effects. Systematic research carried out on this field of study is focusing now on isoflavones but the randomised controlled trials and reviews of meta-analysis concerning post-menopause therapy, that could have an important impact on human health, are very controversial. The aim of the present work was to establish a theoretical calculation suitable for use as a way to estimate the “Theoretical Efficacy (TE)” of a mixture with different bioactive compounds as a way to obtain a “Theoretical Efficacy Related to Estradiol (TERE)”. The theoretical calculation that we propose in this paper integrates different knowledge about this subject and sets methodological boundaries that can be used to analyse already published data. The outcome should set some consensus for new clinical trials using isoflavones (isolated or included in mixtures) that will be evaluated to assess their therapeutically activity. This theoretical method for evaluation of a possible efficacy could probably also be applied to other herbal drug extracts when a synergistic or contradictory bio-effect is not verified. In this way, it we may contribute to enlighten and to the development of new therapeutic approaches. PMID:20386649

  12. Present status of the theoretical relativistic plasma SHF electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Rukhadze, A.A.

    2000-01-01

    Paper presents a review of theoretical investigations into powerful sources of SHF waves grounded on the forced emission of relativistic electron beams in plasma wave guides and resonator. Emission sources operating under amplification of a certain inlet signal and under generation mode were studied. Two mechanisms of forced emission: resonance Cherenkov radiation of relativistic electron beams in plasma and nonresonance Pierce emission resulting from evolution of high-frequency Pierce instability, were studied. Paper discusses theoretical problems only, all evaluations and calculations are made for the parameters of the exact experiments, the theoretical results are compared with the available experimental data. Factors affecting formation of spectrum of waves excited by relativistic electron beam in plasma systems are discussed [ru

  13. Theoretical aspects of the weak decay of hypernuclei

    International Nuclear Information System (INIS)

    Dubach, J.

    1986-01-01

    The present status of theoretical descriptions of mesonic (Λ → Nπ) and non-mesonic (ΛN → NN) decay modes of hypernuclei is reviewed. Calculations for the non-mesonic mode are discussed in some detail within the context of a model which describes the strangeness-changing, parity-violating, ΛN → NN ''transition potential'' in terms of π, rho, ω, eta, K, K*, and ''sigma'' exchanges. Results are presented for the total decay rate, the ratio of proton- to neutron-stimulated decay rates, and the as yet unmeasured ratio of parity-violating to parity-conserving decay rates. Calculations for nuclear matter, which are in reasonable agreement with experiment, suggest that these rates (particularly the two ratios) can provide important tests of the form of the transition potential. Considerations of finite hypernuclei are also discussed. Finally, other theoretical approaches and the present experimental situation are briefly summarized. 17 refs., 3 figs., 3 tabs

  14. Calculating activation energies for temperature compensation in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2011-01-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation

  15. Experimental and theoretical study of steam condensation induced water hammer phenomena

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Baranyai, Gabor; Ezsoel, Gyoergy

    2009-01-01

    We investigate steam condensation induced water hammer (waha) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermohydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side waha is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. Experimentally measured and theoretically calculated waha pressure peaks are in qualitative agreement. (author)

  16. A diffusion-theoretical method to calculate the neutron flux distribution in multisphere configurations

    International Nuclear Information System (INIS)

    Schuerrer, F.

    1980-01-01

    For characterizing heterogene configurations of pebble-bed reactors the fine structure of the flux distribution as well as the determination of the macroscopic neutronphysical quantities are of interest. When calculating system parameters of Wigner-Seitz-cells the usual codes for neutron spectra calculation always neglect the modulation of the neutron flux by the influence of neighbouring spheres. To judge the error arising from that procedure it is necessary to determinate the flux distribution in the surrounding of a spherical fuel element. In the present paper an approximation method to calculate the flux distribution in the two-sphere model is developed. This method is based on the exactly solvable problem of the flux determination of a point source of neutrons in an infinite medium, which contains a spherical perturbation zone eccentric to the point source. An iteration method allows by superposing secondary fields and alternately satisfying the conditions of continuity on the surface of each of the two fuel elements to advance to continually improving approximations. (orig.) 891 RW/orig. 892 CKA [de

  17. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  18. Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices

    International Nuclear Information System (INIS)

    Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul

    2006-01-01

    A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  20. Theoretical investigation of zero field splitting parameter of Cr{sup 3+} doped diammonium hexaaqua magnesium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com

    2015-01-01

    The zero field splitting parameter D of Cr{sup 3+} doped diammonium hexaaqua magnesium sulfate (DHMS) are calculated with perturbation formula using crystal field (CF) parameters from superposition model. The theoretically calculated ZFS parameters for Cr{sup 3+} in DHMS single crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). The theoretical ZFS parameter D is similar to that from experiment. The energy band positions of optical absorption spectra of Cr{sup 3+} doped DHMS single crystal are calculated with CFA package, which are in good match with experimental values.

  1. Improved Spectral Calculations for Discrete Schrődinger Operators

    Science.gov (United States)

    Puelz, Charles

    This work details an O(n2) algorithm for computing spectra of discrete Schrődinger operators with periodic potentials. Spectra of these objects enhance our understanding of fundamental aperiodic physical systems and contain rich theoretical structure of interest to the mathematical community. Previous work on the Harper model led to an O(n2) algorithm relying on properties not satisfied by other aperiodic operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal model, have instead used a problematic dynamical map approach or a sluggish O(n3) procedure for their calculations. The algorithm presented in this work, a blend of well-established eigenvalue/vector algorithms, provides researchers with a more robust computational tool of general utility. Application to the Fibonacci Hamiltonian in the sparsely studied intermediate coupling regime reveals structure in canonical coverings of the spectrum that will prove useful in motivating conjectures regarding band combinatorics and fractal dimensions.

  2. The calculated reference value of the tubular extraction rate in infants and children. An attempt to use a new regression equation

    International Nuclear Information System (INIS)

    Watanabe, Nami; Sugai Yukio; Komatani, Akio; Yamaguchi, Koichi; Takahashi, Kazuei

    1999-01-01

    This study was designed to investigate the empirical tubular extraction rate (TER) of the normal renal function in childhood and then propose a new equation to obtain TER theoretically. The empirical TER was calculated using Russell's method for determination of single-sample plasma clearance and 99m Tc-MAG 3 in 40 patients with renal disease younger than 10 years of age who were classified as having normal renal function using diagnostic criteria defined by the Paediatric Task Group of EANM. First, we investigated the relationships of the empirical value of absolute TER to age, body weight, body surface area (BSA) and distribution volume. Next we investigated the relationships of the empirical value of BSA corrected TER to age, body weight, BSA and distribution volume. Linear relationship was indicated between the absolute TER and each body dimensional factors, especially regarding to BSA, its correlation coefficient was 0.90 (p value). The BSA-corrected TER showed a logarithmic relationship with BSA, but linear regression did not show any significant correlation. Therefore, it was thought that the normal value of TER could be calculated theoretically using the body surface area, and here we proposed the following linear regression equation; Theoretical TER (ml/min/1.73 m 2 )=(-39.8+257.2 x BSA)/BSA/1.73. The theoretical TER could be one of the reference values of the renal function in the period of the renal maturation. (author)

  3. Economic calculation in socialist countries

    NARCIS (Netherlands)

    Ellman, M.; Durlauf, S.N.; Blume, L.E.

    2008-01-01

    In the 1930s, when the classical socialist system emerged, economic decisions were based not on detailed and precise economic methods of calculation but on rough and ready political methods. An important method of economic calculation - particularly in the post-Stalin period - was that of

  4. Something new: a new approach to correcting theoretical emitted intensities for absorption effects

    International Nuclear Information System (INIS)

    Willis, J.P.; Lachance, G.R.

    2002-01-01

    Full text: For monochromatic incident radiation of wavelength λ, absorption only (no enhancement), and ignoring such effects as the absorption edge jump ratio, the fluorescence yield, and the probability that a Kα line will be emitted instead of a Kβ line, a simplified view of the theoretical emitted intensity of a characteristic line of element >i= from a layer in a specimen is given by a familiar equation which involves mass absorption coefficients. While this equation allows for the calculation of the theoretical emitted intensity, it is cumbersome to use when trying to explain X-ray excitation in a step-wise manner. It is therefore proposed that the mass attenuation coefficients (μ iλ , and the sum of μ sλ ' + μ sλi '' , in the numerator and denominator of this equation be replaced by the product of two coefficients correcting for absorption, namely aN H aO. The advantages of using the proposed equation in the stepwise calculation of theoretical intensities (in a similar manner to Monte Carlo calculations) will be discussed. Copyright (2002) Australian X-ray Analytical Association Inc

  5. Epidemic transmission on random mobile network with diverse infection periods

    Science.gov (United States)

    Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun

    2015-05-01

    The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.

  6. Calculation of reactivity of control rods in graphite moderated reactors

    International Nuclear Information System (INIS)

    Nakata, H.

    1978-01-01

    A study about the method of calculation for the reactivity of control rods in graphite-moderated critical assemblies, is presented. The result of theoretical calculation, developed by super celles and Nordheim-Scalettar methods are compared with experimental results for the critical Assembly of General Atomic. The two methods are then applicable to reactivity calculation of the control rods of graphite moderated critical assemblies [pt

  7. A random walk description of individual animal movement accounting for periods of rest

    Science.gov (United States)

    Tilles, Paulo F. C.; Petrovskii, Sergei V.; Natti, Paulo L.

    2016-11-01

    Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or `bouts' (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings.

  8. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  9. Calculating lattice thermal conductivity: a synopsis

    Science.gov (United States)

    Fugallo, Giorgia; Colombo, Luciano

    2018-04-01

    We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.

  10. Ammonia synthesis from first principles calculations

    DEFF Research Database (Denmark)

    Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis

    2005-01-01

    . When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...

  11. Mathematica® for Theoretical Physics Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...

  12. Application of terahertz spectroscopy and theoretical calculation in dimethylurea isomers investigation

    Science.gov (United States)

    Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Chen, Tao; Zhang, Huo; Qin, Binyi; Wu, Yifang

    2018-03-01

    The characteristic absorption spectra of two structural isomers of dimethylurea(DMU) in 0.6-1.8 THz region have been measured using terahertz time-domain spectroscopy (THZ-TDS) at room temperature. Significant differences have been found between their terahertz spectra and implied that the THZ-TDS is an effective means of identifying structural isomers. To simulate their spectra, calculations on single molecule and cluster of 1,1-DMU and 1,3-DMU were performed, and we found that the cluster calculations using DFT-D3 method are better to predict the experimental spectra. Using the normal mode as displacements in redundant internal coordinates and the GaussView program, most observed THz vibrational modes are assigned to bending and rocking modes related to the intermolecular hydrogen bonding interactions, and twisting mode of ethyl groups. The different spectral features of two isomers mainly arise from different intermolecular hydrogen bonds resulting from different atom arrangements in molecules and different molecule arrangements in crystals. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular hydrogen bonding interactions in 1,1-DMU and 1,3-DMU crystals are visualized. Therefore, we can confirm that THz-TDS can be used as an effective means for the recognition of structural isomers and detection of intermolecular hydrogen bonding interactions in these crystals.

  13. Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jerry L. Whitten

    2012-04-23

    This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction.

  14. Experimental and theoretical IR study of methanol and ethanol converson over H-SAPO-34

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Ghysels, A.; Mores, D.; De Wispelaere, K.; Van Speybroeck, V.; Weckhuysen, B.M.; Waroquier, M.

    2011-01-01

    Theoretical and experimental IR data are combined to gain insight into the methanol and ethanol conversion over an acidic H-SAPO-34 catalyst. The theoretical simulations use a large finite cluster and the initial physisorption energy of both alcohols is calculated. Dispersive contributions turn out

  15. Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures

    CERN Document Server

    Harrison, Paul

    2011-01-01

    Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their

  16. Field Optimization for short Period Undulators

    CERN Document Server

    Peiffer, P; Rossmanith, R; Schoerling, D

    2011-01-01

    Undulators dedicated to low energy electron beams, like Laser Wakefield Accelerators, require very short period lengths to achieve X-ray emission. However, at these short period length (LambdaU ~ 5 mm) it becomes difficult to reach magnetic field amplitudes that lead to a K parameter of >1, which is generally desired. Room temperature permanent magnets and even superconductive undulators using Nb-Ti as conductor material have proven insufficient to achieve the desired field amplitudes. The superconductor Nb$_{3}$Sn has the theoretical potential to achieve the desired fields. However, up to now it is limited by several technological challenges to much lower field values than theoretically predicted. An alternative idea for higher fields is to manufacture the poles of the undulator body from Holmium instead of iron or to use Nb-Ti wires with a higher superconductor/copper ratio. The advantages and challenges of the different options are compared in this contribution.

  17. Polysheroidal periodic functions

    International Nuclear Information System (INIS)

    Truskova, N.F.

    1985-01-01

    Separation of variables in the Helmholtz N-dimensional (N≥4) equation in polyspheroidal coordinate systems leads to the necessity of solving equations going over into equations for polyspheroidal periodic functions used for solving the two-centre problem in quantum mechanics, the three-body problem with Coulomb interaction, etc. For these functions the expansions are derived in terms of the Jacobi polynomials and Bessel functions. Their basic properties, asymptotics are considered. The algorithm of their computer calculations is developed. The results of numerical calculations are given

  18. Peculiar Emission Line Generation from Ultra-Rapid Quasi-Periodic ...

    Indian Academy of Sciences (India)

    E. F. Borra

    2017-06-19

    Jun 19, 2017 ... Fourier transform analyses of spectra converted to fre- quency units. Following the theoretical work in Borra. (2010), a Fourier transform analysis of 2.5 million spec- tra from the Sloan Digital Sky Survey database was carried out to detect periodic modulations (Borra 2013). Periodic modulations were found ...

  19. Qualitative methods in theoretical physics

    CERN Document Server

    Maslov, Dmitrii

    2018-01-01

    This book comprises a set of tools which allow researchers and students to arrive at a qualitatively correct answer without undertaking lengthy calculations. In general, Qualitative Methods in Theoretical Physics is about combining approximate mathematical methods with fundamental principles of physics: conservation laws and symmetries. Readers will learn how to simplify problems, how to estimate results, and how to apply symmetry arguments and conduct dimensional analysis. A comprehensive problem set is included. The book will appeal to a wide range of students and researchers.

  20. Calculation of the superconducting transition temperature in niobium

    International Nuclear Information System (INIS)

    Perlov, C.M.

    1982-01-01

    The author presents calculations of the superconducting transition temperature, T/sub c/, the electron-phonon coupling constant, lambda, and the spectral function, α 2 f(ω), for niobium. The author's calculations are based on an empirical pseudopotential method (EPM) band structure. Phonon linewidths are also given for longitudinal and transverse branches along different directions. The necessary electron-phonon matrix elements are evaluated using only the rigid-ion approximation by applying Green's theorem. The calculated value of T/sub c/ is 8.4 K which differs from the measured value by only 9%; the calculated lambda is 1.02. The spectral function and linewidths are compared to experimental and previous theoretical results

  1. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory.

    Science.gov (United States)

    Cao, Xiaofang; Rong, Chunying; Zhong, Aiguo; Lu, Tian; Liu, Shubin

    2018-01-15

    Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Václav; Klusák, Vojtěch; Rulíšek, Lubomír

    2013-01-01

    Roč. 19, č. 49 (2013), s. 16634-16645 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * hydrolysis * metalloenzymes * peptides * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  3. A theoretical study of the structure and thermochemical properties of alkali metal fluoroplumbates MPbF3.

    Science.gov (United States)

    Boltalin, A I; Korenev, Yu M; Sipachev, V A

    2007-07-19

    Molecular constants of MPbF3 (M=Li, Na, K, Rb, and Cs) were calculated theoretically at the MP2(full) and B3LYP levels with the SDD (Pb, K, Rb, and Cs) and cc-aug-pVQZ (F, Li, and Na) basis sets to determine the thermochemical characteristics of the substances. Satisfactory agreement with experiment was obtained, including the unexpected nonmonotonic dependence of substance dissociation energies on the alkali metal atomic number. The bond lengths of the theoretical CsPbF3 model were substantially elongated compared with experimental estimates, likely because of errors in both theoretical calculations and electron diffraction data processing.

  4. Calculation methods for dissolution rate of multicomponent alloys during electrochemical machining

    International Nuclear Information System (INIS)

    Dikusar, A.I.; Petrenko, V.I.; Dikusar, G.K.; Ehngel'gardt, G.R.; Michukova, N.Yu.

    1981-01-01

    The possibility of theoretical calculation of metal dissolution rate during electrochemical mashining is considered. Two calculation techniques are compared at the example of two-component W-Re, Ni-W, Mo-Re alloys, namely: ''charge superposition'' and ''weight percents''. It is concluded that the technique of ''charge superposition'' is the only grounded calculation technique of specific rates of dissolution for alloys [ru

  5. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  6. A new theoretical model for scattering of electrons by molecules. 1

    International Nuclear Information System (INIS)

    Peixoto, E.M.A.; Mu-tao, L.; Nogueira, J.C.

    1975-01-01

    A new theoretical model for electron-molecule scattering is suggested. The e-H 2 scattering is studied and the superiority of the new model over the commonly used Independent Atom Model (IAM) is demonstrated. Comparing theoretical and experimental data for 40keV electrons scattered by H 2 utilizing the new model, its validity is proved, while Partial Wave and First Born calculations, employing the Independent Atom Model, strongly deviated from the experiment [pt

  7. Multiple condensation induced water hammer events, experiments and theoretical investigations

    International Nuclear Information System (INIS)

    Barna, Imre Ferenc; Ezsoel, Gyoergy

    2011-01-01

    We investigate steam condensation induced water hammer (CIWH) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermalhydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side CIWH is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shockcapturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. New features are the existence of multiple, independent CIWH pressure peaks both in experiments and in simulations. Experimentally measured and theoretically calculated CIWH pressure peaks are in qualitative agreement. However, the computational results are very sensitive against flow velocity. (orig.)

  8. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Theoretical modelling of electron transport in InAs/GaAs quantum dot superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Ikonic, Zoran; Savic, Ivana; Indjin, Dragan; Harrison, Paul [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2006-07-01

    A theoretical model describing the electron transport in InAs/GaAs quantum dot infrared photodetectors, modelled as ideal quantum dot superlattices, is presented. The carrier wave functions and energy levels were evaluated using the strain dependent 8-band k.p Hamiltonian and used to calculate all intra- and inter-period transition rates due to interaction with phonons and electromagnetic radiation. The interaction with longitudinal acoustic phonons and electromagnetic radiation was treated perturbatively within the framework of Fermi's golden rule, while the interaction with longitudinal optical phonons was considered taking into account their strong coupling to electrons. The populations of energy levels were then found from a system of rate equations, and the electron current in the superlattice was subsequently extracted. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover

    International Nuclear Information System (INIS)

    Perali, A.; Pieri, P.; Strinati, G.C.

    2004-01-01

    Theoretical predictions for the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover of trapped Fermi atoms are compared with recent experimental results for the density profiles of L 6 i. The calculations rest on a single theoretical approach that includes pairing fluctuations beyond mean-field. Excellent agreement with experimental results is obtained. Theoretical predictions for the zero-temperature chemical potential and gap at the unitarity limit are also found to compare extremely well with Quantum Monte Carlo simulations and with recent experimental results

  11. Theoretical model estimation of guest diffusion in Metal-Organic Frameworks (MOFs)

    KAUST Repository

    Zheng, Bin

    2015-08-11

    Characterizing molecule diffusion in nanoporous matrices is critical to understanding the novel chemical and physical properties of metal-organic frameworks (MOFs). In this paper, we developed a theoretical model to fastly and accurately compute the diffusion rate of guest molecules in a zeolitic imidazolate framework-8 (ZIF-8). The ideal gas or equilibrium solution diffusion model was modified to contain the effect of periodical media via introducing the possibility of guests passing through the framework gate. The only input in our model is the energy barrier of guests passing through the MOF’s gate. Molecular dynamics (MD) methods were employed to gather the guest density profile, which then was used to deduce the energy barrier values. This produced reliable results that require a simulation time of 5 picoseconds, which is much shorter when using pure MD methods (in the billisecond scale) . Also, we used density functional theory (DFT) methods to obtain the energy profile of guests passing through gates, as this does not require specification of a force field for the MOF degrees of freedom. In the DFT calculation, we only considered one gate of MOFs each time; as this greatly reduced the computational cost. Based on the obtained energy barrier values we computed the diffusion rate of alkane and alcohol in ZIF-8 using our model, which was in good agreement with experimental test results and the calculation values from standard MD model. Our model shows the advantage of obtaining accurate diffusion rates for guests in MOFs for a lower computational cost and shorter calculation time. Thus, our analytic model calculation is especially attractive for high-throughput computational screening of the dynamic performance of guests in a framework.

  12. Calculation-experimental method justifies the life of wagons

    Directory of Open Access Journals (Sweden)

    Валерія Сергіївна Воропай

    2015-11-01

    Full Text Available The article proposed a method to evaluate the technical state of tank wagons operating in chemical industry. An algorithm for evaluation the technical state of tank wagons was developed, that makes it possible on the basis of diagnosis and analysis of current condition to justify a further period of operation. The complex of works on testing the tanks and mathematical models for calculations of the design strength and reliability were proposed. The article is devoted to solving the problem of effective exploitation of the working fleet of tank wagons. Opportunities for further exploitation of cars, the complex of works on the assessment of their technical state and the calculation of the resources have been proposed in the article. Engineering research of the chemical industries park has reduced the shortage of the rolling stock for transportation of ammonia. The analysis of the chassis numerous faults and the main elements of tank wagons supporting structure after 20 years of exploitation was made. The algorithm of determining the residual life of the specialized tank wagons operating in an industrial plant has been proposed. The procedure for resource conservation of tank wagons carrying cargo under high pressure was first proposed. The improved procedure for identifying residual life proposed in the article has both theoretical and practical importance

  13. Improved nonparametric inference for multiple correlated periodic sequences

    KAUST Repository

    Sun, Ying

    2013-08-26

    This paper proposes a cross-validation method for estimating the period as well as the values of multiple correlated periodic sequences when data are observed at evenly spaced time points. The period of interest is estimated conditional on the other correlated sequences. An alternative method for period estimation based on Akaike\\'s information criterion is also discussed. The improvement of the period estimation performance is investigated both theoretically and by simulation. We apply the multivariate cross-validation method to the temperature data obtained from multiple ice cores, investigating the periodicity of the El Niño effect. Our methodology is also illustrated by estimating patients\\' cardiac cycle from different physiological signals, including arterial blood pressure, electrocardiography, and fingertip plethysmograph.

  14. 4-N, N-bis(4-methoxylphenyl) aniline substituted anthraquinone: X-ray crystal structures, theoretical calculations and third-order nonlinear optical properties

    Science.gov (United States)

    Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen

    2017-08-01

    In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.

  15. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  16. Final disposal room structural response calculations

    International Nuclear Information System (INIS)

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations

  17. Design and theoretical calculation of novel GeSn fully-depleted n-tunneling FET with quantum confinement model for suppression on GIDL effect

    Science.gov (United States)

    Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Miao, Yuanhao; Han, Genquan; Wang, Bin

    2018-06-01

    In this paper, a novel fully-depleted Ge1-xSnx n-Tunneling FET (FD Ge1-xSnx nTFET) with field plate is investigated theoretically based on the experiment previously published. The energy band structures of Ge1-xSnx are calculated by EMP and the band-to-band tunneling (BTBT) parameters of Ge1-xSnx are calculated by Kane's model. The electrical characteristics of FD Ge1-xSnx nTFET and FD Ge1-xSnx nTFET with field plate (FD-FP Ge1-xSnx nTFET) having various Sn compositions are investigated and simulated with quantum confinement model. The results indicated that the GIDL effect is serious in FD Ge1-xSnx nTFET. By employing the field plate structure, the GIDL effect of FD-FP Ge1-xSnx nTFET is suppressed and the off-state current Ioff is decreased more than 2 orders of magnitude having Sn compositions from 0 to 0.06 compared with FD Ge1-xSnx nTFET. The impact of the difference of work function between field plate metal and channel Φfps is also studied. With the optimized Φfps = 0.0 eV, the on-state current Ion = 4.6 × 10-5 A/μm, the off-state current Ioff = 1.6 × 10-13 A/μm and the maximum on/off ration Ion/Ioff = 2.9 × 108 are achieved.

  18. Electroweak Physics at the Tevatron and LHC: Theoretical Status and Perspectives

    OpenAIRE

    Baur, U.

    2005-01-01

    I review the status of theoretical calculations relevant for electroweak physics at the Tevatron and LHC and discuss future directions. I also give a brief overview of current electroweak data and discuss future expectations.

  19. Theoretical lifetimes and fluorescence yields for multiply-ionized fluorine

    International Nuclear Information System (INIS)

    Tunnell, T.W.; Can, C.; Bhalla, C.P.

    1978-01-01

    Theoretical lifetimes and multiplet partial fluorescence yields for various fluorine ions with a single K-shell vacancy were calculated. For few-electron systems, the lifetimes and line fluorescence yields were computed in the intermediate coupling scheme with the inclusion of the effects arising from configuration interactions. 6 references

  20. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  1. Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x–y plane

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Denghui, E-mail: qdhsd318@163.com; Shi, Zhiyu, E-mail: zyshi@nuaa.edu.cn

    2017-05-03

    This paper couples the plane wave expansion (PWE) and finite element (FE) methods to calculate the band structures of the semi-infinite beam-like phononic crystals (PCs) with the infinite periodicity in z-direction and finiteness in x–y plane. Explicit matrix formulations are developed for the calculation of band structures. In order to illustrate the applicability and accuracy of the proposed coupled plane wave expansion and finite element (PWE/FE) method to beam-like PCs, several examples are displayed. At first, PWE/FE method is applied to calculate the band structures of the Pb/rubber beam-like PCs with circular and rectangular cross sections, respectively. Then, it is used to calculate the band structures of steel/epoxy and steel/aluminum beam-like PCs with the same geometric parameters. Last, the band structure of the three-component beam-like PC is also calculated by the proposed method. Moreover, all the results calculated by PWE/FE method are compared with those calculated by finite element (FE) method, and the corresponding results are in good agreement. - Highlights: • The concept of the semi-infinite beam-like phononic crystals (PCs) is proposed. • The PWE/FE method is proposed and formulized to calculate the band structures of the semi-infinite beam-like PCs. • The strong applicability and high accuracy of PWE/FE method are verified.

  2. Periodic trajectories for two-dimensional nonintegrable Hamiltonians

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1990-02-01

    I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs

  3. Monte Carlo perturbation theory in neutron transport calculations

    International Nuclear Information System (INIS)

    Hall, M.C.G.

    1980-01-01

    The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures

  4. THE ACCOUNTING POSTEMPLOYMENT BENEFITS BASED ON ACTUARIAL CALCULATIONS

    Directory of Open Access Journals (Sweden)

    Anna CEBOTARI

    2017-11-01

    Full Text Available The accounting post-employment benefits, based on actuarial calculations, at present remains a subject studied in Moldova only theoretically. Applying actuarial calculations of accounting in fact denotes its character of evolving. Because national accounting standards have been adapted to international, which, in turn, require the valuation of assets and debts at fair value, there is a need to draw up exact calculations on which stands the theory of probability and mathematical statistics. One of the main objectives of accounting information is reflected in its financial situations and providing internal and external users of the entity. Hence, arises the need to reflect highly reliable information that can be provided by applying actuarial calculations.

  5. Finite element calculation of the interaction energy of shape memory alloy

    International Nuclear Information System (INIS)

    Yang, Seung Yong

    2004-01-01

    Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for

  6. Calculation of critical level value for radioactivity detection in gamma spectrometric analysis on the base of semiconductor detectors under the Chernobyl' conditions in 1986-1987

    International Nuclear Information System (INIS)

    Glazunov, V.O.; Rusyaev, R.V.

    1989-01-01

    The problem of determination of radioactivity critical level in a sample by means of gamma spectrometer with semiconductor detector is studied theoretically. The formula for critical level, which shows that it is necessary to know the background pulse counting rate in order to determine the minimum gamma photon pulse counting rates, is derived. Calculations of critical level for the Chernobyl' conditions in time period from October 1986 till July 1987 are made. 8 refs.; 7 figs.; 17 tabs

  7. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    International Nuclear Information System (INIS)

    Reed, D.L.; Symons, C.R.

    1965-01-01

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  8. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    Science.gov (United States)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  9. A method for comparison of experimental and theoretical differential neutron spectra in the Zenith reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D L; Symons, C R [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-01-15

    A method of calculation is given which assists the analyses of chopper measurements of spectra from ZENITH and enables complex multigroup theoretical calculations of the spectra to be put into a form which may be compared with experiment. In addition the theory of the cut-off function has been extended to give analytical expressions which take into account the effects of sub-collimators, off centre slits and of a rotor made of a material partially transparent to neutrons. The theoretical cut-off function suggested shows good agreement with experiment. (author)

  10. Total energy calculations and bonding at interfaces

    International Nuclear Information System (INIS)

    Louie, S.G.

    1984-08-01

    Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs

  11. R-matrix calculations for few-quark bound states

    International Nuclear Information System (INIS)

    Shalchi, M.A.; Hadizadeh, M.R.

    2016-01-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  12. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    Science.gov (United States)

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  13. Magnesium acceptor in gallium nitride. II. Koopmans-tuned Heyd-Scuseria-Ernzerhof hybrid functional calculations of its dual nature and optical properties

    Science.gov (United States)

    Demchenko, D. O.; Diallo, I. C.; Reshchikov, M. A.

    2018-05-01

    The problem of magnesium acceptor in gallium nitride is that experimental photoluminescence measurements clearly reveal a shallow defect state, while most theoretical predictions favor a localized polaronic defect state. To resolve this contradiction, we calculate properties of magnesium acceptor using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, tuned to fulfill the generalized Koopmans condition. We test Koopmans tuning of HSE for defect calculations in GaN using two contrasting test cases: a deep state of gallium vacancy and a shallow state of magnesium acceptor. The obtained parametrization of HSE allows calculations of optical properties of acceptors using neutral defect-state eigenvalues, without relying on corrections due to charged defects in periodic supercells. Optical transitions and vibrational properties of M gGa defect are analyzed to bring the dual (shallow and deep) nature of this defect into accord with experimental photoluminescence measurements of the ultraviolet band in Mg-doped GaN samples.

  14. Method for consequence calculations for severe accidents

    International Nuclear Information System (INIS)

    Nielsen, F.

    1988-07-01

    This report was commissioned by the Swedish State Power Board. The report contains a calculation of radiation doses in the surroundings caused by a theoretical core meltdown accident at Forsmark reactor No 3. The accident sequence chosen for the calculating was a release caused by total power failure. The calculations were made by means of the PLUCON4 code. Meteorological data for two years from the Forsmark meteorological tower were analysed to find representative weather situations. As typical weather, Pasquill D was chosen with a wind speed of 5 m/s, and as extreme weather, Pasquill F with a wind speed of 2 m/s. 23 tabs., 37 ills., 20 refs. (author)

  15. Theoretical studies of the pressure-induced zinc-blende to cinnabar phase transition in CdTe and thermodynamical properties of each phase

    International Nuclear Information System (INIS)

    Brik, M.G.; Łach, P.; Karczewski, G.; Wojtowicz, T.; Kamińska, A.; Suchocki, A.

    2013-01-01

    Luminescence of CdTe quantum dots embedded in ZnTe is quenched at pressure of about 4.5 GPa in the high-pressure experiments. This pressure-induced quenching is attributed to the “zinc-blende–cinnabar” phase transition in CdTe, which was confirmed by the first-principles calculations. Theoretical analysis of the pressure at which the phase transition occurs for CdTe was performed using the CASTEP module of Materials Studio package with both generalized gradient approximation (GGA) and local density approximation (LDA). The calculated phase transition pressures are equal to about 4.4 GPa and 2.6 GPa, according to the GGA and LDA calculations, respectively, which is in a good agreement with the experimental value. Theoretically estimated value of the pressure coefficient of the band-gap luminescence in zinc-blende structure is in very good agreement with that recently measured in the QDs structures. The calculated Debye temperature, elastic constants and specific heat capacity for the zinc-blend structure agree well with the experimental data; the data for the cinnabar phase are reported here for the first time to the best of the authors' knowledge. - Highlights: • Quenching of luminescence of CdTe quantum dots embedded in ZnTe is theoretically explained. • The theoretical calculation of elastic and thermodynamic properties of CdTe by two types of ab-initio methods. • Theoretical calculations of some optical properties of CdTe under pressure in zinc-blende and cinnabar phases

  16. Using a Theoretical Framework of Institutional Culture to Analyse an Institutional Strategy Document

    Science.gov (United States)

    Jacobs, Anthea Hydi Maxine

    2016-01-01

    This paper builds on a conceptual analysis of institutional culture in higher education. A theoretical framework was proposed to analyse institutional documents of two higher education institutions in the Western Cape, for the period 2002 to 2012 (Jacobs 2012). The elements of this theoretical framework are "shared values and beliefs",…

  17. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    Science.gov (United States)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  18. Calculation of β-ray spectra. Odd-odd nuclei

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1996-01-01

    In order to study β-ray of atomic nucleus, it is natural to consider β-ray data fundamental and important. In a recent experiment, Rudstam measured β-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on β-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of β-ray through decay heat for its various properties due to the general theory of the β-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the β spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  19. Calculation of {beta}-ray spectra. Odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  20. Theoretical investigation of the secondary ionization in krypton and xenon

    International Nuclear Information System (INIS)

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  1. Comparison of experimental and calculated shielding factors for modular buildings in a radioactive fallout scenario

    DEFF Research Database (Denmark)

    Hinrichsen, Yvonne; Finck, Robert; Östlund, Karl

    2018-01-01

    building used was a standard prefabricated structure obtained from a commercial manufacturer. Four reference positions for the gamma radiation detectors were used inside the building. Theoretical dose rate calculations were performed using the Monte Carlo code MCNP6, and additional calculations were......Experimentally and theoretically determined shielding factors for a common light construction dwelling type were obtained and compared. Sources of the gamma-emitting radionuclides 60Co and 137Cs were positioned around and on top of a modular building to represent homogeneous fallout. The modular...... performed that compared the shielding factor for 137Cs and 134Cs. This work demonstrated the applicability of using MCNP6 for theoretical calculations of radioactive fallout scenarios. Furthermore, the work showed that the shielding effect for modular buildings is almost the same for 134Cs as for 137Cs....

  2. Theoretical Physics Division progress report October 1978 -September 1979

    International Nuclear Information System (INIS)

    1980-03-01

    A progress report of the Theoretical Physics Division of the Atomic Energy Research Establishment, Harwell for the year October 1978 to September 1979 is presented. The sections include: (1) Nuclear, atomic and molecular physics (nuclear theory, atomic theory, nuclear power applications). (2) Theory of fluids (statistical mechanics, mathematical physics, computational fluid mechanics). (3) Radiation damage and theoretical metallurgy. (4) Theory of solid state materials (point defects and point-defect determined processes, surface studies, non-destructive examination). A bibliography is given of reports and publications written by the division during the period. (UK)

  3. Theoretical methods for the calculation of the multiphoton ionisation cross-section of atoms and molecules

    International Nuclear Information System (INIS)

    Moccia, R.

    1991-01-01

    Some of the available theoretical methods to compute the two-photon ionisation cross-section of many-electron systems are reviewed. In particular the problems concerning the computation of (i) reliable approximations for the transition matrix elements and the excitation energies; and (ii) accurate results pertaining to the electronic continuum by the use of L 2 basis functions are considered. (author). 29 refs., 6 figs., 1 tab

  4. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  5. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery

    International Nuclear Information System (INIS)

    Lo, E.H.

    1993-01-01

    Stereotactic radiosurgery is being increasingly used to treat intracranial arteriovenous malformations (AVMs). However, successful radiosurgery may involve latent periods of 1-2 years prior to AVM obliteration. This latent period include states of altered flow patterns that may not influence hemorrhage probabilities. The probability of hemorrhage is likely to be related to the degree of biomechanical stress across the AVM shunt walls. This paper describes a theoretical analysis of the altered hemodynamics and biomechanical stresses within AVM shunts post-radiosurgery. The mathematical model is comprised of linked flow compartments that represent the AVM and adjacent normal vasculature. As obliteration of the irradiated shunts occurs, changes in flow rates and pressure gradients are calculated based on first order fluid dynamics. Stress on the AVM shunt walls is calculated based on tangential forces due to intramural pressure. Two basic models are presented: a distribution of shunts with fixed thin walls subject to step-function obliteration, and a distribution of shunts subject to luminal obliteration from slowly thickening walls. Variations on these models are analyzed, including sequential, selective and random shunt obliteration, and uniform or Poisson distributions of shunt radii. Model I reveals that the range of pressure alterations in the radiosurgically-treated AVM include the possibility of transient increases in the total biomechanical stress within the shunt walls prior to obliteration. Model II demonstrates that uniform luminal narrowing via thickened walls should lead to reduced transmural stresses. The precise temporal pattern of AVM flow decrease and biomechanical stress reduction depends on the selection of shunts that are obliterated. 34 refs., 5 figs., 1 tab

  6. Accounting calculations problems with suppliers and contractors

    Directory of Open Access Journals (Sweden)

    Tikholaz I.A.

    2016-12-01

    Full Text Available in the article an order of accounting reflection of payments with suppliers and contractors are researched and ways of enhancement of accounting calculations process development with the purpose of management decisions optimization for their implementation are offered. Theoretical bases of intraeconomic control of settlings with suppliers and contractors are developed.

  7. An Efficient Method for Electron-Atom Scattering Using Ab-initio Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang [Shanxi University, Taiyuan (China)

    2017-02-15

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  8. A fluorescent sensor based on dansyl-diethylenetriamine-thiourea conjugate: a through theoretical investigation

    International Nuclear Information System (INIS)

    Nguyen Khoa Hien; Nguyen Thi Ai Nhung; Duong Tuan Quang; Ho Quoc Dai; Nguyen Tien Trung

    2015-01-01

    A new dansyl-diethylenetriamine-thiourea conjugate (DT) for detection of Hg 2+ ions in aqueous solution has been theoretically designed and compared to our previously published results. The synthetic path, the optimized geometric structure and the characteristics of the DT were found by the theoretical calculations at the B3LYP/LanL2DZ level. Accordingly, the DT can react with Hg 2+ ion to form a product with quenched fluorescence. It is remarkable that the experimental results are in an excellent agreement with the theoretically evaluated data. (author)

  9. HIRFL-SSC trim coil currents calculation by conjugate gradients method

    International Nuclear Information System (INIS)

    Liu, W.

    2005-01-01

    For accelerating different kinds of ions to various energies, the HIRFL-SSC should form the corresponding isochronous magnetic field by its main coil and trim coils. Previously, there were errors in fitting the theoretical isochronous magnetic field in the small radius region, which led to some operation difficulties for ion acceleration in the inject region. After further investigation of the restrictive condition of the maximum current limitation, the trim coil currents for fitting the theoretical isochronous magnetic field were recalculated by the conjugate gradients method. Better results were obtained in the operation of HIRFL-SSC. This article introduces the procedure to calculate the trim coil currents. The calculation method of conjugate gradients is introduced and the fitting error is analysed. (author)

  10. Sandia Strehl Calculator Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-05

    The Sandia Strehl Calculator is designed to calculate the Gibson and Lanni point spread function (PSF), Strehl ratio, and ensquared energy, allowing non-design immersion, coverslip, and sample layers. It also uses Abbe number calculations to determine the refractive index at specific wavelengths when given the refractive index at a different wavelength and the dispersion. The primary application of Sandia Strehl Calculator is to determine the theoretical impacts of using an optical microscope beyond its normal design parameters. Examples of non-design microscope usage include: a) using coverslips of non-design material b) coverslips of different thicknesses c) imaging deep into an aqueous sample with an immersion objective d) imaging a sample at 37 degrees. All of these changes can affect the imaging quality, sometimes profoundly, but are at the same time non-design conditions employed not infrequently. Rather than having to experimentally determine whether the changes will result in unacceptable image quality, Sandia Strehl Calculator uses existing optical theory to determine the approximate effect of the change, saving the need to perform experiments.

  11. A course in theoretical physics

    CERN Document Server

    Shepherd, P J

    2013-01-01

    This book is a comprehensive account of five extended modules covering the key branches of twentieth-century theoretical physics, taught by the author over a period of three decades to students on bachelor and master university degree courses in both physics and theoretical physics. The modules cover nonrelativistic quantum mechanics, thermal and statistical physics, many-body theory, classical field theory (including special relativity and electromagnetism), and, finally, relativistic quantum mechanics and gauge theories of quark and lepton interactions, all presented in a single, self-contained volume. In a number of universities, much of the material covered (for example, on Einstein’s general theory of relativity, on the BCS theory of superconductivity, and on the Standard Model, including the theory underlying the prediction of the Higgs boson) is taught in postgraduate courses to beginning PhD students. A distinctive feature of the book is that full, step-by-step mathematical proofs of all essentia...

  12. Calculating excess lifetime risk in relative risk models

    International Nuclear Information System (INIS)

    Vaeth, M.; Pierce, D.A.

    1990-01-01

    When assessing the impact of radiation exposure it is common practice to present the final conclusions in terms of excess lifetime cancer risk in a population exposed to a given dose. The present investigation is mainly a methodological study focusing on some of the major issues and uncertainties involved in calculating such excess lifetime risks and related risk projection methods. The age-constant relative risk model used in the recent analyses of the cancer mortality that was observed in the follow-up of the cohort of A-bomb survivors in Hiroshima and Nagasaki is used to describe the effect of the exposure on the cancer mortality. In this type of model the excess relative risk is constant in age-at-risk, but depends on the age-at-exposure. Calculation of excess lifetime risks usually requires rather complicated life-table computations. In this paper we propose a simple approximation to the excess lifetime risk; the validity of the approximation for low levels of exposure is justified empirically as well as theoretically. This approximation provides important guidance in understanding the influence of the various factors involved in risk projections. Among the further topics considered are the influence of a latent period, the additional problems involved in calculations of site-specific excess lifetime cancer risks, the consequences of a leveling off or a plateau in the excess relative risk, and the uncertainties involved in transferring results from one population to another. The main part of this study relates to the situation with a single, instantaneous exposure, but a brief discussion is also given of the problem with a continuous exposure at a low-dose rate

  13. Theoretical high energy physics: Progress report, May 1, 1988--April 30, 1989

    International Nuclear Information System (INIS)

    Lee, T.D.

    1989-05-01

    This paper discusses theoretical research done in high energy physics at Columbia University. Some of the topics discussed are: conformal field theory; QCD calculations; study of long-range forces; superconductivity; and cosmology

  14. Modeling calcification periods of Cytheridella ilosvayi from Florida based on isotopic signatures and hydrological data

    Directory of Open Access Journals (Sweden)

    J. Meyer

    2017-11-01

    Full Text Available The isotopic signatures of ostracod shells are the result of the temperature and composition of their host water and the phenology and ecology of the target species. Investigations addressing the influence of site-specific environmental variations on the isotopic ranges of ostracod shells are still rare but can provide important information on habitat-dependent variations and may signify a seasonally restricted timing of calcification periods. Here we present isotopic signatures (δ18Oostr, δ13Costr of living Cytheridella ilosvayi (Ostracoda and physical, chemical, and isotopic (δD, δ18Owater, δ13CDIC compositions of 14 freshwater habitats (rivers, lakes, canals, marshes, sinkholes in South Florida from winter 2013 and summer 2014. We also present instrumental data of river temperatures and δ18O of precipitation (δ18Oprec from this region. The physicochemical and isotopic compositions of the selected sites characterize the different habitats and show the influence of the source water, biological activity, and duration of exposure to the surface. Mean δ18Oostr and δ13Costr signatures of C. ilosvayi shells correlate well with the isotopic composition of their host waters. Within-sample variabilities in repeated isotopic measurements of single ostracod shells reflect habitat-dependent ranges. The similarly high range of ostracod δ18O in rivers and one marsh sample indicates that both temperature and δ18Oprec are responsible for their variation in the whole study area. Rivers and canals, which are predominantly influenced by the input and mixing of inorganic carbon from the catchment, show smaller δ13Costr ranges than the marsh dominated by local fluctuations in biological activities. Based on these observations, background data of water temperatures and δ18Oprec were used to calculate monthly δ18O variations in a theoretical calcite formed in rivers in Florida assuming a direct reaction on precipitation changes. The calculated values

  15. Theoretical aspect of the development of 'corporate social responsibility' concept

    OpenAIRE

    Milanović, Vesna M.; Bučalina, Andrea D.

    2013-01-01

    This paper presents a theoretical aspect of the development of 'corporate social responsibility' concept from the beginning of the 20th century to the present day, with the focus on the following periods: up to 1950, between 1950 an 1970, from 1970 to 1990 and from 1990 to now. We employed historical approach. We had an insight into the results of theoretical research on 'corporate social responsibility' concept, which were mostly presented in scientific papers in the English language. The ab...

  16. Calculation of the mean differential group delay of periodically spun, randomly birefringent fibers

    Science.gov (United States)

    Galtarossa, Andrea; Griggio, Paola; Pizzinat, Anna; Palmieri, Luca

    2002-05-01

    Spinning is one of the most effective and well-known ways to reduce polarization mode dispersion of optical fibers. In spite of the popularity of spinning, a detailed theory of spin effects is still lacking. We report an analytical expression for the mean differential group delay of a randomly birefringent spun fiber. The result holds for any periodic spin function with a period shorter than the fiber's beat length.

  17. Theoretical study of the properties of X-ray diffraction moiré fringes. I

    International Nuclear Information System (INIS)

    Yoshimura, Jun-ichi

    2015-01-01

    A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory, where the effect of the Pendellösung intensity oscillation on the moiré pattern is explained in detail. A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general

  18. Theoretical study of the reaction kinetics of atomic bromine with tetrahydropyran

    KAUST Repository

    Giri, Binod; Lo, John M H; Roscoe, John M.; Alquaity, Awad; Farooq, Aamir

    2015-01-01

    A detailed theoretical analysis of the reaction of atomic bromine with tetrahydropyran (THP, C5H10O) was performed using several ab initio methods and statistical rate theory calculations. Initial geometries of all species involved in the potential

  19. Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Riley, Kevin Eugene; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 11 (2012), s. 4285-4292 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : halogenated molecules * noncovalent interactions * benchmark calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  20. Chapter 2. Theoretical aspects of aluminium production

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This article is devoted to theoretical aspects of aluminium production. Thus, the electrochemistry of electrolysis process, calculation of base industrial indicators of aluminium electrolytic cell, and processes occurring on anode and cathode were considered. Factors, which increase the current output and electrolytic cell productivity were studied. The side effects, including anode effect, sodium extraction on cathode, aluminium dissolution in the electrolyte, aluminium carbide formation, and influence of admixtures in the electrolyte were studied as well.

  1. Theoretical models for the muon spectrum at sea level

    International Nuclear Information System (INIS)

    Abdel-Monem, M.S.; Benbrook, J.R.; Osborne, A.R.; Sheldon, W.R.

    1975-01-01

    The absolute vertical cosmic ray muon spectrum is investigated theoretically. Models of high energy interactions (namely, Maeda-Cantrell (MC), Constant Energy (CE), Cocconi-Koester-Perkins (CKP) and Scaling Models) are used to calculate the spectrum of cosmic ray muons at sea level. A comparison is made between the measured spectrum and that predicted from each of the four theoretical models. It is concluded that the recently available measured muon differential intensities agree with the scaling model for energies less than 100 GeV and with the CKP model for energies greater than 200 GeV. The measured differential intensities (Abdel-Monem et al.) agree with scaling. (orig.) [de

  2. On the Upper Limit (Heaviest Element in the Periodic Table of Elements, and the Periodic Table of Anti-Substance

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2009-04-01

    Full Text Available On the basis of the method involving equilateral hyperbolas developed by us with ref- erence to the Periodic Table, its Top Limit has been established. It is the last element with atomic mass 411.66 and serial number 155. The great value, according to our calculation, has adjacent hyperbolas whose center is the point (0; 1. With the method, it has been possible to find just one element in the Periodic Table — Rhodium, which does not demand additional calculations involving the definition of the valid axes. Cal- culations towards updating the charge of a nucleus and the quantity of neutrons in end N-Z part of the diagram by means of the serial number 155 are herein executed. The variant of the Periodic Table of Elements with the eighth period is recommended. On the basis of symmetry, with the application of the Hyperbolic Law in the Periodic Table of Elements, the existence of Anti-Substances is herein indirectly proved.

  3. Stontium-90 contamination in vegetation from radioactive waste seepage areas at ORNL, and theoretical calculations of /sup 90/Sr accumulation by deer

    Energy Technology Data Exchange (ETDEWEB)

    Garten, C.T. Jr.; Lomax, R.D.

    1987-06-01

    This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.

  4. Electrochemistry of chlorogenic acid: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Namazian, Mansoor [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)]. E-mail: namazian@yazduni.ac.ir; Zare, Hamid R. [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2005-08-10

    Cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as well as quantum chemical methods, are used for electrochemical study of chlorogenic acid, as an important biological molecule. The standard formal potential, diffusion coefficient, and heterogeneous electron transfer rate constant of chlorogenic acid in aqueous solution are investigated. Acidic dissociation constant of chlorogenic acid is also obtained. Quantum mechanical calculations on oxidation of chlorogenic acid in aqueous solution, using density functional theory are presented. The change of Gibbs free energy and entropy of oxidation of chlorogenic acid are calculated using thermochemistry calculations. The calculations in aqueous solution are carried out with the use of polarizable continuum solvation method. Theoretical standard electrode potential of chlorogenic acid is achieved to be 0.580 V versus standard calomel electrode (SCE) which is in agreement with the experimental value of 0.617 V obtained experimentally in this work. The difference is consistent with the values we previously reported for other quinone derivatives.

  5. A Theoretical Approach to Engineering a New Enzyme

    International Nuclear Information System (INIS)

    Anderson, Greg; Gomatam, Ravi; Behera, Raghu N.

    2016-01-01

    Density function theory, a subfield of quantum mechanics (QM), in combination with molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we report theoretical calculations done using QM/MM to examine whether the regioselectivity and rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. Although the protonation state of the niobium substituted enzyme is calculated to be different from than that of the natural vanadium substituted enzyme, our calculations show that the catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic differences between the niobium substituted enzyme and the natural enzyme. We conclude by briefly examining how good of a model QM/MM provides for understanding the mechanism of catalysis of chloroperoxidase. (paper)

  6. Theoretical and experimental study of fenofibrate and simvastatin

    Science.gov (United States)

    Nicolás Vázquez, Inés; Rodríguez-Núñez, Jesús Rubén; Peña-Caballero, Vicente; Ruvalcaba, Rene Miranda; Aceves-Hernandez, Juan Manuel

    2017-12-01

    Fenofibrate, an oral fibrate lipid lowering agent, and simvastatin, which reduces plasma levels of low-density lipoprotein cholesterol, are active pharmaceutical ingredients (APIs), currently in the market. We characterized these APIs by thermal analysis and conducted X-ray powder diffraction techniques. Studies should be carried out in the formulation stage before the final composition of a polypill may be established. Thus, it was found in thermochemical studies that both compounds present no chemical interactions in an equimolar mixture of solid samples at room temperature. Theoretical studies were employed to determine possible interactions between fenofibrate and simvastatin. A very weak intramolecular hydrogen bond is formed between the hydroxyl group (O5H5) of the simvastatin with chlorine and carbonyl group (C11O4, C1O2) of the fenofibrate molecule. These weak energy hydrogen bonds have no effect on the chemical stability of the compounds studied. The results were obtained using Density Functional Theory methods; particularly the BPE1BPE and B3LYP functional and 6-31++G** basis set. The values of energy show good approximation when are compared with similar calculations previously reported. Infrared spectra of monomers and dimers were obtained via theoretical calculations.

  7. Recoil corrected bag model calculations for semileptonic weak decays

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oe.; Hoegaasen, H.

    1987-02-01

    Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large

  8. Few-group constants for the calculation of ksub(eff) and Δ(1/ksub(eff)) of fast breeder reactors

    International Nuclear Information System (INIS)

    Svarny, J.

    1978-01-01

    A theoretical and numerical analysis is presented of the linear and bilinear weighting of group constants. Special attention is paid to error accumulation in the few-group calculations of reactivity (ksub(eff)) and its first order perturbations caused by inaccuracies in weighting functions. Some theoretical conclusions are supported by calculations of the BN-600 fast breeder reactor. (author)

  9. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  10. Theoretical Atomic Physics code development II: ACE: Another collisional excitation code

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Csanak, G.; Mann, J.B.; Cowan, R.D.

    1988-12-01

    A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab

  11. Control System Design for Active Lubrication with Theoretical and Experimental Examples

    DEFF Research Database (Denmark)

    Santos, Ilmar; Scalabrin, A.

    2003-01-01

    This work focuses on the theoretical and experimental behavior of rigid rotors controlled by tilting-pad journal bearings with active oil injection. Initially the mathematical model of the active bearing is presented: The equations that describe the dynamics of hydraulic actuators are introduced...... system of the active bearing based on root locus curves. The active system stability is analyzed by calculating its eigenvalues and frequency response curves. The theoretical and experimental results show that this kind of bearing can significantly reduce the vibration level of rotating machinery....

  12. Method for consequence calculations for severe accidents

    International Nuclear Information System (INIS)

    Nielsen, F.; Thykier-Nielsn, S.

    1987-03-01

    This report was commissioned by the Swedish State Power Board. The report contains a calculation of radiation doses in the surroundings caused by a theoretical core meltdown accident at Forsmark reactor No 3. The assumption used for the calculations were a 0.06% release of iodine and cesium corresponding to a 0.1% release through the FILTRA plant at Barsebaeck. The calculations were made by means of the PLUCON4 code. Meteorological data for two years from the Forsmark meteorological tower were analysed to find representative weather situations. As typical weather pasquill D was chosen with wind speed 5 m/s, and as extreme weather, Pasquill F with wind speed 2 m/s. 23 tabs., 36 ills., 21 refs. (author)

  13. Dissociative recombination of interstellar ions: electronic structure calculations for HCO+

    International Nuclear Information System (INIS)

    Kraemer, W.P.; Hazi, A.U.

    1985-01-01

    The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs

  14. Microprocessor controlled digital period meter

    International Nuclear Information System (INIS)

    Keefe, D.J.; McDowell, W.P.; Rusch, G.K.

    1980-01-01

    A microprocessor controlled digital period meter has been developed and tested operationally on a reactor at Argonne National Laboratory. The principle of operation is the mathematical relationship between asymptotic periods and pulse counting circuitry. This relationship is used to calculate and display the reactor periods over a range of /plus or minus/1 second to /plus or minus/999 seconds. The time interval required to update each measurement automatically varies from 8 seconds at the lowest counting rates to 2 seconds at higher counting rates. The paper will describe hardware and software design details and show the advantages of this type of Period Meter over the conventional circuits. 1 ref

  15. Sodium fires: French strategy - theoretical and experimental developments

    International Nuclear Information System (INIS)

    Descombes; Thomann; Malet, J.C.; Rzekiecki, R.

    1985-01-01

    After a description of the needs relating to LMFBR safety analysis and design in terms of prevention, detection and protection, the French strategy concerning sodium fires it presented. It includes theoretical developments supported with relevant experimental program, to allow reliable calculations and predictions for safety and design. The following physical phenomena are detailed: (1) sodium fire (mechanical and thermal effects); (2) sodium-structures interactions; (3) aerosols behavior

  16. Molecular structure and conformational composition of 1,3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1,3-dihydroxyacetone.

    Science.gov (United States)

    Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V

    2007-07-19

    The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.

  17. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides

    Science.gov (United States)

    Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford

    2018-04-01

    Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.

  18. Theoretical optical spectroscopy of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A. Mosca, E-mail: adriano.mosca.conte@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Violante, C., E-mail: claudia.violante@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Missori, M., E-mail: mauro.missori@isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00016 Monterotondo Scalo (Rome) (Italy); Bechstedt, F., E-mail: bech@ifto.physik.uni-jena.de [Institut fur Festkorpertheorie und -optik, Friedrich-Schiller-Universitat, Max-Wien-Platz 1, 07743 Jena (Germany); Teodonio, L. [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Istituto centrale per il restauro e la conservazione del patrimonio archivistico e librario (IC-RCPAL), Italian Minister for Cultural Heritage, Via Milano 76, 00184 Rome (Italy); Ippoliti, E.; Carloni, P. [German Research School for Simulation Sciences, Julich (Germany); Guidoni, L., E-mail: leonardo.guidoni@univaq.it [Università degli Studi di L’Aquila, Dipartimento di Chimica e Materiali, Via Campo di Pile, 67100 L’Aquila (Italy); Pulci, O., E-mail: olivia.pulci@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)

    2013-08-15

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth.

  19. Information-theoretic lengths of Jacobi polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)

    2010-07-30

    The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.

  20. Theoretical optical spectroscopy of complex systems

    International Nuclear Information System (INIS)

    Conte, A. Mosca; Violante, C.; Missori, M.; Bechstedt, F.; Teodonio, L.; Ippoliti, E.; Carloni, P.; Guidoni, L.; Pulci, O.

    2013-01-01

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth

  1. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  2. An assessment of some theoretical models used for the calculation of the refractive index of InXGa1-xAs

    Science.gov (United States)

    Engelbrecht, J. A. A.

    2018-04-01

    Theoretical models used for the determination of the refractive index of InXGa1-XAs are reviewed and compared. Attention is drawn to some problems experienced with some of the models. Models also extended to the mid-infrared region of the electromagnetic spectrum. Theoretical results in the mid-infrared region are then compared to previously published experimental results.

  3. Theoretical calculation of fully differential cross sections for electron-impact ionization of hydrogen molecules

    International Nuclear Information System (INIS)

    Gao Junfang; Madison, D H; Peacher, J L

    2006-01-01

    We have recently proposed the orientation averaged molecular orbital (OAMO) approximation for calculating fully differential cross sections (FDCS) for electron-impact ionization of molecules averaged over all molecular orientations. Orientation averaged FDCS were calculated for electron-impact ionization of nitrogen molecules using the distorted wave impulse approximation (DWIA) and the molecular three-body distorted wave (M3DW) approximation. In this paper, we use the same methods to examine the FDCS for ionization of hydrogen molecules. It is found that the DWIA yields reasonable results for high-energy incident electrons. While the DWIA breaks down for low-energy electrons, the M3DW gives reasonable results down to incident-electron energies around 35 eV

  4. Experimental and theoretical study on complexation of Li+ with lithium ionophore VIII

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Novák, V.; Vaňura, P.; Bouř, Petr

    2013-01-01

    Roč. 144, č. 11 (2013), s. 1607-1611 ISSN 0026-9247 Institutional support: RVO:61388963 Keywords : ionophores * macrocycles * complexation * DFT calculations * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.347, year: 2013

  5. Theoretical study on device efficiency of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Gao Chuanchang; Lu Hongqi; Wang Shicheng; Cheng Mingchuan

    2001-01-01

    The influence of the main factors on device efficiency of pulsed liquid jet pump with gas-liquid piston is analysed, the theoretical equation and its time-averaged solution of pulsed liquid jet pump device efficiency are derived. The theoretical and experimental results show that the efficiency of transmission of energy and mass to use pulsed jet is greatly raised, compared with steady jet, in the same device of liquid jet pump. The calculating results of time-averaged efficiency of pulsed liquid jet pump are approximately in agreement with the experimental results in our and foreign countries

  6. Ab initio calculation of conformation and vibrational spectrum for the pyrosulfate ion

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Berg, Rolf W.; Johansen, Helge

    2003-01-01

    Theoretical calculations have been performed and applied to determine the most likely geometry for the pyrosulfate ion. The main question was to determine as to whether the system has C-2 or C-2, conformation. The present study favors C-2 symmetry. Bond lengths and angles have been calculated for...

  7. Analytical calculation of heavy quarkonia production processes in computer

    International Nuclear Information System (INIS)

    Braguta, V V; Likhoded, A K; Luchinsky, A V; Poslavsky, S V

    2014-01-01

    This report is devoted to the analytical calculation of heavy quarkonia production processes in modern experiments such as LHC, B-factories and superB-factories in computer. Theoretical description of heavy quarkonia is based on the factorization theorem. This theorem leads to special structure of the production amplitudes which can be used to develop computer algorithm which calculates these amplitudes automatically. This report is devoted to the description of this algorithm. As an example of its application we present the results of the calculation of double charmonia production in bottomonia decays and inclusive the χ cJ mesons production in pp-collisions

  8. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  9. Theoretical calculation of enthalpy of formation of multiconformational molecules: 1,2-ethanediol, propanediols, and glycerol

    Science.gov (United States)

    Dorofeeva, Olga V.; Suchkova, Taisiya A.

    2018-04-01

    The gas-phase enthalpies of formation of four molecules with high flexibility, which leads to the existence of a large number of low-energy conformers, were calculated with the G4 method to see whether the lowest energy conformer is sufficient to achieve high accuracy in the computed values. The calculated values were in good agreement with the experiment, whereas adding the correction for conformer distribution makes the agreement worse. The reason for this effect is a large anharmonicity of low-frequency torsional motions, which is ignored in the calculation of ZPVE and thermal enthalpy. It was shown that the approximate correction for anharmonicity estimated using a free rotor model is of very similar magnitude compared with the conformer correction but has the opposite sign, and thus almost fully compensates for it. Therefore, the common practice of adding only the conformer correction is not without problems.

  10. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    Science.gov (United States)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  11. Contribution to the study of standing wave bi-periodical accelerating structures for electrons

    International Nuclear Information System (INIS)

    Fuhrmann, Celso

    1985-01-01

    Experimental results on bi-periodic standing wave accelerating structures are presented. These structures which are characterized by a high effective shunt impedance, are designed for standing wave, high duty cycle electron accelerators. Two types of structures are studied: the on-axis coupled structure and the coaxial coupled structure. The expressions for the dispersion relation, coupling coefficients, phase and group velocity are derived from a coupled resonator model. An experimental method to eliminate the stop-band is put forward. The influence of the coupling slots on the dispersion curves is studied experimentally. The effective shunt impedance and the transit time factor are measured by the field perturbation techniques. Measured parameters are compared with SUPERFISH theoretical calculations. The field perturbation technique is also applied to measure the transverse shunt impedance of the dipole modes which are responsible for the beam breakup phenomenon. (author) [fr

  12. Theoretical Physics Division annual report, January--December 1975. Volume 1

    International Nuclear Information System (INIS)

    Wainwright, T.; Tarter, B.

    1976-01-01

    Discussions of theoretical work during this period are reported for the following general areas: (1) atomic, molecular, and nuclear physics, (2) laser fusion, propagation, and effects, (3) pulsed power and plasma physics, (4) energy and the environment, and (5) related research

  13. Theoretical Aspects of Phonon Dispersion Curves for Metals

    International Nuclear Information System (INIS)

    Cochran, W.

    1965-01-01

    Reasonably complete knowledge of the phonon dispersion curves for at least a dozen metallic elements and intermetallic compounds has now been obtained from neutron inelastic scattering experiments. The results have one feature in common: when analysed in terms of interatomic force constants they reveal the presence of comparatively long-range forces extending over several atomic spacings. The results for lead are particularly interesting; it did not prove possible to fit them by a force-constant model, but the dispersion curves for wave vectors in symmetry directions when analysed in terms of force constants between planes of atoms showed an oscillatory interatomic potential extending over distances of more than 20Å. This review is concerned with recent theoretical work which has a bearing on the calculation of phonon dispersion curves for metals and the explanation of the long range of the interatomic potential. The best hope at present for a general treatment of atomic interaction in metals appears to lie in the ''method of neutral pseudo-atoms'', (a description recently coined by Ziman). This approximate theory is outlined and its relevance to Kohn anomalies in phonon dispersion curves is discussed. Experimental data for sodium is consistent with the theory, and the interatomic potential in sodium varies periodically in a distance π/k F , where fik F is the Fermi momentum, as has already been demonstrated by Koenig in a different way. More exact calculations have been made for sodium by Toya and by Sham. The relationship between the different methods and other work of a more general character such as that of Harrison are discussed. (author) [fr

  14. Experimental and theoretical investigations of structural and optical properties of CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chandramohan, M., E-mail: chandramohan59@yahoo.co.in [Department of Physics, Park college of Engineering and Tecknology, Coimbatore-641 659 (India); Velumani, S., E-mail: vels64@yahoo.com [Centro de Investigacion y de Estudios Avanzados del I.P.N.(CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco 07360, Mexico D.F (Mexico); Venkatachalam, T., E-mail: atvenkatachalam@yahoo.com [Department of Physics, Coimbatore Institute of Technology, Coimbatore-14. India (India)

    2010-10-25

    Experimental and theoretical studies of the structural and optical properties of Copper Indium Gallium diSelenide thin films have been performed. Thin films of CIGS were deposited on glass substrates by chemical bath deposition. From the XRD results of the films, it is found that the films are of chalcopyrite type structure. The lattice parameter were determined as a = 5.72 A and c = 11.462 A. The optical properties of the thin films were carried out with the help of spectrophotometer. First principles density functional theory calculations of the band structure, density of states and effective masses of electrons and holes of the CIGS crystals have been done by computer simulations. The experimental data and theoretically calculated data have demonstrated good agreement.

  15. Multi-Periodic Photonic Hyper-Crystals: Volume Plasmon Polaritons and the Purcell Effect

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Iorsh, I. V.; Orlov, A. A.

    2014-01-01

    We theoretically demonstrate superior degree of control over volume plasmon polariton propagation and the Purcell effect in multi-period (4-layer unit cell) plasmonic multilayers, which can be viewed as multiscale hyperbolic metamaterials or multi-periodic photonic hyper-crystals. © 2014 OSA....

  16. Short period tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.

    1981-01-01

    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  17. Giant resonances in the transition regions of the periodic table

    International Nuclear Information System (INIS)

    Clark, C.W.; Lucatorto, T.B.

    1987-01-01

    In the transition regions of the periodic table of the elements, atomic d or f orbitals undergo a fairly sudden change from hydrogenic to fully collapsed form. This transition involves a large reduction in the mean orbital radius - by about 95% for the 4f orbital - and results in corresponding qualitative changes in physical processes sensitive to orbital size (e.g. excitation cross sections, bonding character). It is caused by a shift, as the nuclear charge Z increases, in the close balance between repulsive centrifugal and attractive atomic forces on the electron. The balance can also be tilted within a given element in the transition region, for instance by a change in the occupancy of its core or valence orbitals, or by the formation of a molecular bond. Transition region elements are thus characterized by an unusual sensitivity of gross orbital properties to external perturbations; and, from the standpoint of theoretical representation, to the effects of electron correlation, LS term dependence, and special relativity. This paper reports some experimental and theoretical work directed towards exploring this sensitivity. The approach of tracing physical processes along isoelectronic, isonuclear, and isoionic sequences which span particular transition regions is taken. The experimental work described here consists of soft x-ray photoabsorption studies of alkaline earth atoms and ions in the gas phase. It is based upon techniques of time-resolved sequential laser and soft x-ray excitation, which enable them to obtain the subvalence photoabsorption spectra of ground and excited states of an atom and its ions. The theoretical work is based primarily upon single- and multiconfiguration Hartree-Fock calculations, with particular attention to effects of orbital term dependence. 40 references, 7 figures, 3 tables

  18. TINTE. Nuclear calculation theory description report

    Energy Technology Data Exchange (ETDEWEB)

    Gerwin, H.; Scherer, W.; Lauer, A. [Forschungszentrum Juelich GmbH (DE). Institut fuer Energieforschung (IEF), Sicherheitsforschung und Reaktortechnik (IEF-6); Clifford, I. [Pebble Bed Modular Reactor (Pty) Ltd. (South Africa)

    2010-01-15

    The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the nuclear and the thermal transient behaviour of the primary circuit of the High-temperature Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in twodimensional axisymmetric geometry. This document contains a complete description of the theoretical basis of the TINTE nuclear calculation, including the equations solved, solution methods and the nuclear data used in the solution. (orig.)

  19. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan

    2013-09-26

    We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.

  20. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Buck, D. R. [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  1. Structural comparison of 1{beta}-Methylcarbapenem, Carbapenem and Penem: NMR studies and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T. [Research Center, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohanaku, Osaka (Japan)

    1998-04-01

    Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using {sup 1}H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained {beta}-lactam rings in good agreement with the crystallographic data. {sup 1}H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Structural comparison of 1β-Methylcarbapenem, Carbapenem and Penem: NMR studies and theoretical calculations

    International Nuclear Information System (INIS)

    Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T.

    1998-01-01

    Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using 1 H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained β-lactam rings in good agreement with the crystallographic data. 1 H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. A theoretical study on the mechanism of electronic to vibrational energy transfer in Hg/3P/ + CO

    Science.gov (United States)

    Kato, S.; Jaffe, R. L.; Komornicki, A.; Morokuma, K.

    1983-01-01

    The mechanism of electronic-to-vibrational (E-V) energy transfer in Hg(3P) + CO collisions has been studied theoretically. The configuration interaction (CI) method was employed to calculate potential energy surfaces of the collision system. A simplified theoretical model, based on the reaction coordinate concept and the calculated potential energy characteristics, was used to discuss the mechanism of the singlet-triplet transition and the energy disposal in the collision. The results obtained were that: (a) the quenching process processed via a collision complex mechanism; and that (b) the triplet-singlet transition occurs near the collinear geometry. A model classical trajectory calculation gives a product CO vibrational distribution in good agreement with the experimental result.

  4. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  5. The Improvement of the Methodological Approaches to Calculating the Payback Period for Investment in order to Estimate Expenses on Establishing the Economic Security Service of an Enterprise

    Directory of Open Access Journals (Sweden)

    Melikhova Tetiana O.

    2018-03-01

    Full Text Available The aim of the article is to improve the methodological approaches to calculating the payback period for investment in order to determine the payback period for expenses on establishing the economic security service of an enterprise. It is found that the source of payback of investment at the enterprise level is cash flow product. These revenues (the result go to formation of a cash flow (expenses used to finance investment and financial activities. There proposed methods for determining the gross, net, actual, and specified payback periods for advanced investments in the long-term, which use the accumulated product of cash flow or accumulated cash flow as a source of financing. Analytic relationships between the gross, net, current, and specified payback periods for advanced investments that take into account the relationship between the accumulated gross, net, current and specified cash flows are proposed. The considered options for payback of advanced investment at the enterprise level will provide an opportunity to develop methods for determining the payback period for expenses on establishing the economic security service of an enterprise.

  6. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  7. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1991-01-01

    This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections

  8. Theoretical thermal dosimetry produced by an annular phased array system in CT-based patient models

    International Nuclear Information System (INIS)

    Paulsen, K.D.; Strohbehn, J.W.; Lynch, D.R.

    1984-01-01

    Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA) type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and the thermal boundary value problems. A number of detailed patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to stimulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are input into the bioheat transfer equation, and steady-rate temperature distributions are calculated for a wide variety of blood flow rates. Based on theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases satisfactory thermal profiles (therapeutic volume near 60%) are obtained in all three regions of the human trunk only for tumors with little or no blood flow. Unsatisfactory temperature patterns (therapeutic volume <50%) are found for tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA type devices in heating tumors located in the trunk region

  9. Theoretical studies on core-level spectra of solids

    International Nuclear Information System (INIS)

    Kotani, Akio

    1995-01-01

    I present a review on theoretical studies of core-level spectra (CLS) in solids. In CLS, the dynamical response of outer electrons to a core hole is reflected through the screening of core hole potential. Impurity Anderson model (IAM) or cluster model is successfully applied to the analysis of X-ray photoemission spectra (XPS) and X-ray absorption spectra (XAS) in f and d electron systems, where the f and d electron states are hybridized with the other valence or conduction electron states. The effect of the core-hole potential in the final state of XPS and XAS plays an important role, as well as the solid state hybridization and intra-atomic multiplet coupling effects. As typical examples, the calculated results for XPS of rare-earth compounds and transition metal compounds are shown, and some discussions are given. As a subject of remarkable progress with high brightness synchrotron radiation sources, I discuss some theoretical aspects of X-ray emission spectra (XES) and their resonant enhancement at the X-ray absorption threshold. Some experimental data and their theoretical analysis are also given. (author)

  10. Verifying seismic design of nuclear reactors by testing. Volume 2: appendix, theoretical discussions

    International Nuclear Information System (INIS)

    1979-01-01

    Theoretical discussions on seismic design testing are presented under the following appendix headings: system functions, pulse optimization program, system identification, and motion response calculations from inertance measurements of a nuclear power plant

  11. Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We present electromagnetic analysis and radiation efficiency calculations for on-chip terahertz (THz) structures based on a hybrid, finite-difference, time-domain (HFDTD) technique. The method employs the FDTD technique to calculate S-parameters for one cell of a periodic structure. The transmission ABCD matrix is then estimated and multiplied by itself n times to obtain the n-cell periodic structure ABCD parameters that are then converted back to S-parameters. Validation of the method is carried out by comparing the results of the hybrid technique with FDTD calculations of the entire periodic structure as well as with HFSS which all agree quite well. This procedure reduces the CPU-time and allows efficient design and optimization of periodic THz radiation sources. Future research will involve coupling of Maxwell's equations with a more detailed, physics-based transport model for higher-order effects.

  12. Theoretical studies in elementary particle physics: [Progress report for the period June 1986 to February 1987

    International Nuclear Information System (INIS)

    Collins, J.C.

    1987-01-01

    Theoretical research on elementary particles is reported, with progress discussed in these areas: heavy quark production, the cosmic rays observed from Cygnus X-3, hadron-hadron collisions at small values of x, Monte Carlo event generators for hadron-hadron collisions, review of perturbative QCD theorems, direct computation of helicity amplitudes for tree diagrams, and application of the factorization of helicity amplitudes to the effective W approximation

  13. Engineered quantum tunnelling in extended periodic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Wimberger, Sandro; Ciampini, Donatella; Morsch, Oliver; Mannella, Riccardo; Arimondo, Ennio [CNR-INFM and Dipartimento di Fisica ' Enrico Fermi' , Largo Pontecorvo 3, 1-56127 Pisa (Italy)

    2007-05-15

    Quantum tunnelling from a tilted, but otherwise periodic potential is studied. Our theoretical and experimental results show that, by controlling the system's parameters, we can engineer the escape rate of a Bose-Einstein condensate to an exceptional degree. Possible applications of this atom-optics realization of the open Wannier-Stark system are discussed.

  14. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds.

    Science.gov (United States)

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynski, Jerzy

    2013-05-15

    A number of density functionals was utilized to predict gas-phase adiabatic ionization potentials (IPs) for nitrogen-rich heterocyclic compounds. Various solvation models were applied to the calculation of difference in free energies of solvation of oxidized and reduced forms of heterocyclic compounds in acetonitrile (AN) for correct reproduction of their standard oxidation potentials. We developed generally applicable protocols that could successfully predict the gas-phase adiabatic ionization potentials of nitrogen-rich heterocyclic compounds and their standard oxidation potentials in AN. This approach is supported by a MPW1K/6-31+G(d) level of theory which uses SMD(UA0) approximation for estimation of solvation energy of neutral molecules and PCM(UA0) model for ionized ones. The mean absolute derivation (MAD) and root mean square error (RMSE) of the current theoretical models for IP are equal to 0.22 V and 0.26, respectively, and for oxidation potentials MAD = 0.13 V and RMSE = 0.17. Copyright © 2013 Wiley Periodicals, Inc.

  15. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle

    Science.gov (United States)

    Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng

    2016-05-01

    The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.

  16. Pulsation properties of Mira long period variables

    International Nuclear Information System (INIS)

    Cahn, J.H.

    1980-01-01

    A matter of great interest to variable star students concerns the mode of pulsation of Mira long period variables. In this report we first give observational evidence for the pulsation constant Q. We then compare the observations with calculations. Next, we review two interesting groups of papers dealing with hydrodynamic properties of long period variables. In the first, a fully dynamic nonlinear calculation maps out the Mira instability domain. In the second, special attention is paid to shock propagation beyond the photosphere which in large measure accounts for the complex spectra from this region. (orig./WL)

  17. Periodic orbits near the particle resonance in galaxies

    CERN Document Server

    Contopoulos, George

    1978-01-01

    Near the particle resonance of a spiral galaxy the almost circular periodic orbits that exist inside the resonance (direct) or outside it (retrograde) are replaced by elongated trapped orbits around the maxima of the potential L/sub 4/ and L/sub 5/. These are the long- period trapped periodic orbits. The long-period orbits shrink to the points L/sub 4/, L/sub 5/ for a critical value of the Hamiltonian h. For still larger h, a family of short-period trapped orbits appears, with continuously growing size. The evolution of the periodic orbits with h is followed, theoretically and numerically, from the untrapped orbits to the long-periodic orbits and then to the short-periodic orbits, mainly in the case of a bar. In a tight spiral case an explanation of the asymmetric periodic and banana orbits is given, and an example of short-period orbits not surrounding L/sub 4/ or L/sub 5/ is provided. Another family of periodic orbits reaching corotation is trapped at the inner Lindblad resonance. (5 refs).

  18. Theoretical investigation of the long-lived metastable AlO{sup 2+} dication in gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Sghaier, Onsi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Abdallah, Hassan H. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Chemistry, College of Education, Salahaddin University, 44001 Erbil (Iraq); Abdullah, Hewa Y. [Computational Nanotechnology Research Lab. CNRL, Salahaddin University, 44001 Erbil (Iraq); Department of Physics, College of Education, Salahaddin University, 44001 Erbil (Iraq); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Al Mogren, Muneerah Mogren [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2016-09-30

    Highlights: • Theoretical investigation of gas-phase molecular species AlO{sup 2+}. • Spectroscopic parameters of this dication in its electronic ground and exited states. • Theoretical double ionization spectrum of AlO. - Abstract: We report the results of a detailed theoretical study of the electronic ground and excited states of the gas-phase doubly charged ion AlO{sup 2+} using high-level ab initio computer calculations. Both standard and explicitly correlated methods were used to calculate their potential energy curves and spectroscopic parameters. These computations show that the ground state of AlO{sup 2+} is X{sup 2}Π. The internuclear equilibrium distance of AlO{sup 2+}(X{sup 2}Π) is computed 1.725 Å. We also deduced the adiabatic double ionization and charge stripping energies of AlO to be about 27.45 eV and 17.80 eV, respectively.

  19. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    Science.gov (United States)

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  20. The Atmospherically Important Reaction of Hydroxyl Radicals with Methyl Nitrate: A Theoretical Study Involving the Calculation of Reaction Mechanisms, Enthalpies, Activation Energies, and Rate Coefficients.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2017-09-07

    A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.

  1. Research in theoretical physics: Annual progress report for period April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Domokos, G.; Kovesi-Domokos, S.

    1988-11-01

    This report contains a summary of research carried out in order to search for a substructure of quarks and leptons. Theoretical predictions valid for a large class of composite models suggest enhanced muon production in high energy lepton-induced reactions. A tentative analysis of some cosmic ray data indicates that the predictions of such models are in accordance with the data. In order to move towards the construction of satisfactory composite models, a study of gauge invariant effective actions and phase transitions in gauge theories was begun. 20 refs., 1 fig

  2. Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes.

    Science.gov (United States)

    Lin, Chih-Kai

    2018-03-05

    As nitrogen-doped graphene has been widely applied in optoelectronic devices and catalytic reactions, in this work we have investigated where the nitrogen atoms tend to reside in the material and how they affect the electron density and spectroscopic properties from a theoretical point of view. DFT calculations on N-doped hexagonal and rectangular graphene nanoflakes (GNFs) showed that nitrogen atoms locating on zigzag edges are obviously more stable than those on armchair edges or inside flakes, and interestingly, the N-hydrogenated pyridine moiety could be preferable to pure pyridine moiety in large models. The UV-vis absorption spectra of these nitrogen-doped GNFs display strong dependence on flake sizes, where the larger flakes have their major peaks in lower energy ranges. Moreover, the spectra exhibit different connections to various dopant types and positions: the graphitic-type dopant species present large variety in absorption profiles, while the pyridinic-type ones show extraordinary uniform stability and spectra independent of dopant positions/numbers and hence are hardly distinguishable from each other. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Fast Calculation Model and Theoretical Analysis of Rotor Unbalanced Magnetic Pull for Inter-Turn Short Circuit of Field Windings of Non-Salient Pole Generators

    Directory of Open Access Journals (Sweden)

    Guangtao Zhang

    2017-05-01

    Full Text Available Inter-turn short circuit of field windings (ISCFW may cause the field current of a generator to increase, output reactive power to decrease, and unit vibration to intensify, seriously affecting its safe and stable operation. Full integration of mechanical and electrical characteristics can improve the sensitivity of online monitoring, and detect the early embryonic period fault of small turns. This paper studies the calculations and variations of unbalanced magnetic pull (UMP, of which the excitation source of rotor vibration is the basis and key to online fault monitoring. In grid load operation, ISCFW are first calculated with the multi-loop method, so as to obtain the numerical solutions of the stator and the rotor currents during the fault. Next, the air-gap magnetic field of the ISCFW is analyzed according to the actual composition modes of the motor loops in the fault, so as to obtain the analytic expressions of the air-gap magnetic motive force (MMF and magnetic density. The UMP of the rotor is obtained by solving the integral of the Maxwell stress. The correctness of the electric quantity calculation is verified by the ISCFW experiment, conducted in a one pair-pole non-salient pole model machine. On this basis, comparing the simulation analysis with the calculation results of the model in this paper not only verifies the accuracy of the electromagnetic force calculation, but also proves that the latter has the advantages of a short time consumption and high efficiency. Finally, the influencing factors and variation law of UMP are analyzed by means of an analytic model. This develops a base for the online monitoring of ISCFW with the integration of mechanical and electrical information.

  4. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  5. Some theoretical aspects of electron and photon dosimetry

    International Nuclear Information System (INIS)

    Seltzer, S.M.; Hubbell, J.H.; Berger, M.J.

    1978-01-01

    The dosimetry standardization programme at the National Bureau of Standards (NBS) has a number of theoretical components. These include the compilation of standard cross-section data sets, the theoretical analysis of detector response to various radiations, the spectral and directional characterization of radiation sources, and the determination of absorbed-dose distributions in irradiated media. This paper describes recent results, with emphasis on photon and electron dosimetry. A discussion is given of some recent developments pertaining to photon attenuation coefficients and electron stopping powers. Response functions are presented for intrinsic germanium detectors (used to measure the output of diagnostic X-ray machines) and for sodium iodide detectors (used to measure the spectral characteristics of one of the NBS 60 Co irradiation facilities). As examples of source characterization, calculations are described pertaining to the passage of high-energy electron beams through foils. Consideration is given to thin foils used to spread the electron beam, and to thick foils used as bremsstrahlung converters. The results include the energy spectra and angular distributions of the transmitted electrons and emergent bremsstrahlung photons. An example of the calculation of absorbed-dose distributions is given for irradiation of a carbon phantom by a 60 Co gamma-ray beam. (author)

  6. Reconstruction calculation of pin power for ship reactor core

    International Nuclear Information System (INIS)

    Li Haofeng; Shang Xueli; Chen Wenzhen; Wang Qiao

    2010-01-01

    Aiming at the limitation of the software that pin power distribution for ship reactor core was unavailable, the calculation model and method of the axial and radial pin power distribution were proposed. Reconstruction calculations of pin power along axis and radius was carried out by bicubic and bilinear interpolation and cubic spline interpolation, respectively. The results were compared with those obtained by professional reactor physical soft with fine mesh difference. It is shown that our reconstruction calculation of pin power is simple and reliable as well as accurate, which provides an important theoretic base for the safety analysis and operating administration of the ship nuclear reactor. (authors)

  7. Calculation of the band gap energy of ionic crystals

    International Nuclear Information System (INIS)

    Aguado, A.; Lopez, J.M.; Alonso, J.A.; Ayuela, A.; Rivas S, J.F.; Berrondo, M.

    1998-01-01

    The band gap of alkali halides, alkaline-earth oxides, Al 2 O 3 and SiO 2 crystals has been calculated using the perturbed-ion model supplemented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calculations, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials. (Author)

  8. Experimental and theoretical Compton profiles of Be, C and Al

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Julio C., E-mail: jaguiar@arn.gob.a [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, C1429BNP, Buenos Aires (Argentina); Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, U.N.C.P.B.A., Pinto 399, 7000 Tandil (Argentina); Di Rocco, Hector O. [Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, U.N.C.P.B.A., Pinto 399, 7000 Tandil (Argentina); Arazi, Andres [Laboratorio TANDAR, Comision Nacional de Energia Atomica, Av. General Paz 1499, 1650 San Martin, Buenos Aires (Argentina)

    2011-02-01

    The results of Compton profile measurements, Fermi momentum determinations, and theoretical values obtained from a linear combination of Slater-type orbital (STO) for core electrons in beryllium; carbon and aluminium are presented. In addition, a Thomas-Fermi model is used to estimate the contribution of valence electrons to the Compton profile. Measurements were performed using monoenergetic photons of 59.54 keV provided by a low-intensity Am-241 {gamma}-ray source. Scattered photons were detected at 90{sup o} from the beam direction using a p-type coaxial high-purity germanium detector (HPGe). The experimental results are in good agreement with theoretical calculations.

  9. Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid in a Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Yujie Huang

    2015-01-01

    Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.

  10. On the acceptor-related photoluminescence spectra of GaAs quantum-wire microcrystals: A model calculation

    International Nuclear Information System (INIS)

    Oliveira, L.E.; Porras Montenegro, N.; Latge, A.

    1992-07-01

    The acceptor-related photoluminescence spectrum of a GaAs quantum-wire microcrystal is theoretically investigated via a model calculation within the effective-mass approximation, with the acceptor envelope wave functions and binding energies calculated through a variational procedure. Typical theoretical photoluminescence spectra show two peaks associated to transitions from the n = 1 conduction subband electron gas to acceptors at the on-center and on-edge positions in the wire in good agreement with the recent experimental results by Hirum et al. (Appl. Phys. Lett. 59, 431 (1991)). (author). 14 refs, 3 figs

  11. Theoretical investigation on the magnetic and electric properties in TbSb compound through an anisotropic microscopic model

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Ribeiro, P. O.; Alho, B. P.; Alvarenga, T. S. T.; Nobrega, E. P.; Caldas, A.; Sousa, V. S. R.; Lopes, P. H. O.; Oliveira, N. A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro–UERJ, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro (RJ) (Brazil); Carvalho, A. Magnus G. [Laboratório Nacional de Luz Síncrotron, CNPEM, 13083-970 Campinas, São Paulo (Brazil)

    2016-05-14

    We report the strong correlations between the magnetoresistivity and the magnetic entropy change in the cubic antiferromagnetic TbSb compound. The theoretical investigation was performed through a microscopic model which takes into account the crystalline electrical field anisotropy, exchange coupling interactions between the up and down magnetic sublattices, and the Zeeman interaction. The easy magnetization directions changes from 〈001〉 to 〈110〉 and then to 〈111〉 observed experimentally was successfully theoretically described. Also, the calculation of the temperature dependence of electric resistivity showed good agreement with the experimental data. Theoretical predictions were calculated for the temperature dependence of the magnetic entropy and resistivity changes upon magnetic field variation. Besides, the difference in the spin up and down sublattices resistivity was investigated.

  12. Theoretical investigations of fuel behavior during LOCA and ATWS

    International Nuclear Information System (INIS)

    Meyder, R.; Unger, H.

    1976-01-01

    The program system SSYST has been improved. The results of the SSYST-FRAP comparison calculations showed good agreement. In both programs, for instance, ballooning at the hottest spot occurs almost at the same time (appr 8 s). The calculation of the experiments of IRB on ballooning led also to a qualitative good agreement of experimental and theoretical results. The parameters in Nortons creep law are quantitatively not yet satisfactory. Gas gap flow equalizes axial pressure difference already at small gaps. The method of 'Moment Matching' for the statistical analysis needs considerably less computer time than 'Monte Carlo' method, and differs only slightly in expected values and variances. (orig./RW) [de

  13. Theoretical evaluation of matrix effects on trapped atomic levels

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.P.; Gruen, D.M.

    1986-06-01

    We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs.

  14. Theoretical evaluation of matrix effects on trapped atomic levels

    International Nuclear Information System (INIS)

    Das, G.P.; Gruen, D.M.

    1986-06-01

    We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs

  15. Recent evolution of theoretical models in inner shell photoionization

    International Nuclear Information System (INIS)

    Combet Farnoux, F.

    1978-01-01

    This paper is a brief review of various atomic theoretical models recently developed to calculate photoionization cross sections in the low energy range (from the far ultraviolet to the soft X ray region). For both inner and outer shells concerned, we emphasize the necessity to go beyond the independent particle models by means of the introduction of correlation effects in both initial and final states. The basic physical ideas of as elaborated models as Random Phase Approximation with exchange, Many Body Perturbation Theory and R matrix Theory are outlined and summarized. As examples, the results of some calculations are shown and compared with experiment

  16. Theoretical calculation on a compound formed by methyl alcohol and simmondsin

    Directory of Open Access Journals (Sweden)

    İzzet KARA

    2016-12-01

    Full Text Available Etheric oil results from the esterification reactions of oil acids with alcohols. In these reactions, one molecule water (H2O is composed of H× protons from oil acids and OH- groups which separated from alcohol. Etheric oil is commonly used in food industry, perfume industry and medicine. From this perspective, we need to know physical properties of etheric oil as well as chemical properties. In this study, the highest occupied molecular orbital (HOMO energies, the lowest unoccupied molecular orbital (LUMO energies, the electronic properties (total energy, electronegativity, chemical hardness and softness, NBO analysis and thermodynamic parameters of a compound formed by methyl alcohol and simmondsin have been performed by using Gaussian 09W program. The structural and spectroscopic data of the molecule in the ground state have been calculated by using density functional method (DFT/B3LYP with the 6-31++G(d,p basis set.

  17. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment.

    Science.gov (United States)

    Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M

    2014-05-21

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. No further gain can be achieved by calculating Disease Activity Score in 28 joints with high-sensitivity assay of C-reactive protein because of high intraindividual variability of C-reactive protein: A cross-sectional study and theoretical consideration.

    Science.gov (United States)

    Hansen, Inger M J; Emamifar, Amir; Andreasen, Rikke A; Antonsen, Steen

    2017-01-01

    Disease Activity Score in 28 joints (DAS28) is commonly used to evaluate disease activity of rheumatoid arthritis (RA) and is a guide to treatment decision.The aim of this study was to evaluate the impact of lower reporting limit for C-reactive protein (CRP), with respect to intraindividual biological variability, on the calculation of DAS28 and subsequent patient classification.This study consists of 2 sections: a theoretical consideration discussing the performance of CRP in calculating DAS28 taking intraindividual biological variation and lower reporting limit for CRP into account and a cross-sectional study of RA patients applying our theoretical results. Therefore, we calculated DAS28 twice, with the actual CRP values and CRP = 9 mg/L, the latter to elucidate the positive effects of reducing the lower reporting limit of CRP from <10 to <3 mg/L.Lower-reporting limit of <10 mg/L leads to overestimate DAS28. However, reducing lower reporting limit for CRP to <3 mg/L results in optimizing DAS28 calculation. Further lowering of reporting limit for CRP to <3 mg/L does not increase the precision of DAS28 owing to the relatively large intraindividual biological variation.Five hundred twelve patients were included. There was a significant difference between recalculated and patients DAS28 (P < 0.001). One hundred nine patients had DAS28 deviation (compatible to remission to low: 66, low to moderate: 39. and moderate to high: 4).Owing to significant impact of intraindividual biologic variation on DAS28 and patient classification, special attention should be paid to calculate DAS28 when CRP values are within normal range. Furthermore, we conclude that results of different studies evaluating DAS28 and treatment response are not comparable if the reporting limits of CRP are unknown.

  19. Theoretical investigation of a travelling-wave rf gun

    International Nuclear Information System (INIS)

    Gao, J.

    1991-12-01

    A travelling-wave type rf gun (TW gun) is investigated theoretically. Analytical formulae concerning energy gain, energy spread, and transverse emittance are derived. After showing the corresponding formulae for the standing-wave rf gun (SW gun), comparisons are made between the two types of rf gun. Finally, some numerical results are calculated to demonstrate further the behaviours of the TW gun, and to compare with those from analytical formulae. (author) 11 refs.; 27 figs

  20. Theoretically nanoscale study on ionization of muscimol nano drug in aqueous solution

    Directory of Open Access Journals (Sweden)

    Farhoush Kiani

    2015-03-01

    Full Text Available In the present work, acid dissociation constant (pKa values of muscimol derivatives were calculated using the Density Functional Theory (DFT method. In this regard, free energy values of neutral, protonated and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d basis sets. The hydrogen bond formation of all species had been analyzed using the Tomasi's method. It was revealed that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible spectrophotometric measurements.

  1. Periodic Poisson Solver for Particle Tracking

    International Nuclear Information System (INIS)

    Dohlus, M.; Henning, C.

    2015-05-01

    A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.

  2. The Conceptual Model of Calculating the Return Period of the Costs for Creation of the Enterprise’s Economic Security Service in the Short-Term Period

    Directory of Open Access Journals (Sweden)

    Melikhova Tetiana O.

    2018-03-01

    Full Text Available Determination of the return period of the costs, advanced for the creation of economic security service of enterprise during a year, involves consideration of interaction of the conditional money flow, accumulated for a certain number of months, and the constant costs. The main component of the constant costs are the annual depreciation deductions. The return period is considered as gross, net, valid, and specified. The gross (net, valid, and specified return period is the time, wherein the gross conditional money flow, equal to the advanced costs, will be accumulated. The gross return period, taking account of the effect of time factor, is proposed to be defined as the ratio of annual depreciation deductions increased by the annual compounding coefficient to the conditional average monthly gross money flow, increased by the average monthly inflation index. As for the short-term period, a relationship between the gross, net, valid, and specified return periods of the costs, advanced to the creation of the economic security service, has been identified. The net (valid, specified return period is equal to the gross period adjusted to the coefficient of excess of the gross conditional money flow, accumulated in the gross period, over the net (valid, specified conditional cash flow.

  3. Calculating Parameters of Chip Formation and Cutting Forces of Plastic Materials

    Directory of Open Access Journals (Sweden)

    S. V Grubyi

    2017-01-01

    Full Text Available In addition to the kinematics and geometric parameters of the tool, parameters of chip formation and cutting forces lay the groundwork for theoretical analysis of various types of machining.The objective of research activities is to develop a calculation technique to evaluate parameters of chip formation and cutting forces when machining such plastic materials as structural carbon and alloy steels, and aluminum alloys. The subject of research activities is directly a cutting process, algorithms and calculation methods in the field under consideration. A theoretical (calculated method to analyse parameters was used. The results of qualitative and quantitative calculations were compared with the published experimental data.As to the chip formation and cutting forces, a model with a single shear plane is analyzed, which allows a quantitative evaluation of the parameters and of the process factors. Modern domestic and foreign authors’ publications of cutting metals use this model on the reasonable grounds. The novelty of the proposed technique is that calculation of parameters and cutting forces does not require experimental research activities and is based on using the known mechanical characteristics of machined and tool materials. The calculation results are parameters, namely the shear angle, velocity factor of the chip, relative shift, friction coefficient at the front surface, cutting forces, etc. Calculation of these parameters will allow us to pass on to the thermo-physical problems, analysis of tool wear and durability, accuracy, quality and performance rate.The sequence of calculations is arranged in the developed user program in an algorithmic programming language with results in graphical or tabulated view. The calculation technique is a structural component of the cutting theory and is to be used in conducting research activities and engineering calculations in this subject area.

  4. Detectability of periodic gravitational waves by initial interferometers

    International Nuclear Information System (INIS)

    Owen, Benjamin J

    2006-01-01

    I review three recent theoretical developments in neutron star physics predicting that rotating neutron stars could be very strong emitters of periodic gravitational waves. These imply a small but nonzero chance that ground-based interferometers could detect their first periodic signal in the next few years rather than after advanced upgrades. They also imply that upper limits will become astrophysically interesting before advanced upgrades. I discuss the implications for near-future searches and for the astrophysical payoffs of proposed small upgrades to initial interferometers

  5. Calculations of Changes in Reactivity during some regular periods of operation of JEN-1 MOD Reactor; Calculo de vairaciones de reactividad en algunos periodos regulares de operacion del reactor JEN-1 Mod.

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F

    1973-07-01

    By a Point-Reactor model and Perturbation Theory, changes in reactivity during some regular operating periods of JEN-1 MOD Reactor have been calculated and compared with available measured values. they were in good agreement. Also changes in reactivity have been calculated during operations at higher power levels than the present one, concluding some practical consequences for the case of increasing the present power of this reactor. (Author)

  6. Theoretical and experimental determination of mechanical properties of superconducting composite wire

    International Nuclear Information System (INIS)

    Gray, W.H.; Sun, C.T.

    1976-07-01

    The mechanical properties of a composite superconducting (NbTi/Cu) wire are characterized in terms of the mechanical properties of each constituent material. For a particular composite superconducting wire, five elastic material constants were experimentally determined and theoretically calculated. Since the Poisson's ratios for the fiber and the matrix material were very close, there was essentially no (less than 1 percent) difference among all the theoretical predictions for any individual mechanical constant. Because of the expense and difficulty of producing elastic constant data of 0.1 percent accuracy, and therefore conclusively determining which theory is best, no further experiments were performed

  7. Statistical theory for calculating energy spectra of β-delayed neutrons

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Moeller, Peter; Wilson, William B.

    2008-01-01

    Theoretical β-delayed neutron spectra are calculated based on the Quasi-particle Random Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after β-decay to the granddaughter residual are more accurately calculated than previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra reasonably agree with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors. (authors)

  8. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.

    2009-01-01

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  9. A general procedure to evaluate many-body spin operator amplitudes from periodic calculations: application to cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Iberio de P R [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona and Parc CientIfic de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain); Calzado, Carmen J [Departamento de Quimica Fisica, Universidad de Sevilla, C/ Prof. GarcIa Gonzalez s/n, E-41012 Sevilla (Spain); Malrieu, Jean-Paul [IRSAMC, Laboratoire de Physique Quantique, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse-Cedex (France); Illas, Francesc [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona and Parc CientIfic de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain)

    2007-10-15

    A general procedure is presented which permits the form of an extended spin Hamiltonian to be established for a given magnetic solid and the magnitude of its terms to be evaluated from spin polarized, Hartree-Fock or density functional calculations carried out for periodic models. The computational strategy makes use of a general mapping between the energy of pertinent broken-symmetry solutions and the diagonal terms of the spin Hamiltonian in a local representation. From this mapping it is possible to determine not only the amplitude of the well-known two-body magnetic coupling constants between near-neighbor sites, but also the amplitudes of four-body cyclic exchange terms. A scrutiny of the on-site spin densities provides additional information and control of the many broken-symmetry solutions which can be found. The procedure is applied to the La{sub 2}CuO{sub 4}, Sr{sub 2}CuO{sub 2}F{sub 2}, Sr{sub 2}CuO{sub 2}Cl{sub 2} and Ca{sub 2}CuO{sub 2}Cl{sub 2} square lattices and the SrCu{sub 2}O{sub 3} ladder compound. It is shown that a proper description of the magnetic structure of these compounds requires that two- and four-body terms are explicitly included in the spin Hamiltonian. The implications for the interpretation of recent experiments are discussed.

  10. Theoretical descriptions of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1991-01-01

    Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity ν-bar p . This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and ν-bar p upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and ν-bar p with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. (author). 32 refs, 26 figs

  11. Theoretical and practical study of the variance and efficiency of a Monte Carlo calculation due to Russian roulette

    International Nuclear Information System (INIS)

    Hoogenboom, J. E.

    2004-01-01

    Although Russian roulette is applied very often in Monte Carlo calculations, not much literature exists on its quantitative influence on the variance and efficiency of a Monte Carlo calculation. Elaborating on the work of Lux and Koblinger using moment equations, new relevant equations are derived to calculate the variance of a Monte Carlo simulation using Russian roulette. To demonstrate its practical application the theory is applied to a simplified transport model resulting in explicit analytical expressions for the variance of a Monte Carlo calculation and for the expected number of collisions per history. From these expressions numerical results are shown and compared with actual Monte Carlo calculations, showing an excellent agreement. By considering the number of collisions in a Monte Carlo calculation as a measure of the CPU time, also the efficiency of the Russian roulette can be studied. It opens the way for further investigations, including optimization of Russian roulette parameters. (authors)

  12. Rationalization and Design of Enhanced Photoinduced Cycloreversion in Photochromic Dimethyldihydropyrenes by Theoretical Calculations.

    Science.gov (United States)

    Boggio-Pasqua, Martial; Garavelli, Marco

    2015-06-11

    This study presents a computational investigation of the initial step of the dimethyldihydropyrene (DHP) to cyclophanediene (CPD) photoinduced ring-opening reaction using time-dependent density functional theory (TD-DFT). In particular, the photochemical path corresponding to the formation of the CPD precursor (CPD*) on the zwitterionic state is scrutinized. The TD-DFT approach was first validated on the parent compound against accurate ab initio calculations. It confirms that CPD* formation is efficiently quenched in this system by an easily accessible S2/S1 conical intersection located in the vicinity of the CPD* minimum and leading to a locally excited state minimum responsible for DHP luminescence. Increased ring-opening quantum yields were observed in benzo[e]-fused-DHP (DHP-1), isobutenyl-DHP (DHP-2), and naphthoyl-DHP (DHP-3). The calculations show that CPD* formation is much more favorable in these systems, either due to an inversion of electronic states in DHP-1, suppressing the formation of the locally excited state, or due to efficient stabilization of CPD* on the S1 potential energy surface in DHP-2 and DHP-3. Both effects can be combined in a rationally designed benzo[e]-fused-naphthoyl-DHP (DHP-4) for which we anticipate an unprecedented efficiency.

  13. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  14. Update on Light-Ion Calculations

    International Nuclear Information System (INIS)

    Schultz, David R.

    2013-01-01

    During the time span of the CRP, calculations were (1) initiated extending previous work regarding elastic and transport cross sections relevant to light-species impurity-ion transport modeling, (2) completed for total and state-selective charge transfer (C 5+ , N 6+ , O 6+ , O 7+ + H; C 5+ , C 6+ , O 7+ , O 8+ + He; and C 6+ + H, H 2 ) for diagnostics such as charge exchange recombination spectroscopy, and (3) completed for excitation of atomic hydrogen by ion impact (H + , He 2+ , Be 4+ , C 6+ ) for diagnostics including beam emission spectroscopy and motional Stark effect spectroscopy. The first calculations undertaken were to continue work begun more than a decade ago providing plasma modelers with elastic total and differential cross sections, and related transport cross sections, used to model transport of hydrogen ions, atoms, and molecules as well as other species including intrinsic and extrinsic impurities. This body of work was reviewed in the course of reporting recent new calculations in a recent paper (P.S. Krstic and D.R. Schultz, Physics of Plasmas, 16, 053503 (2009)). After initial calculations for H + + O were completed, work was discontinued in light of other priorities. Charge transfer data for diagnostics provide important knowledge about the state of the plasma from the edge to the core and are therefore of significant interest to continually evaluate and improve. Further motivation for such calculations comes from recent and ongoing benchmark measurements of the total charge transfer cross section being made at Oak Ridge National Laboratory by C.C. Havener and collaborators. We have undertaken calculations using a variety of theoretical approaches, each applicable within a range of impact energies, that have led to the creation of a database of recommended state-selective and total cross sections composed of results from the various methods (MOCC, AOCC, CTMC, results from the literature) within their overlapping ranges of applicability

  15. Nordita. Nordic Institute for Theoretical Physics. Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from January 1st to December 31st, 1996. The purpose of Nordita is to encourage scientific collaboration between the Nordic countries within basic theoretical physics. The scientific programme at Nordita covers astrophysics, elementary particle physics, solid state physics and nuclear physics. The scientific work is published or otherwise made public. (author)

  16. Nordita. Nordic Institute for Theoretical Physics. Annual report 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report covers the period from January 1st to December 31st, 1993. The purpose of Nordita is to encourage scientific collaboration between the Nordic countries within basic theoretical physics. The scientific programme at Nordita covers astrophysics, elementary particle physics, solid state physics and nuclear physics. The scientific work is published or otherwise made public. (author)

  17. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    Science.gov (United States)

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-08

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion.

  18. Buffer Overflow Period in a MAP Queue

    Directory of Open Access Journals (Sweden)

    Andrzej Chydzinski

    2007-01-01

    Full Text Available The buffer overflow period in a queue with Markovian arrival process (MAP and general service time distribution is investigated. The results include distribution of the overflow period in transient and stationary regimes and the distribution of the number of cells lost during the overflow interval. All theorems are illustrated via numerical calculations.

  19. Experimental and theoretical studies on tautomeric structures of a newly synthesized 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol

    Science.gov (United States)

    Karakurt, Tuncay; Cukurovali, Alaaddin; Subasi, Nuriye Tuna; Onaran, Abdurrahman; Ece, Abdulilah; Eker, Sıtkı; Kani, Ibrahim

    2018-02-01

    In the present study, a single crystal of a Schiff base, 2,2‧(hydrazine-1,2-diylidenebis(propan-1-yl-1-ylidene))diphenol, was synthesized. The structure of the synthesized crystal was confirmed by 1H and 13C NMR spectroscopic and X-ray diffraction analysis techniques. Experimental and theoretical studies were carried out on two tautomeric structures. It has been observed that the title compound studied can be in two different tautomeric forms, phenol-imine and keto-amine. Theoretical calculations have been performed to support experimental results. Accordingly, the geometric parameters of the compound were optimized by the density functional theory (DFT) method using the Gaussian 09 and Quantum Espresso (QE) packet program was used for periodic boundary conditions (PBC) studies. Furthermore, the compound was also tested for in vitro antifungal activity against Sclerotinia sclerotiorum, Alternaria solani, Fusarium oxysporum f. sp. lycopersici and Monilinia fructigena plant pathogens. Promising inhibition profiles were observed especially towards A. solani. Finally, molecular docking studies and post-docking procedure based on Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) were also carried out to get insight into the compound's binding interactions with the potential. Although theoretical calculations showed that the phenol-imine form was more stable, keto-amine form was predicted to have better binding affinity which was concluded to result from loss of rotational entropy in phenol-imine upon binding. The results obtained here from both experimental and computational methods might serve as a potential lead in the development of novel anti-fungal agents.

  20. An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1979-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)

  1. Monte Carlo code Serpent calculation of the parameters of the stationary nuclear fission wave

    Directory of Open Access Journals (Sweden)

    V. M. Khotyayintsev

    2017-12-01

    Full Text Available n this work, propagation of the stationary nuclear fission wave was simulated for series of fixed power values using Monte Carlo code Serpent. The wave moved in the axial direction in 5 m long cylindrical core of fast reactor with pure 238U raw fuel. Stationary wave mode arises some period later after the wave ignition and lasts sufficiently long to determine kef with high enough accuracy. The velocity characteristic of the reactor was determined as the dependence of the wave velocity on the neutron multiplication factor. As we have recently shown within a one-group diffusion description, the velocity characteristic is two-valued due to the effect of concentration mechanisms, while thermal feedback affects it only quantitatively. The shape and parameters of the velocity characteristic critically affect feasibility of the reactor design since stationary wave solutions of the lower branch are unstable and do not correspond to any real waves in self-regulated reactor, like CANDLE. In this work calculations were performed without taking into account thermal feedback. They confirm that theoretical dependence correctly describes the shape of the velocity characteristic calculated using the results of the Serpent modeling.

  2. Nuclear tetrahedral symmetry: possibly present throughout the periodic table.

    Science.gov (United States)

    Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M

    2002-06-24

    More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.

  3. Theoretical and experimental analysis of daylight performance for various shading systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsangrassoulis, A [Group Building Enviromental Studies, Lab. of Meteorology, Dept. of Applied Physics, Univ. of Athens (Greece); Santamouris, M [Group Building Enviromental Studies, Lab. of Meteorology, Dept. of Applied Physics, Univ. of Athens (Greece); Asimakopoulos, D [Group Building Enviromental Studies, Lab. of Meteorology, Dept. of Applied Physics, Univ. of Athens (Greece)

    1997-12-31

    The daylight coefficient approach is used for the theoretical analysis of various shading systems. Once a set of these coefficients has been calculated, it is very easy to calculate illuminance in the interior of a room under various sky luminance distributions. The present paper examines a method based on daylight coefficients to evaluate daylight in the interior of a room. The method is compared with existing radiosity and ray-tracing methods. The examined method is experimentaly validated using measurements obtained in a PASSYS test-cell equipped with shading devices. (orig.)

  4. The calculation of collective energies from periodic time-dependent Hartree-Fock solutions

    International Nuclear Information System (INIS)

    Zahed, I.; Baranger, M.

    1983-06-01

    A periodic TDHF solution is used as the reference state for a diagrammatic expansion of the propagator. A discrete Fourier transform leads to a function of energy, whose poles are the corresponding energy levels. Limiting the expansion to first-order diagrams leads to a new derivation of the Bohr-Sommerfeld-like quantization rule for collective states

  5. Experimental and theoretical studies of near-ground acoustic radiation propagation in the atmosphere

    Science.gov (United States)

    Belov, Vladimir V.; Burkatovskaya, Yuliya B.; Krasnenko, Nikolai P.; Rakov, Aleksandr S.; Rakov, Denis S.; Shamanaeva, Liudmila G.

    2017-11-01

    Results of experimental and theoretical studies of the process of near-ground propagation of monochromatic acoustic radiation on atmospheric paths from a source to a receiver taking into account the contribution of multiple scattering on fluctuations of atmospheric temperature and wind velocity, refraction of sound on the wind velocity and temperature gradients, and its reflection by the underlying surface for different models of the atmosphere depending the sound frequency, coefficient of reflection from the underlying surface, propagation distance, and source and receiver altitudes are presented. Calculations were performed by the Monte Carlo method using the local estimation algorithm by the computer program developed by the authors. Results of experimental investigations under controllable conditions are compared with theoretical estimates and results of analytical calculations for the Delany-Bazley impedance model. Satisfactory agreement of the data obtained confirms the correctness of the suggested computer program.

  6. A Comparison of Theoretical and Experimental Values of the Activation Doppler Effect in Some Fast Reactor Spectra

    International Nuclear Information System (INIS)

    Haeggblom, H.; Tiren, L.I.

    1968-08-01

    Results of activation Doppler measurements on the U 238 (n,γ) and U 235 (n, fission) reactions in the FR0 and MSCA fast critical assemblies have been compared with theoretical values. The study covers neutron spectra with median fission energies from 50 to 240 keV. The calculated Doppler effect in U 238 in the FR0 cores is 20 - 35 % lower than the measured values. The sensitivity of the theoretical result with regard to changes in cross sections and neutron spectrum has been studied. The theoretical value for U 235 (FR0 core 5) is 4 times higher than the measured one. The report includes a brief description of the DORIX-2 method of calculating effective resonance cross sections appropriate to activation Doppler measurements. References to the cross section data used for the comparisons are also given

  7. A Comparison of Theoretical and Experimental Values of the Activation Doppler Effect in Some Fast Reactor Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H; Tiren, L I

    1968-08-15

    Results of activation Doppler measurements on the U{sup 238} (n,{gamma}) and U{sup 235} (n, fission) reactions in the FR0 and MSCA fast critical assemblies have been compared with theoretical values. The study covers neutron spectra with median fission energies from 50 to 240 keV. The calculated Doppler effect in U{sup 238} in the FR0 cores is 20 - 35 % lower than the measured values. The sensitivity of the theoretical result with regard to changes in cross sections and neutron spectrum has been studied. The theoretical value for U{sup 235} (FR0 core 5) is 4 times higher than the measured one. The report includes a brief description of the DORIX-2 method of calculating effective resonance cross sections appropriate to activation Doppler measurements. References to the cross section data used for the comparisons are also given.

  8. Calculation of solubility of salts in binary aqueous solutions

    International Nuclear Information System (INIS)

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  9. Calculation of the viscosity of nuclear waste glass systems

    International Nuclear Information System (INIS)

    Shah, R.; Behrman, E.C.; Oksoy, D.

    1990-01-01

    Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt

  10. Analytical calculations by computer in physics and mathematics

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Tarasov, O.V.; Shirokov, D.V.

    1978-01-01

    The review of present status of analytical calculations by computer is given. Some programming systems for analytical computations are considered. Such systems as SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK which are implemented or will be implemented in JINR, and MACSYMA - one of the most developed systems - are discussed. It is shown on the basis of mathematical operations, realized in these systems, that they are appropriated for different problems of theoretical physics and mathematics, for example, for problems of quantum field theory, celestial mechanics, general relativity and so on. Some problems solved in JINR by programming systems for analytical computations are described. The review is intended for specialists in different fields of theoretical physics and mathematics

  11. Theory of periodic swarming of bacteria: Application to Proteus mirabilis

    Science.gov (United States)

    Czirók, A.; Matsushita, M.; Vicsek, T.

    2001-03-01

    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth), a series of concentric rings are developed as the bacteria multiply and swarm following a scenario that periodically repeats itself. We have developed a theoretical description for this process in order to obtain a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. Our approach is based on simple assumptions directly related to the latest experimental observations on colony formation under various conditions. The corresponding one-dimensional model consists of two coupled differential equations investigated here both by numerical integrations and by analyzing the various expressions obtained from these equations using a few natural assumptions about the parameters of the model. We determine the phase diagram corresponding to systems exhibiting periodic swarming, and discuss in detail how the various stages of the colony development can be interpreted in our framework. We point out that all of our theoretical results are in excellent agreement with the complete set of available observations. Thus the present study represents one of the few examples where self-organized biological pattern formation is understood within a relatively simple theoretical approach, leading to results and predictions fully compatible with experiments.

  12. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Agarwal, Vipin [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsinghi, Hyderabad 500 075 (India)

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  13. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  14. Transverse impedance of a periodic array of cavities

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-06-01

    Full Text Available We examine the transverse impedance of a periodic array of cavities in a beam pipe at high frequency. The calculation is an extension of a previous one for the longitudinal impedance of a periodic array of azimuthally symmetric pillboxes, for which only TM modes were needed. In the present case, we must include TE modes as well. In addition, we extend the applicability of the previous calculation by including an extra term in the coupling kernel so that the results are valid for all values of the ratio of the cavity length to the period of the structure (all values of the ratio of iris thickness to structure period. In spite of the presence of TE modes, we find that the high frequency limit of the transverse impedance is simply (2/ka^{2} times the corresponding limit of the longitudinal impedance, just as it is for the resistive wall impedances, a relation which occurs frequently for azimuthally symmetric structures. Finally, we present numerical results as well as approximate expressions for the impedance per period, valid for all ratios of cavity length to structure period.

  15. Theoretical relaxation rates of dipole orientation around an excess electron in liquid alcohols

    International Nuclear Information System (INIS)

    Fueki, K.; Feng, D.F.; Kevan, L.

    1975-01-01

    A method was developed for calculation of relaxation times for dipole orientation in liquid alcohols induced by localized excess electrons. A microscopic model is used which utilizes quantities calculated from the Fueki, Feng, Kevan semicontinuum model of solvated electron energy levels. Given the semicontinuum model results, the relaxation times are calculated as functions of temperature with no adjustable parameters. Calculated results for methanol, ethanol and 1-propanol agree well with the limited experimental data available from Hunt, Baxendale and Wardman, and Thomas and Beck. The calculated results agree best for propanol and imply that the theoretical model is most applicable to larger molecule solvents. The impressive agreement between experiment and theory suggest that simple dipole orientation is the mechanism of rapid electron solvation in polar liquids. (auth)

  16. Theoretical relaxation rates of dipole orientation around an excess electron in liquid alcohols

    International Nuclear Information System (INIS)

    Fueki, K.; Feng, D.F.; Kevan, L.

    1975-01-01

    A method is developed for calculation of relaxation times for dipole orientation in liquid alcohols induced by localized excess electrons. A microscopic model is used which utilizes quantities calculated from the Fueki, Feng, Kevan semicontinuum model of solvated electron energy levels. Given the semicontinuum model results, the relaxation times are calculated as functions of temperature with no adjustable parameters. Calculated results for methanol, ethanol and 1-propanol agree well with the limited experimental data available from Hunt, Baxendale and Wardman, and Thomas and Beck. The calculated results agree best for propanol and imply that the theoretical model is most applicable to larger molecule solvents. The impressive agreement between experiment and theory suggest that simple dipole orientation is the mechanism of rapid electron solvation in polar liquids. (author)

  17. Theoretical considerations on multiparton interactions in QCD

    International Nuclear Information System (INIS)

    Diehl, Markus; Schaefer, Andreas

    2011-02-01

    We investigate several ingredients for a theory of multiple hard scattering in hadronhadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework. (orig.)

  18. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  19. Theoretical considerations on multiparton interactions in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schaefer, Andreas [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik

    2011-02-15

    We investigate several ingredients for a theory of multiple hard scattering in hadronhadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework. (orig.)

  20. Theoretical considerations on multiparton interactions in QCD

    International Nuclear Information System (INIS)

    Diehl, Markus; Schaefer, Andreas

    2011-01-01

    We investigate several ingredients for a theory of multiple hard scattering in hadron-hadron collisions. Issues discussed include the space-time structure of multiple interactions, their power behavior, spin and color correlations, interference terms, scale evolution and Sudakov logarithms. We discuss possibilities to constrain multiparton distributions by lattice calculations and by connecting them with generalized parton distributions. We show that the behavior of two-parton distributions at small interparton distances leads to problems with ultraviolet divergences and with double counting, which requires modification of the presently available theoretical framework.