WorldWideScience

Sample records for perineurial cell component

  1. Electron microscopic study of the myelinated nerve fibres and the perineurial cell basement membrane in the diabetic human peripheral nerves

    International Nuclear Information System (INIS)

    ElBarrany, Wagih G.; Hamdy, Raid M.; AlHayani, Abdulmonem A.; Jalalah, Sawsan M.

    2009-01-01

    To study the quantitative and ultrastructural changes in myelinated nerve fibers and the basement membranes of the perineurial cells in diabetic nerves. The study was performed at the Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Saudi Arabia from 2003 to 2005. Human sural nerves were obtained from 15 lower limbs and 5 diabetic nerve biopsies. The total mean and density of myelinated nerve fibers per fascicle were calculated, with density of microtubules and mitochondria in the axoplasm. The number of the perineurial cell basement membrane layers was counted, and thickness of the basement membrane was measured. Among the 15 diabetic and 5 normal human sural nerves, the average diameters, number and surface area of myelinated nerve fibers and axonal microtubules density were found to be less in diabetic nerves. Mitochondrial density was higher in diabetic axons. Thickness of the perineurial cell basement membrane had a greater mean, but the number of perineurial cell layers was less than that of the diabetic group. The inner cellular layer of the perineurium of the diabetic nerves contained large vacuoles containing electron-dense degenerated myelin. A few specimens showed degenerated myelinated nerve fibers, while others showed recovering ones. Retracted axoplasms were encountered with albumin extravasation. Diabetes caused an increase in perineurial permeability. The diabetic sural nerve showed marked decrease in the myelinated nerve fibres, increase degenerated mitochondria, and decreased microtubules. (author)

  2. Microfasciculation: a morphological pattern in leprosy nerve damage.

    Science.gov (United States)

    Antunes, Sérgio L G; Medeiros, Mildred F; Corte-Real, Suzana; Jardim, Márcia R; Nery, José A da Costa; Hacker, Mariana A V B; Valentim, Vânia da Costa; Amadeu, Thaís Porto; Sarno, Euzenir N

    2011-01-01

    To study Microfasciculation, a perineurial response found in neuropathies, emphasizing its frequency, detailed morphological characteristics and biological significance in pure neural leprosy (PNL), post-treatment leprosy neuropathy (PTLN) and non-leprosy neuropathies (NLN). Morphological characteristics of microfascicles were examined via histological staining methods, immunohistochemical expression of neural markers and transmission electronmicroscopy. The detection of microfasciculation in 18 nerve biopsy specimens [12 PNL, six PTLN but not in the NLN group, was associated strongly with perineurial damage and the presence of a multibacillary inflammatory process in the nerves, particularly in the perineurium. Immunoreactivity to anti-S100 protein, anti-neurofilament, anti-nerve growth receptor and anti-myelin basic protein immunoreactivity was found within microfascicles. Ultrastructural examination of three biopsies showed that fibroblast-perineurial cells were devoid of basement membrane despite perineurial-like NGFr immunoreactivity. Morphological evidence demonstrated that multipotent pericytes from inflammation-activated microvessels could be the origin of fibroblast-perineurial cells. A microfasciculation pattern was found in 10% of leprosy-affected nerves. The microfascicles were composed predominantly of unmyelinated fibres and denervated Schwann cells (SCs) surrounded by fibroblast-perineurial cells. This pattern was found more frequently in leprosy nerves with acid-fast bacilli (AFB) and perineurial damage while undergoing an inflammatory process. Further experimental studies are necessary to elucidate microfascicle formation. © 2011 Blackwell Publishing Limited.

  3. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.

    Science.gov (United States)

    Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce

    2017-10-01

    Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.

  4. Prospects for UK fuel cells component suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.; Tunnicliffe, M.

    2002-07-01

    This report examines the capabilities of the UK fuel cell industry in meeting the expected increase in demand, and aims to identify all UK suppliers of fuel cell components, evaluate their products and match them to fuel cell markets, and identify components where the UK is in a competitive position. Component areas are addressed along with the need to reduce costs and ensure efficient production. The well established supplier base in the UK is noted, and the car engine manufacturing base and fuel supply companies are considered. The different strengths of UK suppliers of the various types of fuel cells are listed. The future industry structure, the opportunities and dangers for business posed by fuel cells, the investment in cleaner technologies by the large fuel companies, opportunities for catalyst suppliers, and the residential combined heat and power and portable electronics battery markets are discussed.

  5. Morphometric Analysis of Connective Tissue Sheaths of Sural Nerve in Diabetic and Nondiabetic Patients

    Directory of Open Access Journals (Sweden)

    Braca Kundalić

    2014-01-01

    Full Text Available One of the most common complications of diabetes mellitus is diabetic neuropathy. It may be provoked by metabolic and/or vascular factors, and depending on duration of disease, various layers of nerve may be affected. Our aim was to investigate influence of diabetes on the epineurial, perineurial, and endoneurial connective tissue sheaths. The study included 15 samples of sural nerve divided into three groups: diabetic group, peripheral vascular disease group, and control group. After morphological analysis, morphometric parameters were determined for each case using ImageJ software. Compared to the control group, the diabetic cases had significantly higher perineurial index (P<0.05 and endoneurial connective tissue percentage (P<0.01. The diabetic group showed significantly higher epineurial area (P<0.01, as well as percentage of endoneurial connective tissue (P<0.01, in relation to the peripheral vascular disease group. It is obvious that hyperglycemia and ischemia present in diabetes lead to substantial changes in connective tissue sheaths of nerve, particularly in peri- and endoneurium. Perineurial thickening and significant endoneurial fibrosis may impair the balance of endoneurial homeostasis and regenerative ability of the nerve fibers. Future investigations should focus on studying the components of extracellular matrix of connective tissue sheaths in diabetic nerves.

  6. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  7. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  8. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  9. Fuel-cell-system and its components for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Massimo [NuCellSys GmbH, Kirchheim/Teck-Nabern (Germany)

    2013-06-01

    In the past years the development of fuel cell systems for mobile applications has made significant progress in power density, performance and robustness. For a successful market introduction the cost of the fuel system powertrain needs to be competitive to diesel hybrid engine. The current development activities are therefore focusing on cost reduction. There are 3 major areas for cost reduction: functional integration, materials and design, supplier competitiveness and volume. Today unique fuel cell system components are developed by single suppliers, which lead to a monopoly. In the future the components will be developed at multiple suppliers to achieve a competitor situation, which will further reduce the component cost. Using all these cost reduction measures the fuel cell system will become a competitive alternative drive train. (orig.)

  10. Hydrogen-bromine fuel cell advance component development

    Science.gov (United States)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  11. Advances in polymer concrete technology for cell house components

    International Nuclear Information System (INIS)

    Lynch, P.

    2000-01-01

    The cell house environment is very challenging with regard to protection of the concrete structure and components against the corrosive effects of acid. Coating technology using Epoxy, Vinyl Ester and Polyurethane Polymers is available, to provide the necessary chemical and heat resistance. However, producing suitable POLYMER CONCRETE technology for pre-cast components, especially tanks and cells requires not only the correct POLYMER selection, but also significant know-how in mineral aggregate technology to achieve the desired performance properties. Furthermore, the POLYMER CONCRETE technology must enable the pre-caster to manufacture the components in a simple one-step procedure. This paper outlines the important aspects in formulating POLYMER CONCRETE, the performance properties that can be achieved and the practical issues relating to the cost effective pre-casting of tanks and cells in particular. (author)

  12. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S. [M-C Power Corp., Burr Ridge, IL (United States)] [and others

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  13. Myoepithelial cells are the main component in pleomorphic adenomas?

    Science.gov (United States)

    Ponce Bravo, Santa; Ledesma Montes, Constantino; López Becerril, Uriel; Morales Sánchez, Israel

    2007-03-01

    The aim of this study was to quantify by immunohistochemistry the number of myoepithelial cells (MyECs) in pleomorphic adenomas (PAs). We retrieved the paraffin cubes of 27 PAs, new slides were done and they were stained with anti-S100 protein antibody. The amount of S-100 protein positive cells was quantified, their morphology was recorded and comparison among MyEC number with age, gender and involved gland were also done. With S-100 protein, MyECs in normal salivary gland tissue were seen surrounding the ductual structures only. In the analysed PAs a mean of 27.4% of the neoplastic cells were positive to the antibody. With the exception of one PA, in all the analysed cases the plasmacytoid cells were the most commonly identified cells (48,6%). Results of this study suggest that MyECs do not constitute the main cellular component of the neoplastic compartment in PAs and corroborate the previously reported evidence by different authors, who studying the PAs suggested that MyECs does not comprise the main cellular neoplastic component of these entities.

  14. Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells.

    Science.gov (United States)

    Strassburg, Sandra; Hodson, Nigel W; Hill, Patrick I; Richardson, Stephen M; Hoyland, Judith A

    2012-01-01

    Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.

  15. Dedifferentiated giant-cell tumor of bone with an undifferentiated round cell mesenchymal component

    Directory of Open Access Journals (Sweden)

    Eréndira G. Estrada-Villaseñor

    2014-08-01

    Full Text Available The dedifferentiated giant-cell tumor of the bone is a very rare variant of the giant-cell tumor (GCT. We report the clinical, radiographic and histological findings of a dedifferentiated GCT in which the dedifferentiated component consisted of small round cells. We also comment on previously reported cases of dedifferentiated GCT, discuss the clinical implications of this dual histology, and analyze the information published about the coexistence of similar genetic abnormalities in GCT and small round cell tumors of the bone.

  16. Evolution of the cell wall components during terrestrialization

    Directory of Open Access Journals (Sweden)

    Alicja Banasiak

    2014-12-01

    Full Text Available Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants. In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3,(1→4-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.

  17. Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.

    Science.gov (United States)

    Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J

    2013-05-01

    Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor.

  18. Clinicopathologic and Molecular Features of Colorectal Adenocarcinoma with Signet-Ring Cell Component.

    Directory of Open Access Journals (Sweden)

    Qing Wei

    Full Text Available We performed a retrospective study to assess the clinicopathological characters, molecular alterations and multigene mutation profiles in colorectal cancer patients with signet-ring cell component.Between November 2008 and January 2015, 61 consecutive primary colorectal carcinomas with signet-ring cell component were available for pathological confirmation. RAS/BRAF status was performed by direct sequencing. 14 genes associated with hereditary cancer syndromes were analyzed by targeted gene sequencing.A slight male predominance was detected in these patients (59.0%. Colorectal carcinomas with signet-ring cell component were well distributed along the large intestine. A frequently higher TNM stage at the time of diagnosis was observed, compared with the conventional adenocarcinoma. Family history of malignant tumor was remarkable with 49.2% in 61 cases. The median OS time of stage IV patients in our study was 14 months. RAS mutations were detected in 22.2% (12/54 cases with KRAS mutations in 16.7% (9/54 cases and Nras mutations in 5.4%(3/54 cases. BRAF V600E mutation was detected in 3.7% (2/54 cases. As an exploration, we analyzed 14 genes by targeted gene sequencing. These genes were selected based on their biological role in association with hereditary cancer syndromes. 79.6% cases carried at least one pathogenic mutation. Finally, the patients were classified by the percentage of signet-ring cell. 39 (63.9% cases were composed of ≥50% signet-ring cells; 22 (36.1% cases were composed of <50% signet-ring cells. We compared clinical parameters, molecular and genetic alterations between the two groups and found no significant differences.Colorectal adenocarcinoma with signet-ring cell component is characterized by advanced stage at diagnosis with remarkable family history of malignant tumor. It is likely a negative prognostic factor and tends to affect male patients with low rates of RAS /BRAF mutation. Colorectal patients with any component of

  19. Electron microscopy of glial cells of the central nervous system in the crab Ucides cordatus

    Directory of Open Access Journals (Sweden)

    Allodi S.

    1999-01-01

    Full Text Available Invertebrate glial cells show a variety of morphologies depending on species and location. They have been classified according to relatively general morphological or functional criteria and also to their location. The present study was carried out to characterize the organization of glial cells and their processes in the zona fasciculata and in the protocerebral tract of the crab Ucides cordatus. We performed routine and cytochemical procedures for electron microscopy analysis. Semithin sections were observed at the light microscope. The Thiéry procedure indicated the presence of carbohydrates, particularly glycogen, in tissue and in cells. To better visualize the axonal ensheathment at the ultrastructural level, we employed a method to enhance the unsaturated fatty acids present in membranes. Our results showed that there are at least two types of glial cells in these nervous structures, a light one and a dark one. Most of the dark cell processes have been mentioned in the literature as extracellular matrix, but since they presented an enveloping membrane, glycogen and mitochondria - intact and with different degrees of disruption - they were considered to be glial cells in the present study. We assume that they correspond to the perineurial cells on the basis of their location. The light cells must correspond to the periaxonal cells. Some characteristics of the axons such as their organization, ensheathment and subcellular structures are also described.

  20. Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells.

    Science.gov (United States)

    Thorburn, Alison N; Foster, Paul S; Gibson, Peter G; Hansbro, Philip M

    2012-05-01

    Asthma is an allergic airways disease (AAD) caused by dysregulated immune responses and characterized by eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). NKT cells have been shown to contribute to AHR in some mouse models. Conversely, regulatory T cells (Tregs) control aberrant immune responses and maintain homeostasis. Recent evidence suggests that Streptococcus pneumoniae induces Tregs that have potential to be harnessed therapeutically for asthma. In this study, mouse models of AAD were used to identify the S. pneumoniae components that have suppressive properties, and the mechanisms underlying suppression were investigated. We tested the suppressive capacity of type-3-polysaccharide (T3P), isolated cell walls, pneumolysoid (Ply) and CpG. When coadministered, T3P + Ply suppressed the development of: eosinophilic inflammation, Th2 cytokine release, mucus hypersecretion, and AHR. Importantly, T3P + Ply also attenuated features of AAD when administered during established disease. We show that NKT cells contributed to the development of AAD and also were suppressed by T3P + Ply treatment. Furthermore, adoptive transfer of NKT cells induced AHR, which also could be reversed by T3P + Ply. T3P + Ply-induced Tregs were essential for the suppression of NKT cells and AAD, which was demonstrated by Treg depletion. Collectively, our results show that the S. pneumoniae components T3P + Ply suppress AAD through the induction of Tregs that blocked the activity of NKT cells. These data suggest that S. pneumoniae components may have potential as a therapeutic strategy for the suppression of allergic asthma through the induction of Tregs and suppression of NKT cells.

  1. Delineation of a novel pre-B cell component in plasma cell myeloma: immunochemical, immunophenotypic, genotypic, cytologic, cell culture, and kinetic features.

    Science.gov (United States)

    Grogan, T M; Durie, B G; Lomen, C; Spier, C; Wirt, D P; Nagle, R; Wilson, G S; Richter, L; Vela, E; Maxey, V

    1987-10-01

    A novel pre-B cell component in direct and cultured myeloma bone marrow material has been delineated by using immunochemistry and flow cytometry techniques. Our phenotypic studies suggest a novel hybrid expression of pre-B and plasma cell antigens with coexpression of cytoplasmic mu, common acute lymphoblastic leukemia antigen, terminal deoxynucleotidyl transferase, and plasma cell antigens (PCA-1 and PC-1). This suggests that myeloma pre-B-like cells are aberrant malignant cells and not normal pre-B lymphocytic counterparts. With the advantage of a pure and stable source of these cells from M3 culture to allow molecular characterization, we performed one- and two-dimensional gel electrophoresis and Western blotting. We found that the cytoplasmic mu in myeloma pre-B-like cells has a molecular weight of 74,000 daltons and an isoelectric point of 6.3 and that it is strikingly homogeneous and discrete in size and charge compared with standard secretory mu, which suggests an aberrant, mutant, or monoclonal form of mu. Monoclonality was further evidenced by heavy- and light-chain immunoglobulin gene rearrangements demonstrated with JH and C kappa probes. We also established that this novel myeloma pre-B component is a major proliferative element as determined by double-labeling experiments with phenotype coupled to labeling/proliferative indexes. Our stimulatory studies indicate some capacity of these cells to mature on exposure to phorbol esters. These myeloma pre-B cells may represent the stem cell or self-renewal component in myeloma. Our establishment of these cells in long-term culture offers a considerable asset in studying the immature cells, which may be critical to the immortalization of myeloma.

  2. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  3. Cell culture medium improvement by rigorous shuffling of components using media blending.

    Science.gov (United States)

    Jordan, Martin; Voisard, Damien; Berthoud, Antoine; Tercier, Laetitia; Kleuser, Beate; Baer, Gianni; Broly, Hervé

    2013-01-01

    A novel high-throughput methodology for the simultaneous optimization of many cell culture media components is presented. The method is based on the media blending approach which has several advantages as it works with ready-to-use media. In particular it allows precise pH and osmolarity adjustments and eliminates the need of concentrated stock solutions, a frequent source of serious solubility issues. In addition, media blending easily generates a large number of new compositions providing a remarkable screening tool. However, media blending designs usually do not provide information on distinct factors or components that are causing the desired improvements. This paper addresses this last point by considering the concentration of individual medium components to fix the experimental design and for the interpretation of the results. The extended blending strategy was used to reshuffle the 20 amino acids in one round of experiments. A small set of 10 media was specifically designed to generate a large number of mixtures. 192 mixtures were then prepared by media blending and tested on a recombinant CHO cell line expressing a monoclonal antibody. A wide range of performances (titers and viable cell density) was achieved from the different mixtures with top titers significantly above our previous results seen with this cell line. In addition, information about major effects of key amino acids on cell densities and titers could be extracted from the experimental results. This demonstrates that the extended blending approach is a powerful experimental tool which allows systematic and simultaneous reshuffling of multiple medium components.

  4. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  5. Trauma-Induced Heterotopic Ossification Regulates the Blood-Nerve Barrier

    Directory of Open Access Journals (Sweden)

    Zbigniew Gugala

    2018-06-01

    Full Text Available De novo bone formation can occur in soft tissues as a result of traumatic injury. This process, known as heterotopic ossification (HO, has recently been linked to the peripheral nervous system. Studies suggest that HO may resemble neural crest-derived bone formation and is activated through the release of key bone matrix proteins leading to opening of the blood-nerve barrier (BNB. One of the first steps in this process is the activation of a neuro-inflammatory cascade, which results in migration of chondro-osseous progenitors, and other cells from both the endoneurial and perineurial regions of the peripheral nerves. The perineurial cells undergo brown adipogenesis, to form essential support cells, which regulate expression and activation of matrix metallopeptidase 9 (MMP9 an essential regulatory protein involved in opening the BNB. However, recent studies suggest that, in mice, a key bone matrix protein, bone morphogenetic protein 2 (BMP2 is able to immediately cross the BNB to activate signaling in specific cells within the endoneurial compartment. BMP signaling correlates with bone formation and appears critical for the induction of HO. Surprisingly, several other bone matrix proteins have also been reported to regulate the BNB, leading us to question whether these matrix proteins are important in regulating the BNB. However, this temporary regulation of the BNB does not appear to result in degeneration of the peripheral nerve, but rather may represent one of the first steps in innervation of the newly forming bone.

  6. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions.

    Directory of Open Access Journals (Sweden)

    Bodi Zhang

    Full Text Available Mast cells are hematopoietically-derived tissue immune cells that participate in acquired and innate immunity, as well as in inflammation through release of many chemokines and cytokines, especially in response to the pro-inflammatory peptide substance P (SP. Inflammation is critical in the pathogenesis of many diseases, but the trigger(s is often unknown. We investigated if mast cell stimulation leads to secretion of mitochondrial components and whether these could elicit autocrine and/or paracrine inflammatory effects. Here we show that human LAD2 mast cells stimulated by IgE/anti-IgE or by the SP led to secretion of mitochondrial particles, mitochondrial (mt mtDNA and ATP without cell death. Mitochondria purified from LAD2 cells and, when mitochondria added to mast cells trigger degranulation and release of histamine, PGD(2, IL-8, TNF, and IL-1β. This stimulatory effect is partially inhibited by an ATP receptor antagonist and by DNAse. These results suggest that the mitochondrial protein fraction may also contribute. Purified mitochondria also stimulate IL-8 and vascular endothelial growth factor (VEGF release from cultured human keratinocytes, and VEGF release from primary human microvascular endothelial cells. In order to investigate if mitochondrial components could be secreted in vivo, we injected rats intraperiotoneally (ip with compound 48/80, which mimicks the action of SP. Peritoneal mast cells degranulated and mitochondrial particles were documented by transimission electron microscopy outside the cells. We also wished to investigate if mitochondrial components secreted locally could reach the systemic circulation. Administration ip of mtDNA isolated from LAD2 cells in rats was detected in their serum within 4 hr, indicating that extravascular mtDNA could enter the systemic circulation. Secretion of mitochondrial components from stimulated live mast cells may act as "autopathogens" contributing to the pathogenesis of inflammatory

  7. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...... expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through...... the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death...

  8. Carbon components in the phosphoric acid fuel cell-an overview

    International Nuclear Information System (INIS)

    Appleby, J.

    1983-01-01

    The single breakthrough that has made the phosphoric acid fuel cell a practical reality has been the use of carbon or graphite components for the repeat parts of the cell stack. While the thermodynamic stability of carbon is such that rapid corrosion would be expected at the cathode at fuel cell operating temperature, its kinetic stability is remarkable despite the absence of passivating layers analogous to those on, for example, the Group VA elements niobium and tantalum. This happy accident, combined with the adequate electronic conductivity of the carbon materials used, has provided the opportunity to reduce fuel cell cost to attractive levels. The development of these carbon compounds is reviewed

  9. Urinary bladder carcinoma with divergent differentiation featuring small cell carcinoma, sarcomatoid carcinoma, and liposarcomatous component.

    Science.gov (United States)

    Yasui, Mariko; Morikawa, Teppei; Nakagawa, Tohru; Miyakawa, Jimpei; Maeda, Daichi; Homma, Yukio; Fukayama, Masashi

    2016-09-01

    Both small cell carcinoma and sarcomatoid carcinoma of the urinary bladder are highly aggressive tumors, and a concurrence of these tumors is extremely rare. We report a case of urinary bladder cancer with small cell carcinoma as a predominant component, accompanied by sarcomatoid carcinoma and conventional urothelial carcinoma (UC). Although the small cell carcinoma component had resolved on receiving chemoradiotherapy, rapid growth of the residual tumor led to a fatal outcome. A 47-year-old man presented with occasional bladder irritation and had a 2-year history of asymptomatic hematuria. Cystoscopy revealed a huge mass in the urinary bladder, and transurethral resection was performed. Microscopically, small cell carcinoma was detected as the major tumor component. Spindle-shaped sarcomatoid cells were also observed that were intermingled with small cell carcinoma and conventional UC. In addition, a sheet-like growth of the lipoblast-like neoplastic cells was observed focally. Initially, by providing chemoradiotherapy, we achieved a marked tumor regression; however, the tumor rapidly regrew after the completion of chemoradiotherapy, and the patient underwent radical cystectomy. Only conventional UC and sarcomatoid carcinoma were identified in the cystectomy specimen. The patient died of the disease 4 months after cystectomy. Urinary bladder cancer may include a combination of multiple aggressive histologies as in the present case. Because the variation in the tumor components may affect the efficacy of therapy, a correct diagnosis of every tumor component is necessary. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells.

    Science.gov (United States)

    Nimrichter, Leonardo; de Souza, Marcio M; Del Poeta, Maurizio; Nosanchuk, Joshua D; Joffe, Luna; Tavares, Patricia de M; Rodrigues, Marcio L

    2016-01-01

    Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.

  11. Effects of dendritic cell vaccine activated with protein components of toxoplasma gondii on tumor specific CD8+ T-cells

    Directory of Open Access Journals (Sweden)

    Amari A

    2009-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Dendritic Cell (DC is an important antigen-presenting cell that present tumor antigen to CD8+ and CD4+ T- Lymphocytes and induce specific anti-tumor immunity. In order to induce effective anti-tumor response, an option is increasing the efficiency of antigen presentation of dendritic cells and T cell activation capacity. The aim of the present study was to investigate the effect of dendritic cell maturation with protein components of toxoplasma gondii on cytotoxic T lymphocyte activity and their infiltration in to the tumor."n"nMethods: For DC generation, bone marrow cells were cultured in the presence of GM-CSF and IL-4 for five days. After that, LPS, protein components and whole extract of toxoplasma gondii were added to the culture media and incubated for another two days for DC maturation. To generate tumor, mices were injected subcutaneously with WEHI-164 cell line. For immunotherapy 106 DCs matured with different compounds were injected around the tumor site. Infiltration of CD8+ T cells were determined by flow cytometry and cytotoxic activity was measured by LDH detection kit."n"nResults: Immunotherapy with DCs treated with protein components of toxoplasma gondii led to a significant increase in the

  12. Spectral network based on component cells under the SOPHIA European project

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio; Askins, Steve; Sala, Gabriel [Instituto de Energía Solar - Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Domínguez, César; Voarino, Philippe [CEA-INES, 50 avenue du Lac Léman, 73375 Le Bourget-du-Lac (France); Steiner, Marc; Siefer, Gerald [Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Fucci, Rafaelle; Roca, Franco [ENEA, P.le E.Fermi 1, Località Granatello, 80055 Portici (Italy); Minuto, Alessandro; Morabito, Paolo [RSE, Via Rubattino 54, 20134 Milan (Italy)

    2015-09-28

    In the frame of the European project SOPHIA, a spectral network based on component (also called isotypes) cells has been created. Among the members of this project, several spectral sensors based on component cells and collimating tubes, so-called spectroheliometers, were installed in the last years, allowing the collection of minute-resolution spectral data useful for CPV systems characterization across Europe. The use of spectroheliometers has been proved useful to establish the necessary spectral conditions to perform power rating of CPV modules and systems. If enough data in a given period of time is collected, ideally a year, it is possible to characterize spectrally the place where measurements are taken, in the same way that hours of annual irradiation can be estimated using a pyrheliometer.

  13. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny

    2012-01-01

    ). RESULTS: We demonstrate that splenic B cells exposed to ebx produce large amounts of IL-10 in vitro and express CD1d and CD5 previously known to be associated with regulatory B cells. In SCID mice transplanted with colitogenic CD4(+) CD25(-) T cells, co-transfer of ebx-B cells significantly suppressed...... development of colitis. Suppression was dependent on B cell-derived IL-10, as co-transfer of IL-10 knockout ebx-B cells failed to suppress colitis. Ebx-B cell-mediated suppression of colitis was associated with a decrease in interferon gamma (IFN-¿)-producing T(H) 1 cells and increased frequencies of Foxp3......-expressing T cells. CONCLUSIONS: These data demonstrate that splenic B cells exposed to enterobacterial components acquire immunosuppressive functions by which they can suppress development of experimental T cell-mediated colitis in an IL-10-dependent way. (Inflamm Bowel Dis 2011;)....

  14. 21 CFR 864.2220 - Synthetic cell and tissue culture media and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Synthetic cell and tissue culture media and components. 864.2220 Section 864.2220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture...

  15. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    Science.gov (United States)

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  16. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  17. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    International Nuclear Information System (INIS)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-01-01

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by 3 H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects

  18. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Queiroz, Rodrigo Guimaraes

    2012-01-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  19. Method of forming components for a high-temperature secondary electrochemical cell

    Science.gov (United States)

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  20. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components

    Science.gov (United States)

    Torkashvand, Fatemeh; Vaziri, Behrouz

    2017-05-01

    The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.

  1. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  2. Design and rescue scenario of common repair equipment for in-vessel components in ITER hot cell

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Takeda, Nobukazu; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-06-01

    Transportation of the in-vessel components to be repaired in the ITER hot cell is carried by two kinds of transporters, i.e., overhead cranes and floor vehicles. The access area for repair operations in the hot cell is duplicated by these transporters. Clear sharing of the respective roles of these transporters with the minimum duplication is therefore useful for rationalization. The overhead cranes, which are independently installed in the respective cells in the hot sell, cannot pass through the components to be repaired between cells, i.e., receiving cell and refurbishment cell as an example. If the floor vehicle with simple mechanisms can cover the inaccessible area for the overhead cranes, a global transporter system in the hot cell will be simplified and the reliability will be increased. Based on this strategy, the overhead crane and floor vehicle concepts are newly proposed. The overhead crane has an adapter for change of the end-effectors, which can be easily changed, to grasp many kinds of components to be repaired. The floor vehicle, which is equipped with wheel mechanisms for transportation, is just to pass through the components between cells with only straight (linear) motion on the floor. The simple wheel mechanism can solve the spread of the dust, which is the critical issue of the original air bearing mechanism for traveling in the 2001 FDR design. Rescue scenarios and procedures in the hot cell are also studied in this report. The proposed rescue crane has major two functions for rescue operations of the hot cell facility, i.e., one for the overhead crane and the other for refurbishment equipment such as workstation for divertor repair. The rescue of the faulty overhead crane is carried out using the rescue tool installed on the rescue crane or directly traveled by pushing/pulling by the rescue crane after docking on the faulty overhead crane. For the rescue of the workstation, the rescue crane consists of a telescopic manipulator (maximum length

  3. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    Science.gov (United States)

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  5. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    International Nuclear Information System (INIS)

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N.

    2013-01-01

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications

  6. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Schlie-Wolter, Sabrina, E-mail: s.schlie@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ngezahayo, Anaclet, E-mail: ngezahayo@biophysik.uni-hannover.de [Institute of Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, Hannover 30419 (Germany); Chichkov, Boris N., E-mail: b.chichkov@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany)

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  7. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Teeraphan Laomettachit

    Full Text Available To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  8. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    Science.gov (United States)

    Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  9. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Romano, M.; Razandi, M.; Ivey, K.J. (Long Beach VA Medical Center, CA (USA))

    1990-04-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells.

  10. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    International Nuclear Information System (INIS)

    Romano, M.; Razandi, M.; Ivey, K.J.

    1990-01-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells

  11. Processing of influenza HA protein in MDCK cells: components with different mobilities in polyacrylamide gel electrophoresis and their precursor-product relationships

    International Nuclear Information System (INIS)

    Sklyanskaya, E.I.; Rudneva, I.A.; Vovk, T.S.; Kaverin, N.V.

    1980-01-01

    In influenza virus-infected MDCK cells labelled with 14 C-chlorella hydrolysate or 35 S-methionine a virus-specific protein component is revealed migrating slightly faster than HA protein in polyacrylamide gel electrophoresis. Under chase conditions the component disappears either completely or partially, with a concomitant intensification of the HA band. The rate and extent of this transition are strain-dependent. Both the HA band and the faster moving component are not revealed if the cells are labelled in the presence of 20 mM of D-glucosamine. In primary cell cultures of chick embryos a single HA band with a mobility similar to that of the faster moving component in MDCK cells has been observed. It is suggested that the transition of the label from the faster moving component to the HA band reflects the final step of HA processing specific for MDCK cells. (author)

  12. CYTOGENETIC ANALYSIS OF THE MATURE TERATOMA AND THE CHORIOCARCINOMA COMPONENT OF A TESTICULAR MIXED NONSEMINOMATOUS GERM-CELL TUMOR

    NARCIS (Netherlands)

    DEGRAAFF, WE; OOSTERHUIS, JW; DEJONG, B; VANECHTENARENDS, J; WIERSEMABUIST, J; KOOPS, HS; SLEIJFER, DT

    1992-01-01

    We karyotyped two histologically distinct components with different metastatic behavior of a testicular nonseminomatous germ cell tumor. The two components showed an almost identical chromosomal pattern. These almost identical karyotypes of the two components with different metastatic potential

  13. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Therese Featherston

    2016-09-01

    Full Text Available Aim We have recently identified and characterized cancer stem cell (CSC subpopulations within moderately differentiated buccal mucosal squamous cell carcinoma (MDBMSCC. We hypothesized that these CSCs express components of the renin-angiotensin system (RAS.Methods 3,3-Diaminobenzidine (DAB immunohistochemical (IHC staining was performed on formalin-fixed paraffin-embedded MDBMSCC samples to investigate the expression of the components of the RAS: pro(renin receptor (PRR, angiotensin converting enzyme (ACE, angiotensin II receptor 1 (ATIIR1 and angiotensin II receptor 2 (ATIIR2. NanoString mRNA gene expression analysis and Western Blotting (WB were performed on snap-frozen MDBMSCC samples to confirm gene expression and translation of these transcripts, respectively. Double immunofluorescent (IF IHC staining of these components of the RAS with the embryonic stem cell markers OCT4 or SALL4 was performed to demonstrate their localization in relation to the CSC subpopulations within MDBMSCC.Results DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1 and ATIIR2 in MDBMSCC. IF IHC staining showed that PRR was expressed by the CSC subpopulations within the tumor nests, the peri-tumoral stroma and the endothelium of the microvessels within the peri-tumoral stroma. ATIIR1 and ATIIR2 were localized to the CSC subpopulations within the tumor nests and the peri-tumoral stroma, while ACE was localized to the endothelium of the microvessels within the peri-tumoral stroma. WB and NanoString analyses confirmed protein expression and transcription activation of PRR, ACE and ATIIR1 but not of ATIIR2, respectively.

  14. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    Science.gov (United States)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (ppancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  15. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  16. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability.

    Science.gov (United States)

    Sauer, Reine-Solange; Krug, Susanne M; Hackel, Dagmar; Staat, Christian; Konasin, Natalia; Yang, Shaobing; Niedermirtl, Benedikt; Bosten, Judith; Günther, Ramona; Dabrowski, Sebastian; Doppler, Kathrin; Sommer, Claudia; Blasig, Ingolf E; Brack, Alexander; Rittner, Heike L

    2014-07-10

    The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using μ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. HepG2 cells biospecific extraction and HPLC-ESI-MS analysis for screening potential antiatherosclerotic active components in Bupeuri radix.

    Science.gov (United States)

    Liu, Shuqiang; Tan, Zhibin; Li, Pingting; Gao, Xiaoling; Zeng, Yuaner; Wang, Shuling

    2016-03-20

    HepG2 cells biospecific extraction method and high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis was proposed for screening of potential antiatherosclerotic active components in Bupeuri radix, a well-known Traditional Chinese Medicine (TCM). The hypothesis suggested that when cells are incubated together with the extracts of TCM, the potential bioactive components in the TCM should selectively combine with the receptor or channel of HepG2 cells, then the eluate which contained biospecific component binding to HepG2 cells was identified using HPLC-ESI-MS analysis. The potential bioactive components of Bupeuri radix were investigated using the proposed approach. Five compounds in the saikosaponins of Bupeuri radix were detected as these components selectively combined with HepG2 cells, among these compounds, two potentially bioactive compounds namely saikosaponin b1 and saikosaponin b2 (SSb2) were identified by comparing with the chromatography of the standard sample and analysis of the structural clearance characterization of MS. Then SSb2 was used to assess the uptake of DiI-high density lipoprotein (HDL) in HepG2 cells for antiatherosclerotic activity. The results have showed that SSb2, with indicated concentrations (5, 15, 25, and 40 μM) could remarkably uptake dioctadecylindocarbocyanine labeled- (DiI) -HDL in HepG2 cells (Vs control group, *PESI-MS analysis is a rapid, convenient, and reliable method for screening potential bioactive components in TCM and SSb2 may be a valuable novel drug agent for the treatment of atherosclerosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    Science.gov (United States)

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug

  19. Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components.

    Science.gov (United States)

    Sato, Kanna; Suzuki, Ryu; Nishikubo, Nobuyuki; Takenouchi, Sachi; Ito, Sachiko; Nakano, Yoshimi; Nakaba, Satoshi; Sano, Yuzou; Funada, Ryo; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2010-06-01

    The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.

  20. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae.

    Science.gov (United States)

    Sato, Hiroki; Toyoshima, Yoshiyuki; Shintani, Takahiro; Gomi, Katsuya

    2011-12-01

    We observed that α-amylase (Taka-amylase A; TAA) activity in the culture broth disappeared in the later stage of submerged cultivation of Aspergillus oryzae. This disappearance was caused by adsorption of TAA onto the cell wall of A. oryzae and not due to protein degradation by extracellular proteolytic enzymes. To determine the cell wall component(s) that allows TAA adsorption efficiently, the cell wall was fractionated by stepwise alkali treatment and enzymatic digestion. Consequently, alkali-insoluble cell wall fractions exhibited high levels of TAA adsorption. In addition, this adsorption capacity was significantly enhanced by treatment of the alkali-insoluble fraction with β-glucanase, which resulted in the concomitant increase in the amount of chitin in the resulting fraction. In contrast, the adsorption capacity was diminished by treating the cell wall fraction with chitinase. These results suggest that the major component that allows TAA adsorption is chitin. However, both the mycelium and the cell wall demonstrated the inability to allow TAA adsorption in the early stage of cultivation, despite chitin content in the cell wall being identical in both early and late stages of cultivation. These results suggest the existence of unidentified factor(s) that could prevent the adsorption of TAA onto the cell wall. Such factor(s) is most likely removed or diminished from the cell wall following longer cultivation periods.

  1. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M. (Univ. of Alabama at Birmingham (USA))

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37{degree}C. A functional fibrinogen-binding component (M{sub r}, 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with {sup 125}I-fibrinogen. Fibrinogen degradation did not occur at 4{degree}C but did occur at 22 and 37{degree}C. When bacteria and iodinated fibrinogen were incubated at 37{degree}C, two major fibrinogen fragments (M{sub r}, 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M{sub r}, 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M{sub r}-120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-{alpha}-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate.

  2. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    International Nuclear Information System (INIS)

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M.

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37 degree C. A functional fibrinogen-binding component (M r , 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with 125 I-fibrinogen. Fibrinogen degradation did not occur at 4 degree C but did occur at 22 and 37 degree C. When bacteria and iodinated fibrinogen were incubated at 37 degree C, two major fibrinogen fragments (M r , 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M r , 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M r -120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-α-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate

  3. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell

    Science.gov (United States)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  4. CD10-/ALDH- cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy.

    Science.gov (United States)

    Ffrench, Brendan; Gasch, Claudia; Hokamp, Karsten; Spillane, Cathy; Blackshields, Gordon; Mahgoub, Thamir Mahmoud; Bates, Mark; Kehoe, Louise; Mooney, Aoibhinn; Doyle, Ronan; Doyle, Brendan; O'Donnell, Dearbhaile; Gleeson, Noreen; Hennessy, Bryan T; Stordal, Britta; O'Riain, Ciaran; Lambkin, Helen; O'Toole, Sharon; O'Leary, John J; Gallagher, Michael F

    2017-10-19

    It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10 - /ALDH - CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10 - /ALDH - CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10 - /ALDH - CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10 - /ALDH - CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.

  5. The effect of X-ray irradiation on a red cell component in WB, WRC and LPRC

    International Nuclear Information System (INIS)

    Tayama, Tatsuya; Toyota, Kuroh; Nagahashi, Hisakata; Masuyama, Tetsuya; Haneda, Kenji; Juji, Takeo.

    1990-01-01

    In spite of the use of X-ray irradiation on blood products, few data about its effect on components are reported. We need more informations about a quality of irradiated red cell components. This study shows in vitro changes of irradiated red cell component in WB, WRC and LPRC as the minimum dose of 1,500, 3,000, and 5,000 rads. The fact as follows were observed in response to irradiated doses: 1) increased fragility of red cell membrane, 2) increased amount of plasma K and plasma Hb, and 3) decrease of ATP in WB.2,3-DPG, glucose, pH, Ht and Cl. The numbers of RBC, WBC and Platelet were not affected by irradiation with doses between 1,500 and 5,000 rads. According to these results, the followings are recommended: 1) irradiation with 1,500 rads is a proper method for WB, 2) in order to avoid the risk of increased plasma K, WB should be used within 1 week after irradiation, and WRC and LPRC should be used 24 hours after irradiation. (author)

  6. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    International Nuclear Information System (INIS)

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC 50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. EGFR pathway components were qualified as

  7. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    Science.gov (United States)

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  8. Treatment results and prognostic factors of clear cell ovarian carcinomas and ovarian carcinomas with clear cell component

    Directory of Open Access Journals (Sweden)

    M. D. Ahmedova

    2012-01-01

    Full Text Available The most important prognostic factors for clear cell carcinoma (CCC are clinical and morphological signs and clinical stage of the disease. Analyses of 5-year survival in patients with I stage of CCC is 69 %, in II stage – 55 %, in III stage – 14 % and in IV stage – 4 % patients. We analyzed distant results of treatment of 71 patients with CCC and of 25 patients with mixed malignant ovaries neoplasm with obligatory clear cell component taking into consideration main clinical and morphological sings of disease. On the base of performed reseal we revealed that morphological structure of the tumors and stage of the disease exerted heist influence on the exponent of survival of the patients with clear CCC ovaries neoplasm. Besides, there is a correlation between exponent of patients’ survival and radicalized of surgery, character of tumor growth, differentiation degree, cell anaplasia and mitotic activity of tumor cells.

  9. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components

    OpenAIRE

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    Purpose To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. Methods The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were...

  10. Determination of residual cell culture media components by MEKC.

    Science.gov (United States)

    Zhang, Junge; Chakraborty, Utpal; Foley, Joe P

    2009-11-01

    Folic acid, hypoxanthine, mycophenolic acid, nicotinic acid, riboflavin, and xanthine are widely used as cell culture media components in monoclonal antibody manufacturing. These components are subsequently removed during the downstream purification processes. This article describes a single MEKC method that can simultaneously determine all the listed compounds with acceptable LOD and LOQ. All the analytes were successfully separated by MEKC using running buffer containing 40 mM SDS, 20 mM sodium phosphate, and 20 mM sodium borate at pH 9.0. The MEKC method was compared to the corresponding CZE method using the same running buffer containing no SDS. The effect of SDS concentration on separation, the pH of the running buffer, and the detection wavelength were studied and optimal MEKC conditions were established. Good linearity was obtained with correlation coefficients of more than 0.99 for all analytes. Specificity, accuracy, and precision were also evaluated. The recovery was in the range of 89-112%. The precision results were in the range of 1.7-4.8%. The experimentally determined data demonstrated that the MEKC method is applicable to the determination of the six analytes in in-process samples from monoclonal antibody manufacturing processes.

  11. Ovarian germ cell tumors with rhabdomyosarcomatous components and later development of growing teratoma syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Al-Jumaily Usama

    2012-01-01

    Full Text Available Abstract Introduction Development of a sarcomatous component in a germ cell tumor is an uncommon phenomenon. Most cases reported have a grim prognosis. Growing teratoma syndrome is also an uncommon phenomenon and occurs in approximately 2% to 7% of non seminomatous germ cell tumors and should be treated surgically. Case presentation We report the case of a 12-year-old Asian girl with an ovarian mixed germ cell tumor containing a rhabdomyosarcomatous component. She was treated with a germ cell tumor chemotherapy regimen and rhabdomyosarcoma-specific chemotherapy. Towards the end of her treatment, she developed a retroperitoneal mass that was increasing in size. It was completely resected, revealing a mature teratoma, consistent with growing teratoma syndrome. She is still in complete remission approximately three years after presentation. Conclusion The presence of rhabdomyosarcoma in a germ cell tumor should be treated by a combined chemotherapy regimen (for germ cell tumor and rhabdomyosarcoma. In addition, development of a mass during or after therapy with normal serum markers should raise the possibility of growing teratoma syndrome that should be treated surgically.

  12. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    Science.gov (United States)

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  13. Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses.

    Science.gov (United States)

    Widodo, Nashi; Takagi, Yasuomi; Shrestha, Bhupal G; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2008-04-08

    Ashwagandha, also called as "Queen of Ayurveda" and "Indian ginseng", is a commonly used plant in Indian traditional medicine, Ayurveda. Its roots have been used as herb remedy to treat a variety of ailments and to promote general wellness. However, scientific evidence to its effects is limited to only a small number of studies. We had previously identified anti-cancer activity in the leaf extract (i-Extract) of Ashwagandha and demonstrated withanone as a cancer inhibitory factor (i-Factor). In the present study, we fractionated the i-Extract to its components by silica gel column chromatography and subjected them to cell based activity analyses. We found that the cancer inhibitory leaf extract (i-Extract) has, at least, seven components that could cause cancer cell killing; i-Factor showed the highest selectivity for cancer cells and i-Factor rich Ashwagandha leaf powder was non-toxic and anti-tumorigenic in mice assays. We undertook a gene silencing and pathway analysis approach and found that i-Extract and its components kill cancer cells by at least five different pathways, viz. p53 signaling, GM-CFS signaling, death receptor signaling, apoptosis signaling and G2-M DNA damage regulation pathway. p53 signaling was most common. Visual analysis of p53 and mortalin staining pattern further revealed that i-Extract, fraction F1, fraction F4 and i-Factor caused an abrogation of mortalin-p53 interactions and reactivation of p53 function while the fractions F2, F3, F5 work through other mechanisms.

  14. Three-component homeostasis control

    Science.gov (United States)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  15. SILAC Proteomics of Planarians Identifies Ncoa5 as a Conserved Component of Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexander Böser

    2013-11-01

    Full Text Available Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA, which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  16. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    Science.gov (United States)

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    Directory of Open Access Journals (Sweden)

    Ramona A Hoh

    Full Text Available Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP. The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  18. Immunohistochemical study of sensory nerve formations in human glabrous skin.

    Science.gov (United States)

    Haro, J J; Vega, J A; del Valle, M E; Calzada, B; Zaccheo, D; Malinovsky, L

    1991-01-01

    The sensory nerve formations (or corpuscles) of normal human glabrous skin from hand and fingers, obtained by punch biopsies, were studied by the streptavidin-biotin method using monoclonal antibodies directed against neurofilament protein (NFP), S-100 protein, glial fibrillary acidic protein (GFAP), cytokeratins, and vimentin. NFP immunoreactivity (IR) was observed in the central axons of most sensory formations, while S-100 protein IR was restricted to non-neuronal cells forming the so-called inner cells core or lamellar cells. Furthermore, vimentin IR was found in the same cells of Meissner's and glomerular corpuscles. None of the sensory nerve formations were stained for GFAP or keratin. The present results suggest that the main nature of the intermediate filaments of the non-neuronal cells of sensory nerve formations from human glabrous skin is represented by vimentin and not by GFAP. Thus, our findings suggest that lamellar and inner core cells of SNF are modified and specialized Schwann cells and not epithelial or perineurial derived cells.

  19. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic?

    Science.gov (United States)

    Bryja, Vítězslav; Červenka, Igor; Čajánek, Lukáš

    2017-12-01

    Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.

  1. Device for welding components using ultrasonics, particularly for solar cell contacts and solar cell connections. Vorrichtung zum Verschweissen von Bauteilen unter Verwendung von Ultraschall, insbesondere von Solarzellenkontakten und Solarzellenverbindern

    Energy Technology Data Exchange (ETDEWEB)

    Gochermann, H.

    1983-06-23

    This is a device for welding components, particularly solar cell contacts and solar cell connections, using an ultrasonic welding device. The ultrasonic welding device has a high frequency generator, an ultrasonic emitter, a transmitter, a sonotrode, a device for accommodating the components and controls. The sonotrode is provided with a circumferential beading acting as the welding disc, which, together with the sonotrode, is rolled over the components by a relative movement. The part of the beading which is tangential to the component introduces ultrasonic energy into the component. The relative movement is made possible by the system of the ultrasonic emitter, transmitter and sonotrode with the surrounding beading being mounted so that it can rotate in a vibration node of the transmitter. (orig.).

  2. The monolithic multicell: a tool for testing material components in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, H.; Gruszecki, T. [IVF Industrial Research and Development Corporation, Moelndal (Sweden); Bernhard, R. [IVF Industrial Research and Development Corporation, Moelndal (Sweden); The Royal Institute of Technology, Stockholm (Sweden). Center of Molcular Devices, Department of Chemistry; Haeggman, L.; Gorlov, M.; Boschloo, G.; Edvinsson, T.; Kloo, L.; Hagfeldt, A. [The Royal Institute of Technology, Stockholm (Sweden). Center of Molcular Devices, Department of Chemistry

    2006-07-01

    A multicell is presented as a tool for testing material components in encapsulated dye-sensitized solar cells. The multicell is based on a four-layer monolithic cell structure and an industrial process technology. Each multicell plate includes 24 individual well-encapsulated cells. A sulfur lamp corrected to the solar spectrum has been used to characterize the cells. Efficiencies up to 6.8% at a light-intensity of 1000 W/m{sup su2} (up to 7.5% at 250 W/m{sup 2}) have been obtained with an electrolyte solution based on {upsilon}-butyrolactone. Additionally, a promising long-term stability at cell efficiencies close to 5% at 1000 W/m{sup 2} has been obtained with an electrolyte based on glutaronitrile. The reproducibility of the cell performance before and after exposure to accelerated testing has been high. This means that the multicell can be used as an efficient tool for comparative performance and stability tests. (author)

  3. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components.

    Science.gov (United States)

    Bindon, Keren A; Li, Sijing; Kassara, Stella; Smith, Paul A

    2016-11-09

    For better understanding of the factors that impact proanthocyanidin (PA) adsorption by insoluble cell walls or interaction with soluble cell wall-derived components, application of a commercial polygalacturonase enzyme preparation was investigated to modify grape cell wall structure. Soluble and insoluble cell wall material was isolated from the skin and mesocarp components of Vitis vinifera Shiraz grapes. It was observed that significant depolymerization of the insoluble grape cell wall occurred following enzyme application to both grape cell wall fractions, with increased solubilization of rhamnogalacturonan-enriched, low molecular weight polysaccharides. However, in the case of grape mesocarp, the solubilization of protein from cell walls (in buffer) was significant and increased only slightly by the enzyme treatment. Enzyme treatment significantly reduced the adsorption of PA by insoluble cell walls, but this effect was observed only when material solubilized from grape cell walls had been removed. The loss of PA through interaction with the soluble cell wall fraction was observed to be greater for mesocarp than skin cell walls. Subsequent experiments on the soluble mesocarp cell wall fraction confirmed a role for protein in the precipitation of PA. This identified a potential mechanism by which extracted grape PA may be lost from wine during vinification, as a precipitate with solubilized grape mesocarp proteins. Although protein was a minor component in terms of total concentration, losses of PA via precipitation with proteins were in the order of 50% of available PA. PA-induced precipitation could proceed until all protein was removed from solution and may account for the very low levels of residual protein observed in red wines. The results point to a dynamic interaction of grape insoluble and soluble components in modulating PA retention in wine.

  4. Effects of different components of serum after radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of myocardial cells

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianmin; Xiao Jiasi

    1997-01-01

    Objective: To study the effects of different components of serum in rats inflicted with radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of cultured myocardial cells. Method: Using patch clamp method to study the action of single ion channel. Results: The low molecular and lipid components of serum after different injuries models could all activate the inward rectifier potassium channel in cultured myocardial cells. The components of serum after combined radiation-burn injury showed the most significant effect, and the way of this effect was different from that from single injury. Conclusion: The serum components post injury altered the electric characteristic of myocardial cells, which may play a role in the combined effect of depressed cardiac function after combined radiation-burn injury

  5. Fluorescence excitation-emission matrix (EEM) spectroscopy for rapid identification and quality evaluation of cell culture media components.

    Science.gov (United States)

    Li, Boyan; Ryan, Paul W; Shanahan, Michael; Leister, Kirk J; Ryder, Alan G

    2011-11-01

    The application of fluorescence excitation-emission matrix (EEM) spectroscopy to the quantitative analysis of complex, aqueous solutions of cell culture media components was investigated. These components, yeastolate, phytone, recombinant human insulin, eRDF basal medium, and four different chemically defined (CD) media, are used for the formulation of basal and feed media employed in the production of recombinant proteins using a Chinese Hamster Ovary (CHO) cell based process. The comprehensive analysis (either identification or quality assessment) of these materials using chromatographic methods is time consuming and expensive and is not suitable for high-throughput quality control. The use of EEM in conjunction with multiway chemometric methods provided a rapid, nondestructive analytical method suitable for the screening of large numbers of samples. Here we used multiway robust principal component analysis (MROBPCA) in conjunction with n-way partial least squares discriminant analysis (NPLS-DA) to develop a robust routine for both the identification and quality evaluation of these important cell culture materials. These methods are applicable to a wide range of complex mixtures because they do not rely on any predetermined compositional or property information, thus making them potentially very useful for sample handling, tracking, and quality assessment in biopharmaceutical industries.

  6. Changes During Growth in Cell Wall Components of Berseem Clover Under Different Cutting Treatments in a Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Giuditta De Santis

    2007-09-01

    Full Text Available Forage digestibility of berseem clover (Trifolium Alexandrinum L. is influenced by plant cell wall composition. This study was conducted to evaluate the effects of different cutting treatments on cell-wall components of the herbage and plant fractions in two Mediterranean berseem genotypes during growth and to examine the relationship between digestibility and cell wall components in these plant fractions. Cutting treatments were initiated at sixth internode elongation (A and early flowering (B and there was an uncut control treatment (C. Spring growth of genotypes of Egyptian (cv. Giza 10 and Italian (cv. Sacromonte origins was harvested in each of two years beginning 196 days after sowing and thereafter every 6 days (twelve harvests in total to measure cell wall components. Neutral detergent fibre (NDF, acid detergent fibre (ADF and acid detergent lignin (ADL concentrations were determined for leaf, stem, and total forage of each cultivar at each harvest. Without defoliation, NDF, ADF and ADL concentrations of herbage increased linearly to a maximum of 528, 375 and 84 g kg-1 DM, respectively, by 220 days after planting, when plant height reached maximum values, then plateaued until 257 days after planting. Plant parts differed in cell-wall concentration, with stems being of higher fibre components than leaves, in the two cutting treatments. Herbage and plant fraction fibre concentrations were negatively correlated with digestibility for all cutting treatments. Defoliation induced a reduction in fibre concentrations and plant height, although a rapid regrowth was observed after cutting, in both treatments A and B. However, delaying defoliation to the early flowering stage (B increased fibre components concentrations both at cutting time and during the growing season and significantly reduced the regrowth height. Conversely, plants cut at the sixth internode elongation (treatment A showed lower concentrations of fibre fractions than initiating

  7. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    Science.gov (United States)

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  8. Sustainable design of fuel cell systems and components. Paper no. IGEC-1-148

    International Nuclear Information System (INIS)

    Frank, D.

    2005-01-01

    'Full text:' Fuel Cell and Hydrogen Technology are touted as the major future enabler for a renewable energy future. This is particularly true for vehicular applications were there are few competitive alternatives. However, without zero-emission production of hydrogen, this will not be a very sustainable solution. Hydrogen generation from biomass, solar, hydro or wind energy will allow this realization. In addition, we need to evaluate the whole life cycle of a fuel cell system in order to make sure that it is truly 'green'. Hydrogenics has in place corporate initiatives to ensure that sustainability is part of the corporate objectives and philosophy. A sustainable future ensures that this generation does not prevent future generations from a similar (or better) standard of living. Fuel cell recyclability and reusability will be a major factor in ensuring a renewable, sustainable future. This is accomplished using sustainable design methodology whereby fuel cell system components are analyzed for their total life cycle impact. This concept of 'cradle to grave' product design responsibility is applied to Hydrogenics fuel cell products and is discussed in this paper. (author)

  9. Reciprocal and dynamic polarization of planar cell polarity core components and myosin

    Science.gov (United States)

    Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C

    2015-01-01

    The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI: http://dx.doi.org/10.7554/eLife.05361.001 PMID:25866928

  10. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  11. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  12. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus.

    Science.gov (United States)

    Polak-Berecka, Magdalena; Waśko, Adam; Paduch, Roman; Skrzypek, Tomasz; Sroka-Bartnicka, Anna

    2014-10-01

    The aim of this study was to analyze the cell envelope components and surface properties of two phenotypes of Lactobacillus rhamnosus isolated from the human gastrointestinal tract. The ability of the bacteria to adhere to human intestinal cells and to aggregate with other bacteria was determined. L. rhamnosus strains E/N and PEN differed with regard to the presence of exopolysaccharides (EPS) and specific surface proteins. Transmission electron microscopy showed differences in the structure of the outer cell surface of the strains tested. Bacterial surface properties were analyzed by Fourier transform infrared spectroscopy, fatty acid methyl esters and hydrophobicity assays. Aggregation capacity and adhesion of the tested strains to the human colon adenocarcinoma cell line HT29 was determined. The results indicated a high adhesion and aggregation ability of L. rhamnosus PEN, which possessed specific surface proteins, had a unique fatty acid content, and did not synthesize EPS. Adherence of L. rhamnosus was dependent on specific interactions and was promoted by surface proteins (42-114 kDa) and specific fatty acids. Polysaccharides likely hindered bacterial adhesion and aggregation by masking protein receptors. This study provides information on the cell envelope constituents of lactobacilli that influence bacterial aggregation and adhesion to intestinal cells. This knowledge will help to understand better their specific contribution in commensal-host interactions and adaptation to this ecological niche.

  13. Molecular crosstalk between cancer cells and tumor microenvironment components suggests potential targets for new therapeutic approaches in mobile tongue cancer

    International Nuclear Information System (INIS)

    Dayan, Dan; Salo, Tuula; Salo, Sirpa; Nyberg, Pia; Nurmenniemi, Sini; Costea, Daniela Elena; Vered, Marilena

    2012-01-01

    We characterized tumor microenvironment (TME) components of mobile tongue (MT) cancer patients in terms of overall inflammatory infiltrate, focusing on the protumorigenic/anti-inflammatory phenotypes and on cancer-associated fibroblasts (CAFs) in order to determine their interrelations and associations with clinical outcomes. In addition, by culturing tongue carcinoma cells (HSC-3) on a three-dimensional myoma organotypic model that mimics TME, we attempted to investigate the possible existence of a molecular crosstalk between cancer cells and TME components. Analysis of 64 cases of MT cancer patients revealed that the overall density of the inflammatory infiltrate was inversely correlated to the density of CAFs (P = 0.01), but that the cumulative density of the protumorigenic/anti-inflammatory phenotypes, including regulatory T cells (Tregs, Foxp3+), tumor-associated macrophages (TAM2, CD163+), and potentially Tregs-inducing immune cells (CD80+), was directly correlated with the density of CAFs (P = 0.01). The hazard ratio (HR) for recurrence in a TME rich in CD163+ Foxp3+ CD80+ was 2.9 (95% CI 1.03–8.6, P = 0.043 compared with low in CD163+ Foxp3+ CD80+). The HR for recurrence in a TME rich in CAFs was 4.1 (95% confidence interval [CI] 1.3–12.8, P = 0.012 compared with low in CAFs). In vitro studies showed cancer-derived exosomes, epithelial–mesenchymal transition process, fibroblast-to-CAF-like cell transdifferentiation, and reciprocal interrelations between different cytokines suggesting the presence of molecular crosstalk between cancer cells and TME components. Collectively, these results highlighted the emerging need of new therapies targeting this crosstalk between the cancer cells and TME components in MT cancer

  14. Primary histiocytic sarcoma arising in the head and neck with predominant spindle cell component

    Directory of Open Access Journals (Sweden)

    Zhao XF

    2007-02-01

    Full Text Available Abstract This is the first case report of Histiocytic Sarcoma (HS with predominant spindle cell component occurring in the head and neck region of a 41-year-old man. The tumor was composed of sheets of large round to oval cells with pleomorphic vesicular nuclei, prominent nucleoli and abundant eosinophilic cytoplasm. Multinucleated forms, numerous mitoses, and tumor necrosis were also noted. Sheets, fascicles, and whorls of spindle cells with spindled to ovoid vesicular nuclei, small to medium-sized distinct nucleoli, and eosinophilic cytoplasm were frequently observed. Immunohistochemical staining in the tumor cells was positive for CD163, CD68, lysozyme, CD45, and NSE. Focal expression of CD4 and S-100 was also noted. Electron microscopy demonstrated an abundance of lysosomes in the cytoplasm of tumor cells. Chromosome study revealed a 57–80 hyperdiploid [7]/46, XY [13] karyotype, including 3 to 4 copies of various chromosomes. The immunohistochemical and ultrastructural findings confirmed the diagnosis of HS.

  15. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Directory of Open Access Journals (Sweden)

    Kosuke Saito

    Full Text Available Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL. We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs, which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST. Culture medium was transplanted as a control (NT. In the mouse experiment, facial-nerve-palsy (FNP scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  16. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Science.gov (United States)

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  17. CD109 is a component of exosome secreted from cultured cells

    International Nuclear Information System (INIS)

    Sakakura, Hiroki; Mii, Shinji; Hagiwara, Sumitaka; Kato, Takuya; Yamamoto, Noriyuki; Hibi, Hideharu; Takahashi, Masahide; Murakumo, Yoshiki

    2016-01-01

    Exosomes are 50–100-nm-diameter membrane vesicles released from various types of cells. Exosomes retain proteins, mRNAs and miRNAs, which can be transported to surrounding cells. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, and is released from the cell surface to the culture medium in vitro. Recently, it was reported that secreted CD109 from the cell surface downregulates transforming growth factor-β signaling in human keratinocytes. In this study, we revealed that CD109 is a component of the exosome in conditioned medium. FLAG-tagged human CD109 (FLAG-CD109) in conditioned medium secreted from HEK293 cells expressing FLAG-CD109 (293/FLAG-CD109) was immunoprecipitated with anti-FLAG affinity gel, and the co-precipitated proteins were analyzed by mass spectrometry and western blotting. Exosomal proteins were associated with CD109. We revealed the presence of CD109 in exosome fractions from conditioned medium of 293/FLAG-CD109. Moreover, the localization of CD109 in the exosome was demonstrated using immuno-electron microscopy. When we used HEK293 cells expressing FLAG-tagged truncated CD109, which does not contain the C-terminal region, the association of truncated CD109 with exosomes was not detected in conditioned medium. These findings indicate that CD109 is an exosomal protein and that the C-terminal region of CD109 is required for its presence in the exosome. - Highlights: • CD109 is an exosomal protein. • The C-terminal region of CD109 is required for its presence in the exosome. • Part of the secreted CD109 is present in the exosome-free fraction in the conditioned medium.

  18. CD109 is a component of exosome secreted from cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakakura, Hiroki [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Mii, Shinji [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Hagiwara, Sumitaka [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya (Japan); Kato, Takuya [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yamamoto, Noriyuki; Hibi, Hideharu [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Takahashi, Masahide, E-mail: mtakaha@med.nagoya-u.ac.jp [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Murakumo, Yoshiki, E-mail: murakumo@med.kitasato-u.ac.jp [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan)

    2016-01-22

    Exosomes are 50–100-nm-diameter membrane vesicles released from various types of cells. Exosomes retain proteins, mRNAs and miRNAs, which can be transported to surrounding cells. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, and is released from the cell surface to the culture medium in vitro. Recently, it was reported that secreted CD109 from the cell surface downregulates transforming growth factor-β signaling in human keratinocytes. In this study, we revealed that CD109 is a component of the exosome in conditioned medium. FLAG-tagged human CD109 (FLAG-CD109) in conditioned medium secreted from HEK293 cells expressing FLAG-CD109 (293/FLAG-CD109) was immunoprecipitated with anti-FLAG affinity gel, and the co-precipitated proteins were analyzed by mass spectrometry and western blotting. Exosomal proteins were associated with CD109. We revealed the presence of CD109 in exosome fractions from conditioned medium of 293/FLAG-CD109. Moreover, the localization of CD109 in the exosome was demonstrated using immuno-electron microscopy. When we used HEK293 cells expressing FLAG-tagged truncated CD109, which does not contain the C-terminal region, the association of truncated CD109 with exosomes was not detected in conditioned medium. These findings indicate that CD109 is an exosomal protein and that the C-terminal region of CD109 is required for its presence in the exosome. - Highlights: • CD109 is an exosomal protein. • The C-terminal region of CD109 is required for its presence in the exosome. • Part of the secreted CD109 is present in the exosome-free fraction in the conditioned medium.

  19. Leaching of cell wall components caused by acid deposition on fir needles and trees

    Energy Technology Data Exchange (ETDEWEB)

    Shigihara, Ado [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: r200670202@kanagawa-u.ac.jp; Matsumoto, Kiyoshi [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan); Sakurai, Naoki [Faculty of Integrated Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, 739-8521 (Japan); Igawa, Manabu [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)

    2008-07-15

    Virgin fir forests have been declining since the 1960s at Mt. Oyama, which is located at the eastern edge of the Tanzawa Mountains and adjacent to the Kanto plain in Japan. An acid fog frequently occurs in the mountains. We collected throughfall and stemflow under fir trees and rainfall every week during January-December 2004 at Mt. Oyama to clarify the influence of acid fog on the decline of fir (Abies firma) needles. In relation to throughfall and stemflow, D-mannose, D-galactose, and D-glucose are the major neutral sugar components; only D-glucose is a major component of rainfall. The correlation coefficient between the total neutral sugars and uronic acid (as D-galacturonic acid), which is a key component of the cross-linking between pectic polysaccharides, was high except for rainfall. The leached amount of calcium ion, neutral sugars, uronic acid, and boron is related to the nitrate ion concentration in throughfall. Results of a laboratory exposure experiment using artificial fog water simulating the average composition of fog water observed at Mt. Oyama (simulated acid fog: SAF) on the fir seedling needles also shows a large leaching of these components from the cell walls of fir needles. The leaching amount increased concomitantly with decreasing pH of the SAF solution. We also observed that a dimeric rhamnogalacturonan II-borate complex (dRG-II-B) that exists in the cell wall as pectic polysaccharide was converted to monomeric RG-II (mRG-II) by the leaching of calcium ion and boron. Results not only of field observations but also those of laboratory experiments indicate a large effect of acid depositions on fir needles.

  20. The effect of solvent component on the discharge performance of Lithium-sulfur cell containing various organic electrolytes

    International Nuclear Information System (INIS)

    Kim, Seok; Jung, Yongju; Lim, Hong S.

    2004-01-01

    The effect of solvent component on the discharge performance of lithium-sulfur (Li/S) cell and the optimal composition of ternary electrolyte for the improved discharge performance of the cell have been investigated. The capacity value and capacity stability with cycle are dependent on the nature of solvent as well as the composition of mixed solvent. The change trend of discharge performance as a function of content of each solvent component is studied. Capacity value increases as the 1,3-dioxolane (DOX) content decreases. Average discharge voltage shows larger value when the 1,2-dimethoxy ethane (DME) content is small. Finally, we have obtained the optimal solvent composition by using a statistical method

  1. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells.

    Science.gov (United States)

    Wang, Qian; Acharya, Narayan; Liu, Zhongwei; Zhou, Xianmei; Cromie, Meghan; Zhu, Jia; Gao, Weimin

    2018-05-10

    Experience-based herbal medicine as a complementary to modern western medicine has triggered an array of studies in quest of novel anticancer drugs. Scutellaria barbata D. Don (SB) is commonly used to treat different types of cancers, but its molecular mechanism of action is not clearly understood. In this study, we attempted to elucidate the mode of action of a traditional Chinese medicine prescription with a total of 14 components, named Lian-Jia-San-Jie-Fang (LJSJF, in Chinese), where SB works as the "principle" against non-small cell lung cancer (NSCLC) cells. Four different NSCLC cell lines (A549, H460, H1650, and H1975) were used. Cytotoxicity, in vitro tumorigenicity, gene expression, and protein expression were analyzed by MTT assay, soft agar assay, real-time PCR, and Western blots, respectively. Among the 14 components in LJSJF, SB was the only one to possess cytotoxic effects at its pharmacologically relevant doses. Additionally, we observed synergistically dose-dependent cytotoxic effects of SB in combination with other LJSJF components. After SB or LJSJF treatment, significant reductions in colony number and/or size were observed in A549 and H460; a notable dose-dependent decrease in EGFR was observed in A549, H460, and H1650; significant downregulation in EGFR and its downstream signaling targets mTOR and p38MAPK were also observed in A549 and H460; and p53 and p21 were significantly increased while survivin, cyclin D1, and MDM2 were significantly decreased in A549. Additionally, p53, p21, and Mettl7b were decreased, but p73 was increased in H460. Neither EGFR nor p53 was changed in H1975. Therefore, SB or LJSJF may induce cytotoxic effects by regulating multiple and/or distinct apoptotic pathways in different NSCLC cells. LJSJF exerts more pronounced cytotoxic effects against NSCLC cells than SB does by synergistically regulating the underlining molecular mechanisms including EGFR and/or p53 signaling pathways. Copyright © 2018 Elsevier B.V. All

  2. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    Science.gov (United States)

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  3. Sensitization to epithelial antigens in chronic mucosal inflammatory disease. Characterization of human intestinal mucosa-derived mononuclear cells reactive with purified epithelial cell-associated components in vitro.

    OpenAIRE

    Roche, J K; Fiocchi, C; Youngman, K

    1985-01-01

    To explore the auto-reactive potential of cells infiltrating the gut mucosa in idiopathic chronic inflammatory bowel disease, intestinal lamina propria mononuclear cells (LPMC) were isolated, characterized morphologically and phenotypically, and evaluated for antigen-specific reactivity. The last was assessed by quantitating LPMC cytotoxic capabilities against purified, aqueous-soluble, organ-specific epithelial cell-associated components (ECAC) characterized previously. Enzyme-isolated infla...

  4. Expression patterns of tight junction components induced by CD24 in an oral epithelial cell-culture model correlated to affected periodontal tissues.

    Science.gov (United States)

    Ye, P; Yu, H; Simonian, M; Hunter, N

    2014-04-01

    Previously we demonstrated uniformly strong expression of CD24 in the epithelial attachment to the tooth and in the migrating epithelium of the periodontitis lesion. Titers of serum antibodies autoreactive with CD24 peptide correlated with reduced severity of periodontal disease. Ligation of CD24 expressed by oral epithelial cells induced formation of tight junctions that limited paracellular diffusion. In this study, we aimed to reveal that the lack of uniform expression of tight junction components in the pocket epithelium of periodontitis lesions is likely to contribute to increased paracellular permeability to bacterial products. This is proposed as a potential driver of the immunopathology of periodontitis. An epithelial culture model with close correspondence for expression patterns for tight junction components in periodontal epithelia was used. Immunohistochemical staining and confocal laser scanning microscopy were used to analyse patterns of expression of gingival epithelial tight junction components. The minimally inflamed gingival attachment was characterized by uniformly strong staining at cell contacts for the tight junction components zona occludens-1, zona occludens-2, occludin, junction adhesion molecule-A, claudin-4 and claudin-15. In contrast, the pocket epithelium of the periodontal lesion showed scattered, uneven staining for these components. This pattern correlated closely with that of unstimulated oral epithelial cells in culture. Following ligation of CD24 expressed by these cells, the pattern of tight junction component expression of the minimally inflamed gingival attachment developed rapidly. There was evidence for non-uniform and focal expression only of tight junction components in the pocket epithelium. In the cell-culture model, ligation of CD24 induced a tight junction expression profile equivalent to that observed for the minimally inflamed gingival attachment. Ligation of CD24 expressed by gingival epithelial cells by lectin

  5. Soy Components Genistein and Lunasin Regulate E-Cadherin and Wnt Signaling in Mammary Epithelial Cells

    Science.gov (United States)

    Enhanced Wnt/beta-catenin signaling and loss of E-cadherin expression are considered hallmarks of tumorigenesis. We previously showed by microarray gene profiling that dietary intake of soy-based AIN-93G diets altered components of Wnt/beta-catenin signaling in rat mammary epithelial cells. To furth...

  6. Progesterone Receptor Membrane Component 1 (PGRMC1 in cell division: its role in bovine granulosa cells mitosis

    Directory of Open Access Journals (Sweden)

    Laura Terzaghi

    2015-07-01

    Full Text Available The present studies were aimed to assess Progesterone Receptor Membrane Component-1 (PGRMC1 role in regulating bovine granulosa cells (bGC mitosis. First, we performed immunofluorescence studies on in vitro cultured bGC collected from antral follicles, which showed that PGRMC1 localizes to the spindle apparatus in mitotic cells. Then, to evaluate PGRMC1 effect on cell proliferation we silenced its expression with RNA interference technique (RNAi. Quantitative RT-PCR and immunoblotting confirmed down-regulation of PGRMC1 expression, when compared to CTRL-RNAi treated bGC (p<0.05. After 72h of culture, PGRMC1 silencing determined a lower growth rate (p<0.05 and a higher percentage of cells arrested at G2/M phase as assessed by flowcytometry (p<0.05. Accordingly, live imaging studies revealed more aberrant mitosis and a delayed M-phase in PGRMC1-RNAi treated cells compared to CTRL-RNAi group (p<0.05. These data confirmed that PGRMC1 is directly involved in bGC mitosis and ongoing preliminary studies are aimed to elucidate its putative mechanisms of action. Since PGRMC1 is a membrane protein, we hypothesize its possible involvement in vesicular trafficking and endocytosis, which is in turn an important process to assure proper cell division. To assess this hypothesis, we have preliminarily conducted immunofluorescence and in situ proximity ligation assay experiments that showed PGRMC1 co-localization and direct interaction with clathrin. This is important since clathrin is an essential protein for both endosomes formation, and cell division acting directly on the spindle apparatus. Thus our studies set the stage for analysis aimed to further characterize PGRMC1’s mechanism of action in mitotic cell.

  7. Malignant transformation in a hybrid schwannoma/perineurioma: Addition to the spectrum of a malignant peripheral nerve sheath tumor

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2011-01-01

    Full Text Available Benign nerve sheath tumors include schwannomas, neurofibromas and perineuriomas. The malignant counterpart of a nerve sheath tumor is designated as a malignant peripheral nerve sheath tumor (MPNST. Lately, benign nerve sheath tumors comprising more than one component have been described, including hybrid schwannomas/perineuriomas. However, malignant transformation in a hybrid schwannoma/perineurioma has not been documented so far. Herein, we present a rare case of a young adult male who presented with a soft tissue mass in his right thigh that was excised elsewhere and submitted to us for histopathological review. One of the tissue sections displayed histopathological features of a hybrid schwannoma/perineurioma, including alternate arrangement of benign schwann and perineurial cells, reinforced with S100-P and epithelial membrane antigen positivity, respectively, along with low MIB1 and negative p53 immunostaining. The other two tissue sections showed a spindly sarcomatous tumor that was immunohistochemically positive for S100-P, CD34, p53 and exhibited high MIB1 (30-40%. Diagnosis of a MPNST arising in a hybrid schwannoma/perineurioma was made. This unusual case forms yet another addition to the spectrum of a MPNST.

  8. Functional components in Scutellaria barbata D. Don with anti-inflammatory activity on RAW 264.7 cells

    Directory of Open Access Journals (Sweden)

    Hsin-Lan Liu

    2018-01-01

    Full Text Available The objectives of this study were to determine the variety and amount of various functional components in Scutellaria barbata D. Don as well as study their anti-inflammatory activity on RAW 264.7 cells. Both ethanol and ethyl acetate extracts were shown to contain the functional components including phenolics, flavonoids, chlorophylls, and carotenoids, with the former mainly composed of phenolics and flavonoids, and the latter of carotenoids and chlorophylls. Both extracts could significantly inhibit (p < 0.05 the production of lipopolysaccharide-induced nitric oxide, prostaglandin E2, interlukin-6, and interlukin-1β, as well as the expressions of phosphor extracellular signal-regulated kinase and phosphor-c-Jun N-terminal kinase (p-JNK, but failed to retard tumor necrosis factor-α expression. Both ethanol and ethyl acetate extracts had a dose-dependent anti-inflammatory activity on RAW 264.7 cells. Furthermore, the anti-inflammatory efficiency can be varied for both ethanol and ethyl acetate extracts, which can be attributed to the presence of different varieties and amounts of functional components, as mentioned above. This finding suggested that S. Barbata extract may be used as an anti-inflammatory agent for possible future biomedical application.

  9. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-01-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC

  10. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  11. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    Science.gov (United States)

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  12. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells.

    Directory of Open Access Journals (Sweden)

    Marvin R Diaz

    Full Text Available Cerebellar granule cells (CGNs are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-I(tonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-I(tonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na(+/K(+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23-30. Under these conditions, we reliably detected a GoC-dependent component of CGN-I(tonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-I(tonic. Inhibition of the Na(+/K(+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na(+/K(+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.

  13. Secretory production of cell wall components by Saccharomyces cerevisiae protoplasts in static liquid culture.

    Science.gov (United States)

    Aoyagi, Hideki; Ishizaka, Mikiko; Tanaka, Hideo

    2012-04-01

    When protoplasts of Saccharomyces cerevisiae T7 and IFO 0309 are cultured in a static liquid culture at 2.5 × 10(6) protoplasts/ml, cell wall regeneration does not occur and cell wall components (CWC) are released into the culture broth. By using a specialized fluorometer, the concentrations of CWC could be measured on the basis of the fluorescence intensity of the CWC after staining with Fluostain I. The inoculum concentration, pH, and osmotic pressure of the medium were important factors for the production of CWC in culture. Under optimal culture conditions, S. cerevisiae T7 protoplasts produced 0.91 mg/ml CWC after 24 h. The CWC induced the tumor necrosis factor-α production about 1.3 times higher than that of the commercially available β-1,3/1,6-glucan from baker's yeast cells.

  14. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    OpenAIRE

    Marcinkoski, J.; Vijayagopal, R.; Kast, J.; Duran, A.

    2016-01-01

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representat...

  15. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    Science.gov (United States)

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.

  16. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  17. Analysis of Active Components in Salvia Miltiorrhiza Injection Based on Vascular Endothelial Cell Protection

    Directory of Open Access Journals (Sweden)

    Shen Jie

    2014-09-01

    Full Text Available Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI. HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  18. Identification of Novel Cell Wall Components

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  19. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion

    Directory of Open Access Journals (Sweden)

    Luciana C. Gomes

    2017-07-01

    Full Text Available Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC, both operated at the same average wall shear stress (0.07 Pa as determined by computational fluid dynamics (CFD. It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%. These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.

  20. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42

    Directory of Open Access Journals (Sweden)

    Zi-hao Liang

    2015-01-01

    Full Text Available The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10 -10 M and 1 × 10 -5 M of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10 -6 M β-asarone and eugenol. The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  1. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Science.gov (United States)

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  2. On the applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Curzio, Edgar [ORNL; Radovic, Miladin [Texas A& M University; Luttrell, Claire R [ORNL

    2016-01-01

    The applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells (SOFC) is investigated by measuring the failure rate of Ni-YSZ when subjected to a temperature gradient and comparing it with that predicted using the Ceramics Analysis and Reliability Evaluation of Structures (CARES) code. The use of a temperature gradient to induce stresses was chosen because temperature gradients resulting from gas flow patterns generate stresses during SOFC operation that are the likely to control the structural reliability of cell components The magnitude of the predicted failure rate was found to be comparable to that determined experimentally, which suggests that such probabilistic analyses are appropriate for predicting the structural reliability of materials and components for SOFCs. Considerations for performing more comprehensive studies are discussed.

  3. Component composition of essential oils and ultrastructure of secretory cells of resin channel needles Juniperus communis (Cupressaceae

    Directory of Open Access Journals (Sweden)

    N. V. Gerling

    2015-12-01

    Full Text Available The results of determining the qualitative and quantitative composition of essential oil Juniperus communis, growing under the canopy of spruce blueberry sphagnum subzone middle taiga. Juniperus communis essential oil is liquid light yellow color. The content of essential oil was 0.46 % in shoots with needles. 37 substances of components identified. Mass fraction of components in the essential oil of Juniperus communis reached 89 %. The highest percentage of occupied fraction of monoterpenes (82.3 %, the proportion of sesquiterpenes less than 0.5 % of the total composition of essential oils, alcohols 3.5 and 0.7 % esters. In monoterpenes fraction predominant α-pinene (24.5–32.6 %, β-pinene (15–20.3 % and α-phellandrene (6.4–8.8 %. Essential oil of Juniperus communis is characterized by high content of monoterpenoids in contrast to other conifers of the taiga zone. All stages of biosynthesis essential oils occur in the epithelial cells of the resin channel (terpenoidogennyh cells. An oval shape have epithelial cells of the resin channel needles in transverse sections the Juniperus communis, which is situated vacuole in the center. Large number of lipid globules (up to 40 noted in the hyaloplasm of explored cells. Leucoplasts surrounded by membranes of smooth endoplasmic reticulum in cross sections of epithelial cells in resin channel of juniper. Endoplasmic reticulum is poorly developed in epithelial cells, which corresponds to the low content of sesquiterpenes in the needles during the study period. Development of large leucoplasts and large number of mitochondria associated with predominance of synthesis monoterpenoids the in the epithelium cells resin channel.

  4. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components?

    Science.gov (United States)

    Tosar, Juan Pablo; Cayota, Alfonso; Eitan, Erez; Halushka, Marc K; Witwer, Kenneth W

    2017-01-01

    In a recently published study, Anna Krichevsky and colleagues raise the important question of whether results of in vitro extracellular RNA (exRNA) studies, including extracellular vesicle (EV) investigations, are confounded by the presence of RNA in cell culture medium components such as foetal bovine serum (FBS). The answer, according to their data, is a resounding "yes". Even after lengthy ultracentrifugation to remove bovine EVs from FBS, the majority of exRNA in FBS remained. Although technical factors may affect the degree of depletion, residual EVs and exRNA in FBS could influence the conclusions of in vitro studies: certainly, for secreted RNA, and possibly also for cell-associated RNA. In this commentary, we critically examine some of the literature in this field, including a recent study from some of the authors of this piece, in light of the Wei et al. study and explore how cell culture-derived RNAs may affect what we think we know about EV RNAs. These findings hold particular consequence as the field moves towards a deeper understanding of EV-RNA associations and potential functions.

  5. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  6. Osteoblast cell membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry for screening specific active components from traditional Chinese medicines.

    Science.gov (United States)

    Wang, Nani; Zhang, Qiaoyan; Xin, Hailiang; Shou, Dan; Qin, Luping

    2017-11-01

    A method using osteoblast membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry was developed to recognize and identify the specific active components from traditional Chinese medicines. Primary rat osteoblasts were used for the preparation of the stationary phase in the cell chromatography method. Retention components from the cell chromatography were collected and analyzed by liquid chromatography with time-of-flight mass spectrometry. This method was applied in screening active components from extracts of four traditional Chinese medicines. In total, 24 potentially active components with different structures were retained by osteoblast cell chromatography. There were five phenolic glucosides and one triterpenoid saponin from Curculigo orchioides Gaertn, two organic acids and ten flavonoids from Epimedium sagittatum Maxim, one phthalide compound and one organic acid from Angelica sinensis Diels, and two flavonoids and two saponins from Anemarrhena asphodeloides Bunge. Among those, four components (icariin, curculigoside, ferulaic acid, and timosaponin BII) were used for in vitro pharmacodynamics validation. They significantly increased the osteoblast proliferation, alkaline phosphatase activity, levels of bone gla protein and collagen type 1, and promoted mineralized nodule formation. The developed method was an effective screening method for finding active components from complex medicines that act on bone diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    Science.gov (United States)

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design and development of major balance of plant components in solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wen-Tang; Huang, Cheng-Nan; Tan, Hsueh-I; Chao, Yu [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546 (Taiwan, Province of China); Yen, Tzu-Hsiang [Green Technology Research Institute, CPC Corporation, Chia-Yi City 60036 (Taiwan, Province of China)

    2013-07-01

    The balance of plant (BOP) of a Solid Oxide Fuel Cell (SOFC) system with a 2 kW stack and an electric efficiency of 40% is optimized using commercial GCTool software. The simulation results provide a detailed understanding of the optimal operating temperature, pressure and mass flow rate in all of the major BOP components, i.e., the gas distributor, the afterburner, the reformer and the heat exchanger. A series of experimental trials are performed to validate the simulation results. Overall, the results presented in this study not only indicate an appropriate set of operating conditions for the SOFC power system, but also suggest potential design improvements for several of the BOP components.

  9. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  10. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  11. Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-12-01

    Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.

  12. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells.

    Science.gov (United States)

    Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu

    2017-12-18

    The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.

  13. The expression of essential components for human influenza virus internalisation in Vero and MDCK cells.

    Science.gov (United States)

    Ugiyadi, Maharani; Tan, Marselina I; Giri-Rachman, Ernawati A; Zuhairi, Fawzi R; Sumarsono, Sony H

    2014-05-01

    MDCK and Vero cell lines have been used as substrates for influenza virus replication. However, Vero cells produced lower influenza virus titer yield compared to MDCK. Influenza virus needs molecules for internalisation of the virus into the host cell, such as influenza virus receptor and clathrin. Human influenza receptor is usually a membrane protein containing Sia(α2,6) Gal, which is added into the protein in the golgi apparatus by α2,6 sialyltransferase (SIAT1). Light clathrin A (LCA), light clathrin B (LCB) and heavy clathrin (HC) are the main components needed for virus endocytosis. Therefore, it is necessary to compare the expression of SIAT1 and clathrin in Vero and MDCK cells. This study is reporting the expression of SIAT1 and clathrin observed in both cells with respect to the levels of (1) RNA by using RT-PCR, (2) protein by using dot blot analysis and confocal microscope. The results showed that Vero and MDCK cells expressed both SIAT1 and clathrin proteins, and the expression of SIAT1 in MDCK was higher compared to Vero cells. On the other hand, the expressions of LCA, LCB and HC protein in MDCK cells were not significantly different to Vero cells. This result showed that the inability of Vero cells to internalize H1N1 influenza virus was possibly due to the lack of transmembrane protein receptor which contained Sia(α2,6) Gal.

  14. Fabrication and Characterizations of Materials and Components for Intermediate Temperature Fuel Cells and Water Electrolysers

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Prag, Carsten Brorson; Li, Qingfeng

    The worldwide development of fuel cells and electrolysers has so far almost exclusively addressed either the low temperature window (20-200 °C) or the high temperature window (600-1000 °C). This work concerns the development of key materials and components of a new generation of fuel cells...... and electrolysers for operation in the intermediate temperature range from 200 to 400 °C. The intermediate temperature interval is of importance for the use of renewable fuels. Furthermore electrode kinetics is significantly enhanced compared to when operating at low temperature. Thus non-noble metal catalysts...... might be used. One of the key materials in the fuel cell and electrolyser systems is the electrolyte. Proton conducting materials such as cesium hydrogen phosphates, zirconium hydrogen phosphates and tin pyrophosphates have been investigated by others and have shown interesting potential....

  15. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  16. Eosinophils Regulate Interferon Alpha Production in Plasmacytoid Dendritic Cells Stimulated with Components of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Skrzeczynska-Moncznik, Joanna; Zabieglo, Katarzyna; Bossowski, Jozef P; Osiecka, Oktawia; Wlodarczyk, Agnieszka; Kapinska-Mrowiecka, Monika; Kwitniewski, Mateusz; Majewski, Pawel; Dubin, Adam; Cichy, Joanna

    2017-03-01

    Eosinophils constitute an important component of helminth immunity and are not only associated with various allergies but are also linked to autoinflammatory disorders, including the skin disease psoriasis. Here we demonstrate the functional relationship between eosinophils and plasmacytoid dendritic cells (pDCs) as related to skin diseases. We previously showed that pDCs colocalize with neutrophil extracellular traps (NETs) in psoriatic skin. Here we demonstrate that eosinophils are found in psoriatic skin near neutrophils and NETs, suggesting that pDC responses can be regulated by eosinophils. Eosinophils inhibited pDC function in vitro through a mechanism that did not involve cell contact but depended on soluble factors. In pDCs stimulated by specific NET components, eosinophil-conditioned media attenuated the production of interferon α (IFNα) but did not affect the maturation of pDCs as evidenced by the unaltered expression of the costimulatory molecules CD80 and CD86. As pDCs and IFNα play a key role in autoimmune skin inflammation, these data suggest that eosinophils may influence autoinflammatory responses through their impact on the production of IFNα by pDCs.

  17. Detection of the Merkel cell polyomavirus in the neuroendocrine component of combined Merkel cell carcinoma.

    Science.gov (United States)

    Kervarrec, Thibault; Samimi, Mahtab; Gaboriaud, Pauline; Gheit, Tarik; Beby-Defaux, Agnès; Houben, Roland; Schrama, David; Fromont, Gaëlle; Tommasino, Massimo; Le Corre, Yannick; Hainaut-Wierzbicka, Eva; Aubin, Francois; Bens, Guido; Maillard, Hervé; Furudoï, Adeline; Michenet, Patrick; Touzé, Antoine; Guyétant, Serge

    2018-05-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin. The main etiological agent is Merkel cell polyomavirus (MCPyV), detected in 80% of cases. About 5% of cases, called combined MCC, feature an admixture of neuroendocrine and non-neuroendocrine tumor cells. Reports of the presence or absence of MCPyV in combined MCC are conflicting, most favoring the absence, which suggests that combined MCC might have independent etiological factors and pathogenesis. These discrepancies might occur with the use of different virus identification assays, with different sensitivities. In this study, we aimed to determine the viral status of combined MCC by a multimodal approach. We histologically reviewed 128 cases of MCC and sub-classified them as "combined" or "conventional." Both groups were compared by clinical data (age, sex, site, American Joint Committee on Cancer [AJCC] stage, immunosuppression, risk of recurrence, and death during follow-up) and immunochemical features (cytokeratin 20 and 7, thyroid transcription factor 1 [TTF1], p53, large T antigen [CM2B4], CD8 infiltrates). After a first calibration step with 12 conventional MCCs and 12 cutaneous squamous cell carcinomas as controls, all eight cases of combined MCC were investigated for MCPyV viral status by combining two independent molecular procedures. Furthermore, on multiplex genotyping assay, the samples were examined for the presence of other polyoma- and papillomaviruses. Combined MCC differed from conventional MCC in earlier AJCC stage, increased risk of recurrence and death, decreased CD8 infiltrates, more frequent TTF1 positivity (5/8), abnormal p53 expression (8/8), and frequent lack of large T antigen expression (7/8). With the molecular procedure, half of the combined MCC cases were positive for MCPyV in the neuroendocrine component. Beta papillomaviruses were detected in 5/8 combined MCC cases and 9/12 conventional MCC cases. In conclusion, the detection of MCPyV DNA in half of

  18. Screening antiallergic components from Carthamus tinctorius using rat basophilic leukemia 2H3 cell membrane chromatography combined with high-performance liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao

    2015-02-01

    Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs: An Achievement of Significant Morphological, Numerical and Functional Recovery.

    Directory of Open Access Journals (Sweden)

    Tetsuro Tamaki

    Full Text Available Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34 and CD34-/45-/29+ (Sk-DN/29+ cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells were also observed. A significant tetanic tension recovery (over 90% of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon and functional (80% vs. 60% in tetanus recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks of recovery was observed in both groups with the expression of key factors (mRNA and protein levels, suggesting the paracrine effects to angiogenesis. These results suggested that the

  20. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

    Science.gov (United States)

    Tamaki, Tetsuro; Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk

  1. Neem components as potential agents for cancer prevention and treatment

    Science.gov (United States)

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  2. Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects.

    Science.gov (United States)

    Nishiyama, Kazuhiko; Okudera, Toshimitsu; Watanabe, Taisuke; Isobe, Kazushige; Suzuki, Masashi; Masuki, Hideo; Okudera, Hajime; Uematsu, Kohya; Nakata, Koh; Kawase, Tomoyuki

    2016-11-01

    Platelet-rich plasma (PRP) is widely used in regenerative medicine because of its high concentrations of various growth factors and platelets. However, the distribution of blood cell components has not been investigated in either PRP or other PRP derivatives. In this study, we focused on plasma rich in growth factors (PRGF), a PRP derivative, and analyzed the distributions of platelets and white blood cells (WBCs). Peripheral blood samples were collected from healthy volunteers ( N  = 14) and centrifuged to prepare PRGF and PRP. Blood cells were counted using an automated hematology analyzer. The effects of PRP and PRGF preparations on cell proliferation were determined using human periosteal cells. In the PRGF preparations, both red blood cells and WBCs were almost completely eliminated, and platelets were concentrated by 2.84-fold, whereas in the PRP preparations, both platelets and WBCs were similarly concentrated by 8.79- and 5.51-fold, respectively. Platelet counts in the PRGF preparations were positively correlated with platelet counts in the whole blood samples, while the platelet concentration rate was negatively correlated with red blood cell counts in the whole blood samples. In contrast, platelet counts and concentration rates in the PRP preparations were significantly influenced by WBC counts in whole blood samples. The PRP preparations, but not the PRGF preparations, significantly suppressed cell growth at higher doses in vitro. Therefore, these results suggest that PRGF preparations can clearly be distinguished from PRP preparations by both inclusion of WBCs and dose-dependent stimulation of periosteal cell proliferation in vitro.

  3. Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J. J.; Noufi, R.

    2011-09-01

    This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

  4. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    Science.gov (United States)

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Optimizing the fabrication process and interplay of device components of polymer solar cells using a field-based multiscale solar-cell algorithm

    International Nuclear Information System (INIS)

    Donets, Sergii; Pershin, Anton; Baeurle, Stephan A.

    2015-01-01

    Both the device composition and fabrication process are well-known to crucially affect the power conversion efficiency of polymer solar cells. Major advances have recently been achieved through the development of novel device materials and inkjet printing technologies, which permit to improve their durability and performance considerably. In this work, we demonstrate the usefulness of a recently developed field-based multiscale solar-cell algorithm to investigate the influence of the material characteristics, like, e.g., electrode surfaces, polymer architectures, and impurities in the active layer, as well as post-production treatments, like, e.g., electric field alignment, on the photovoltaic performance of block-copolymer solar-cell devices. Our study reveals that a short exposition time of the polymer bulk heterojunction to the action of an external electric field can lead to a low photovoltaic performance due to an incomplete alignment process, leading to undulated or disrupted nanophases. With increasing exposition time, the nanophases align in direction to the electric field lines, resulting in an increase of the number of continuous percolation paths and, ultimately, in a reduction of the number of exciton and charge-carrier losses. Moreover, we conclude by modifying the interaction strengths between the electrode surfaces and active layer components that a too low or too high affinity of an electrode surface to one of the components can lead to defective contacts, causing a deterioration of the device performance. Finally, we infer from the study of block-copolymer nanoparticle systems that particle impurities can significantly affect the nanostructure of the polymer matrix and reduce the photovoltaic performance of the active layer. For a critical volume fraction and size of the nanoparticles, we observe a complete phase transformation of the polymer nanomorphology, leading to a drop of the internal quantum efficiency. For other particle-numbers and -sizes

  6. Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells

    International Nuclear Information System (INIS)

    Hansen, O.; Clausen, T.

    1988-01-01

    A recurring problem in the characterization of plasma membrane enzymes in tissues and cells is whether the samples tested are representative for the entire population of enzyme molecules present in the starting material. Measurements of [ 3 H]-ouabain binding, enzyme activity, and maximum transport capacity all indicate that the concentration of Na + -K + pumps in mammalian skeletal muscle is high. Studies on Na + -K + -ATPase activity in isolated sarcolemma, however, generally give little or no information on total cellular enzyme concentration. Due to the low and variable enzyme recovery, such subcellular preparations may, therefore, give misleading data on factors regulating Na + -K + -ATPase in heart and skeletal muscle cells. As the same isolation and purification procedures are used for the study of other sarcolemmal components, this inadequate recovery has general implications for statements on regulatory changes in the sarcolemmal composition of muscle cells. On the other hand, complete quantification of Na + -K + -ATPase in muscle tissue can now be achieved using simple procedures and the entire material. Recent studies have shown that regulatory changes in the entire population of Na + -K + pumps in muscle can be quantified in measurements of [ 3 H]-ouabain binding, K + -activated 3-O-methylfluorescein phosphatase activity, as well as maximum ouabain suppressible Na + -K + transport capacity

  7. Histopathological examination of nerve samples from pure neural leprosy patients: obtaining maximum information to improve diagnostic efficiency.

    Science.gov (United States)

    Antunes, Sérgio Luiz Gomes; Chimelli, Leila; Jardim, Márcia Rodrigues; Vital, Robson Teixeira; Nery, José Augusto da Costa; Corte-Real, Suzana; Hacker, Mariana Andréa Vilas Boas; Sarno, Euzenir Nunes

    2012-03-01

    Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL). When acid-fast bacilli (AFB) are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies) to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN)] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres) than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.

  8. Comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography for screening anti-tumor components from Radix Sophorae flavescentis.

    Science.gov (United States)

    Wang, Qiang; Xu, Junnan; Li, Xiang; Zhang, Dawei; Han, Yong; Zhang, Xu

    2017-07-01

    Radix Sophorae flavescentis is generally used for the treatment of different stages of prostate cancer in China. It has ideal effects when combined with surgical treatment and chemotherapy. However, its active components are still ambiguous. We devised a comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography system for screening anti-prostate cancer components in Radix Sophorae flavescentis. Gefitinib and dexamethasone were chosen as positive and negative drugs respectively for validation and optimization the selectivity and suitability of the comprehensive two-dimensional chromatographic system. Five compounds, sophocarpine, matrine, oxymatrine, oxysophocarpine, and xanthohumol were found to have significant retention behaviors on the PC-3 cell membrane chromatography and were unambiguously identified by time-of-flight mass spectrometry. Cell proliferation and apoptosis assays confirmed that all five compounds had anti-prostate cancer effects. Matrine and xanthohumol had good inhibitory effects, with half maximal inhibitory concentration values of 0.893 and 0.137 mg/mL, respectively. Our comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatographic system promotes the efficient recognition and rapid analysis of drug candidates, and it will be practical for the discovery of prostate cancer drugs from complex traditional Chinese medicines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Expression patterns of cell cycle components in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors

    NARCIS (Netherlands)

    Agesen, Trude Holmeide; Florenes, Viva Ann; Molenaar, Willemina M.; Lind, Guro E.; Berner, Jeane-Marie; Plaat, Boudewijn E.C.; Komdeur, Rudy; Myklebost, Ola; van den Berg, Eva; Lothe, Ragnhild A.

    The molecular biology underlying the development of highly malignant peripheral nerve sheath tumors (MPNSTs) remains mostly unknown. In the present study, the expression pattern of 10 selected cell cycle components is investigated in a series of 15 MPNSTs from patients with (n = 9) or without (n =

  10. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  11. Recommendations for the use of irradiated components

    International Nuclear Information System (INIS)

    2007-01-01

    The disease 'graft-versus-host' associated with the transfusion (EIVH TA) is an adverse reaction rare but fatal, linked to the proliferation of T cells that are found in cellular components and reacting against the receptor's tissues). Gamma irradiation of cellular components is used as a prevention method because it deactivates the lymphocytes T by reducing its survival and by restraining its proliferation without producing alterations in others cells function. Recommendations for the use of gamma irradiation along with clinical indications for pediatric patients, patients with acquired immunosuppression and immunocompetent patients are given in this study. A brief description of operative aspects of irradiation procedures such as components to be irradiated, irradiation method, irradiation dose and viability of irradiated components is given [es

  12. Magnetic resonance imaging of nerve root inflammation in the Guillain-Barre syndrome

    International Nuclear Information System (INIS)

    Perry, J.R.; Fung, A.; Poon, P.; Bayer, N.

    1994-01-01

    We report gadolinium-enhancing nerve root lesions in a 52-year-old man with typical Guillain-Barre syndrome (GBS). This enhancement correlates well with the perineurial inflammatory and demyelinating processes known to characterize GBS and other inflammatory neuropathies. MRI should enable further exploration of patterns of disease in GBS and, with further study, perhaps assist in evaluating therapy. (orig.)

  13. Magnetic resonance imaging of nerve root inflammation in the Guillain-Barre syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Perry, J.R. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Neurology; Fung, A. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Radiology; Poon, P. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Radiology; Bayer, N. [St. Michael`s Hospital, Toronto, ON (Canada). Div. of Neurology

    1994-02-01

    We report gadolinium-enhancing nerve root lesions in a 52-year-old man with typical Guillain-Barre syndrome (GBS). This enhancement correlates well with the perineurial inflammatory and demyelinating processes known to characterize GBS and other inflammatory neuropathies. MRI should enable further exploration of patterns of disease in GBS and, with further study, perhaps assist in evaluating therapy. (orig.)

  14. Characterizing components of the Saw Palmetto Berry Extract (SPBE) on prostate cancer cell growth and traction

    International Nuclear Information System (INIS)

    Scholtysek, Carina; Krukiewicz, Aleksandra A.; Alonso, Jose-Luis; Sharma, Karan P.; Sharma, Pal C.; Goldmann, Wolfgang H.

    2009-01-01

    Saw Palmetto Berry Extract (SPBE) is applied for prostate health and treatment of urinary tract infections, nonbacterial prostitis and Benign Prostatic Hyperplasia (BPH) in man. An assumption is that SPBE affects tumor cell progression and migration in breast and prostate tissue. In this work, DU-145 cells were used to demonstrate that SPBE and its sterol components, β-sitosterol and stigmasterol, inhibit prostate cancer growth by increasing p53 protein expression and also inhibit carcinoma development by decreasing p21 and p27 protein expression. In the presence of cholesterol, these features are not only reversed but increased significantly. The results show for the first time the potential of SPBE, β-sitosterol and stigmasterol as potential anti-tumor agents. Since the protein p53 is also regarded as nuclear matrix protein facilitating actin cytoskeletal binding, 2D tractions were measured. The cell adhesion strength in the presence of SPBE, β-sitosterol and cholesterol and the observation was that the increase in p53 expression triggered an increase in the intracellular force generation. The results suggest a dual function of p53 in cells.

  15. Characterizing components of the Saw Palmetto Berry Extract (SPBE) on prostate cancer cell growth and traction.

    Science.gov (United States)

    Scholtysek, Carina; Krukiewicz, Aleksandra A; Alonso, José-Luis; Sharma, Karan P; Sharma, Pal C; Goldmann, Wolfgang H

    2009-02-13

    Saw Palmetto Berry Extract (SPBE) is applied for prostate health and treatment of urinary tract infections, nonbacterial prostitis and Benign Prostatic Hyperplasia (BPH) in man. An assumption is that SPBE affects tumor cell progression and migration in breast and prostate tissue. In this work, DU-145 cells were used to demonstrate that SPBE and its sterol components, beta-sitosterol and stigmasterol, inhibit prostate cancer growth by increasing p53 protein expression and also inhibit carcinoma development by decreasing p21 and p27 protein expression. In the presence of cholesterol, these features are not only reversed but increased significantly. The results show for the first time the potential of SPBE, beta-sitosterol and stigmasterol as potential anti-tumor agents. Since the protein p53 is also regarded as nuclear matrix protein facilitating actin cytoskeletal binding, 2D tractions were measured. The cell adhesion strength in the presence of SPBE, beta-sitosterol and cholesterol and the observation was that the increase in p53 expression triggered an increase in the intracellular force generation. The results suggest a dual function of p53 in cells.

  16. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.

    Science.gov (United States)

    Desgagné-Penix, Isabel; Khan, Morgan F; Schriemer, David C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2010-11-18

    Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates

  17. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    Science.gov (United States)

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  18. Review of manufacturing processes for fabrication of SOFC components

    International Nuclear Information System (INIS)

    Stacey, B.; Badwal, S.P.S.; Foger, K.

    1998-01-01

    In order for fuel cell technology to be commercial, it must meet stringent criteria of reliability, life-time expectations and cost. While materials play an important role in determining these parameters, engineering design and manufacturing processes for fuel cell stack components are equally important. Manufacturing processes must be low cost and suitable for large volume production for the technology to be viable and competitive in the market place. Several processes suitable for the production of ceramic components used in solid oxide fuel cells as well as ceramic coating techniques required for the protection of some metal components have been described. Copyright (1998) Australasian Ceramic Society

  19. Engineering design of the IFMIF EVEDA reference test cell and key components

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kuo, E-mail: kuo.tian@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Arbeiter, Frederik; Chen, Yuming; Heinzel, Volker; Kondo, Keitaro [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Mittwollen, Martin [Institute for Material Handling and Logistics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2014-10-15

    The latest design updates of the IFMIF-EVEDA reference test cell (TC) are described with emphasis on the following key components: active cooling pipes for concrete biological shielding walls and stainless steel liner, TC gas leak tight boundary, and piping and cabling inside TC and between TC and the access cell (AC). Water cooling is adopted for concrete shielding walls and the liner. Buried pipes are selected for active cooling of the TC surrounding shielding walls; directly welded pipes on the liner are used to remove nuclear heat of the liner. Technical features and layout of the cooling pipes are preliminary defined. The TC vacuum boundary, which includes the TC liner, an independent TC cover plate, a rubber based sealing gasket, and welding seams between interface shielding plugs and TC liner, is described. Engineering design of the piping and cabling plugs as well as the arrangement of pipes and cables under the TC covering plate and the AC floor are updated. Pipes and cable tunnels inside the shielding plugs are arranged with several bends for minimizing neutron streaming from inside to outside of the TC. Pipes, cables, and the corresponding penetrations between the TC and the AC are carefully arranged for convenient access and maintenances.

  20. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4+ Escherichia coli on intestinal cells.

    Science.gov (United States)

    Roselli, Marianna; Finamore, Alberto; Hynönen, Ulla; Palva, Airi; Mengheri, Elena

    2016-09-29

    The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698 T is able to reduce the enterotoxigenic F4 + Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698 T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698 T cell wall components in the protection against F4 + ETEC infection using the intestinal Caco-2 cell line. Purified cell wall fragments (CWF) from L. amylovorus DSM 16698 T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4 + ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4 + ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4 + ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4 + ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4 + ETEC, inhibited membrane damage and prevented NF-kB activation. The results indicate that the various components of L. amylovorus DSM 16698 T cell wall may counteract the damage caused by F4 + ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4 + ETEC infection. U-CWF are

  1. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    Science.gov (United States)

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  2. Neisseria meningitidis differentially controls host cell motility through PilC1 and PilC2 components of type IV Pili.

    Directory of Open Access Journals (Sweden)

    Philippe C Morand

    Full Text Available Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and Pil

  3. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage.

    Science.gov (United States)

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five-ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility.

  4. Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface.

    Directory of Open Access Journals (Sweden)

    Benoit-Joseph Laventie

    Full Text Available Panton-Valentine leukocidin (PVL, a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10(-10 M compared to the class F component of PVL, LukF-PV (Kd∼10(-9 M. Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.

  5. Maintaining sufficient nanos is a critical function for polar granule component in the specification of primordial germ cells.

    Science.gov (United States)

    Deshpande, Girish; Spady, Emma; Goodhouse, Joe; Schedl, Paul

    2012-11-01

    Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell-specific expression of Nos is sufficient to ameliorate the pgc phenotype.

  6. Influence of dietary components on regulatory T cells

    DEFF Research Database (Denmark)

    Navikas, Shohreh; Teimer, Roman; Bockermann, Robert

    2011-01-01

    It is no longer a myth that a balanced diet is fundamental for general health. Common dietary components including vitamins A and D, omega-3 and probiotics are now widely accepted to be essential to protect against many diseases with an inflammatory nature. On the other hand, high fat diets...... components on diseases in which Tregs play a seminal role will be discussed. Among chronic diseases where dietary factors could have a direct influence via modulation of Tregs homeostasis and functions, we will review chronic tissue-specific autoimmune and inflammatory conditions such as IBD, T1D, MS, RA...

  7. Infection with the oncogenic human papillomavirus type 59 alters protein components of the cornified cell envelope

    International Nuclear Information System (INIS)

    Lehr, Elizabeth; Brown, Darron R.

    2003-01-01

    Infection of the genital tract with human papillomaviruses (HPVs) leads to proliferative and dysplastic epithelial lesions. The mechanisms used by the virus to escape the infected keratinocyte are not well understood. Infection of keratinocytes with HPV does not cause lysis, the mechanism used by many viruses to release newly formed virions. For HPV 11, a type associated with a low risk of neoplastic disease, the cornified cell envelope (CCE) of infected keratinocytes is thin and fragile, and transcription of loricrin, the major CCE protein, is reduced. The effects of high-risk HPV infection on components of the CCE have not been previously reported. HPV 59, an oncogenic genital type related to HPV types 18 and 45 was identified in a condylomata acuminata lesion. An extract of this lesion was used to infect human foreskin fragments, which were grown in athymic mice as xenografts. Continued propagation using extracts of xenografts permitted growth of additional HPV 59-infected xenografts. CCEs purified from HPV 59-infected xenografts displayed subtle morphologic abnormalities compared to those derived from uninfected xenografts. HPV 59-infected xenografts revealed dysplastic-appearing cells with mitotic figures. Detection of loricrin, involucrin, and cytokeratin 10 was reduced in HPV 59-infected epithelium, while small proline-rich protein 3 (SPR3) was increased. Reduction in loricrin was most apparent in regions of epithelium containing abundant HPV 59 DNA. Compared to uninfected epithelium, loricrin transcription was decreased in HPV 59-infected epithelium. We conclude that HPV 59 shares with HPV 11 the ability to alter CCE components and to specifically reduce transcription of the loricrin gene. Because loricrin is the major CCE protein, a reduction in this component could alter the physical properties of the CCE, thus facilitating virion release

  8. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  9. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  10. Extracellular matrix components direct porcine muscle stem cell behavior

    International Nuclear Information System (INIS)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-01-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  11. Extracellular matrix components direct porcine muscle stem cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wilschut, Karlijn J. [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Haagsman, Henk P. [Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (Netherlands); Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands)

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  12. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Dobbs, L.G.; Wright, J.R.; Hawgood, S.; Gonzalez, R.; Venstrom, K.; Nellenbogen, J.

    1987-01-01

    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3 H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC 50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 100 0 C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  13. Histopathological examination of nerve samples from pure neural leprosy patients: obtaining maximum information to improve diagnostic efficiency

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Gomes Antunes

    2012-03-01

    Full Text Available Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL. When acid-fast bacilli (AFB are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.

  14. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...... in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...... the experience of all users and not just the few best ones; while overall cell capacity is not compromised....

  15. Preparation of CulnS2 Thin Films on the Glass Substrate by DC Sputtering for Solar Cell Component

    International Nuclear Information System (INIS)

    Bambang Siswanto; Wirjoadi; Darsono

    2007-01-01

    The CuInS 2 alloys were deposited on glass substrate using plasma DC sputtering technique. A CuInS 2 alloy target was made from Cu, In, Se powder with impurity of 99.998%. The deposition process was done with the following process parameter variations: deposition time and substrate temperature were the range of 15 to 45 min and 150 to 300 ℃, the gas pressure was kept at 1.4x10 -1 Torr. The purpose of the research is to obtain the solar cell component of CuInS 2 thin films. The electrical and optical properties measurement has been done by four-point probe and UV-Vis. Crystal structure was analyzed using X-ray diffraction (XRD). The result shows that minimum resistance of CuInS 2 thin films is 35.7 kΩ and optical transmittance is 14.7 %. The crystal structure of CuInS 2 is oriented at (112) plane and by Touc-plot method was obtained that the band gap energy of thin films is 1.45 eV. It could be concluded that the CuInS 2 thin film can be used as a solar cell component. (author)

  16. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance.

    Science.gov (United States)

    Vijayasankaran, Natarajan; Varma, Sharat; Yang, Yi; Mun, Melissa; Arevalo, Silvana; Gawlitzek, Martin; Swartz, Trevor; Lim, Amy; Li, Feng; Zhang, Boyan; Meier, Steve; Kiss, Robert

    2013-01-01

    As the industry moves toward subcutaneous delivery as a preferred route of drug administration, high drug substance concentrations are becoming the norm for monoclonal antibodies. At such high concentrations, the drug substance may display a more intense color than at the historically lower concentrations. The effect of process conditions and/or changes on color is more readily observed in the higher color, high concentration formulations. Since color is a product quality attribute that needs to be controlled, it is useful to study the impact of process conditions and/or modifications on color. This manuscript summarizes cell culture experiments and reports on findings regarding the effect of various media components that contribute to drug substance color for a specific monoclonal antibody. In this work, lower drug substance color was achieved via optimization of the cell culture medium. Specifically, lowering the concentrations of B-vitamins in the cell culture medium has the effect of reducing color intensity by as much as 25%. In addition, decreasing concentration of iron was also directly correlated color intensity decrease of as much as 37%. It was also shown that the color of the drug substance directly correlates with increased acidic variants, especially when increased iron levels cause increased color. Potential mechanisms that could lead to antibody coloration are briefly discussed. © 2013 American Institute of Chemical Engineers.

  17. Estimates of insulin sensitivity and β-cell function in children and adolescents with and without components of the metabolic syndrome

    DEFF Research Database (Denmark)

    Frithioff-Bøjsøe, Christine; Trier, Cæcilie; Esmann Fonvig, Cilius

    2017-01-01

    measures of insulin sensitivity and β-cell function were assessed by the OGTT-derived indices: the Matsuda index, the insulinogenic index, and the oral disposition index. The severity of MetS was assessed by measures of waist circumference, blood pressure, and fasting levels of triglycerides, high......-density lipoprotein cholesterol, and glucose. RESULTS: The 83 children were allocated to one of three groups according to the number of components of MetS: the median body mass index standard deviation score was 0.2 (range -0.6-2.9) in the low MetS risk group (n=36), 2.8 (0.1-4.1) in the high MetS risk group (n=25......INTRODUCTION: The accumulation of components of the metabolic syndrome (MetS) is associated with a disturbed glucose metabolism in obese children. AIM OF STUDY: The aim of the present study was to evaluate the association between MetS and estimates of insulin sensitivity and β-cell function...

  18. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  19. 2-ethylpyridine, a cigarette smoke component, causes mitochondrial damage in human retinal pigment epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    S Mansoor

    2014-01-01

    Full Text Available Purpose: Our goal was to identify the cellular and molecular effects of 2-ethylpyridine (2-EP, a component of cigarette smoke on human retinal pigment epithelial cells (ARPE-19 in vitro. Materials and Methods: ARPE-19 cells were exposed to varying concentrations of 2-EP. Cell viability (CV was measured by a trypan blue dye exclusion assay. Caspase-3/7 and caspase-9 activities were measured by fluorochrome assays. The production of reactive oxygen/nitrogen species (ROS/RNS was detected with a 2′,7′-dichlorodihydrofluorescein diacetate dye assay. The JC-1 assay was used to measure mitochondrial membrane potential (ΔΨm. Mitochondrial redox potential was measured using a RedoxSensor Red kit and mitochondria were evaluated with Mitotracker dye. Results: After 2-EP exposure, ARPE-19 cells showed significantly decreased CV, increased caspase-3/7 and caspase-9 activities, elevated ROS/RNS levels, decreased ΔΨm value and decreased redox fluorescence when compared with control samples. Conclusions: These results show that 2-EP treatment induced cell death by caspase-dependent apoptosis associated with an oxidative stress and mitochondrial dysfunction. These data represent a possible mechanism by which smoking contributes to age-related macular degeneration and other retinal diseases and identify mitochondria as a target for future therapeutic interventions.

  20. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    Science.gov (United States)

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  1. Convergence of PASTA kinase and two-component signaling in response to cell wall stress in Enterococcus faecalis.

    Science.gov (United States)

    Kellogg, Stephanie L; Kristich, Christopher J

    2018-04-09

    Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing

  2. Integration of remote refurbishment performed on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Antola, L. [AMEC, 31 Parc du Golf, CS 90519, 13596 Aix en Provence (France); Beaudoin, V. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Dremel, C. [Westinghouse, Electrique France/Astare, 122 Avenue de Hambourg, 13008 Marseille (France); Evrard, D. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Friconneau, J.P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Levesy, B.; Pitcher, C.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • System engineering approach to consolidate requirements to modify the layout of the Hot Cell. • Illustration of the loop between requirement and design. • Verification process. - Abstract: Internal components of the ITER Tokamak are replaced and transferred to the Hot Cell by remote handling equipment. These components include port plugs, cryopumps, divertor cassettes, blanket modules, etc. They are brought to the refurbishment area of the ITER Hot Cell Building for cleaning and maintenance, using remote handling techniques. The ITER refurbishment area will be unique in the world, when considering combination of size, quantity of complex component to refurbish in presence of radiation, activated dust and tritium. The refurbishment process to integrate covers a number of workstations to perform specific remote operations fully covered by a mast on crane system. This paper describes the integration of the Refurbishment Area, explaining the functions, the methodology followed, some illustrations of trade-off and safety improvements.

  3. [Participation of the piRNA pathway in recruiting a component of RNA polymerase I transcription initiation complex to germline cell nucleoli].

    Science.gov (United States)

    Fefelova, E A; Stolyarenko, A D; Yakushev, E Y; Gvozdev, V A; Klenov, M S

    2017-01-01

    Proteins of the Piwi family and short Piwi-interacting RNAs (piRNAs) ensure the protection of the genome from transposable elements. We have previously shown that nuclear Piwi protein tends to concentrate in the nucleoli of the cells of Drosophila melanogaster ovaries. It could be hypothesized that the function of Piwi in the nucleolus is associated with the repression of R1 and R2 retrotransposons inserted into the rDNA cluster. Here, we show that Piwi participates in recruiting Udd protein to nucleoli. Udd is a component of the conserved Selectivity Factor I-like (SL1-like) complex, which is required for transcription initiation by RNA polymerase I. We found that Udd localization depends on Piwi in germline cells, but not in somatic cells of the ovaries. In contrast, knockdowns of the SL1-like components (Udd or TAF1b) do not disrupt Piwi localization. We also observed that the absence of Udd or TAF1b in germline cells, as well as the impairment of Piwi nuclear localization lead to the accumulation of late stage egg chambers in the ovaries, which could be explained by reduced rRNA transcription. These results allow us to propose for the first time a role for Piwi in the nucleolus that is not directly associated with transposable element repression.

  4. Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.

    Science.gov (United States)

    Peluso, John J

    2011-08-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  6. Gallic Acid Is the Major Active Component of Cortex Moutan in Inhibiting Immune Maturation of Human Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Ben Chung Lap Chan

    2015-09-01

    Full Text Available Atopic dermatitis (AD is a widely prevalent and chronically relapsing inflammatory skin disease. Penta Herbs Formula (PHF is efficacious in improving the quality of life and reducing topical corticosteroid used in children with AD and one of the active herbs it contains is Cortex Moutan. Recent studies showed that altered functions of dendritic cells (DC were observed in atopic individuals, suggesting that DC might play a major role in the generation and maintenance of inflammation by their production of pro-inflammatory cytokines. Hence, the aims of the present study were to identify the major active component(s of Cortex Moutan, which might inhibit DC functions and to investigate their possible interactions with conventional corticosteroid on inhibiting the development of DC from monocytes. Monocyte-derived dendritic cells (moDC culture model coupled with the high-speed counter-current chromatography (HSCCC, high pressure liquid chromatography (HPLC and Liquid Chromatography-Mass Spectrometry (LCMS analyses were used. Gallic acid was the major active component from Cortex Moutan which could dose dependently inhibit interleukin (IL-12 p40 and the functional cluster of differentiation (CD surface markers CD40, CD80, CD83 and CD86 expression from cytokine cocktail-activated moDC. Gallic acid could also lower the concentration of hydrocortisone required to inhibit the activation of DC.

  7. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  8. Exothermic reactions among components of lithium-sulfur dioxide and lithium-thionyl chloride cells

    Science.gov (United States)

    Dallek, S.; James, S. D.; Kilroy, W. P.

    1981-03-01

    Differential scanning calorimetry measurements were made on various components of Li-SOCl2 cells to identify those combinations that react exothermically and might cause batteries to explode. The passivation of Li by SO2 in acetonitrile (AN) was characterized over a wide range of SO2 concentration (0.1-14M). In the absence of SO2, trace additions of water greatly lower the exothermicity of the Li-AN reaction. The Li-SOCl2-LiAlCl4 mixture is inert over a wide range of temperature well above the melting point of Li. However, adding carbon black converts this inert mixture into one which is highly and consistently reactive. The addition of copper powder enhances carbon's catalytic effect on the reactivity of the Li-SOCl2-LiAlCl4 mixture while trace additions of water have the opposite effect.

  9. Pentoxifylline regulates the cellular adhesion and its allied receptors to extracellular matrix components in breast cancer cells.

    Science.gov (United States)

    Goel, Peeyush N; Gude, Rajiv P

    2014-02-01

    Pentoxifylline (PTX) is a methylxanthine derivative that improves blood flow by decreasing its viscosity. Being an inhibitor of platelet aggregation, it can thus reduce the adhesiveness of cancer cells prolonging their circulation time. This delay in forming secondary tumours makes them more prone to immunological surveillance. Recently, we have evaluated its anti-metastatic efficacy against breast cancer, using MDA-MB-231 model system. In view of this, we had ascertained the effect of PTX on adhesion of MDA-MB-231 cells to extracellular matrix components (ECM) and its allied receptors such as the integrins. PTX affected adhesion of breast cancer cells to matrigel, collagen type IV, fibronectin and laminin in a dose dependent manner. Further, PTX showed a differential effect on integrin expression profile. The experimental metastasis model using NOD-SCID mice showed lesser tumour island formation when treated with PTX compared to the control. These findings further substantiate the anti-adhesive potential of PTX in breast cancer and warrant further insights into the functional regulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Science.gov (United States)

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  11. A new method to evaluate anti-allergic effect of food component by measuring leukotriene B4 from a mouse mast cell line.

    Science.gov (United States)

    Takasugi, Mikako; Muta, Emi; Yamada, Koji; Arai, Hirofumi

    2018-02-01

    Leukotrienes (LTs), chemical mediators produced by mast cells, play an important role in allergic symptoms such as food allergies and hay fever. We tried to construct an evaluation method for the anti-LTB 4 activity of chemical substances using a mast cell line, PB-3c. PB-3c pre-cultured with or without arachidonic acid (AA) was stimulated by calcium ionophore (A23187) for 20 min, and LTB 4 production by the cells was determined by HPLC with UV detection. LTB 4 was not detected when PB-3c was pre-cultured without AA. On the other hand, LTB 4 production by PB-3c pre-cultured with AA was detectable by HPLC, and the optimal conditions of PB-3c for LTB 4 detection were to utilize the cells pre-cultured with 50 µM AA for 48 h. MK-886 (5-lipoxygenase inhibitor) completely inhibited LTB 4 production, but AACOCF 3 (phospholipase A 2 inhibitor) slightly increased LTB 4 production, suggesting that LTB 4 was generated from exogenous free AA through 5-lipoxygenase pathway. We applied this technique to the evaluation of the anti-LTB 4 activity of food components. PB-3c pre-cultured with 50 µM AA for 48 h was stimulated with A23187 in the presence of 50 µM soybean isoflavones (daidzin, genistin, daidzein, and genistein), equol, quercetin, or kaempferol. Genistein, equol, quercetin, and kaempferol strongly inhibited LTB 4 production without cytotoxicity. These results suggest that a new assay system using PB-3c is convenient to evaluate LTB 4 inhibition activity by food components. This method could be utilized for elucidation of the mechanisms of LTB 4 release suppression by food components such as flavonoids and the structure-activity relationship.

  12. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms.We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings.AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric strings. Our findings provide one possible molecular mechanism for clinical

  13. Quantitative determination of Na sup + -K sup + -ATPase and other sarcolemmal components in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, O.; Clausen, T. (Aarhus Univ. (Denmark))

    1988-01-01

    A recurring problem in the characterization of plasma membrane enzymes in tissues and cells is whether the samples tested are representative for the entire population of enzyme molecules present in the starting material. Measurements of ({sup 3}H)-ouabain binding, enzyme activity, and maximum transport capacity all indicate that the concentration of Na{sup +}-K{sup +} pumps in mammalian skeletal muscle is high. Studies on Na{sup +}-K{sup +}-ATPase activity in isolated sarcolemma, however, generally give little or no information on total cellular enzyme concentration. Due to the low and variable enzyme recovery, such subcellular preparations may, therefore, give misleading data on factors regulating Na{sup +}-K{sup +}-ATPase in heart and skeletal muscle cells. As the same isolation and purification procedures are used for the study of other sarcolemmal components, this inadequate recovery has general implications for statements on regulatory changes in the sarcolemmal composition of muscle cells. On the other hand, complete quantification of Na{sup +}-K{sup +}-ATPase in muscle tissue can now be achieved using simple procedures and the entire material. Recent studies have shown that regulatory changes in the entire population of Na{sup +}-K{sup +} pumps in muscle can be quantified in measurements of ({sup 3}H)-ouabain binding, K{sup +}-activated 3-O-methylfluorescein phosphatase activity, as well as maximum ouabain suppressible Na{sup +}-K{sup +} transport capacity.

  14. Accelerated testing of fuel cell components in 2 x 2 inch fuel cells

    International Nuclear Information System (INIS)

    Coleman, A.J.; Adams, A.A.; Joebstl, J.A.; Walker, G.W.

    1981-01-01

    A description is presented of diagnostic procedures which can be used to predict failure modes and assess the effects of these failures on fuel cell performance. Some straightforward diagnostic techniques have been used to evaluate fuel cells assembled with a variety of matrix and electrode combinations. These techniques included accelerated on-off cycling, thermal cycling with H2/CO mixtures, and automatic polarization measurements. Information has been obtained concerning the effects of electrolyte management and catalyst poisoning on performance and lifetime characteristics of 2 x 2 in. single cells. The use of on-off cycling has shown that short-term fuel cell performance is generally unaffected by load changes and cycle sequence in 2 x 2 in. cells when electrolyte management is adequate. Dynamic polarization curves can be used instead of point by point steady-state plots without any loss in accuracy

  15. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  16. Effects of helicopter transport on red blood cell components.

    Science.gov (United States)

    Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou

    2012-01-01

    There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance.

  17. Effects of helicopter transport on red blood cell components

    Science.gov (United States)

    Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou

    2012-01-01

    Background There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Materials and methods Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. Results During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. Discussion These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance. PMID:22153688

  18. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-07-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  19. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    International Nuclear Information System (INIS)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-01-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  20. Modulation of expression of HLA components at the cell surface induced by anti-β2m reagents

    International Nuclear Information System (INIS)

    Ceppellini, R.; Malavasi, F.; Garotta, G.; Trucco, M.

    1981-01-01

    Antibodies against lymphocyte surface components are able to rearrange profoundly the topography of the cell membrane with a different modulation of surface antigens. Of particular interest is the effect of anti-β2m reagents, which are able to suppress completely the reactivity of epitopes carried by the two chains of the ABC dimers, while the expressivity of other antigens, such as DR, is significantly increased. These results have been obtained with immunoradiobinding under a varity of conditions, thus confirming the validity of the ''bb'' (β2m blanketing) test. (author)

  1. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression.

    Science.gov (United States)

    Mir, Riyaz A; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A; Ammons, Shalis A; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-12-28

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Biosorption of diethyl phthalate ester by living and nonliving Burkholderia cepacia and the role of its cell surface components.

    Science.gov (United States)

    Luo, Si; Li, Langlang; Chen, Anwei; Zeng, Qingru; Xia, Hao; Gu, Ji-Dong

    2017-07-01

    In this study, the dibutyl phthalate (DBP) binding properties of a DBP-tolerant bacterium (B. cepacia) were characterized in terms of adsorption kinetics and isotherm. Living and nonliving cells both exhibited rapid removal of DBP, achieving more than 80% of maximum sorption within 30 min of contact and reached the equilibrium after 3 h. The adsorption isotherms were well fitted with the Sips model and the nonliving cells have greater biosorption capacity and affinity for DBP than the living cells. Furthermore, the absence of an active mechanism dependent on metabolism implied that the DBP bioaccumulation by living cells was mainly attribute to passive surface binding. The optimum pH for DBP adsorption by living and nonliving cells were both observed to be 6.0. The biosorptive mechanism of DBP binding by B. cepacia was further confirmed by FTIR analysis and various chemical treatments. FTIR results indicated that the phosphate and CH 2 groups on B. cepacia were the main bounding sites for DBP. Furthermore, 2.28, 2.15, 1.93 and 0.87 g of pretreated cells were obtained from 2.40 g of native cells via extracellular polymeric substances (EPS), superficial layer-capsule, lipids components and cell membrane removal treatments, respectively. Total binding amount of DBP on the native cells, EPS-removed cells, capsule-removed cells, lipids-extracted cells and membrane-removed cells were 26.69, 24.84, 24.93, 16.11 and 10.80 mg, respectively, suggesting that the cell wall lipids, proteins or peptidoglycan might play important roles in the sorption of DBP by B. cepacia. The information could be applied in understanding on the mobility, transport and ultimate fate of PAEs in soil and related environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sequential recovery of macromolecular components of the nucleolus.

    Science.gov (United States)

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  4. The permeability characteristics and interaction of main components from Si-Ni-San in a MDCK epithelial cell monolayer model.

    Science.gov (United States)

    Chen, Ruonan; Shen, Chenlin; Xu, Qingqing; Liu, Yaru; Li, Bo; Huang, Cheng; Ma, Taotao; Meng, Xiaoming; Wu, Maomao; Li, Jun

    2017-07-26

    1. Si-Ni-San (SNS) possesses extensive therapeutic effects, however, the extent to which main components are absorbed and the mechanisms involved are controversial. 2. In this study, MDCK cell model was used to determine the permeability characteristics and interaction between the major components of Si-Ni-San, including saikosaponin a, paeoniflorin, naringin and glycyrrhizic acid. 3. The transport of the major components was concentration-dependent in both directions. Moreover, the transport of paeoniflorin, naringin and glycyrrhizic acid was significantly reduced at 4°C or in the presence of NaN3. Additionally, the efflux of paeoniflorin and naringin were apparently reduced in the presence of P-gp inhibitor verapamil. The transport of glycyrrhizic acid was clearly inhibited by the inhibitors of MRP2, indicating that MRP2 may be involved in the transport of glycyrrhizic acid. However, the results indicated that saikosaponin a was absorbed mainly by passive diffusion. Furthermore, the combined incubation of four major components had a powerful sorbefacient effect than a single drug used alone which may be regulated by tight junctions. 4. Taken together, our study provides useful information for pharmacological applications of Si-Ni-San and offers new insights into this ancient decoction for further researches, especially in drug synergism.

  5. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  6. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components

    International Nuclear Information System (INIS)

    Bakalis, Diamantis P.; Stamatis, Anastassios G.

    2012-01-01

    Highlights: ► Hybrid SOFC/GT system based on existing components. ► Exergy analysis using AspenPlus™ software. ► Greenhouse gases emission is significantly affected by SOFC stack temperature. ► Comparison with a conventional GT of similar power. ► SOFC/GT is almost twice efficient in terms of second low efficiency and CO 2 emission. - Abstract: The paper deals with the examination of a hybrid system consisting of a pre-commercially available high temperature solid oxide fuel cell and an existing recuperated microturbine. The irreversibilities and thermodynamic inefficiencies of the system are evaluated after examining the full and partial load exergetic performance and estimating the amount of exergy destruction and the efficiency of each hybrid system component. At full load operation the system achieves an exergetic efficiency of 59.8%, which increases during the partial load operation, as a variable speed control method is utilized. Furthermore, the effects of the various performance parameters such as fuel cell stack temperature and fuel utilization factor are assessed. The results showed that the components in which chemical reactions occur have the higher exergy destruction rates. The exergetic performance of the system is affected significantly by the stack temperature. Based on the exergetic analysis, suggestions are given for reducing the overall system irreversibility. Finally, the environmental impact of the operation of the hybrid system is evaluated and compared with a similarly rated conventional gas turbine plant. From the comparison it is apparent that the hybrid system obtains nearly double exergetic efficiency and about half the amount of greenhouse gas emissions compared with the conventional plant.

  7. COPD phenotype description using principal components analysis

    DEFF Research Database (Denmark)

    Roy, Kay; Smith, Jacky; Kolsum, Umme

    2009-01-01

    BACKGROUND: Airway inflammation in COPD can be measured using biomarkers such as induced sputum and Fe(NO). This study set out to explore the heterogeneity of COPD using biomarkers of airway and systemic inflammation and pulmonary function by principal components analysis (PCA). SUBJECTS...... AND METHODS: In 127 COPD patients (mean FEV1 61%), pulmonary function, Fe(NO), plasma CRP and TNF-alpha, sputum differential cell counts and sputum IL8 (pg/ml) were measured. Principal components analysis as well as multivariate analysis was performed. RESULTS: PCA identified four main components (% variance...... associations between the variables within components 1 and 2. CONCLUSION: COPD is a multi dimensional disease. Unrelated components of disease were identified, including neutrophilic airway inflammation which was associated with systemic inflammation, and sputum eosinophils which were related to increased Fe...

  8. Morphometric Analysis of Connective Tissue Sheaths of Sural Nerve in Diabetic and Nondiabetic Patients

    OpenAIRE

    Kundalić, Braca; Ugrenović, Slađana; Jovanović, Ivan; Stefanović, Natalija; Petrović, Vladimir; Kundalić, Jasen; Stojanović, Vesna; Živković, Vladimir; Antić, Vladimir

    2014-01-01

    One of the most common complications of diabetes mellitus is diabetic neuropathy. It may be provoked by metabolic and/or vascular factors, and depending on duration of disease, various layers of nerve may be affected. Our aim was to investigate influence of diabetes on the epineurial, perineurial, and endoneurial connective tissue sheaths. The study included 15 samples of sural nerve divided into three groups: diabetic group, peripheral vascular disease group, and control group. After morphol...

  9. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Li, M.L.; Aggeler, J.; Farson, D.A.; Hatier, C.; Hassell, J.; Bissell, M.J.

    1987-01-01

    When primary mouse mammary epithelial cells are cultured on plastic, they rapidly lose their ability to synthesize and secrete most milk proteins even in the presence of lactogenic hormones, whereas cells cultured on release type I collagen gels show greatly enhanced mRNA levels and secretion rates of β-casein and of some other milk proteins. The authors show here that culture on a reconstituted basement membrane from Engelbreth-Holm-Swarm tumor (EHS) allows > 90% of cells to produce high levels of β-casein. By comparison, 30-40% of cells on released type 1 gels and only 2-10% of cells on plastic express β-casein after 6 days in culture. Because only 40% of cells from late pregnant gland produced β-casein before culture, the EHS matrix can both induce and maintain an increased level of casein gene expression. Individual basal lamina components were also evaluated. Type IV collagen and fibronectin had little effect on morphology and β-casein mRNA levels. In contrast, both laminin and heparan sulfate proteoglycan increased β-casein mRNA levels. Profound morphological differences were evident between cells cultured on plastic and on EHS matrix, the latter cells forming ducts, ductules, and lumina and resembling secretory alveoli. These results emphasize the vital role of the extracellular matrix in receiving and integrating structural and functional signals that can direct specific gene expression in differentiated tissues

  10. Molten carbonate fuel cell components: Lab scale electrochemical characterization with three-electrode cell; Caratterizzazione elettrochimica di componenti funzionali per MCFC mediante una cella a tre elettrodi in scala di laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, L.; Simonetti, E.; Ciancia, A.; Pozio, A.

    1992-12-31

    This paper describes lab scale experiments conducted on a molten carbonate fuel cell (MCFC) with the aim of obtaining the electrical and electrochemical characteristics of the cell`s principle components. Suitable measurement and data analysis methods were developed to allow the identification of the cathode as the critical MCFC element and establish the cell`s operating regime from the point of view of overvoltage. An investigation was made of the influence, on obtainable power, of the method used to deliver current. Verification of the cell with a galvanostat allowed the maximization of electric power. The electrical resistance of the electrolyte was electronically compensated and the power-current curves were analyzed. Cyclic loading tests made it possible to study the time dependent stability of the MCFC and evidence anodic and cathodic potential variations which significantly affect stability. Electrochemical impedance spectroscopy was used to study reaction orders and electro-reduction mechanisms within the O/sub 2/-CO/sub 2/ cathodic mixture and to verify the performance of the electrodes in thin film electrolyte conditions.

  11. Cytotoxicity of Vitex agnus-castus fruit extract and its major component, casticin, correlates with differentiation status in leukemia cell lines.

    Science.gov (United States)

    Kikuchi, Hidetomo; Yuan, Bo; Nishimura, Yoshio; Imai, Masahiko; Furutani, Ryota; Kamoi, Saki; Seno, Misako; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Hu, Xiao-Mei; Takagi, Norio; Hirano, Toshihiko; Toyoda, Hiroo

    2013-12-01

    We have demonstrated that an extract from the ripe fruit of Vitex agnus-castus (Vitex) exhibits cytotoxic activities against various types of solid tumor cells, whereas its effects on leukemia cells has not been evaluated to date. In this study, the effects of Vitex and its major component, casticin, on leukemia cell lines, HL-60 and U-937, were investigated by focusing on proliferation, induction of apoptosis and differentiation. Identification and quantitation by NMR spectroscopy showed that casticin accounted for approximate 1% weight of Vitex. Dose-dependent cytotoxicity of Vitex and casticin was observed in both cell lines, and HL-60 cells were more sensitive to the cytotoxicity of Vitex/casticin compared to U-937 cells. Furthermore, compared to unstimulated HL-60 cells, phorbol 12-myristate 13-acetate (PMA)- and 1,25-dihydroxyvitamin D₃ (VD₃)-differentiated HL-60 cells acquired resistance to Vitex/casticin based on the results from cell viability and apoptosis induction analysis. Since the HL-60 cell line is more immature than the U-937 cell line, these results suggested that the levels of cytotoxicity of Vitex/casticin were largely attributed to the degree of differentiation of leukemia cells; that is, cell lines with less differentiated phenotype were more susceptible than the differentiated ones. RT-PCR analysis demonstrated that PMA upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in HL-60 cells, and that anti-ICAM-1 monoclonal antibody not only abrogated PMA-induced aggregation and adhesion of the cells but also restored its sensitivity to Vitex. These results suggested that ICAM-1 plays a crucial role in the acquired resistance in PMA-differentiated HL-60 cells by contributing to cell adhesion. These findings provide fundamental insights into the clinical application of Vitex/casticin for hematopoietic malignancy.

  12. Effect of TiOx compact layer with varied components on the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yanling; Ai, Xianglong; Wang, Xiaomeng; Wang, Qi; Huang, Jianguo; Wu, Tao, E-mail: tao_wu@zju.edu.cn

    2014-05-01

    Graphical abstract: - Highlights: • TiOx compact layers with varied components are deposited by sputtering deposition. • TiOx compact layers suppressed the recombination at the FTO glass/ electrolyte interface effectively. • 20 nm-TiOx compact layer with the lowest x value (named T1) gave the highest charge transfer or transport and reduced recombination most. • Lower value of x in TiOx showed slightly better transmittance. • Lower value of x in TiOx reveals higher conductivity and better charge transfer from the porous TiO{sub 2} to the substrate. - Abstract: In this study, approximately 20 nm thick compact layers of TiOx with varied components are deposited by physical vapor deposition. The performance of these layers in solar cells is investigated. The TiOx compact layers consist of T1 (with Ti{sup 0}, Ti{sup 2+}, Ti{sup 3+}, and Ti{sup 4+}), T2 (with Ti{sup 3+} and Ti{sup 4+}), and T3 (with Ti{sup 4+}). Results show that the optimum compact layer is T1, which exhibits an approximately 61% enhancement in energy conversion efficiency compared with the bare cell. Mott–Schottky plots indicate that the carrier concentration decreases and the flatband becomes less negative with decreasing x, which consequently increases the likelihood of charge transfer from the nanoporous TiO{sub 2} to the TiOx compact layers. Furthermore, a decrease in the x value of TiOx results in lower resistance. Voltage decay and electrical impedance spectrum (EIS) show that the electron-carrier lifetime and charge recombination reduction are improved the most by T1. Consequently, TiOx with smaller x works better as a compact layer. However, a solar cell with T2 shows weak enhancement of photovoltaic performance. Cyclic voltammetry and EIS illustrate that the low recombination blocking and high resistance of T2 may be a result of its large pore size and weak adhesion to fluorine-doped tin oxide glass.

  13. Distribution of N-isopropyl-p-(I-123)iodoamphetamine among the peripheral blood components

    International Nuclear Information System (INIS)

    Kumazaki, Satoshi; Oriuchi, Noboru; Tomiyoshi, Katsumi; Inoue, Tomio; Sasaki, Yasuhito.

    1990-01-01

    With the purpose to clarify dynamics of N-isopropyl-p-[I-123]iodoamphetamine (I-123 IMP) in the blood stream its binding to the peripheral blood components was determined by in vitro experiment. I-123 IMP was added to the peripheral venous blood obtained from healthy volunteers to be incubated for different length of time (0-30 min) at 37deg C. The blood was then separated into blood cells and plasma. From the latter platelet rich plasma were separated. Radioactivity in each blood component was counted in a well type scintillation counter respectively. To evaluate the affinity of I-123 IMP to red blood cell the component containing blood cells were washed repeatedly with salines. It was found that the fraction of radioactivity in the blood cell component was 68.0±6.3% (m±1 S.D.), which was higher than that in the plasma (32.0%±6.3%). The radioactivity in the platelet-rich plasma was only 1.7±1.1% of the total I-123 IMP activity. This percentage did not change by the incubation time. When Tc-99m DTPA was incubated with blood, radioactivity in the blood cell component was only 22.5%, which is further lowered by 32±2.1% after each washing to reach 6.8% after three times washing. In contrast the radioactivity of I-123 IMP in blood cell component remained as high as 31.1% after eight times washing. Almost constant fraction (8.20±0.57%) of radioactivity was freed into supernate by each washing. These findings suggest that a certain specific binding mechanism is involved in the binding of I-123 IMP to red blood cells. (author)

  14. Insoluble (1 → 3), (1 → 4)-β-Dglucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues

    DEFF Research Database (Denmark)

    Salmeán, Armando A.; Duffieux, Delphine; Harholt, Jesper

    2017-01-01

    -rich cell-wall. Brown algal cell walls are composed predominantly of the polyanionic polysaccharides alginates and fucose-containing sulfated polysaccharides. These polymers are prevalent over neutral and crystalline components, which are believed to be mostly, if not exclusively, cellulose. In an attempt...... to better understand brown algal cell walls, we performed an extensive glycan array analysis of a wide range of brown algal species. Here we provide the first demonstration that mixed-linkage (1 → 3), (1 → 4)-β-d-glucan (MLG) is common in brown algal cell walls. Ultra-Performance Liquid Chromatography...

  15. NASA fuel cell applications for space: Endurance test results on alkaline fuel cell electrolyzer components

    International Nuclear Information System (INIS)

    Sheibley, D.W.

    1984-01-01

    Fuel cells continue to play a major role in manned spacecraft power generation. The Gemini and Apollo programs used fuel cell power plants as the primary source of mission electrical power, with batteries as the backup. The current NASA use for fuel cells is in the Orbiter program. Here, low temperature alkaline fuel cells provide all of the on-board power with no backup power source. Three power plants per shipset are utilized; the original power plant contained 32-cell substacks connected in parallel. For extended life and better power performance, each power plant now contains three 32-cell substacks connected in parallel. One of the possible future applications for fuel cells will be for the proposed manned Space Station in low earth orbit (LEO)(1, 2, 3). By integrating a water electrolysis capability with a fuel cell (a regenerative fuel cell system), a multikilowatt energy storage capability ranging from 35 kW to 250 kW can be achieved. Previous development work on fuel cell and electrolysis systems would tend to minimize the development cost of this energy storage system. Trade studies supporting initial Space Station concept development clearly show regenerative fuel cell (RFC) storage to be superior to nickel-cadmium and nickel-hydrogen batteries with regard to subsystem weight, flexibility in design, and integration with other spacecraft systems when compared for an initial station power level ranging from 60 kW to 75 kW. The possibility of scavenging residual O 2 and H 2 from the Shuttle external tank for use in fuel cells for producing power also exists

  16. Bioactive components and mechanisms of Chinese poplar propolis alleviates oxidized low-density lipoprotein-induced endothelial cells injury.

    Science.gov (United States)

    Chang, Huasong; Yuan, Wenwen; Wu, Haizhu; Yin, Xusheng; Xuan, Hongzhuan

    2018-05-03

    Propolis, a polyphenol-rich natural product, has been used as a functional food in anti-inflammation. However, its bioactive components and mechanisms have not been fully elucidated. To discover the bioactive components and anti-inflammatory mechanism, we prepared and separated 8 subfractions from ethyl acetate extract of Chinese propolis (EACP) and investigated the mechanism in oxidized low density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) damage. Eight subfractions were prepared and separated from ethyl acetate extract of Chinese propolis (EACP) with different concentrations of methanol-water solution, and analysed its chemical constituents by HPLC-DAD/Q-TOF-MS. Then 80% confluent HUVECs were stimulated with 40 μg/mL ox-LDL. Cell viability and apoptosis were evaluated by Sulforhodamine B (SRB) assay and Hoechst 33,258 staining, respectively. Levels of caspase 3, PARP, LC3B, p62, p-mTOR, p-p70S6K, p-PI3K, p-Akt, LOX-1 and p-p38 MAPK were assessed by western blotting and immunofluorescence assay, respectively. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Each subfraction exhibited similar protective effect although the contents of chemical constituents were different. EACP attenuated ox-LDL induced HUVECs apoptosis, depressed the ratio of LC3-II/LC3-I and enhanced the p62 level. In addition, treatment with EACP also activated the phosphorylation of PI3K/Akt/mTOR, and deactivated the level of LOX-1 and phosphorylation of p38 MAPK. The overproduction of ROS and the damage of MMP were also ameliorated after ECAP treatment. These findings indicated that the bioactive component of propolis on anti-inflammatory activity was not determined by a single constituent, but a complex interaction including flavonoids, esters and phenolic acids. EACP attenuated ox-LDL induced HUVECs injury by inhibiting LOX-1 level and depressed ROS production against oxidative stress in ox

  17. Host cell reactivation and UV-enhanced reactivation in synchronized mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Schmidt, B.J.

    1981-01-01

    Does host cell reactivation (HCR) or UV-enhanced reactivation (UVER) of UV-irradiated Herpes simplex virus (UV-HSV) vary during the host mammalian cell cycle. The answer could be useful for interpreting UVER and or the two-component nature of the UV-HSV survival curve. Procedures were developed for infection of mitotically-synchronized CV-l monkey kidney cells. All virus survival curves determined at different cell cycle stages had two components with similar D 0 's and intercepts of the second components. Thus, no single stage of the host cell cycle was responsible for the second component of the virus survival curve. When the cells were UV-irradiated immediately prior to infection, enhanced survival of UV-HSV occurred for cell irradiation and virus infection initiated during late G 1 early S phase or late S early G 2 phase but not during early G 1 phase. For infection delayed by 24 h after cell irradiation, UVER was found at all investigated times. These results indicate that: (1) HCR is similar at all stages of the host cell cycle: and (2) the ''induction'' of UVER is not as rapid for cell-irradiation in early G 1 phase. This latter observation may be one reason why normal, contact-inhibited cells do not express UVER as rapidly as faster growing, less contact-inhibited cells. (author)

  18. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle ().

    Science.gov (United States)

    Shin, Jeong-Hun; Jun, Seung-Lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun

    2012-12-01

    This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle () to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. In the sovereign, minister, assistant and courier principle (), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research

  19. Radiation-resistant beamline components at LAMPF

    International Nuclear Information System (INIS)

    Macek, R.J.; Grisham, D.L.; Lambert, J.e.; Werbeck, R.

    1983-01-01

    A variety of highly radiation-resistant beamline components have been successfully developed at LAMPF primarily for use in the target cells and beam stop area of the intense proton beamline. Design features and operating experience are reviewed for magnets, instrumentation, targets, vacuum seals, vacuum windows, collimators, and beam stops

  20. Cholesterol inhibits entotic cell-in-cell formation and actomyosin contraction.

    Science.gov (United States)

    Ruan, Banzhan; Zhang, Bo; Chen, Ang; Yuan, Long; Liang, Jianqing; Wang, Manna; Zhang, Zhengrong; Fan, Jie; Yu, Xiaochen; Zhang, Xin; Niu, Zubiao; Zheng, You; Gu, Songzhi; Liu, Xiaoqing; Du, Hongli; Wang, Jufang; Hu, Xianwen; Gao, Lihua; Chen, Zhaolie; Huang, Hongyan; Wang, Xiaoning; Sun, Qiang

    2018-01-01

    Cell-in-cell structure is prevalent in human cancer, and associated with several specific pathophysiological phenomena. Although cell membrane adhesion molecules were found critical for cell-in-cell formation, the roles of other membrane components, such as lipids, remain to be explored. In this study, we attempted to investigate the effects of cholesterol and phospholipids on the formation of cell-in-cell structures by utilizing liposome as a vector. We found that Lipofectamine-2000, the reagent commonly used for routine transfection, could significantly reduce entotic cell-in-cell formation in a cell-specific manner, which is correlated with suppressed actomyosin contraction as indicated by reduced β-actin expression and myosin light chain phosphorylation. The influence on cell-in-cell formation was likely dictated by specific liposome components as some liposomes affected cell-in-cell formation while some others didn't. Screening on a limited number of lipids, the major components of liposome, identified phosphatidylethanolamine (PE), stearamide (SA), lysophosphatidic acid (LPA) and cholesterol (CHOL) as the inhibitors of cell-in-cell formation. Importantly, cholesterol treatment significantly inhibited myosin light chain phosphorylation, which resembles the effect of Lipofectamine-2000, suggesting cholesterol might be partially responsible for liposomes' effects on cell-in-cell formation. Together, our findings supporting a role of membrane lipids and cholesterol in cell-in-cell formation probably via regulating actomyosin contraction. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    Science.gov (United States)

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  2. Colonization of bone matrices by cellular components

    Science.gov (United States)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  3. Asymmetric segregation of damaged cellular components in spatially structured multicellular organisms.

    Directory of Open Access Journals (Sweden)

    Charlotte Strandkvist

    Full Text Available The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we specifically consider damage incurred by mutations to mitochondrial DNA, which are thought to be implicated in the mammalian ageing process. We show analytically that the asymmetric distribution of damaged cellular components reduces the overall damage level and increases the longevity of the cell population. Motivated by the experimental reports of damage segregation in human embryonic stem cells, dividing symmetrically with respect to cell-fate, we extend the model to consider spatially structured systems of cells. Imposing spatial structure reduces, but does not eliminate, the advantage of asymmetric division over symmetric division. The results suggest that damage partitioning could be a common strategy for reducing the accumulation of damage in a wider range of cell types than previously thought.

  4. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems.

    Science.gov (United States)

    Schäfer, Judith; Stanojlovic, Luisa; Trierweiler, Bernhard; Bunzel, Mirko

    2017-03-01

    Storage related changes in the cell wall composition potentially affect the texture of plant-based foods and the physiological effects of cell wall based dietary fiber components. Therefore, a detailed characterization of cell wall polysaccharides and lignins from broccoli stems was performed. Freshly harvested broccoli and broccoli stored at 20°C and 1°C for different periods of time were analyzed. Effects on dietary fiber contents, polysaccharide composition, and on lignin contents/composition were much more pronounced during storage at 20°C than at 1°C. During storage, insoluble dietary fiber contents of broccoli stems increased up to 13%. Storage related polysaccharide modifications include an increase of the portions of cellulose, xylans, and homogalacturonans and a decrease of the neutral pectic side-chains arabinans and galactans. Broccoli stem lignins are generally rich in guaiacyl units. Lignins from freshly harvested broccoli stems contain slightly larger amounts of p-hydroxyphenyl units than syringyl units. Syringyl units are predominantly incorporated into the lignin polymers during storage, resulting in increased acetyl bromide soluble lignin contents. NMR-based analysis of the interunit linkage types of broccoli stem lignins revealed comparably large portions of resinol structures for a guaiacyl rich lignin. Incorporation of syringyl units into the polymers over storage predominantly occurs through β-O-4-linkages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transformation of ATLA-negative leukocytes by blood components from anti-ATLA-positive donors in vitro.

    Science.gov (United States)

    Miyamoto, K; Tomita, N; Ishii, A; Nishizaki, T; Kitajima, K; Tanaka, T; Nakamura, T; Watanabe, S; Oda, T

    1984-06-15

    Anti-ATLA-positive blood components transformed healthy human leukocytes in vitro. Blood components examined were packed red cells, whole blood, platelet concentrate and fresh frozen plasma. Leukocytes present in anti-ATLA-positive blood components such as packed red cells, whole blood and platelet concentrate easily transformed anti-ATLA-negative leukocytes. Co-culture in fresh frozen plasma, however, did not transform recipient leukocytes, and leukocytes of anti-ATLA-positive recipients proved refractory to transformation. The transformed cells were morphologically lymphoid, grew in suspension, and possessed normal recipient karyotypes except in the case of three platelet concentrates. A high proportion of all the transformed populations formed E-rosettes with neuraminidase-treated sheep erythrocytes. The cytoplasm of over 90% of each recipient was stained brilliantly with antibodies against ATLV-determined antigens. Electron microscopy of these transformed cells revealed many C-type virus particles in the extracellular space. Blood components, such as packed red cells, whole blood and platelet concentrate, containing leukocytes from anti-ATLA-positive donors, should be used cautiously to prevent the transmission on ATLV to anti-ATLA-negative recipients.

  6. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium – Identification of the responsible medium components

    Directory of Open Access Journals (Sweden)

    Pless-Petig Gesine

    2012-10-01

    Full Text Available Abstract Background In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Results Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199. Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM, a high concentration of inorganic phosphate (5.6 mM, and glucose (11.1 mM; i.e. concentrations as in RPMI 1640 evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. Conclusion These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.

  7. Carcinosarcoma of the Ureter with a Small Cell Component: Report of a Rare Pathologic Entity and Potential for Diagnostic Error on Biopsy

    Directory of Open Access Journals (Sweden)

    Kent Newsom

    2014-01-01

    Full Text Available Carcinosarcomas of the ureter are rare biphasic neoplasms, composed of both malignant epithelial (carcinomatous and malignant mesenchymal (sarcomatous components. Carcinosarcomas of the urinary tract are exceedingly rare. We report a unique case of a carcinosarcoma of the ureter with a chondrosarcoma and small cell tumor component arising in a 68-year-old male who presented with microscopic hematuria. CT intravenous pyelogram revealed right-sided hydroureter and hydronephrosis with thickening and narrowing of the right ureter. The patient underwent robot-assisted ureterectomy with bladder cuff excision and subsequent adjuvant chemotherapy. The patient is disease-free at 32 months after treatment. We provide a brief synoptic review of carcinosarcoma of the ureter and bladder with utilization of immunohistochemical (IHC stains and potential diagnostic pitfalls.

  8. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  9. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    Science.gov (United States)

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  10. Snake venoms components with antitumor activity in murine melanoma cells; Componentes derivados de venenos de serpentes com acao antitumoral em celulas de melanoma murino

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Rodrigo Guimaraes

    2012-07-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  11. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    International Nuclear Information System (INIS)

    Salo, Tuula; Vered, Marilena; Bello, Ibrahim O.; Nyberg, Pia; Bitu, Carolina Cavalcante; Zlotogorski Hurvitz, Ayelet; Dayan, Dan

    2014-01-01

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental

  12. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Tuula, E-mail: Tuula.salo@oulu.fi [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Oulu University Central Hospital, Oulu (Finland); Institute of Dentistry, University of Helsinki, Helsinki (Finland); Vered, Marilena [Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan (Israel); Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Bello, Ibrahim O. [Department of Oral Medicine and Diagnostic Sciences, King Saud University, Riyadh (Saudi Arabia); Nyberg, Pia [Oulu University Central Hospital, Oulu (Finland); Bitu, Carolina Cavalcante [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Zlotogorski Hurvitz, Ayelet [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Beilinson Campus, Petah Tikva (Israel); Dayan, Dan [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-07-15

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental.

  13. The role of GABA in Na, K-pump activity modulation in nerve cells after irradiation and experimental modification of membrane lipid component

    International Nuclear Information System (INIS)

    Anan'eva, T.V.

    1998-01-01

    Effects of γ-aminobutyric acid (GABA) on the activity of Na, K-pump of nervous cells in case of total exposure of rats-males to X-radiation are studied as well as of experimental modification of membrane lipid component. It is shown that acute lethal (12 Gy, 600 mGy/min), single long-term (0.25 Gy, 1.75 mGy/min) and chronic (0.01 Gy/d, 1.75 mGy/min) exposure results in considerable alterations in Na, K-pump function in cerebral cortex section of rats. Experimental damage of cell membranes with the help of phospholipase or arachidonic acid leads to the same effect. GABA presence decreases the above effect [ru

  14. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    International Nuclear Information System (INIS)

    Sugimasa, Hironobu; Taniue, Kenzui; Kurimoto, Akiko; Takeda, Yasuko; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells

  15. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimasa, Hironobu; Taniue, Kenzui [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Kurimoto, Akiko [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 (Japan); Takeda, Yasuko; Kawasaki, Yoshihiro [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2015-03-27

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells.

  16. Lithium cell reactions. Interim report, December 1981-May 1983. [Lithium-thionyl chloride cell

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.; Dampier, F.; Lombardi, A.; Cole, T.

    1983-12-01

    This report presents the results of a program that investigated reactions occurring in lithium-thionyl chloride cells for a range of specified test conditions and also performed detailed analyses for impurities present in cell components, assessed the impact of each impurity on cell performance and safety, and recommended concentration limits for detrimental impurities. Methods used in the program included linear sweep voltammetry, constant current coulometry, infrared spectroscopy, chemical analysis of the reagents and cell components, and cell discharge tests.

  17. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  18. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  19. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Marco Siech

    2010-09-01

    Full Text Available Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells, various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction.

  20. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components

    DEFF Research Database (Denmark)

    Couchman, J R

    1986-01-01

    , to be replaced by synthesis of other components including type I and III collagens. It seems likely therefore that the dermal papilla cells in vivo synthesize a basement membrane type of extracellular matrix, although a contribution from epithelial, and in some cases capillary endothelial, cells cannot be ruled......Dermal papillae are small mesenchymally derived zones at the bases of hair follicles which have an important role in hair morphogenesis in the embryo and control of the hair growth cycle in postnatal mammals. The cells of the papilla are enmeshed in a dense extracellular matrix which undergoes...... extensive changes in concert with the hair cycle. Here it is shown that this matrix in anagen pelage follicles of postnatal rats contains an abundance of basement membrane components rather than dermal components such as interstitial collagens. In particular, type IV collagen, laminin, and basement membrane...

  1. Processing and storage of blood components: strategies to improve patient safety

    Directory of Open Access Journals (Sweden)

    Pietersz RNI

    2015-08-01

    Full Text Available Ruby NI Pietersz, Pieter F van der Meer Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands Abstract: This review focuses on safety improvements of blood processing of various blood components and their respective storage. A solid quality system to ensure safe and effective blood components that are traceable from a donor to the patient is the foundation of a safe blood supply. To stimulate and guide this process, National Health Authorities should develop guidelines for blood transfusion, including establishment of a quality system. Blood component therapy enabled treatment of patients with blood constituents that were missing, only thus preventing reactions to unnecessarily transfused elements. Leukoreduction prevents many adverse reactions and also improves the quality of the blood components during storage. The safety of red cells and platelets is improved by replacement of plasma with preservative solutions, which results in the reduction of isoantibodies and plasma proteins. Automation of blood collection, separation of whole blood into components, and consecutive processing steps, such as preparation of platelet concentrate from multiple donations, improves the consistent composition of blood components. Physicians can better prescribe the number of transfusions and therewith reduce donor exposure and/or the risk of pathogen transmission. Pathogen reduction in cellular blood components is the latest development in improving the safety of blood transfusions for patients. Keywords: blood components, red cell concentrates, platelet concentrates, plasma, transfusion, safety 

  2. RNA of Enterococcus faecalis Strain EC-12 Is a Major Component Inducing Interleukin-12 Production from Human Monocytic Cells.

    Directory of Open Access Journals (Sweden)

    Ryoichiro Nishibayashi

    Full Text Available Interleukin-12 (IL-12 is an important cytokine for the immunomodulatory effects of lactic acid bacteria (LAB. Using murine immune cells, we previously reported that the RNA of Enterococcus faecalis EC-12, a LAB strain exerting probiotic-like beneficial effects, is the major IL-12-inducing immunogenic component. However, it was recently revealed that bacterial RNA can be a ligand for Toll-like receptor (TLR 13, which is only expressed in mice. Because TLR13 is not expressed in humans, the immuno-stimulatory and -modulatory effects of LAB RNA in human cells should be augmented excluding TLR13 contribution. In experiment 1 of this study, the role of LAB RNA in IL-12 induction in human immune cells was studied using three LAB strains, E.faecalis EC-12, Lactobacillus gasseri JCM5344, and Bifidobacterium breve JCM1192. RNase A treatment of heat-killed LAB significantly decreased the IL-12 production of human peripheral blood mononuclear cells on stimulation, while RNase III treatment revealed virtually no effects. Further, IL-12 production against heat-killed E. faecalis EC-12 was abolished by depleting monocytes. These results demonstrated that single stranded RNA (ssRNA of LAB is a strong inducer of IL-12 production from human monocytes. In experiment 2, major receptor for ssRNA of E. faecalis EC-12 was identified using THP-1 cells, a human monocytic cell line. The type of RNA molecules of E. faecalis EC-12 responsible for IL-12 induction was also identified. IL-12 production induced by the total RNA of E. faecalis EC-12 was significantly reduced by the treatment of siRNA for TLR8 but not for TLR7. Furthermore, both 23S and 16S rRNA, but not mRNA, of E. faecalis EC-12 markedly induced IL-12 production from THP-1 cells. These results suggested that the recognition of ssRNA of E. faecalis EC-12 was mediated by TLR8 and that rRNA was the RNA molecule that exhibited IL-12-inducing ability in human cells.

  3. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  4. Biochemistry of Cells.

    Science.gov (United States)

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    While other lab exercises allow the student to isolate and study one component of the cell, the purpose of this lab is to break down the cell into several components and perform simultaneous assays to determine the constituents. Centrifugation is used as a separation technique. Provides procedure and expected results. (LZ)

  5. Low dose gamma irradiation enhances defined signaling components of intercellular reactive oxygen-mediated apoptosis induction

    International Nuclear Information System (INIS)

    Bauer, G

    2011-01-01

    Transformed cells are selectively removed by intercellular ROS-mediated induction of apoptosis. Signaling is based on the HOCl and the NO/peroxynitrite pathway (major pathways) and the nitryl chloride and the metal-catalyzed Haber-Weiss pathway (minor pathways). During tumor progression, resistance against intercellular induction of apoptosis is acquired through expression of membrane-associated catalase. Low dose radiation of nontransformed cells has been shown to enhance intercellular induction of apoptosis. The present study was performed to define the signaling components which are modulated by low dose gamma irradiation. Low dose radiation induced the release of peroxidase from nontransformed, transformed and tumor cells. Extracellular superoxide anion generation was strongly enhanced in the case of transformed cells and tumor cells, but not in nontransformed cells. Enhancement of peroxidase release and superoxide anion generation either increased intercellular induction of apoptosis of transformed cells, or caused a partial protection under specific signaling conditions. In tumor cells, low dose radiation enhanced the production of major signaling components, but this had no effect on apoptosis induction, due to the strong resistance mechanism of tumor cells. Our data specify the nature of low dose radiation-induced effects on specific signaling components of intercellular induction of apoptosis at defined stages of multistep carcinogenesis.

  6. Quercetin, not caffeine, is a major neuroprotective component in coffee.

    Science.gov (United States)

    Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L

    2016-10-01

    Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  8. Review: Durability and degradation issues of PEM fuel cell components

    NARCIS (Netherlands)

    Bruijn, de F.A.; Dam, V.A.T.; Janssen, G.J.M.

    2008-01-01

    Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow

  9. conformational complexity of complement component C3

    NARCIS (Netherlands)

    Janssen, B.J.C.

    2007-01-01

    The complement system is an important part of the immune system and critical for the elimination of pathogens. In mammals the complement system consists of an intricate set of about 35 soluble and cell-surface plasma proteins. Central to complement is component C3, a large protein of 1,641 residues.

  10. Diurnal Periodicity in the Supply of Cell Wall Components during Wood Cell Wall Formation

    OpenAIRE

    細尾, 佳宏

    2012-01-01

    This review summarizes recent studies on the diurnal periodicity in wood cell wall formation, with a major focus on those that we have conducted. Differences in the innermost surface of developing secondary walls of differentiating conifer tracheids can be seen from day to night Cellulose microfibrils are clearly evident during the day, and amorphous material containing abundant hemicelluloses is prevalent at night. These findings suggest a diurnal periodicity in the supply of cell wall compo...

  11. Boudin trafficking reveals the dynamic internalisation of specific septate junction components in Drosophila.

    Science.gov (United States)

    Tempesta, Camille; Hijazi, Assia; Moussian, Bernard; Roch, Fernando

    2017-01-01

    The maintenance of paracellular barriers in invertebrate epithelia depends on the integrity of specific cell adhesion structures known as septate junctions (SJ). Multiple studies in Drosophila have revealed that these junctions have a stereotyped architecture resulting from the association in the lateral membrane of a large number of components. However, little is known about the dynamic organisation adopted by these multi-protein complexes in living tissues. We have used live imaging techniques to show that the Ly6 protein Boudin is a component of these adhesion junctions and can diffuse systemically to associate with the SJ of distant cells. We also observe that this protein and the claudin Kune-kune are endocytosed in epidermal cells during embryogenesis. Our data reveal that the SJ contain a set of components exhibiting a high membrane turnover, a feature that could contribute in a tissue-specific manner to the morphogenetic plasticity of these adhesion structures.

  12. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  13. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    Science.gov (United States)

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    Science.gov (United States)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  15. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  16. Structural ECM components in the premetastatic and metastatic niche

    DEFF Research Database (Denmark)

    Høye, Anette M; Erler, Janine T

    2016-01-01

    The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites...... aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care....

  17. Pathogen reduction of blood components.

    Science.gov (United States)

    Solheim, Bjarte G

    2008-08-01

    Thanks to many blood safety interventions introduced in developed countries the risk of transfusion transmitted infections has become exceedingly small in these countries. However, emerging pathogens still represent a serious challenge, as demonstrated by West Nile virus in the US and more recently by Chikungunya virus in the Indian Ocean. In addition bacterial contamination, particularly in platelets, and protozoa transmitted by blood components still represent sizeable risks in developed countries. In developing countries the risk of all transfusion transmitted infections is still high due to insufficient funding and organisation of the health service. Pathogen reduction of pooled plasma products has virtually eliminated the risk of transfusion transmitted infections, without compromising the quality of the products significantly. Pathogen reduction of blood components has been much more challenging. Solvent detergent treatment which has been so successfully applied for plasma products dissolves cell membranes, and can, therefore, only be applied for plasma and not for cellular blood components. Targeting of nucleic acids has been another method for pathogen inactivation of plasma and the only approach possible for cellular blood products. As documented in more than 15 year's track record, solvent detergent treatment of pooled plasma can yield high quality plasma. The increased risk for contamination by unknown viruses due to pooling is out weighed by elimination of TRALI, significant reduction in allergic reactions and standardisation of the product. Recently, a promising method for solvent detergent treatment of single donor plasma units has been published. Methylene blue light treatment of single donor plasma units has a similar long track record as pooled solvent detergent treated plasma; but the method is less well documented and affects coagulation factor activity more. Psoralen light treated plasma has only recently been introduced (CE marked in Europe

  18. Autonomous Component Carrier Selection for 4G Femtocells

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Kovacs, Istvan; Pedersen, Klaus

    2012-01-01

    main contribution in this paper, denominated Generalized Autonomous Component Carrier Selection (G-ACCS), is a distributed carrier-based inter-cell interference coordination scheme that represents one step towards cognitive radio networks. The algorithm relies on expected rather than sensed...... interference levels. This approach facilitates scheduler-independent decisions, however, it can lead to overestimation of the interference coupling among cells when the resources are not fully utilized. Acknowledging this fact, G-ACCS leverages the power domain to circumvent the restrictive nature of expected...

  19. Saponin, an inhibitory agent of carbon dioxide production by white cells : its use in the microbiologic examination of blood components in an automated bacterial culture system

    NARCIS (Netherlands)

    van Doorne, Hans; van der Tuuk Adriani, W.P A; van der Ven, L.I; Bosch, E.H; de Natris, T; Smit Sibinga, C.Th.

    1998-01-01

    BACKGROUND: Blood components with a white cell count >100 x 10(9) per L may cause false-positive results when the BacT/Alert system is used for the microbiologic examination. The effects of different concentrations of saponin on bacterial growth and on carbon dioxide production by blood fractions

  20. Pure neuritic leprosy: Resolving diagnostic issues in acid fast bacilli (AFB)-negative nerve biopsies: A single centre experience from South India.

    Science.gov (United States)

    Hui, Monalisa; Uppin, Megha S; Challa, Sundaram; Meena, A K; Kaul, Subhash

    2015-01-01

    Demonstration of lepra bacilli is essential for definite or unequivocal diagnosis of pure neuritic leprosy (PNL) on nerve biopsy. However, nerves always do not show bacilli owing to the changes of previous therapy or due to low bacillary load in tuberculoid forms. In absence of granuloma or lepra bacilli, other morphologic changes in endoneurium and perineurium can be of help in making a probable diagnosis of PNL and treating the patient with multidrug therapy. Forty-six biopsies of PNL were retrospectively reviewed and histologic findings were compared with 25 biopsies of non leprosy neuropathies (NLN) including vasculitic neuropathy and chronic inflammatory demyelinating polyneuropathy (CIDP). The distribution of endoneurial infiltrate and fibrosis, perineurial thickening, and myelin abnormalities were compared between PNL and NLN biopsies and analyzed by Chi-square test. Out of 46 PNL casses, 24 (52.17 %) biopsies were negative for acid fast bacilli (AFB). In these cases, the features which favor a diagnosis of AFB-negative PNL were endoneurial infiltrate (51.1%), endoneurial fibrosis (54.2%), perineurial thickening (70.8%), and reduced number of myelinated nerve fibers (75%). Nerve biopsy is an efficient tool to diagnose PNL and differentiate it from other causes of NLN. In absence of AFB, the diagnosis of PNL is challenging. In this article, we have satisfactorily evaluated the various hisopthological features and found that endoneurial inflammation, dense fibrosis, and reduction in the number of myelinated nerve fibers are strong supportive indicators of PNL regardless of AFB positivity.

  1. Niche Extracellular Matrix Components and Their Influence on HSC.

    Science.gov (United States)

    Domingues, Mélanie J; Cao, Huimin; Heazlewood, Shen Y; Cao, Benjamin; Nilsson, Susan K

    2017-08-01

    Maintenance of hematopoietic stem cells (HSC) takes place in a highly specialized microenvironment within the bone marrow. Technological improvements, especially in the field of in vivo imaging, have helped unravel the complexity of the niche microenvironment and have completely changed the classical concept from what was previously believed to be a static supportive platform, to a dynamic microenvironment tightly regulating HSC homeostasis through the complex interplay between diverse cell types, secreted factors, extracellular matrix molecules, and the expression of different transmembrane receptors. To add to the complexity, non-protein based metabolites have also been recognized as a component of the bone marrow niche. The objective of this review is to discuss the current understanding on how the different extracellular matrix components of the niche regulate HSC fate, both during embryonic development and in adulthood. Special attention will be provided to the description of non-protein metabolites, such as lipids and metal ions, which contribute to the regulation of HSC behavior. J. Cell. Biochem. 118: 1984-1993, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  3. Myosin VIIa as a common component of cilia and microvilli.

    Science.gov (United States)

    Wolfrum, U; Liu, X; Schmitt, A; Udovichenko, I P; Williams, D S

    1998-01-01

    The distribution of myosin VIIa, which is defective or absent in Usher syndrome 1B, was studied in a variety of tissues by immunomicroscopy. The primary aim was to determine whether this putative actin-based mechanoenzyme is a common component of cilia. Previously, it has been proposed that defective ciliary function might be the basis of some forms of Usher syndrome. Myosin VIIa was detected in cilia from cochlear hair cells, olfactory neurons, kidney distal tubules, and lung bronchi. It was also found to cofractionate with the axonemal fraction of retinal photoreceptor cells. Immunolabeling appeared most concentrated in the periphery of the transition zone of the cilia. This general presence of a myosin in cilia is surprising, given that cilia are dominated by microtubules, and not actin filaments. In addition to cilia, myosin VIIa was also found in actin-rich microvilli of different types of cell. We conclude that myosin VIIa is a common component of cilia and microvilli.

  4. Effect of Nitrogen and Phosphorus on Yield and Yield Components of Sesame (Sesamumindicum L.)

    OpenAIRE

    Muhammad Ibrahim; Manzoor Hussain; Ahmad Khan; Yousaf Jamal; Muhammad Ali; Muhammad Faisal Anwar Malik

    2014-01-01

    Nitrogen is a structural component of chlorophyll and protein therefore adequate supply of nitrogen is beneficial for both carbohydrates and protein metabolism as it promotes cell division and cell enlargement, resulting in more leaf area and thus ensuring good seed and dry matter yield. Theexperiment entitled effect of nitrogen and phosphorus on yield and yield components of sesame were conducted at New Developmental Farm of the University of Agriculture Peshawar during kharif 2013. Randomiz...

  5. Polyphophoinositides components of plant nuclear membranes

    International Nuclear Information System (INIS)

    Hendrix, K.W.; Boss, W.F.

    1987-01-01

    The polyphosphoinositides, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP 2 ), have been shown to be important components in signal transduction in many animal cells. Recently, these lipids have been found to be associated with plasma membrane but not microsomal membrane isolated from fusogenic wild carrot cells; however, in that study the lipids of the nuclear membrane were not analyzed. Since polyphosphoinositides had been shown to be associated with the nuclear membranes as well as the plasma membrane in some animal cells, it was important to determine whether they were associated with plant nuclear membranes as well. Cells were labeled for 18h with [ 3 H] inositol and the nuclei were isolated by a modification of the procedure of Saxena et al. Preliminary lipid analyses indicate lower amount of PIP and PIP 2 in nuclear membranes compared to whole protoplasts. This suggests that the nuclear membranes of carrot cells are not enriched in PIP and PIP 2 ; however, the Triton X-100 used during the nuclear isolation procedure may have affected the recovery of the lipids. Experiments are in progress to determine the effects of Triton X-100 on lipid extraction

  6. New Components for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Stefano Caramori

    2010-01-01

    Full Text Available Dye-Sensitized Solar Cells (DSSCs are among the most promising solar energy conversion devices of new generation, since coupling ease of fabrication and low cost offer the possibility of building integration in photovoltaic windows and facades. Although in their earliest configuration these systems are close to commercialization, fundamental studies are still required for developing new molecules and materials with more desirable properties as well as improving our understanding of the fundamental processes at the basis of the functioning of photoactive heterogeneous interfaces. In this contribution, some recent advances, made in the effort of improving DSSC devices by finding alternative materials and configurations, are reviewed.

  7. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  8. The Coxiella Burnetii type IVB secretion system (T4BSS) component DotA is released/secreted during infection of host cells and during in vitro growth in a T4BSS-dependent manner.

    Science.gov (United States)

    Luedtke, Brandon E; Mahapatra, Saugata; Lutter, Erika I; Shaw, Edward I

    2017-06-01

    Coxiella burnetii is a Gram-negative intracellular pathogen and is the causative agent of the zoonotic disease Q fever. To cause disease, C. burnetii requires a functional type IVB secretion system (T4BSS) to transfer effector proteins required for the establishment and maintenance of a membrane-bound parasitophorous vacuole (PV) and further modulation of host cell process. However, it is not clear how the T4BSS interacts with the PV membrane since neither a secretion pilus nor an extracellular pore forming apparatus has not been described. To address this, we used the acidified citrate cysteine medium (ACCM) along with cell culture infection and immunological techniques to identify the cellular and extracellular localization of T4BSS components. Interestingly, we found that DotA and IcmX were secreted/released in a T4BSS-dependent manner into the ACCM. Analysis of C. burnetii-infected cell lines revealed that DotA colocalized with the host cell marker CD63 (LAMP3) at the PV membrane. In the absence of bacterial protein synthesis, DotA also became depleted from the PV membrane. These data are the first to identify the release/secretion of C. burnetii T4BSS components during axenic growth and the interaction of a T4BSS component with the PV membrane during infection of host cells. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    Science.gov (United States)

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Cell Nutrition

    NARCIS (Netherlands)

    Malda, J.; Radisic, M.; Levenberg, S.; Woodfield, T.; Oomens, C.W.J.; Baaijens, F.P.T.; Svalander, P.; Vunjak-Novakovic, G.; Blitterswijk, C.; Thomsen, P.; Lindahl, A.; Hubbel, J.A.

    2008-01-01

    This chapter summarizes the role of mass transport in providing nutrients to the cells. It describes how mathematical modeling can enhance the understanding of nutrient limitation in tissue engineering. The nutrient requirements of the cells are explained and the components of the cell culture

  11. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  12. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods

    Science.gov (United States)

    Karel, M.; Kamarei, A. R.; Nakhost, Z.

    1985-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.

  13. Statistics of Shared Components in Complex Component Systems

    Science.gov (United States)

    Mazzolini, Andrea; Gherardi, Marco; Caselle, Michele; Cosentino Lagomarsino, Marco; Osella, Matteo

    2018-04-01

    Many complex systems are modular. Such systems can be represented as "component systems," i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.

  14. Feline leukemia virus infection requires a post-receptor binding envelope-dependent cellular component.

    Science.gov (United States)

    Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S

    2011-12-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.

  15. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Science.gov (United States)

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral

  16. Fresenius AS.TEC204 blood cell separator.

    Science.gov (United States)

    Sugai, Mikiya

    2003-02-01

    Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.

  17. Statistics of Shared Components in Complex Component Systems

    Directory of Open Access Journals (Sweden)

    Andrea Mazzolini

    2018-04-01

    Full Text Available Many complex systems are modular. Such systems can be represented as “component systems,” i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf’s law. Such “laws” affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the “core” genome in bacteria.

  18. Persistence of STAT-1 inhibition and induction of cytokine resistance in pancreatic β cells treated with St John's wort and its component hyperforin.

    Science.gov (United States)

    Novelli, Michela; Beffy, Pascale; Gregorelli, Alex; Porozov, Svetlana; Mascia, Fabrizio; Vantaggiato, Chiara; Masiello, Pellegrino; Menegazzi, Marta

    2017-10-09

    St John's wort extract (SJW) and its component hyperforin (HPF) were shown to potently inhibit cytokine-induced STAT-1 and NF-κB activation in pancreatic β cells and protect them against injury. This study aimed at exploring the time course of STAT-1 inhibition afforded by these natural compounds in the β-cell line INS-1E. INS-1E cells were pre-incubated with SJW extract (2-5 μg/ml) or HPF (0.5-2 μm) and then exposed to a cytokine mixture. In some experiments, these compounds were added after or removed before cytokine exposure. STAT-1 activation was assessed by electrophoretic mobility shift assay, apoptosis by caspase-3 activity assay, mRNA gene expression by RT-qPCR. Pre-incubation with SJW/HPF for 1-2 h exerted a remarkable STAT-1 downregulation, which was maintained upon removal of the compounds before early or delayed cytokine addition. When the protective compounds were added after cell exposure to cytokines, between 15 and 90 min, STAT-1 inhibition also occurred at a progressively decreasing extent. Upon 24-h incubation, SJW and HPF counteracted cytokine-induced β-cell dysfunction, apoptosis and target gene expression. SJW and HPF confer to β cells a state of 'cytokine resistance', which can be elicited both before and after cytokine exposure and safeguards these cells from deleterious cytokine effects. © 2017 Royal Pharmaceutical Society.

  19. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle (君臣佐使論

    Directory of Open Access Journals (Sweden)

    Shin Jeong-Hun

    2012-12-01

    Full Text Available Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論 to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng, Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa, Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論, Ginseng Radix (Red Ginseng corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in

  20. A quality monitoring program for red blood cell components: in vitro quality indicators before and after implementation of semiautomated processing.

    Science.gov (United States)

    Acker, Jason P; Hansen, Adele L; Kurach, Jayme D R; Turner, Tracey R; Croteau, Ioana; Jenkins, Craig

    2014-10-01

    Canadian Blood Services has been conducting quality monitoring of red blood cell (RBC) components since 2005, a period spanning the implementation of semiautomated component production. The aim was to compare the quality of RBC components produced before and after this production method change. Data from 572 RBC units were analyzed, categorized by production method: Method 1, RBC units produced by manual production methods; Method 2, RBC units produced by semiautomated production and the buffy coat method; and Method 3, RBC units produced by semiautomated production and the whole blood filtration method. RBC units were assessed using an extensive panel of in vitro tests, encompassing regulated quality control criteria such as hematocrit (Hct), hemolysis, and hemoglobin (Hb) levels, as well as adenosine triphosphate, 2,3-diphosphoglycerate, extracellular K(+) and Na(+) levels, methemoglobin, p50, RBC indices, and morphology. Throughout the study, all RBC units met mandated Canadian Standards Association guidelines for Hb and Hct, and most (>99%) met hemolysis requirements. However, there were significant differences among RBC units produced using different methods. Hb content was significantly lower in RBC units produced by Method 2 (51.5 ± 5.6 g/unit; p levels were lowest in units produced by Method 1 (p < 0.001). While overall quality was similar before and after the production method change, the observed differences, although small, indicate a lack of equivalency across RBC products manufactured by different methods. © 2014 AABB.

  1. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  2. Component-based development process and component lifecycle

    NARCIS (Netherlands)

    Crnkovic, I.; Chaudron, M.R.V.; Larsson, S.

    2006-01-01

    The process of component- and component-based system development differs in many significant ways from the "classical" development process of software systems. The main difference is in the separation of the development process of components from the development process of systems. This fact has a

  3. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  4. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  5. Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus

    International Nuclear Information System (INIS)

    Reimer, G.; Raska, I.; Scheer, U.; Tan, E.M.

    1988-01-01

    Certain autoimmune sera contain antibodies against a nucleolar ribonucleotprotein particle associated with 7-2-RNA. In this study, the authors showed by immunofluorescence microscopy that antibodies reactive with 7-2-ribonucleoprotein immunolocalized in the granular regions of actinomycin D and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB)--segregated nucleoli from Vero cells. By electron microscopic immunocytochemistry, antigen-antibody complexes were located in the granular component of transcriptionally active nucleoli from rat liver hepatocytes and HeLa cells. Anti-7-2-RNP antibodies from two autoimmune sera immunoprecipitated a major protein of M r 40,000 from [ 35 S] methionine-labeled HeLa cell extract. The immunolocalization data suggest that 7-2-ribonucleoprotein may be involved in stages of ribosome biogenesis which take place in the granular component of the nucleolus, i.e., assembly, maturation, and/or transport of preribosomes

  6. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000 nm and 860 nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  7. Tritium test of the tritium processing components under the Annex III US-Japan Collaboration

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Naruse, Yuji; Binning, K.E.; Carlson, R.V.; Bartlit, J.R.; Anderson, J.L.

    1993-03-01

    The process ready components for Fuel Cleanup System were tested at the TSTA under the US-Japan Collaboration program. Palladium diffuser for tritium purification and Ceramic Electrolysis Cell for decomposition of tritiated water respectively were tested with pure tritium for years. The characteristics of the components with hydrogen isotopes, effects of impurities, and long-term reliability of the components were studied. It was concluded that these components are suitable and attractive for fusion fuel processing systems. (author)

  8. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    Science.gov (United States)

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Changes in structural and chemical components of wood delignified by fungi

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, R.A.; Otjen, L.; Effland, M.J.; Eslyn, W.E.

    1985-01-01

    Cerrena unicolor, Ganoderma applanatum, Ischnoderma resinosum and Poria medulla-panis were associated with birch (Betula papyrifera) wood that had been selectively delignified in the forest. Preferential lignin degradation was not uniformly distributed throughout the decayed wood. A typical white rot causing a simultaneous removal of all cell wall components was also present. In the delignified wood, 95 to 98% of the lignin was removed as well as substantial amounts of hemicelluloses. Scanning and transmission electron microscopy were used to identify the micromorphological and ultrastructural changes that occurred in the cells during degradation. In delignified areas the compound middle lamella was extensively degraded causing a defibration of cells. The secondary wall, especially the S2 layer, remained relatively unaltered. In simultaneously white-rotted wood all cell wall layers were progressively removed from the lumen toward the middle lamella causing erosion troughs or holes to form. Large voids filled with fungal mycelia resulted from a coalition of degraded areas. Birch wood decayed in laboratory soil-block tests was also intermittently delignified, selective delignification, sparsely distributed throughout the wood, and a simultaneous rot resulting in the removal of all cell wall components were evident. SEM appears to be an appropriate technique for examining selectively delignified decayed wood. 30 references.

  10. Irradiation tests of critical components for remote handling system in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1996-03-01

    This report covers the gamma ray irradiation tests according to the Agreement of ITER R and D Task (T35) in 1994 and describes radiation hardness of the standard components for the ITER remote handling system which are categorized into the robotics (Subtask-1), the viewing system (Subtask-2) and the common components (Subtask-3). The gamma ray irradiation tests have been conducted using No.2 and No.3 cells at the cobalt building of Takasaki Establishment in JAERI. The radiation source is cobalt sixty (Co-60), and the maximum dose rate of No.2 and No.3 cells is about 1x10 6 R/h and 2x10 6 R/h, respectively. The environmental conditions of the irradiation tests are described below and all of components excepting electrical wires have been tested in the No.2 cell. [No.2 cell : Atmosphere and ambient temperature No.3 cell : Nitrogen gas and 250degC] As a whole, many of components have been irradiated up to the rated dose of around 1x10 10 rads and the following main results are obtained. The developed AC servo motor and periscope for radiation use have shown excellent durability with the radiation hardness tolerable for more than 10 9 rads. An electrical connector compatible with remote operation has also shown no degradation of electrical characteristics after the irradiation of 10 10 rads. As for polyimide insulated wires, the mechanical and electrical characteristics are not degradated after the irradiation of 10 9 rads and more radiation hardness can be expected than the anticipation. On the contrary, standard position sensors such as rotary encoder show extremely low radiation hardness and further efforts have to be made for improvements. (J.P.N.)

  11. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma

    DEFF Research Database (Denmark)

    Guo, Guangwu; Gui, Yaoting; Gao, Shengjie

    2012-01-01

    We sequenced whole exomes of ten clear cell renal cell carcinomas (ccRCCs) and performed a screen of similar to 1,100 genes in 88 additional ccRCCs, from which we discovered 12 previously unidentified genes mutated at elevated frequencies in ccRCC. Notably, we detected frequent mutations in the u...

  12. A triphenylamine-based push-pull – σ – C60 dyad as photoactive molecular material for single-component organic solar cells: synthesis, characterizations and photophysical properties

    KAUST Repository

    Labrunie, Antoine; Gorenflot, Julien; Babics, Maxime; Aleveque, Olivier; Dabos-Seignon, Sylvie; Balawi, Ahmed H.; Kan, Zhipeng; Wohlfahrt, Markus; Levillain, Eric; Hudhomme, Pietrick; Beaujuge, Pierre; Laquai, Fré dé ric; Cabanetos, Clé ment; Blanchard, Philippe

    2018-01-01

    A push-pull – σ – C60 molecular dyad was synthesized via Huisgen-type click-chemistry and used as photoactive material for single-component organic solar cells. Steady-state photoluminescence (PL) experiments of the dyad in solution show a significant quenching of the emission of the push-pull moiety. Spin-casting of a solution of the dyad results in homogenous and smooth thin-films, which exhibit complete PL quenching in line with ultrafast photo-induced electron-transfer in the solid-state. Spectro-electrochemistry reveals the optical signatures of radical cations and radical anions. Evaluation of the charge carrier mobility by space-charge limited current measurements gives an electron-mobility of μe = 4.3 × 10-4 cm2 V-1 s-1, ca. 50 times higher than the hole-mobility. Single-component organic solar cells yield an open-circuit voltage Voc of 0.73 V and a short-circuit current density of 2.1 mA cm-2 however, a poor fill-factor FF (29%) is obtained, resulting in low power conversion efficiency of only 0.4%. Combined TA and time-delayed collection field (TDCF) experiments show mostly ultrafast photon-to-charge conversion and a small component of diffusion-limited exciton dissociation, revealing the presence of pure fullerene domains. Furthermore, a strong field dependence of charge generation is observed, governing the device fill factor, which is further reduced by a competition between extraction and fast recombination of separated charges.

  13. A triphenylamine-based push-pull – σ – C60 dyad as photoactive molecular material for single-component organic solar cells: synthesis, characterizations and photophysical properties

    KAUST Repository

    Labrunie, Antoine

    2018-04-23

    A push-pull – σ – C60 molecular dyad was synthesized via Huisgen-type click-chemistry and used as photoactive material for single-component organic solar cells. Steady-state photoluminescence (PL) experiments of the dyad in solution show a significant quenching of the emission of the push-pull moiety. Spin-casting of a solution of the dyad results in homogenous and smooth thin-films, which exhibit complete PL quenching in line with ultrafast photo-induced electron-transfer in the solid-state. Spectro-electrochemistry reveals the optical signatures of radical cations and radical anions. Evaluation of the charge carrier mobility by space-charge limited current measurements gives an electron-mobility of μe = 4.3 × 10-4 cm2 V-1 s-1, ca. 50 times higher than the hole-mobility. Single-component organic solar cells yield an open-circuit voltage Voc of 0.73 V and a short-circuit current density of 2.1 mA cm-2 however, a poor fill-factor FF (29%) is obtained, resulting in low power conversion efficiency of only 0.4%. Combined TA and time-delayed collection field (TDCF) experiments show mostly ultrafast photon-to-charge conversion and a small component of diffusion-limited exciton dissociation, revealing the presence of pure fullerene domains. Furthermore, a strong field dependence of charge generation is observed, governing the device fill factor, which is further reduced by a competition between extraction and fast recombination of separated charges.

  14. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  15. Handling and final storage of radioactive metal components

    International Nuclear Information System (INIS)

    Loennerberg, B.; Engelbrektson, A.; Neretnieks, I.

    1978-06-01

    After the dismounting of the fuel elements, the next stage is to undertake the final storing of the metal components, which have kept the fuel rods together. The components are transmitted to a pool where they are cut into pieces, compacted and placed in wire baskets. These are transferred in a water channel to a cell, where the metal components are embedded into concrete blocks. Thus the baskets are placed in prefabricated concrete containers, after which the metal parts are embedded into cement grout, injected from the bottom of the containers. The blocks are finally stored in rock tunnels constituting a storage similar to the repositories for vitrified waste and spent fuel, although somewhat simplified, taking advantage of the much lower amount of radioactive material in the case of metal components. Thus a depositioning depth of 300 m in rock is very much on the safe side and it is appropriate in this case to fill the tunnels with concrete, ensuring by its alcalinity a suffi ciently low rate of dissolution of the metal and migration of radioactive substances

  16. 21 CFR 864.2360 - Mycoplasma detection media and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mycoplasma detection media and components. 864.2360 Section 864.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products...

  17. Photovoltaic energy: solar components for the future from the LCS

    International Nuclear Information System (INIS)

    Queruel, Michel; Jary, Marc; Ganier, Aude

    2008-01-01

    The LCS - the solar components laboratory of LITEN1 Institute - is working with industry and research to devise silicon-based technologies for developing new materials, cells and manufacturing processes that offer improved performance at a lower cost. (authors)

  18. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review.

    Science.gov (United States)

    Loureiro, Laís Monteiro Rodrigues; Reis, Caio Eduardo Gonçalves; da Costa, Teresa Helena Macedo

    2018-01-18

    Coffee is one of the most consumed beverages in the world and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to PRISMA and seven studies were included. They explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca 2+ /calmodulin-dependent protein kinase (CaMK) phosphorylation, glycogen resynthesis rates and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta-cells, and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from the current review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whilst no detrimental effect was described. Coffee beverages should be tested as an option for athlete's glycogen recovery.

  19. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  20. Cerebellar hemangioblastomas: A study of the immunoprofile of neoplastic stromal component

    Directory of Open Access Journals (Sweden)

    Tasić Desanka

    2004-01-01

    Full Text Available Background. Central nervous system hemangioblastomas (HBs are uncommon highly vascularized tumors that are predominantly found in the cerebellum. They occur sporadically or in association with von Hippel-Lindau (VHL disease. HBs are of unknown histogenesis, and the origin of stromal cells is still a subject of debate. The aim of this study was to investigate the immunoprofile of neoplastic stromal component, and to determine whether the profile of the expression of immunomarkers used can contribute to the elucidation of the histogenesis of HBs. Methods. A series of eight cerebellar HBs were histochemically examined for the detection of mast cells and immunohistochemically for the expression of factor VIII-related antigen (FVIII-RAg, CD34, vimentin, factor XIIIa (FXIIIa, S-100 protein, glial fibrillary acidic protein (GFAP, neuron-specific enolase (NSE neurofilaments (NF, synaptophysin, chromogranin, and somatostatin. Results. Mast cells were present in all hemangioblastomas, and were particularly abundant in one tumor. Immunohistochemically, intense reactivity for vimentin and NSE in the stromal cells was constantly seen. Immunoreactivity with S-100 protein and FXIIIa was variable, but generally many HBs stromal cells were negative for these markers. However, stromal cells were uniformly negative for FVIII-RAg in all HBs investigated. They were negative for CD34 GFAP, NF, synaptophysin, chromogranin, as well as somatostatin. GFAP-positivity of the occasional stromal type cells, located only peripherally, was interpreted as "pseudopositivity". Conclusion. The immunoprofile of neoplastic stromal component in this study suggested a possible origin from undifferentiated multipotential mesenchymal cells. High expression of NSE (glycolytic and hypoxia-inducible enzyme in the HBs stromal cells might be related to the loss of the VHL protein function.

  1. A major protein component of the Bacillus subtilis biofilm matrix.

    Science.gov (United States)

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  2. Fuel Cell Balance-of-Plant Reliability Testbed Project

    Energy Technology Data Exchange (ETDEWEB)

    Sproat, Vern [Stark State College of Technology, North Canton, OH (United States); LaHurd, Debbie [Lockheed Martin Corp., Oak Ridge, TN (United States)

    2016-10-29

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEM fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.

  3. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  4. Mechanisms of immunological eradication of a syngeneic guinea pig tumor: participation of a component(s) of recipient origin in the expression of systemic adoptive immunity

    International Nuclear Information System (INIS)

    Shu, S.; Fonseca, L.S.; Kato, H.; Zbar, B.

    1983-01-01

    The effects of carrageenan and trypan blue on the expression of adoptive immunity to the syngeneic guinea pig line 10 hepatoma were investigated. Adoptive immunity was assessed by observing dermal tumor growth in recipients of immune cells and by bioassays in which tumor challenge sites were transplanted into secondary hosts. Carrageenan abrogated transferred immunity in treated animals as evidenced by dermal tumor growth and by development of fatal ascites tumors in peritoneal cavities of the secondary hosts. Trypan blue, on the other hand, did not abrogate transferred immunity in treated animals. However, the i.p. bioassay revealed the presence of line 10 cells in the tumor challenge sites 10 days after adoptive transfer. In vitro and in vivo exposure of immune spleen cells to carrageenan or trypan blue had no significant effect on the subsequent adoptive transfer, indicating that the inhibitory activity of these agents cannot be attributed to direct toxicity to immune lymphoid cells. Tumor challenge sites taken from carrageenan or trypan blue-treated animals 5 days after adoptive transfer failed to grow progressively when transplanted s.c. into secondary hosts. This observation suggests the presence of immune cells at tumor challenge sites. Thus, the inhibitory effects were unlikely due to interference with recirculation of the i.v.-transferred immune cells. Adoptive immunity was not influenced in guinea pigs that received a lethal dose of irradiation (500 rads). These results demonstrate that a recipient component(s) sensitive to carrageenan and trypan blue but resistant to radiation is essential to the expression of adoptive immunity

  5. Exchange of rotor components in functioning bacterial flagellar motor

    International Nuclear Information System (INIS)

    Fukuoka, Hajime; Inoue, Yuichi; Terasawa, Shun; Takahashi, Hiroto; Ishijima, Akihiko

    2010-01-01

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP, and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s -1 , meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.

  6. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  7. Tenascin-Y, a component of distinctive connective tissues, supports muscle cell growth.

    Science.gov (United States)

    Hagios, C; Brown-Luedi, M; Chiquet-Ehrismann, R

    1999-12-15

    Chicken tenascin-Y is an extracellular matrix protein most closely related to the mammalian tenascin-X. It is highly expressed in the connective tissue of skeletal muscle (C. Hagios, M. Koch, J. Spring, M. Chiquet, and R. Chiquet-Ehrismann, 1996, J. Cell Biol. 134, 1499-1512). Here we demonstrate the presence of tenascin-Y in specific areas of the connective tissues in developing lung, kidney, and skin. In skin tenascin-Y shows a complementary expression pattern to tenascin-C, whereas in the lung and kidney the sites of expression are partly overlapping. Tenascin-Y is also present in embryonic skeletal muscle where it is expressed in the developing connective tissue in between the muscle fibers. This connective tissue is also the major site of alpha5 integrin expression. We purified recombinantly expressed tenascin-Y and tested its effect on cell adhesion and its influence on muscle cell growth and differentiation. C2C12 myoblasts were able to adhere to tenascin-Y and showed extensive formation of actin-rich processes without generation of stress fibers. Furthermore, we found that tenascin-Y influenced cell morphology of chick embryo fibroblasts over prolonged times in culture and that it supports primary muscle cell growth and restricts muscle cell differentiation. Copyright 1999 Academic Press.

  8. Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells.

    Science.gov (United States)

    Milochau, Alexandra; Lagrée, Valérie; Benassy, Marie-Noëlle; Chaignepain, Stéphane; Papin, Julien; Garcia-Arcos, Itsaso; Lajoix, Anne; Monterrat, Carole; Coudert, Laetitia; Schmitter, Jean-Marie; Ochoa, Begoña; Lang, Jochen

    2014-06-27

    Synaptotagmins are two C2 domain-containing transmembrane proteins. The function of calcium-sensitive members in the regulation of post-Golgi traffic has been well established whereas little is known about the calcium-insensitive isoforms constituting half of the protein family. Novel binding partners of synaptotagmin 11 were identified in β-cells. A number of them had been assigned previously to ER/Golgi derived-vesicles or linked to RNA synthesis, translation and processing. Whereas the C2A domain interacted with the Q-SNARE Vti1a, the C2B domain of syt11 interacted with the SND1, Ago2 and FMRP, components of the RNA-induced silencing complex (RISC). Binding to SND was direct via its N-terminal tandem repeats. Our data indicate that syt11 may provide a link between gene regulation by microRNAs and membrane traffic. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    Science.gov (United States)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  10. Demonstration of constant upregulation of the telomerase RNA component in human gastric carcinomas using in situ hybridization.

    Science.gov (United States)

    Heine, B; Hummel, M; Demel, G; Stein, H

    1998-06-01

    Upregulation of the ribonucleoprotein telomerase seems to be a prerequisite for immortality, a feature of malignant cells. Using a polymerase chain reaction (PCR)-based assay, it is possible to demonstrate telomerase activity (TA) in specimens of most human malignancies, whereas it is absent from most normal tissues. It remains unclear, however, why between 5 and 50 per cent of various malignant tumour samples give negative results when TA is measured by the telomeric repeat amplification protocol (TRAP). The expectation that reverse transcription (RT)-PCR for detection of the telomerase RNA component (hTR) would be able to complement or to replace the TRAP assay failed, since malignant as well as non-malignant tissue samples gave positive results in most instances. In the present study, in situ hybridization (ISH) was developed to demonstrate the RNA component of human telomerase at the single cell level. With this method, 13 specimens of fresh frozen gastric carcinoma and four of normal, dysplastic, or inflamed gastric mucosa were investigated and the results were compared with those obtained by RT-PCR and the TRAP assay. In addition, ISH was performed on formalin-fixed sections of the same cases. The TRAP assay revealed positive results in 8 out of 13 gastric carcinomas and was negative in all non-malignant tissues. RT-PCR led to amplification of the telomerase RNA component in all specimens tested, irrespective of the presence or absence of malignant cells. By ISH, all gastric carcinomas showed strong telomerase RNA component-specific signals over malignant cells, whereas only a few grains were detectable over some types of normal somatic cells, including activated lymphocytes. In conclusion, high expression of the telomerase RNA component was restricted to the malignant cells of all the gastric carcinomas investigated, as shown by ISH. This indicates that the absence of TA in a proportion of carcinomas is due to methodological problems of the TRAP assay and is

  11. Structural Molecular Components of Septate Junctions in Cnidarians Point to the Origin of Epithelial Junctions in Eukaryotes

    KAUST Repository

    Ganot, P.

    2014-09-21

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.

  12. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology

    Czech Academy of Sciences Publication Activity Database

    Bizzarro, B.; Barros, M.S.; Maciel, C.; Gueroni, D.I.; Lino, C.N.; Campopiano, J.; Kotsyfakis, Michalis; Amarante-Mendes, G.P.; Calvo, E.; Capurro, M.L.; Sa-Nunes, A.

    2013-01-01

    Roč. 6, NOV 2013 (2013), s. 329 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : dendritic cells * T-cells * Aedes aegypti * saliva * apoptosis Subject RIV: EC - Immunology Impact factor: 3.251, year: 2013

  13. Beneficial Effects of Ethanolic and Hexanic Rice Bran Extract on Mitochondrial Function in PC12 Cells and the Search for Bioactive Components

    Directory of Open Access Journals (Sweden)

    Stephanie Hagl

    2015-09-01

    Full Text Available Mitochondria are involved in the aging processes that ultimately lead to neurodegeneration and the development of Alzheimer’s disease (AD. A healthy lifestyle, including a diet rich in antioxidants and polyphenols, represents one strategy to protect the brain and to prevent neurodegeneration. We recently reported that a stabilized hexanic rice bran extract (RBE rich in vitamin E and polyphenols (but unsuitable for human consumption has beneficial effects on mitochondrial function in vitro and in vivo (doi:10.1016/j.phrs.2013.06.008, 10.3233/JAD-132084. To enable the use of RBE as food additive, a stabilized ethanolic extract has been produced. Here, we compare the vitamin E profiles of both extracts and their effects on mitochondrial function (ATP concentrations, mitochondrial membrane potential, mitochondrial respiration and mitochondrial biogenesis in PC12 cells. We found that vitamin E contents and the effects of both RBE on mitochondrial function were similar. Furthermore, we aimed to identify components responsible for the mitochondria-protective effects of RBE, but could not achieve a conclusive result. α-Tocotrienol and possibly also γ-tocotrienol, α-tocopherol and δ-tocopherol might be involved, but hitherto unknown components of RBE or a synergistic effect of various components might also play a role in mediating RBE’s beneficial effects on mitochondrial function.

  14. Component Fragility Research Program: Phase 1 component prioritization

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.

    1987-06-01

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize seismic ''fragilities'' - probabilities of failure conditioned on the severity of seismic input motion - that are based largely on limited test data and on engineering judgment. Under the NRC Component Fragility Research Program (CFRP), the Lawrence Livermore National Laboratory (LLNL) has developed and demonstrated procedures for using test data to derive probabilistic fragility descriptions for mechanical and electrical components. As part of its CFRP activities, LLNL systematically identified and categorized components influencing plant safety in order to identify ''candidate'' components for future NRC testing. Plant systems relevant to safety were first identified; within each system components were then ranked according to their importance to overall system function and their anticipated seismic capacity. Highest priority for future testing was assigned to those ''very important'' components having ''low'' seismic capacity. This report describes the LLNL prioritization effort, which also included application of ''high-level'' qualification data as an alternate means of developing probabilistic fragility descriptions for PRA applications

  15. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients.

    Science.gov (United States)

    Tornero-Esteban, Pilar; Peralta-Sastre, Ascensión; Herranz, Eva; Rodríguez-Rodríguez, Luis; Mucientes, Arkaitz; Abásolo, Lydia; Marco, Fernando; Fernández-Gutiérrez, Benjamín; Lamas, José Ramón

    2015-01-01

    Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.

  16. Comparison of two apheresis systems for the collection of CD14+ cells intended to be used in dendritic cell culture.

    Science.gov (United States)

    Strasser, Erwin F; Berger, Thomas G; Weisbach, Volker; Zimmermann, Robert; Ringwald, Jürgen; Schuler-Thurner, Beatrice; Zingsem, Jürgen; Eckstein, Reinhold

    2003-09-01

    Monocytes collected by leukapheresis are increasingly used for dendritic cell (DC) culture in cell factories suitable for DC vaccination in cancer. Using modified MNC programs on two apheresis systems (Cobe Spectra and Fresenius AS.TEC204), leukapheresis components collected from 84 patients with metastatic malignant melanoma and from 31 healthy male donors were investigated. MNCs, monocytes, RBCs, and platelets (PLTs) in donors and components were analyzed by cell counters, WBC differential counts, and flow cytometry. In 5-L collections, Astec showed better results regarding monocyte collection rates (11.0 vs. 7.4 x 10(6)/min, p = 0.04) and efficiencies (collection efficiency, 51.9 vs. 31.9%; p Astec components contained high residual RBCs. Compared to components with low residual PLTs, high PLT concentration resulted in higher monocyte loss (48 vs. 20%, p Astec is more efficient in 5-L MNC collections compared to the Spectra. Components with high residual PLTs result in high MNC loss by purification procedures. Thus, optimizing MNC programs is essential to obtain components with high MNC yields and low residual cells as prerequisite for high DC yields.

  17. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    Science.gov (United States)

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  18. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  19. Cytotoxic Components Against Human Oral Squamous Cell Carcinoma Isolated from Andrographis paniculata.

    Science.gov (United States)

    Suzuki, Ryuichiro; Matsushima, Yasuaki; Okudaira, Noriyuki; Sakagami, Hiroshi; Shirataki, Yoshiaki

    2016-11-01

    The 5-year survival rate of patients with oral cancer has remained approximately 50% during the past 30 years, possibly due to the poor tumor selectivity of conventional anticancer drugs. This prompted us to search for new candidates for anticancer drugs that have higher cytotoxicity and tumor selectivity. Dried leaves of Andrographis paniculata were supplied from a market in Shanghai. The methanolic fraction of A. paniculata was further fractionated to identify cytotoxic principles by spectroscopic analysis and comparison with literature values. Viable cell number was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method, and tumor specificity was calculated by relative cytotoxicity against oral squamous cell carcinoma cell lines compared to that against normal oral cells. Apoptosis induction was detected by cleaved poly (ADP-ribose) polymerase and caspase-3 on western blot analysis. Major cytotoxicity in the methanol extract of a leaf of A. paniculata was recovered by partitioning with EtOAc, followed by silica gel chromatography. Further purification with reversed-phase high-performance liquid chromatography led to isolation of four known cytotoxic compounds, 14-deoxyandrographolide, andrographolide, neoandrographolide and deoxyandrographiside. Among them, andrographolide had the greatest cytotoxicity and tumor specificity, also inducing caspase-3 activation of HSC-2 oral squamous cell carcinoma cells. The present study identified andrographolide as a major antitumor principle in the methanolic extract of leaves of A. paniculata. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi

    2011-03-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. Morphological and functional changes in cells are believed to be partly modified by matricrine signaling, by which ECM components function as cellular signals. In the present study, we examined whether gap junction formation between FS cells is affected by matricrine cues. A cell sorter was used to isolate FS cells from male S100b-GFP rat anterior pituitary for primary culture. We observed that mRNA and protein levels of connexin 43 in gap junction channels were clearly higher in the presence of laminin. In addition, we confirmed the formation of gap junctions between FS cells in primary culture by electron microscopy. Interestingly, we also observed that FS cells in the presence of laminin displayed well-developed rough endoplasmic reticulum and Golgi apparatus. Our findings suggest that, in anterior pituitary gland, FS cells may facilitate functional roles such as gap junctional cell-to-cell communication by matricrine signaling.

  1. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    Science.gov (United States)

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.

  2. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components

    Directory of Open Access Journals (Sweden)

    Patricia Escobar

    2010-03-01

    Full Text Available The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL and S-carvone (IC50 6.1 ± 2.2 μg/mL, two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  3. Fuel cell hardware-in-loop

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  4. Spice: discovery of phenotype-determining component interplays

    Directory of Open Access Journals (Sweden)

    Chen Zhengzhang

    2012-05-01

    Full Text Available Abstract Background A latent behavior of a biological cell is complex. Deriving the underlying simplicity, or the fundamental rules governing this behavior has been the Holy Grail of systems biology. Data-driven prediction of the system components and their component interplays that are responsible for the target system’s phenotype is a key and challenging step in this endeavor. Results The proposed approach, which we call System Phenotype-related Interplaying Components Enumerator (Spice, iteratively enumerates statistically significant system components that are hypothesized (1 to play an important role in defining the specificity of the target system’s phenotype(s; (2 to exhibit a functionally coherent behavior, namely, act in a coordinated manner to perform the phenotype-specific function; and (3 to improve the predictive skill of the system’s phenotype(s when used collectively in the ensemble of predictive models. Spice can be applied to both instance-based data and network-based data. When validated, Spice effectively identified system components related to three target phenotypes: biohydrogen production, motility, and cancer. Manual results curation agreed with the known phenotype-related system components reported in literature. Additionally, using the identified system components as discriminatory features improved the prediction accuracy by 10% on the phenotype-classification task when compared to a number of state-of-the-art methods applied to eight benchmark microarray data sets. Conclusion We formulate a problem—enumeration of phenotype-determining system component interplays—and propose an effective methodology (Spice to address this problem. Spice improved identification of cancer-related groups of genes from various microarray data sets and detected groups of genes associated with microbial biohydrogen production and motility, many of which were reported in literature. Spice also improved the predictive skill of the

  5. Separation and characterization of the immunostimulatory components in unpolished rice black vinegar (kurozu).

    Science.gov (United States)

    Hashimoto, Masahito; Obara, Kyoko; Ozono, Mami; Furuyashiki, Maiko; Ikeda, Tsuyoshi; Suda, Yasuo; Fukase, Koichi; Fujimoto, Yukari; Shigehisa, Hiroshi

    2013-12-01

    Unpolished rice black vinegar (kurozu), a traditional Japanese vinegar, is considered to have beneficial health effects. Kurozu is produced via a static fermentation process involving the saccharification of rice by Aspergillus oryzae, alcohol fermentation by Saccharomyces cerevisiae, and the oxidation of ethanol to acetic acid by acetic acid bacteria such as Acetobacter pasteurianus. Since this process requires about 6 months' fermentation and then over a year of aging, most of these organisms die during the production process and so microbial components, which might stimulate the innate immune system, are expected to be present in the vinegar. In this study, we investigated whether microbial components are present in kurozu, and after confirming this we characterized their immunostimulatory activities. Lyophilized kurozu stimulated murine spleen cells to produce tumor necrosis factor (TNF)-α, at least in part, via Toll-like receptor (TLR) 2 and the Nod-like receptors NOD1 and 2. The active components associated with TLR2 activation were concentrated by Triton X-114-water phase partitioning and hydrophobic interaction chromatography on Octyl Sepharose. TLR4-activating components were also enriched by these methods. The concentrated preparation stimulated murine spleen cells to produce TNF-α and interferon (IFN)-γ. These results indicate that long-term fermented kurozu contains immunostimulatory components and that the TLR2 and TLR4-activating immunostimulatory components of kurozu are hydrophobic. These components might be responsible for the beneficial health effects of kurozu. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    Science.gov (United States)

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  7. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery.

    Science.gov (United States)

    Liu, Yuxiao; Shao, Changmin; Bian, Feika; Yu, Yunru; Wang, Huan; Zhao, Yuanjin

    2018-05-23

    Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.

  8. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  9. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].

    Science.gov (United States)

    Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan

    2015-03-04

    We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.

  10. Other components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter includes descriptions of electronic and mechanical components which do not merit a chapter to themselves. Other hardware requires mention because of particularly high tolerance or intolerance of exposure to radiation. A more systematic analysis of radiation responses of structures which are definable by material was given in section 3.8. The components discussed here are field effect transistors, transducers, temperature sensors, magnetic components, superconductors, mechanical sensors, and miscellaneous electronic components

  11. Identification of Neuregulin-2 as a novel stress granule component.

    Science.gov (United States)

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-08-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454].

  12. The Effects Radiation on Cellular Components of the Immune

    International Nuclear Information System (INIS)

    Zubaidah-Alatas

    2001-01-01

    The immune system describes the body's ability to defend itself against various foreign intruders named as antigens by calling on an immune mechanism. Antigens penetration into body activate the body's immune system that may be humoral response, cellular response, or both. The immune response is primarily mediated by two cell types, lymphocyte and macrophage. This paper will discuss the cellular component of immune system and the radiation effects on various cells involved in system. Moreover, the effects of radiation on humoral and cellular responses and the relation among immunity, cancer and radiotherapy are also described. (author)

  13. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  14. Interleukin 2 is not sufficient as helper component for the activation of cytotoxic T lymphocytes but synergizes with a late helper effect that is provided by irradiated T-region-incompatible stimulator cells

    Energy Technology Data Exchange (ETDEWEB)

    Reddehase, M.; Suessmith, W.; Moyers, C.; Falk, W.; Droege, W.

    1982-01-01

    Interleukin 2-containing supernatants from concanavalin A-activated spleen cells (CSCS) were found to provide strong helper activity for cytotoxic T lymphocyte (CTL) responses against allogeneic stimulator cells in microculture systems, but provided usually insufficient help for CTL responses against l-region compatible allogeneic or TNP-haptenated syngeneic stimulator cells. The interleukin 2-containing supernatant from HGG-activated AODH 7.1 hybridoma cells also mediated only relatively weak CTL responses against TNP-haptenated syngeneic cells in microcultures. Both types of supernatants, however, supported substantial responses against TNP-haptenated syngeneic stimulator cells if irradiated allogeneically activated syngeneic T cells or irradiated allogeneic spleen cells were added to the cultures. The allogeneic cells and the activated syngeneic T cells provided little helper activity if they were added in the absence of the interleukin 2-containing supernatants, thus demonstrating a synergistic effect between these 2 helper components. An l-region difference was sufficient for the helper effect of the allogeneic cells and control experiments showed that the presence of foreign l-region determinants could not be substituted for the TNP-haptenated stimulator cells.

  15. Interleukin 2 is not sufficient as helper component for the activation of cytotoxic T lymphocytes but synergizes with a late helper effect that is provided by irradiated T-region-incompatible stimulator cells

    International Nuclear Information System (INIS)

    Reddehase, M.; Suessmith, W.; Moyers, C.; Falk, W.; Droege, W.

    1982-01-01

    Interleukin 2-containing supernatants from concanavalin A-activated spleen cells (CSCS) were found to provide strong helper activity for cytotoxic T lymphocyte (CTL) responses against allogeneic stimulator cells in microculture systems, but provided usually insufficient help for CTL responses against l-region compatible allogeneic or TNP-haptenated syngeneic stimulator cells. The interleukin 2-containing supernatant from HGG-activated AODH 7.1 hybridoma cells also mediated only relatively weak CTL responses against TNP-haptenated syngeneic cells in microcultures. Both types of supernatants, however, supported substantial responses against TNP-haptenated syngeneic stimulator cells if irradiated allogeneically activated syngeneic T cells or irradiated allogeneic spleen cells were added to the cultures. The allogeneic cells and the activated syngeneic T cells provided little helper activity if they were added in the absence of the interleukin 2-containing supernatants, thus demonstrating a synergistic effect between these 2 helper components. An l-region difference was sufficient for the helper effect of the allogeneic cells and control experiments showed that the presence of foreign l-region determinants could not be substituted for the TNP-haptenated stimulator cells

  16. EXTRACTION OF COPPER FROM LEACH LIQUOR OF METALLIC COMPONENT IN DISCARDED CELL PHONE BY CYANEX® 272

    Directory of Open Access Journals (Sweden)

    ALAFARA A. BABA

    2016-06-01

    Full Text Available Discarded cell phones contribute significantly to the amount of electronic waste generation whilst some of its components are toxic and recoverable. Also, due to the increasing demand for Cu(II in building/construction, electrical and as chemical tool in freshwater, it is imperative to develop low cost and ecofriendly technique as a substitute for the conventional treatments such as reduction-roasting route at elevated temperatures. In the present study, the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of Cu(II by Cyanex® 272 in kerosene was examined. Various parameters affecting the extraction of Cu(II such as pH, extractant concentration and phase ratio were optimized. At optimal conditions, about 96.3 % Cu(II was extracted into the organic phase by 0.2 mol/L Cyanex® 272 at equilibrium pH 5.0 and aqueous to organic phase ratio 1:1. The stripping of the loaded organic was carried out by 0.1 mol/L HCl solution and stripping efficiency of 98 % was obtained. By McCabe Thiele diagram, four stages are required for complete extraction of Cu(II.

  17. Cell module and fuel conditioner development

    Science.gov (United States)

    Hoover, D. Q., Jr.

    1980-01-01

    Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.

  18. A novel procedure for the assessment of the antioxidant capacity of food components.

    Science.gov (United States)

    Yoshimura, Toshihiro; Harashima, Mai; Kurogi, Katsuhisa; Suiko, Masahito; Liu, Ming-Cheh; Sakakibara, Yoichi

    2016-08-15

    Carbonylation, an oxidative modification of the amino group of arginine and lysine residues caused by reactive oxygen species, has emerged as a new type of oxidative damage. Protein carbonylation has been shown to exert adverse effects on various protein functions. Recently, the role of food components in the attenuation of oxidative stress has been the focus of many studies. Most of these studies focused on the chemical properties of food components. However, it is also important to determine their effects on protein functions via post-translational modifications. In this study, we developed a novel procedure for evaluating the antioxidant capacity of food components. Hydrogen peroxide (H2O2)-induced protein carbonylation in HL-60 cells was quantitatively analyzed by using fluorescent dyes (Cy5-hydrazide dye and IC3-OSu dye), followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence determination. Among a panel of food components tested, quinic acid, kaempferol, saponin, squalene, trigonelline, and mangiferin were shown to be capable of suppressing protein carbonylation in HL-60 cells. Our results demonstrated that this fluorescence labeling/SDS-PAGE procedure allows for the detection of oxidative stress-induced protein carbonylation with high sensitivity and quantitative accuracy. This method should be useful for the screening of new antioxidant food components as well as the analysis of their suppression mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Development and application of an actively controlled hybrid proton exchange membrane fuel cell - Lithium-ion battery laboratory test-bed based on off-the-shelf components

    Energy Technology Data Exchange (ETDEWEB)

    Yufit, V.; Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College, London SW7 2AZ (United Kingdom)

    2011-01-15

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system. (author)

  20. Effect of cartilaginous matrix components on the chondrogenesis and hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels.

    Science.gov (United States)

    Zhu, Meiling; Feng, Qian; Sun, Yuxin; Li, Gang; Bian, Liming

    2017-11-01

    The microenvironment of the extracellular matrix (ECM) plays a key role in directing the viability and subsequent differentiation of the encapsulated stem cells by the specific integration between the hydrated biomolecules and cell surface receptors. Herein, we developed a hydrogel platform based on hyaluronic acid (HA) that presents cartilage ECM molecules as a form of developmental cues. The hybrid hydrogels were generated by coupling photo-cross-linkable methacrylated HA (MeHA) with selected cartilaginous ECM molecules including chondroitin sulfate (CS) and type I collagen (Col I), and we studied the decoupled function of these cues in regulating the initial chondrogenesis, subsequent hypertrophy, and tissue mineralization by hMSCs. The results indicate upregulated mRNA expression of the chondrogenesis markers in the HA hydrogels that contain Col I or CS, and decreased expression of the hypertrophic markers compared with the control MeHA group. The quantification results also show that glycosaminoglycans accumulation increases in the hybrid hydrogels containing cartilaginous ECM molecules, both in vitro and in vivo. We hypothesize that these additional ECM components in the HA hydrogels further regulate the hMSCs chondrogenesis and hypertrophy by coordination. The understanding obtained in this study may guide biomaterial scaffold design, thereby facilitating manipulation of the differentiation and mineralization of induced hMSCs for application in the repair of different musculoskeletal defects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2292-2300, 2017. © 2016 Wiley Periodicals, Inc.

  1. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Christian Castelli

    2001-01-01

    Full Text Available Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187 for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD values indicating that their plasma membranes were less rough (lower FD than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process.

  2. Workshop - Solar cells and daylight. Solar cell house. House building with integrated solar cell systems; Workshop - Solceller og dagslys. Solcellehus. Boligbyggeri med integrerede solcelleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Mio; Hansen, Ellen Kathrine

    2005-04-15

    The workshop 'Solar cells and daylight' at Aarhus School of Architecture aimed at studying and developing architectural potentials of integrating solar cell systems in building components for future house building. The aim of the process was to stress that technical conditions such as energy technological component design might work as central points of support in the future shaping and organisation of qualitative and functional design of houses. (BA)

  3. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    xz

    2015-04-29

    Apr 29, 2015 ... the standard method to determine the quality of raw milk. (Ribas, 1999). Magalhães .... somatic cell score (SCS) resulted in an increase in the protein concentration of .... Yield of Dairy Herds]. C. E. Martins, C. N. Costa, J. R. F..

  4. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Science.gov (United States)

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  5. In vitro reestablishment of cell-cell contacts in adult rat cardiomyocytes. Functional role of transmembrane components in the formation of new intercalated disk-like cell contacts.

    Science.gov (United States)

    Eppenberger, H M; Zuppinger, C

    1999-01-01

    Primary adult rat cardiomyocytes (ARC)in culture are shown to be a model system for cardiac cell hypertrophy in vitro. ARC undergo a process of morphological transformation and grow only by increase in cell size, however, without loss of the cardiac phenotype. The isolated cells spread and establish new cell-cell contacts, eventually forming a two-dimensional heart tissue-like synchronously beating cell sheet. The reformation of specific cell contacts (intercalated disks) is shown also between ventricular and atrial cardiomyocytes by using antibodies against the gap junction protein connexin-43 and after microinjection into ARC of N-cadherin cDNA fused to reporter green fluorescent protein (GFP) cDNA. The expressed fusion protein allowed the study of live cell cultures and of the dynamics of the adherens junction protein N-cadherin during the formation of new cell-cell contacts. The possible use of the formed ARC cell-sheet cells under microgravity conditions as a test system for the reformation of the cytoskeleton of heart muscle cells is proposed.

  6. fps/fes knockout mice display a lactation defect and the fps/fes tyrosine kinase is a component of E-cadherin-based adherens junctions in breast epithelial cells during lactation.

    Science.gov (United States)

    Truesdell, Peter F; Zirngibl, Ralph A; Francis, Sarah; Sangrar, Waheed; Greer, Peter A

    2009-10-15

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with beta-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of beta-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion.

  7. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Jane

    2011-07-13

    Jul 13, 2011 ... 2Wuhan Military Economic Academy, No. 122 Luojiadun, Qiaokou ... The analysis indicated that under Al stress, differences in cell wall .... with a pestle in a mortar in 2 ml of 50 mM acetate buffer (pH 5.5) that contained 6% ...

  8. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  9. Characterization of Cell Wall Components and Their Modifications during Postharvest Storage of Asparagus officinalis L.: Storage-Related Changes in Dietary Fiber Composition.

    Science.gov (United States)

    Schäfer, Judith; Wagner, Steffen; Trierweiler, Bernhard; Bunzel, Mirko

    2016-01-20

    Changes in cell wall composition during storage of plant foods potentially alter the physiological effects of dietary fiber components. To investigate postharvest cell wall modifications of asparagus and their consequences in terms of insoluble dietary fiber structures, asparagus was stored at 20 and 1 °C for different periods of time. Structural analyses demonstrated postharvest changes in the polysaccharide profile, dominated by decreased portions of galactans. Increasing lignin contents correlated with compositional changes (monolignol ratios and linkage types) of the lignin polymer as demonstrated by chemical and two-dimensional nuclear magnetic resonance (2D-NMR) methods. Depending on the storage time and temperature, syringyl units were preferentially incorporated into the lignin polymer. Furthermore, a drastic increase in the level of ester-linked phenolic monomers (i.e., p-coumaric acid and ferulic acid) and polymer cross-links (di- and triferulic acids) was detected. The attachment of p-coumaric acid to lignin was demonstrated by 2D-NMR experiments. Potential consequences of postharvest modifications on physiological effects of asparagus dietary fiber are discussed.

  10. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    Science.gov (United States)

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican

  11. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    Science.gov (United States)

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Cells and cell biochemistry.

    Science.gov (United States)

    Farley, Alistair; Hendry, Charles; McLafferty, Ella

    This article, which forms part of the life sciences series, aims to promote understanding of the basic structure and function of cells. It assists healthcare professionals to appreciate the complex anatomy and physiology underpinning the functioning of the human body. Several introductory chemical concepts and terms are outlined. The basic building blocks of all matter, atoms, are examined and the way in which they may interact to form new compounds within the body is discussed. The basic structures and components that make up a typical cell are considered.

  13. Adhesion of yeast cells on surface of polymers produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu, Zhaoxin; Takehisa, Masaaki; Xie Zongchuan.

    1995-01-01

    The adhesion of yeast (Saccharomyces formesences) cells on polymers was studied thermodynamically. The polymers were laminally prepared by means of radiation polymerization. By measuring contact angles, we calculated dispersion component and polar component of surface free energy of the polymers and the cells, and interfacial free energy between the polymer and the cells. Then interfacial free energy change of the cell adhesion to surface of the polymer was evaluated. The adhesion behavior of yeast cells on the polymers was observed by optical microscope. From above results, we conclude that the initial adhesion of the cells is related to the surface free energy of the polymer, but the irreversible adhesion may be close to the polar component in surface free energy. The high polar component is favourable the irreversible adhesion of yeast cells. (author)

  14. Computational needs for modelling accelerator components

    International Nuclear Information System (INIS)

    Hanerfeld, H.

    1985-06-01

    The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs

  15. Suppressive effect on polyclonal B-cell activation of a synthetic peptide homologous to a transmembrane component of oncogenic retroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, M.; Cianciolo, G.J.; Snyderman, R.; Yasuda, M.; Good, R.A.; Day, N.K.

    1987-01-01

    Purified feline leukemia virus, UV light-inactivated feline leukemia virus, and a synthetic peptide (CKS-17) homologous to a well-conserved region of the transmembrane components of several human and animal retroviruses were each studied for their effect on IgG production by feline peripheral blood lymphocytes. Using a reverse hemolytic plaque assay, both the viable virus and the UV-inactivated feline leukemia virus, but not the CKS-17, activated B lymphocytes to secrete IgG. When staphylococcal protein A, a polyclonal B-cell activator, was used to stimulate IgG synthesis by feline lymphocytes, the viable virus, the UV-inactivated virus, and the CKS-17 peptide each strongly suppressed IgG secretion without compromising viability of the lymphocytes. These finding suggest that the immunosuppressive influences of feline leukemia virus on immunoglobulin synthesis may reside in a conserved portion of the envelope glycoprotein that includes the region homologous to CKS-17.

  16. Suppressive effect on polyclonal B-cell activation of a synthetic peptide homologous to a transmembrane component of oncogenic retroviruses

    International Nuclear Information System (INIS)

    Mitani, M.; Cianciolo, G.J.; Snyderman, R.; Yasuda, M.; Good, R.A.; Day, N.K.

    1987-01-01

    Purified feline leukemia virus, UV light-inactivated feline leukemia virus, and a synthetic peptide (CKS-17) homologous to a well-conserved region of the transmembrane components of several human and animal retroviruses were each studied for their effect on IgG production by feline peripheral blood lymphocytes. Using a reverse hemolytic plaque assay, both the viable virus and the UV-inactivated feline leukemia virus, but not the CKS-17, activated B lymphocytes to secrete IgG. When staphylococcal protein A, a polyclonal B-cell activator, was used to stimulate IgG synthesis by feline lymphocytes, the viable virus, the UV-inactivated virus, and the CKS-17 peptide each strongly suppressed IgG secretion without compromising viability of the lymphocytes. These finding suggest that the immunosuppressive influences of feline leukemia virus on immunoglobulin synthesis may reside in a conserved portion of the envelope glycoprotein that includes the region homologous to CKS-17

  17. STRIPAK components determine mode of cancer cell migration and metastasis

    DEFF Research Database (Denmark)

    Madsen, Chris D; Hooper, Steven; Tozluoglu, Melda

    2015-01-01

    demonstrate that co-localization of contractile activity and actin-plasma membrane linkage reduces cell speed on planar surfaces, but favours migration in confined environments similar to those observed in vivo. We further show that FAM40B mutations found in human tumours uncouple it from PP2A and enable...

  18. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development.

    Directory of Open Access Journals (Sweden)

    Clifford Liongue

    Full Text Available BACKGROUND: Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK-Signal transducer and activator of transcription (STAT pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP, Protein inhibitors against Stats (PIAS, and Suppressor of cytokine signaling (SOCS proteins across a diverse range of organisms. RESULTS: Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION: Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

  19. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    Science.gov (United States)

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  20. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  1. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    Science.gov (United States)

    2011-01-01

    Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients. PMID:21496221

  2. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    Science.gov (United States)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  3. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    ... of the School of Veterinary Medicine and Animal Science of the Federal University of Goiás (Escola de Veterinária e Zootecnia da Universidade Federal de Goiás). Protein, fat, lactose, casein, urea, defatted dry extract and somatic cell counts (SCC) were analyzed. A completely randomized experimental design was used.

  4. In vitro bioassessment of the immunomodulatory activity of Saccharomyces cerevisiae components using bovine macrophages and Mycobacterium avium ssp. paratuberculosis.

    Science.gov (United States)

    Li, Z; Kang, H; You, Q; Ossa, F; Mead, P; Quinton, M; Karrow, N A

    2018-04-11

    The yeast Saccharomyces cerevisiae and its components are used for the prevention and treatment of enteric disease in different species; therefore, they may also be useful for preventing Johne's disease, a chronic inflammatory bowel disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). The objective of this study was to identify potential immunomodulatory S. cerevisiae components using a bovine macrophage cell line (BOMAC). The BOMAC phagocytic activity, reactive oxygen species production, and immune-related gene (IL6, IL10, IL12p40, IL13, IL23), transforming growth factor β, ARG1, CASP1, and inducible nitric oxide synthase expression were investigated when BOMAC were cocultured with cell wall components from 4 different strains (A, B, C, and D) and 2 forms of dead yeast from strain A. The BOMAC phagocytosis of mCherry-labeled MAP was concentration-dependently attenuated when BOMAC were cocultured with yeast components for 6 h. Each yeast derivative also induced a concentration-dependent increase in BOMAC reactive oxygen species production after a 6-h exposure. In addition, BOMAC mRNA expression of the immune-related genes was investigated after 6 and 24 h of exposure to yeast components. All yeast components were found to regulate the immunomodulatory genes of BOMAC; however, the response varied among components and over time. The in vitro bioassessment studies reported here suggest that dead yeast and its cell wall components may be useful for modulating macrophage function before or during MAP infection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effect of Wasabi Component 6-(Methylsulfinylhexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2014-01-01

    Full Text Available The naturally occurring compound 6-(methylsulfinylhexyl isothiocyanate (6-MITC was isolated from Wasabia japonica (Wasabi, a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenylhexyl isothiocyanate (I7447 and 6-(methylsulfonylhexyl isothiocyanate (I7557 are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu’s stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH activity was used as a marker for cancer stem cells (CSC. Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells.

  6. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    Science.gov (United States)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Fuel cell system blower configuration

    Science.gov (United States)

    Patel, Kirtikumar H.; Saito, Kazuo

    2017-11-28

    An exemplary fuel cell system includes a cell stack assembly having a plurality of cathode components and a plurality of anode components. A first reactant blower has an outlet situated to provide a first reactant to the cathode components. A second reactant blower has an outlet situated to provide a second reactant to the anode components. The second reactant blower includes a fan portion that moves the second reactant through the outlet. The second reactant blower also includes a motor portion that drives the fan portion and a bearing portion associated with the fan portion and the motor portion. The motor portion has a motor coolant inlet coupled with the outlet of the first reactant blower to receive some of the first reactant for cooling the motor portion.

  8. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Light micrograph of an asymmetrically dividing T. indica cell at various time intervals. Progress over a 12 hr period, showing that the larger component does not undergo further division. (A) 0 h, cell division at an early stage. (B) 5 h, lower half of cell undergoing further division. (C) 12 h, differentiated ...

  9. Immunohistochemical localization of basement membrane components during hair follicle morphogenesis

    DEFF Research Database (Denmark)

    Westgate, G E; Shaw, D A; Harrap, G J

    1984-01-01

    Specific antisera were used to investigate the distributions of several basement membrane zone (BMZ) components, namely, bullous pemphigoid antigen (BPA), heparan sulfate proteoglycan (HSPG), laminin, and type IV collagen, during the development of hair follicles in late embryo rats. BPA was not ......Specific antisera were used to investigate the distributions of several basement membrane zone (BMZ) components, namely, bullous pemphigoid antigen (BPA), heparan sulfate proteoglycan (HSPG), laminin, and type IV collagen, during the development of hair follicles in late embryo rats. BPA...... of the elongating follicle. HSPG was associated with the basal cell layer prior to the appearance of hair follicle primordia and became BMZ-associated before birth but after follicle buds were first observed. HSPG was also found to be associated with the basal cell surfaces in the epidermis, but not in the hair...... follicle. Laminin and type IV collagen were continually present in epidermal and follicular BMZ both before and during development of hair follicles and were later present in the dermal papilla matrix. From these observations we conclude that (1) laminin and type IV collagen are functionally important...

  10. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yeo Cho Yoon

    2015-12-01

    Full Text Available Limonin, one of the major components in dictamni radicis cortex (DRC, has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca2+ and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca2+ and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca2+ and cAMP levels and phosphorylation of CREB.

  11. Presence of urokinase plasminogen activator, its inhibitor and receptor in small cell lung cancer and non-small cell lung cancer

    DEFF Research Database (Denmark)

    Pappot, H.; Pfeiffer, P.; Grøndahl Hansen, J.

    1997-01-01

    Spreading of cancer cells is dependent on the combined action of several proteolytic enzymes, such as serine proteases, comprising the urokinase pathway of plasminogen activation. Previous studies of lung cancer indicate that expression, localization and prognostic impact of the components...... of the plasminogen activation system differ in the different non-small cell lung cancer (NSCLC) types, whereas the expression of the components in small cell lung cancer (SCLC) has only sparingly been investigated. In the present study we investigate the presence of the components of the plasminogen activation...... that the plasminogen activation system could play a role in this type of cancer during invasion. In addition a difference in the levels of the components of the plasminogen activation system in NSCLC and SCLC is found, which could contribute to the differences in biology....

  12. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  13. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division

    International Nuclear Information System (INIS)

    Bala, Shashi; Kumar, Ajay; Soni, Shivani; Sinha, Sudha; Hanspal, Manjit

    2006-01-01

    Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division

  14. Getting into the flow: Red cells go on a roll, two-component vesicles swing

    Science.gov (United States)

    Viallat, Annie; Dupire, Jules; Khelloufi, Kamel; Al Halifa, Al Hair; Adhesion and Inflammation Team

    2013-11-01

    Red blood cells are soft capsules. Under shear flow, their two known motions were ``tumbling'' and ``swinging-tank treading,'' depending on cell mechanics and flow conditions. We reveal new wobbling regimes, among which the ``rolling'' regime, where red cells move as wheels on a road. We show, by coupling two video-microscopy approaches providing multi-directional cell pictures that the orientation of cells flipping into the flow is determined by the shear rate. Rolling permits to avoid energetically costly cellular deformations and is a true signature of the cytoskeleton elasticity. We highlight two transient dynamics: an intermittent regime during the ``tank-treading-to-flipping'' transition and a Frisbee-like ``spinning'' regime during the ``rolling-to-tank-treading'' transition. We find that the biconcave red cell shape is very stable under moderate shear stresses, and we interpret this result in terms of shape memory and elastic buckling. Finally, we generate lipid vesicles with a shape memory by using two lipids with different bending rigidities. These vesicles swing in shear flow similarly to red blood cells but their non-axisymmetric stress-free shape changes the periodicity of the motion and induces specific features.

  15. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  16. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    Science.gov (United States)

    Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie

    2017-01-24

    The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.

  17. Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action.

    Directory of Open Access Journals (Sweden)

    Renu Wadhwa

    Full Text Available BACKGROUND: Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX. METHODOLOGY/PRINCIPAL FINDINGS: Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s. Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG. Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest, normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression. We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. CONCLUSION: We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.

  18. Sertoli cells in culture secrete paracrine factor(s) that inhibit peritubular myoid cell proliferation: identification of heparinoids as likely candidates

    International Nuclear Information System (INIS)

    Tung, P.S.; Fritz, I.B.

    1991-01-01

    Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of [3H]-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo

  19. Engineering the human pluripotent stem cell microenvironment to direct cell fate.

    Science.gov (United States)

    Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P

    2013-11-15

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect of extra virgin olive oil components on the arachidonic acid cascade, colorectal cancer and colon cancer cell proliferation

    International Nuclear Information System (INIS)

    Storniolo, C.E.; Moreno, J.J.

    2016-01-01

    The mediterranean diet (MD) reduced the risk of colorectal cancer (CRC), and olive oil, the primary source of fat in the MD, has also been found to have a protective effect. However, animals fed with oleic acid present a high number of intestinal tumours, suggesting that oleic acid and olive oil consumption can exert different effects on CRC. Considering that extra virgin olive oil (EVOO) is a complex mix of fatty acids and minor compounds such as polyphenols, hydrocarbons, phytosterols and triterpenes; and that these compounds have antioxidant activity and consequently they can modulate the arachidonic acid (AA) cascade and eicosanoid synthesis. This review analyzes the state of the art of olive oil components on the AA cascade and cellular mechanism involved in CRC such as intestinal epithelial cell growth/apoptosis, to understand the fact that the consumption of seed oils with high oleic content or EVOO will probably have different effects on CRC development. [es

  1. Effect of extra virgin olive oil components on the arachidonic acid cascade, colorectal cancer and colon cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    C. E. Storniolo

    2016-12-01

    Full Text Available The mediterranean diet (MD reduced the risk of colorectal cancer (CRC, and olive oil, the primary source of fat in the MD, has also been found to have a protective effect. However, animals fed with oleic acid present a high number of intestinal tumours, suggesting that oleic acid and olive oil consumption can exert different effects on CRC. Considering that extra virgin olive oil (EVOO is a complex mix of fatty acids and minor compounds such as polyphenols, hydrocarbons, phytosterols and triterpenes; and that these compounds have antioxidant activity and consequently they can modulate the arachidonic acid (AA cascade and eicosanoid synthesis. This review analyzes the state of the art of olive oil components on the AA cascade and cellular mechanism involved in CRC such as intestinal epithelial cell growth/apoptosis, to understand the fact that the consumption of seed oils with high oleic content or EVOO will probably have different effects on CRC development.

  2. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  3. Integration of Magnetic Components in a Step-Up Converter for Fuel Cell

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2009-01-01

    converter is a critical part. The input voltage of the converter decreases while the output power increases. It creates challenges in design of the converter's magnetic components. Scope of this paper is integration of the dc inductor and the transformer on a single core. Such integration improve...... utilization of the core and windings. It leads to size reduction of the converter....

  4. Relative ion yields in mammalian cell components using C60 SIMS

    Science.gov (United States)

    Keskin, Selda; Piwowar, Alan; Hue, Jonathan; Shen, Kan; Winograd, Nicholas

    2013-01-01

    Time of flight secondary ion mass spectrometry has been used to better understand the influence of molecular environment on the relative ion yields of membrane lipid molecules found in high abundance in a model mammalian cell line, RAW264.7. Control lipid mixtures were prepared to simulate lipid–lipid interactions in the inner and outer leaflet of cell membranes. Compared with its pure film, the molecular ion yields of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine are suppressed when mixed with 2-dipalmitoyl-sn-glycero-3-phosphocholine. In the mixture, proton competition between 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 2-dipalmitoyl-sn-glycero-3-phosphocholine led to lower ionization efficiency. The possible mechanism for ion suppression was also investigated with 1H and 13C nuclear magnetic resonance spectroscopy. The formation of a hydroxyl bond in lipid mixtures confirms the mechanism involving proton exchange with the surrounding environment. Similar effects were observed for lipid mixtures mimicking the composition of the inner leaflet of cell membranes. The secondary molecular ion yield of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine was observed to be enhanced in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. PMID:25140069

  5. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production.

    Science.gov (United States)

    Häkkinen, Suvi T; Reuter, Lauri; Nuorti, Ninni; Joensuu, Jussi J; Rischer, Heiko; Ritala, Anneli

    2018-01-01

    Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

  6. Static Feed Water Electrolysis Subsystem Testing and Component Development

    Science.gov (United States)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  7. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    Science.gov (United States)

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  8. Coupler induced monopole component and its minimization in deflecting cavities

    Directory of Open Access Journals (Sweden)

    P. K. Ambattu

    2013-06-01

    Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.

  9. A multi-phase, multi-component PEM fuel cell model. Paper no. IGEC-1-051

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li, X.

    2005-01-01

    'Full text:' Mathematical modeling is an important tool for PEM fuel cell commercialization. Mathematical models can illustrate the effect of the different processes on the overall performance of a PEM fuel cell; thus, mathematical models can be used to as a design tool to find optimal designs and operating conditions. A general formulation for a comprehensive fuel cell model, based on the conservation principle and volume-averaging, is presented. The model formulation includes the electro-chemical reactions, proton migration, and the mass transport of the gaseous reactants and liquid water. Additionally, the model formulation can be applied to all regions of the PEM fuel cell: the bipolar plates, gas flow channels, electrode backing, catalyst, and polymer electrolyte layers. Numerical results, showing the effect of water flooding on PEM fuel cell performance, are presented. (author)

  10. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  11. Less initial rejoining of X-ray-induced DNA double-strand breaks in cells of a small cell (U-1285) compared to a large cell (U-1810) lung carcinoma cell line

    International Nuclear Information System (INIS)

    Cedervall, B.; Sirzea, F.; Brodin, O.; Lewensohn, R.

    1994-01-01

    Cells of a small cell lung carcinoma cell line, U-1285, and an undifferentiated large cell lung carcinoma cell line, U-1810, differ in radiosensitivity in parallel to the clinical radiosensitivity of the kind of tumors from which they are derived. The surviving fraction at 2 Gy (SF2) was 0.25 that of U-1285 cells and 0.88 that of U-1810 cells. We investigated the induction of DNA double-strand breaks (DSBs) by X rays and DSB rejoining in these cell lines. To estimate the number of DSBs we used a model adapted for pulsed-field gel electrophoresis (PFGE). The induction levels were of the same magnitude. These levels of induction do not correlate with radiosensitivity as measured by cell survival assays. Rejoining of DSBs after doses in the range of 0.50 Gy was followed for 0,15,30,60 and 120 min. We found a difference in the velocity of repair during the first hour after irradiation which is parallel to the differences in radiosensitivity. Thus U-1810 cells exhibit a fast component of repair, with about half of the DSBs being rejoined during the first 15 min, whereas U-1285 cells lack such a fast component, with only about 5% of the DSBs being rejoined after the same time. In addition there was a numerical albeit not statistical difference at 120 min, with more residual DSBs in the U-1285 cells compared to the U-1810 cells. 36 refs., 5 figs

  12. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  13. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties.

    Science.gov (United States)

    Jones, Laura A; Sudbery, Peter E

    2010-10-01

    During the extreme polarized growth of fungal hyphae, secretory vesicles are thought to accumulate in a subapical region called the Spitzenkörper. The human fungal pathogen Candida albicans can grow in a budding yeast or hyphal form. When it grows as hyphae, Mlc1 accumulates in a subapical spot suggestive of a Spitzenkörper-like structure, while the polarisome components Spa2 and Bud6 localize to a surface crescent. Here we show that the vesicle-associated protein Sec4 also localizes to a spot, confirming that secretory vesicles accumulate in the putative C. albicans Spitzenkörper. In contrast, exocyst components localize to a surface crescent. Using a combination of fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) experiments and cytochalasin A to disrupt actin cables, we showed that Spitzenkörper-located proteins are highly dynamic. In contrast, exocyst and polarisome components are stably located at the cell surface. It is thought that in Saccharomyces cerevisiae exocyst components are transported to the cell surface on secretory vesicles along actin cables. If each vesicle carried its own complement of exocyst components, then it would be expected that exocyst components would be as dynamic as Sec4 and would have the same pattern of localization. This is not what we observe in C. albicans. We propose a model in which a stream of vesicles arrives at the tip and accumulates in the Spitzenkörper before onward delivery to the plasma membrane mediated by exocyst and polarisome components that are more stable residents of the cell surface.

  14. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  15. Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, S.; Yoshida, H.; Naruse, Y.; Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L.

    1990-01-01

    Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, ''JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing

  16. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells

    Directory of Open Access Journals (Sweden)

    Thay Bernard

    2008-11-01

    membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.

  17. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells.

    Science.gov (United States)

    Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka

    2008-11-27

    responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.

  18. Investigating Mitochondrial Dysfunction in Human Lung Cells Exposed to Redox-Active PM Components

    Science.gov (United States)

    Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ incr...

  19. Estimation of cellular manufacturing cost components using simulation and activity-based costing

    OpenAIRE

    Paul Savory; Robert Williams

    2010-01-01

    It can be difficult estimating all of the cost components that are attributed to a machined part.  This problem is more pronounced when a factory uses group technology manufacturing cells as opposed to a functional or process layout of a job shop.  This paper describes how activity-based costing (ABC) concepts can be integrated into a discrete-event simulation model of a U-shaped manufacturing cell producing a part family with four members.  The simulation model generates detai...

  20. Estimation of cellular manufacturing cost components using simulation and activity-based costing

    OpenAIRE

    Savory, Paul

    2010-01-01

    It can be difficult estimating all of the cost components that are attributed to a machined part. This problem is more pronounced when a factory uses group technology manufacturing cells as opposed to a functional or process layout of a job shop. This paper describes how activity-based costing (ABC) concepts can be integrated into a discrete-event simulation model of a U-shaped manufacturing cell producing a part family with four members. The simulation model generates detailed Bills of Ac...

  1. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19...

  2. Soluble vascular endothelial growth factor in various blood transfusion components

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Werther, K; Mynster, T

    1999-01-01

    of sVEGF was determined in nonfiltered and prestorage white cell-reduced whole blood (WB), buffy coat-depleted saline-adenine-glucose-mannitol (SAGM) blood, platelet-rich plasma (PRP), and buffy coat-derived platelet (BCP) pools obtained from volunteer, healthy blood donors. As a control, total content......-123) ng per mL in lysed cells. In SAGM blood, the median total sVEGF content was 25.3 (3.3-48.4) ng per unit in nonfiltered units and undetectable in white cell-reduced units. Median total sVEGF content was 29.2 (24.8-124.9) ng per unit in nonfiltered PRP and 28.7 (24.5-118.6) ng per unit in white cell......-reduced PRP. The sVEGF accumulated significantly in WB, SAGM blood, and BCP pools, depending on the storage time. CONCLUSION: The sVEGF (isotype 165) appears to be present in various blood transfusion components, depending on storage time....

  3. Critical factors affecting cell encapsulation in superporous hydrogels

    International Nuclear Information System (INIS)

    Desai, Esha S; Tang, Mary Y; Gemeinhart, Richard A; Ross, Amy E

    2012-01-01

    We recently showed that superporous hydrogel (SPH) scaffolds promote long-term stem cell viability and cell driven mineralization when cells were seeded within the pores of pre-fabricated SPH scaffolds. The possibility of cell encapsulation within the SPH matrix during its fabrication was further explored in this study. The impact of each chemical component used in SPH fabrication and each step of the fabrication process on cell viability was systematically examined. Ammonium persulfate, an initiator, and sodium bicarbonate, the gas-generating compound, were the two components having significant toxicity toward encapsulated cells at the concentrations necessary for SPH fabrication. Cell survival rates were 55.7% ± 19.3% and 88.8% ± 9.4% after 10 min exposure to ammonium persulfate and sodium bicarbonate solutions, respectively. In addition, solution pH change via the addition of sodium bicarbonate had significant toxicity toward encapsulated cells with cell survival of only 50.3% ± 2.5%. Despite toxicity of chemical components and the SPH fabrication method, cells still exhibited significant overall survival rates within SPHs of 81.2% ± 6.8% and 67.0% ± 0.9%, respectively, 48 and 72 h after encapsulation. This method of cell encapsulation holds promise for use in vitro and in vivo as a scaffold material for both hydrogel matrix encapsulation and cell seeding within the pores. (paper)

  4. Rumen bacteria: interaction with particulate dietary components and response to dietary variation.

    Science.gov (United States)

    Cheng, K J; Akin, D E; Costerton, J W

    1977-02-01

    The bovine rumen resembles many other ecosystems in that its component bacterial cells are universally surrounded and protected by extracellular structures. The most common form of these structures is a fibrous carbohydrate slime that extends away from the cell and may mediate the attachment of the bacterium to a surface. This attachment is relatively specific and it may occur at the surface of the rumen epithelium or on the cell walls of a specific tissue within the plant-derived food of the animal. The production of the extracellular slime is under nutritional control and slime may be overproduced when soluble carbohydrates are available in high concentration. This overproduction results in cell-cell adhesion among the rumen bacteria with the eventual formation of slime-enclosed microcolonies and, in extreme cases, the generation of sufficient viscosity to cause feedlot bloat.

  5. Divergent Immunomodulation Capacity of Individual Myelin Peptides—Components of Liposomal Therapeutic against Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the central role. The myelin basic protein (MBP is believed to be one of the main targets for autoreactive lymphocytes. Recently, immunodominant MBP peptides encapsulated into the mannosylated liposomes, referred as Xemys, were shown to suppress development of experimental autoimmune encephalomyelitis, a rodent model of MS, and furthermore passed the initial stage of clinical trials. Here, we investigated the role of individual polypeptide components [MBP peptides 46–62 (GH17, 124–139 (GK16, and 147–170 (QR24] of this liposomal peptide therapeutic in cytokine release and activation of immune cells from MS patients and healthy donors. The overall effects were assessed using peripheral blood mononuclear cells (PBMCs, whereas alterations in antigen-presenting capacities were studied utilizing plasmacytoid dendritic cells (pDCs. Among three MBP-immunodominant peptides, QR24 and GK16 activated leukocytes, while GH17 was characterized by an immunosuppressive effect. Peptides QR24 and GK16 upregulated CD4 over CD8 T cells and induced proliferation of CD25+ cells, whereas GH17 decreased the CD4/CD8 T cell ratio and had limited effects on CD25+ T cells. Accordingly, components of liposomal peptide therapeutic differed in upregulation of cytokines upon addition to PBMCs and pDCs. Peptide QR24 was evidently more effective in upregulation of pro-inflammatory cytokines, whereas GH17 significantly increased production of IL-10 through treated cells. Altogether, these data suggest a complexity of action of the liposomal peptide therapeutic that does not seem to involve simple helper T cells (Th-shift but rather the rebalancing of the immune system.

  6. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  7. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    Science.gov (United States)

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  8. Basement membrane components secreted by mouse yolk sac carcinoma cell lines

    DEFF Research Database (Denmark)

    Damjanov, A; Wewer, U M; Tuma, B

    1990-01-01

    Three new cell lines (NE, ME, LRD) were cloned from mouse-embryo-derived teratocarcinomas and characterized on the basis of developmental, ultrastructural, and cytochemical criteria as nullipotent embryonal carcinoma (EC), pure parietal yolk sac (PYS) carcinoma and mixed parieto-visceral yolk sac...

  9. Component reliability criticality or importance metrics for systems with degrading components

    NARCIS (Netherlands)

    Peng, H.; Coit, D.W.; Feng, Q.

    2012-01-01

    This paper proposes two new importance measures: one new importance measure for systems with -independent degrading components, and another one for systems with -correlated degrading components. Importance measures in previous research are inadequate for systems with degrading components because

  10. Identification by irradiation, in vitro, of two components of erythroprotein action

    International Nuclear Information System (INIS)

    Barcos, M.

    1978-01-01

    The effect of ionizing radiation on the response of normal cultured rat marrow cells to erythropoietin yielded two-component inactivation curves for induced iron uptake and hemoglobin synthesis. The radioresistant component of the induced hemoglobin response (1) was detected earlier, at 6 to 20 hr after irradiation, (2) had a DO 0 > or = to 900 R, (3) gave a nonlinear erythropoietin dose--response plot at 600 R, (4) disappeared when marrow from erythremic rats was used, and (5) showed maximal inactivation by 500 R when irradiation preceded hormone addition by 1.5 to 2.5 hr. The radiosensitive component (1) was observed without any contribution from the radioresistant component when the time of assay of normal marrow was postponed from 6 to 20 hr to 20 to 44 hr of culture, (2) had a D 0 = 63 R, (3) gave linear erythropoietin dose--response curves at 15 to 60 R, and (4) showed enhanced inhibition by 60 R if irradiation either preceded or followed hormone addition by 3 hr or more

  11. Expanding to teleoperation of a tight modular workshop for dismantling radioactive components

    International Nuclear Information System (INIS)

    Gasc, B.

    1990-01-01

    The CEA (French Nuclear Energy Commission) in connection with TECHNICATOME developed a tight modular workshop for the dismantling of AT1 plant facilities in LA HAGUE. This workshop constructed of reusable stainless steel panels assembled by bolting provides a tight and decontaminable working zone compatible with any building configuration. This being the case, the operators bearing ventilated suits may work under the best safety conditions on alpha-contaminated materials. For the purpose of expanding the working capacities of this workshop it was decided to develop special components for teleoperation from the outside as in a conventional cell. To meet this objective which is within the scope of the contract signed with the CEC, the following components were developed and constructed: - manipulator holder panel, - swivelling hatch panel, - wall equipment sealed transfer device and, - modular biological protection. The design, construction and tests of these new components led to their qualification and further incorporation in the list of components of the modular workshop liable to be used for teleoperation procedures

  12. Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures.

    Science.gov (United States)

    Noulsri, Egarit; Udomwinijsilp, Prapaporn; Lerdwana, Surada; Chongkolwatana, Viroje; Permpikul, Parichart

    2017-04-01

    There has been an increased interest in platelet-derived microparticles (PMPs) in transfusion medicine. Little is known about PMP status during the preparation of platelet concentrates for transfusion. The aim of this study is to compare the PMP levels in platelet components prepared using the buffy coat (BC), platelet-rich plasma platelet concentrate (PRP-PC), and apheresis (AP) processes. Platelet components were prepared using the PRP-PC and BC processes. Apheresis platelets were prepared using the Trima Accel and Amicus instruments. The samples were incubated with annexin A5-FITC, CD41-PE, and CD62P-APC. At day 1 after processing, the PMPs and activated platelets were determined using flow cytometry. Both the percentage and number of PMPs were higher in platelet components prepared using the Amicus instrument (2.6±1.8, 32802±19036 particles/μL) than in platelet components prepared using the Trima Accel instrument (0.5±0.4, 7568±5298 particles/μL), BC (1.2±0.6, 12,920±6426 particles/μL), and PRP-PC (0.9±0.6, 10731±5514 particles/μL). Both the percentage and number of activated platelets were higher in platelet components prepared using the Amicus instrument (33.2±13.9, 427553±196965 cells/μL) than in platelet components prepared using the Trima Accel instrument (16.2±6.1, 211209±87706 cells/μL), BC (12.9±3.2, 140624±41003 cells/μL), and PRP-PC (21.1±6.3, 265210±86257 cells/μL). The study suggests high variability of PMPs and activated platelets in platelet components prepared using different processes. This result may be important in validating the instruments involved in platelet blood collection and processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mathematical modeling of a zinc/bromine flow cell and a lithium/thionyl chloride primary cell

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.I.

    1988-01-01

    Three mathematical models are presented, one for the secondary zinc/bromine flow cell and two for the lithium/thionyl chloride primary cell. The objectives in this modeling work are to aid in understanding the physical phenomena affecting cell performance, determine methods of improving cell performance and safety, and reduce the experimental efforts needed to develop these electrochemical systems. The zinc/bromine cell model is the first such model to include a porous layer on the bromine electrode and to predict discharge behavior. The model is used to solve simultaneously the component material balances and the electroneutrality condition for the unknowns, species concentrations and the solution potential. Two models are presented for the lithium/thionyl chloride cell. The first model is a detailed one-dimensional model which is used to solve simultaneously the component material balances, Ohm's law relations, and current balance. The independent design criteria are identified from the model development. The second model presented here is a two-dimensional thermal model for the spirally would configuration of the lithium/thionyl chloride cell. This is the first model to address the effects of the spiral geometry on heat transfer in the cell.

  14. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel

    2012-01-01

    glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal.......5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...

  15. Olive Component Oleuropein Promotes β-Cell Insulin Secretion and Protects β-Cells from Amylin Amyloid-Induced Cytotoxicity.

    Science.gov (United States)

    Wu, Ling; Velander, Paul; Liu, Dongmin; Xu, Bin

    2017-09-26

    Oleuropein, a natural product derived from olive leaves, has reported anti-diabetic functions. However, detailed molecular mechanisms for how it affects β-cell functions remain poorly understood. Here, we present evidence that oleuropein promotes glucose-stimulated insulin secretion (GSIS) in β-cells. The effect is dose-dependent and stimulates the ERK/MAPK signaling pathway. We further demonstrated that oleuropein inhibits the cytotoxicity induced by amylin amyloids, a hallmark feature of type 2 diabetes. We demonstrated that these dual functions are structure-specific: we identified the 3-hydroxytyrosol moiety of oleuropein as the main functional entity responsible for amyloid inhibition, but the novel GSIS function requires the entire structure scaffold of the molecule.

  16. Vital Autofluorescence: Application to the Study of Plant Living Cells

    Directory of Open Access Journals (Sweden)

    Victoria V. Roshchina

    2012-01-01

    approach to study the autofluorescence of plant living cells—from cell diagnostics up to modelling the cell-cell contacts and cell interactions with fluorescent biologically active substances. It bases on the direct observations of secretions released from allelopathic and medicinal species and the cell-donor interactions with cell-acceptors as biosensors (unicellular plant generative and vegetative microspores. Special attention was paid to the interactions with pigmented and fluorescing components of the secretions released by the cells-donors from plant species. Colored components of secretions are considered as histochemical dyes for the analysis of cellular mechanisms at the cell-cell contacts and modelling of cell-cell interactions. The fluorescence of plant biosensors was also recommended for the testing of natural plant excretions as medical drugs.

  17. Relaxation of fibrils in blends with one viscoelastic component: Bulk and confined conditions

    NARCIS (Netherlands)

    Cardinaels, R.M.; Moldenaers, P.

    2010-01-01

    Using a counter rotating parallel plate shear flow cell, shape relaxation of fibrils in a quiescent matrix is studied microscopically. Both the effects of geometrical confinement and component viscoelasticity are systematically explored. By applying a supercritical shear flow for varying amounts of

  18. Calcium exchange, structure, and function in cultured adult myocardial cells

    International Nuclear Information System (INIS)

    Langer, G.A.; Frank, J.S.; Rich, T.L.; Orner, F.B.

    1987-01-01

    Cells digested from adult rat heart and cultured for 14 days demonstrate all the structural elements, in mature form, associated with the process of excitation-contraction (EC) coupling. The transverse tubular (TT) system is well developed with an extensive junctional sarcoplasmic reticulum (JSR). In nonphosphate-containing buffer contraction of the cells is lost as rapidly as zero extracellular Ca concentration ([Ca] 0 ) solution is applied and a negative contraction staircase is produced on increase of stimulation frequency. Structurally and functionally the cells have the characteristics of adult cells in situ. 45 Ca exchange and total 45 Ca measurement in N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES)-buffered perfusate define three components of cellular Ca: 1) a rapidly exchangeable component accounting for 36% of total Ca, 2) a slowly exchangeable component (t/sub 1/2/ 53 min) accounting for 7% total Ca, and 3) the remaining 57% cellular Ca is inexchangeable (demonstrates no significant exchange within 60 min). The slowly exchangeable component can be increased 10-fold within 60 min by addition of phosphate to the perfusate. The Ca distribution and exchange characteristics are little different from those of 3-day cultures of neonatal rat heart previously studied. The results suggest that the cells are representative of adult cells in situ and that both sarcolemmal-bound and sarcoplasmic reticular Ca contribute to the component of Ca that is rapidly exchangeable

  19. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  20. 14C leucine chloromethylketone interaction with sarcoma 37 cell plasma membrane components

    International Nuclear Information System (INIS)

    Matthews, R.H.; Milo, G.E.; McMichael, T.L.; Lewis, N.J.

    1982-01-01

    Leucine chloromethylketone labelling of viable S37 cells was preferential for the plasma membrane fraction. The pattern of radiolabelling of the plasma membrane proteins was time-dependent. After 5 min the radiolabel was localized with glutamyl transpeptidase, and subsequently, with other physiologically active proteins as a function of time after incubation. Labelling of proteins was temperature-dependent and incubation of viable S37 cells with the radiolabelled substrate at 0 0 C yielded little or no radioactivity localized in the plasma membrane. The molecular weight of one radiolabelled substratemembrane protein complex was estimated on sodium dodecyl sulfate polyacrylamide gel electrophoresis to be between 100,000-200,000. (author)

  1. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.

    Science.gov (United States)

    Tartibi, M; Liu, Y X; Liu, G-Y; Komvopoulos, K

    2015-11-01

    The membrane-cytoskeleton system plays a major role in cell adhesion, growth, migration, and differentiation. F-actin filaments, cross-linkers, binding proteins that bundle F-actin filaments to form the actin cytoskeleton, and integrins that connect the actin cytoskeleton network to the cell plasma membrane and extracellular matrix are major cytoskeleton constituents. Thus, the cell cytoskeleton is a complex composite that can assume different shapes. Atomic force microscopy (AFM)-based techniques have been used to measure cytoskeleton material properties without much attention to cell shape. A recently developed surface chemical patterning method for long-term single-cell culture was used to seed individual cells on circular patterns. A continuum-based cell model, which uses as input the force-displacement response obtained with a modified AFM setup and relates the membrane-cytoskeleton elastic behavior to the cell geometry, while treating all other subcellular components suspended in the cytoplasmic liquid (gel) as an incompressible fluid, is presented and validated by experimental results. The developed analytical-experimental methodology establishes a framework for quantifying the membrane-cytoskeleton elasticity of live cells. This capability may have immense implications in cell biology, particularly in studies seeking to establish correlations between membrane-cytoskeleton elasticity and cell disease, mortality, differentiation, and migration, and provide insight into cell infiltration through nonwoven fibrous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscoelasticity, examine the role of other subcellular components (e.g., nucleus envelope) in cell elasticity, and elucidate the effects of mechanical stimuli on cell differentiation and motility. This is the first study to decouple the membrane-cytoskeleton elasticity from cell stiffness and introduce an effective approach for measuring the elastic modulus. The

  2. Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus

    Directory of Open Access Journals (Sweden)

    Jorge A Larriva-Sahd

    2012-06-01

    Full Text Available This study describes the microscopic organization of a wedge-shaped area at the intersection of the main and accessory olfactory bulbs, or olfactory limbus , and an additional component of the anterior olfactory nucleus or alpha accessory olfactory bulb that lies underneath of the accessory olfactory bulb. The olfactory limbus consists of a modified bulbar cortex bounded anteriorly by the main olfactory bulb and posteriorly by the accessory olfactory bulb. In Nissl-stained specimens the olfactory limbus differs from the main olfactory bulb by a progressive, antero-posterior decrease in thickness or absence of the external plexiform, mitral/tufted cell, and granule cell layers. On cytoarchitectual grounds the olfactory limbus is divided from rostral to caudal into three distinct components: a stripe of glomerular-free cortex or preolfactory area, a second or necklace glomerular area, and a wedge-shaped or interstitial area crowned by the so-called modified glomeruli that appear to belong to the anterior accessory olfactory bulb. The strategic location and interactions with the main and accessory olfactory bulbs, together with the previously noted functional and connectional evidence, suggest that the olfactory limbus may be related to both sensory modalities. The alpha component of the anterior olfactory nucleus, a slender cellular cluster (i.e., 650 x 150 µm paralleling the base of the accessory olfactory bulb, contains two neuron types: a pyramidal-like neuron and an interneuron. Dendrites of pyramidal-like cells organize into a single bundle that ascends avoiding the accessory olfactory bulb to resolve in a trigone bounded by the edge of the olfactory limbus, the accessory olfactory bulb and the dorsal part of the anterior olfactory nucleus. Utrastructurally, the neuropil of the alpha component contains three types of synaptic terminals; one of them immunoreactive to the enzyme glutamate decarboxylase, isoform 67.

  3. Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Zhongjia Jiang

    2017-01-01

    Full Text Available Mycoplasma ovipneumoniae (M. ovipneumoniae is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR- mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB, activator protein-1 (AP-1, and interferon regulatory factor 3 (IRF3 as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.

  4. Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells.

    Science.gov (United States)

    Jiang, Zhongjia; Song, Fuyang; Li, Yanan; Xue, Di; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-01-01

    Mycoplasma ovipneumoniae ( M. ovipneumoniae ) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF- κ B), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1 β , TNF α , and IL8, and anti-inflammatory cytokines such as IL10 and TGF β of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae -induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae , which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.

  5. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    OpenAIRE

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocy...

  6. Effect of low-dose irradiation upon T cell subsets involved in the response of primed A/J mice to SaI cells

    International Nuclear Information System (INIS)

    Anderson, R.E.; Williams, W.L.; Tokuda, Sei

    1988-01-01

    A/Jax (A/J) mice primed to Sarcoma I (SaI) exhibit an augmented response in association with low-dose (0.15 Gy) irradiation. This phenomenon is best demonstrated in tumour neutralization (Winn assay) or cell transfer experiments utilizing mice depleted of thymus-derived (T) cells. It is particularly dependent upon the duration of priming and the growth characteristics of the tumour in the primary host. The importance of these two variables appears to relate to their influence upon the cell types responsible for the host response, and includes both an effector and a suppressor component. Radiation-induced inhibition of the suppressor component appears responsible for low-dose augmentation and results in injury to a T cell of the Lyt-1 - 2 + phenotype. In Winn assays employing equal numbers of immune spleen cells and SaI cells, the smallest tumours are associated with Lyt-1-positive (Lyt-1 + 2 - and Lyt-1 + 2 + ) cells and exposure to 0.15 Gy markedly inhibits their anti-SaI activity. Thus, even though the effect is in the opposite direction, both the effector and suppressor components of the anti-SaI response in A/J mice are exceedingly radiosensitive. (author)

  7. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    DEFF Research Database (Denmark)

    Fox, Ira J; Daley, George Q; Goldman, Steven A

    2014-01-01

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate......, and industry is critical for generating new stem cell-based therapies....... treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...

  8. Quantification of an Epstein-Barr virus-associated membrane antigen component

    International Nuclear Information System (INIS)

    North, J.R.; Morgan, A.J.; Thompson, J.L.; Epstein, M.A.

    1982-01-01

    A method is described for the preparation of a 125 I-labelled membrane antigen (MA) component (gp340) from B95-8 cell membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Good yields of antigenic material were obtained when renaturation of the [ 125 I]gp340 was carried out by removal of SDS in the presence of urea and subsequent removal of the urea. The availability of purified, radiolabelled gp340 has provided the essential basis for the development of a radioimmunoassay which, for the first time, permits quantification of this antigen. The assay has been used to demonstrate that cell membrane MA is a better source of gp340 for large-scale work than is the Epstein-Barr virus envelope and to measure the increase in expression of gp340 following treatment of cells with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). (Auth.)

  9. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    Science.gov (United States)

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  10. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium

  11. Is the Cell Nucleus a Necessary Component in Precise Temporal Patterning?

    Science.gov (United States)

    Albert, Jaroslav; Rooman, Marianne

    2015-01-01

    One of the functions of the cell nucleus is to help regulate gene expression by controlling molecular traffic across the nuclear envelope. Here we investigate, via stochastic simulation, what effects, if any, does segregation of a system into the nuclear and cytoplasmic compartments have on the stochastic properties of a motif with a negative feedback. One of the effects of the nuclear barrier is to delay the nuclear protein concentration, allowing it to behave in a switch-like manner. We found that this delay, defined as the time for the nuclear protein concentration to reach a certain threshold, has an extremely narrow distribution. To show this, we considered two models. In the first one, the proteins could diffuse freely from cytoplasm to nucleus (simple model); and in the second one, the proteins required assistance from a special class of proteins called importins. For each model, we generated fifty parameter sets, chosen such that the temporal profiles they effectuated were very similar, and whose average threshold time was approximately 150 minutes. The standard deviation of the threshold times computed over one hundred realizations were found to be between 1.8 and 7.16 minutes across both models. To see whether a genetic motif in a prokaryotic cell can achieve this degree of precision, we also simulated five variations on the coherent feed-forward motif (CFFM), three of which contained a negative feedback. We found that the performance of these motifs was nowhere near as impressive as the one found in the eukaryotic cell; the best standard deviation was 6.6 minutes. We argue that the significance of these results, the fact and necessity of spatio-temporal precision in the developmental stages of eukaryotes, and the absence of such a precision in prokaryotes, all suggest that the nucleus has evolved, in part, under the selective pressure to achieve highly predictable phenotypes.

  12. Reliability for systems of degrading components with distinct component shock sets

    International Nuclear Information System (INIS)

    Song, Sanling; Coit, David W.; Feng, Qianmei

    2014-01-01

    This paper studies reliability for multi-component systems subject to dependent competing risks of degradation wear and random shocks, with distinct shock sets. In practice, many systems are exposed to distinct and different types of shocks that can be categorized according to their sizes, function, affected components, etc. Previous research primarily focuses on simple systems with independent failure processes, systems with independent component time-to-failure, or components that share the same shock set or type of shocks. In our new model, we classify random shocks into different sets based on their sizes or function. Shocks with specific sizes or function can selectively affect one or more components in the system but not necessarily all components. Additionally the shocks from the different shock sets can arrive at different rates and have different relative magnitudes. Preventive maintenance (PM) optimization is conducted for the system with different component shock sets. Decision variables for two different maintenance scheduling problems, the PM replacement time interval, and the PM inspection time interval, are determined by minimizing a defined system cost rate. Sensitivity analysis is performed to provide insight into the behavior of the proposed maintenance policies. These models can be applied directly or customized for many complex systems that experience dependent competing failure processes with different component shock sets. A MEMS (Micro-electro mechanical systems) oscillator is a typical system subject to dependent and competing failure processes, and it is used as a numerical example to illustrate our new reliability and maintenance models

  13. Roles of membrane trafficking in plant cell wall dynamics

    Directory of Open Access Journals (Sweden)

    Kazuo eEbine

    2015-10-01

    Full Text Available The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.

  14. Effects of simulated flue gas on components of Scenedesmus raciborskii WZKMT.

    Science.gov (United States)

    Li, Xie-kun; Xu, Jing-liang; Guo, Ying; Zhou, Wei-zheng; Yuan, Zhen-hong

    2015-08-01

    Scenedesmus raciborskii WZKMT cultured with simulated flue gas was investigated. Cellular components, including total sugar, starch, chlorophyll, protein and lipid, were compared between simulated flue gas and 7% (v/v) CO2. Dissolution of SO2 and NO in simulated flue gas led to pH decrease and toxicity to microalgae cells. Furthermore, the death or aging of microalgae cells reduced the buffer capacity and caused decrease of simulated flue gas absorption. With 7% CO2, the highest total sugar and starch content could attain to 66.76% and 53.16%, respectively, which indicated S. raciborskii WZKMT is a desired feedstock candidate for bioethanol production. Microalgae growth and starch accumulation was inhibited, while cells produced more chlorophyll, protein and lipid when simulated flue gas was the carbon source. Fatty acids composition analysis indicated that there was no significant distinction on fatty acids relative content (fatty acid/TFA) between cells aerated using simulated flue gas and 7% CO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-09-01

    In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.

  16. Alternative Cell Death Pathways and Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2013-01-01

    Full Text Available While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases.

  17. Mast cells in neuroinflammation and brain disorders

    NARCIS (Netherlands)

    Hendriksen, Erik|info:eu-repo/dai/nl/304841900; van Bergeijk, Doris; Oosting, Ronald S|info:eu-repo/dai/nl/087179695; Redegeld, Frank A|info:eu-repo/dai/nl/074752464

    2017-01-01

    It is well recognized that neuroinflammation is involved in the pathogenesis of various neurodegenerative diseases. Microglia and astrocytes are major pathogenic components within this process and known to respond to proinflammatory mediators released from immune cells such as mast cells. Mast cells

  18. Somatic cell count and biochemical components of milk related to udder health in buffaloes

    Directory of Open Access Journals (Sweden)

    S.T. Singh

    2010-02-01

    Full Text Available The 399 clinically healthy quarters from 101 Murrah buffaloes were analyzed for somatic cell count (SCC; DCC and microscope methods and biochemical composition of milk in relation to udder health. The udder health revealed specific subclinical mastitis (SSM in 7% and non-specific mastitis (NSM in 49% of quarters. Latent infections comprised 1%. Staphylococci (43%, streptococci (39% and corynebacteria (18% constituted chief etiological agents in SSM. Electrical conductivity increased significantly both in SSM and NSM compared to healthy quarters. Significant effects for SNF and density were seen in SSM only. DCC and microscope depicted similar cell counts with a correlation coefficient of 0.89. The correlations of DCC with CMT and EC were 0.85 and 0.51, respectively. Quarters with negative CMT reactions had DCC values of < 3 × 105 cells/ml. The DCC means for negative, trace, and +1 to 2 CMT scores were 122, 238, and 593 (× 103 cells/ml, respectively. Lactose with discrimination ability of 83.76% was found better indicator of udder inflammation in buffaloes. Buffaloes unlike cows have low numbers of quarter infections, respond similarly as cows to udder inflammation but at different levels, and DCC may be effectively employed for expressing milk cell count in this species.

  19. Four whole-istic aspects of schistosome granuloma biology: fractal arrangement, internal regulation, autopoietic component and closure

    Directory of Open Access Journals (Sweden)

    HL Lenzi

    2006-10-01

    Full Text Available This paper centers on some whole-istic organizational and functional aspects of hepatic Schistosoma mansoni granuloma, which is an extremely complex system. First, it structurally develops a collagenic topology, originated bidirectionally from an inward and outward assembly of growth units. Inward growth appears to be originated from myofibroblasts derived from small portal vessel around intravascular entrapped eggs, while outward growth arises from hepatic stellate cells. The auto-assembly of the growth units defines the three-dimensional scaffold of the schistosome granulomas. The granuloma surface irregularity and its border presented fractal dimension equal to 1.58. Second, it is internally regulated by intricate networks of immuneneuroendocrine stimuli orchestrated by leptin and leptin receptors, substance P and Vasoactive intestinal peptide. Third, it can reach the population of ± 40,000 cells and presents an autopoietic component evidenced by internal proliferation (Ki-67+ Cells, and by expression of c-Kit+ Cells, leptin and leptin receptor (Ob-R, granulocyte-colony stimulating factor (G-CSF-R, and erythropoietin (Epo-R receptors. Fourth, the granulomas cells are intimately connected by pan-cadherins, occludin and connexin-43, building a state of closing (granuloma closure. In conclusion, the granuloma is characterized by transitory stages in such a way that its organized structure emerges as a global property which is greater than the sum of actions of its individual cells and extracellular matrix components.

  20. Identification and screening of active components from Ziziphora clinopodioides Lam. in regulating autophagy.

    Science.gov (United States)

    Zhang, Xuan-Ming; An, Dong-Qing; Guo, Long-Long; Yang, Ning-Hui; Zhang, Hua

    2018-04-03

    This study investigated the flavonoid constituents of a traditional Chinese medical plant Ziziphora clinopodioides Lam. by using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry and screened the active components in regulating autophagy.Normal rat kidney (NRK) cells transfected with green fluorescent protein- microtubule-associated protein 1 light Chain 3(GFP-LC3) were treated with Z. clinopodioides flavonoids and its chemical compositions. After 4 h of treatment, the auto-phagy spot aggregation in NRK cells was photographed and observed by laser scanning confocal microscopy. The following 10 flavonoid components of Z. clinopodioides were identified: baicalein(1), quercetin(2), hyperoside(3), quercetin3-O-β-d-glucopyranoside(4), apigenin(5), kaempferol(6), chrysin(7), diosimin(8), linarin(9) and rutin(10). Among these flavonoids, chrysin, apigenin and quercetin were identified as the active principles in activating autophagy. This research may provide a reference for further developing and utilizing Z. clinopodioides.

  1. Supernatural T cells: genetic modification of T cells for cancer therapy.

    Science.gov (United States)

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  2. Adult T-cell leukemia-associated antigen (ATLA): detection of a glycoprotein in cell- and virus-free supernatant.

    Science.gov (United States)

    Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G

    1982-01-01

    A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.

  3. Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Müller cells

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Petersen, Jørgen; Felthaus, Oliver

    2011-01-01

    Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we...... compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease...... or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes...

  4. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  5. Effects of resveratrol, an important component of red wine, on intestinal cancer development

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2009-04-01

    Full Text Available Xiaoying Zhang1, Jan Anderson1, Radhey S Kaushik2,3, Chandradhar Dwivedi11Department of Pharmaceutical Sciences; 2Department of Veterinary Sciences; 3Department of Biology/Microbiology, South Dakota State University, Brookings, SD, USAAbstract: Resveratrol, a natural product derived from grapes and an important component of red wine, has been shown to inhibit cyclooxygenase and prevent various cancers. The purpose of this study is to investigate the effects of dietary grape extract, a source of resveratrol on intestinal cancer development in rats and to determine effects of resveratrol on cell growth in human colonic adenocarcinoma (Caco-2 cells, thus elucidating possible mechanisms of action of resveratrol. Results showed that dietary grape extract (5%, about 7 μg resveratrol consumed daily significantly decreased the incidence and multiplicity of tumors in small intestine in rats and resveratrol significantly inhibited cell viability and cell proliferation in Caco-2 cells.Keywords: resveratrol, grapes, colonic adenocarcinoma, Caco-2 cells

  6. The Langerhans cell

    International Nuclear Information System (INIS)

    Wolff, K.; Stingl, G.

    1983-01-01

    Langerhans cells are the bone-marrow-derived immune cells of the epidermis; they express Ia antigens and receptors for the Fc portion of IgG and complement components and are required for epidermal-cell-induced antigen-specific, syngeneic and allogeneic T-cell activitation and the generation of epidermal-cell-induced cytotoxic T cells. Their presence within the epidermis and functional integrity determine whether topical application of haptens leads to specific sensitization or unresponsiveness, and in skin grafts of only I region disparate donors, they represent the cells responsible for the critical allosensitizing signal. UV radiation abrogates most of Langerhans cell functions in vitro; under certain conditions in vivo, it prevents contact sensitization favoring the development of specific unresponsiveness. UV radiation abrogates antigen-presenting capacities of epidermal cells by interfering both with the processing of antigen by Langerhans cells and the production of the epidermal-cell-derived thymocyte activating factor required for optimal T-cell responses

  7. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    Science.gov (United States)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to membranes may be non-porous or porous (with controllable pore sizes from 200 nm to technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  8. Supply chain components

    OpenAIRE

    Vieraşu, T.; Bălăşescu, M.

    2011-01-01

    In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  9. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Science.gov (United States)

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  10. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris.

    Science.gov (United States)

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.

  11. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Directory of Open Access Journals (Sweden)

    Evangelia Papadimou

    2015-04-01

    Full Text Available The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs, also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  12. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    Science.gov (United States)

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    Directory of Open Access Journals (Sweden)

    Hernández-Rodríguez, E. M.

    2014-10-01

    Full Text Available A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereolithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ were successfully fabricated. The microstructured ceramic components produced were stable after sintering at 1400 ºC for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material.Se ha probado un método económico de microfabricación que permite construir con precisión microestructuras 3D para su potencial uso en la producción de componentes de pilas de combustible de óxidos sólidos. El método de impresión 3D basado en la estereolitografía, permite solidificar, capa por capa, una dispersión de material cerámico en un líquido que contiene un monómero orgánico fotosensible. Un simple proyector, una plataforma vertical automatizada y unas pocas imágenes de PowerPoint pueden ser utilizados para la fabricación de un amplio rango de estructuras complejas 3D en unos pocos minutos. En este trabajo se han fabricado con éxito microestructuras 3D basadas en la zirconia dopada con itria (YSZ. El material cerámico microestructurado producido se mantuvo estable después de sinterizarse a 1400 ºC durante 4 h. Las medidas de impedancia demostraron que el proceso de fabricación no tenía ningún efecto perjudicial en las propiedades eléctricas del material estructurado.

  14. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  15. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture

    Directory of Open Access Journals (Sweden)

    Ruth Olmer

    2018-05-01

    Full Text Available Summary: Endothelial cells (ECs are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. : In this article, U. Martin and colleagues show the generation of hiPSC endothelial cells in scalable cultures in up to 100 mL culture volume. The generated ECs show in vitro proliferation capacity and a high degree of chromosomal stability after in vitro expansion. The established protocol allows to generate hiPSC-derived ECs in relevant numbers for regenerative approaches. Keywords: hiPSC differentiation, endothelial cells, scalable culture

  16. Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization

    Science.gov (United States)

    Zermiani, Monica; Begheldo, Maura; Nonis, Alessandro; Palme, Klaus; Mizzi, Luca; Morandini, Piero; Nonis, Alberto; Ruperti, Benedetto

    2015-01-01

    Background and Aims The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. Methods Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. Key Results Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. Conclusions The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity. PMID:26078466

  17. Reusable Component Services

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reusable Component Services (RCS) is a super-catalog of components, services, solutions and technologies that facilitates search, discovery and collaboration in...

  18. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.

    2011-01-01

    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  19. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  20. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    International Nuclear Information System (INIS)

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-01-01

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression

  1. Design of fuel cell powered data centers for sufficient reliability and availability

    Science.gov (United States)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  2. Mitigating component performance variation

    Science.gov (United States)

    Gara, Alan G.; Sylvester, Steve S.; Eastep, Jonathan M.; Nagappan, Ramkumar; Cantalupo, Christopher M.

    2018-01-09

    Apparatus and methods may provide for characterizing a plurality of similar components of a distributed computing system based on a maximum safe operation level associated with each component and storing characterization data in a database and allocating non-uniform power to each similar component based at least in part on the characterization data in the database to substantially equalize performance of the components.

  3. A thermal lens response of the two components liquid in a thin Him cell

    International Nuclear Information System (INIS)

    Ivanov, V I; Ivanova, G D

    2016-01-01

    It was proposed a new thermal lens scheme with a thin layer of cell thickness which is significantly less than the size of the beam. As a result the exact analytical expression for the thermal lens response is achieved, taking into account the thermal lens in the windows of the cell. (paper)

  4. Indications for an inducible component of error-prone DNA repair in yeast

    International Nuclear Information System (INIS)

    Siede, W.; Eckardt, F.

    1984-01-01

    In a thermoconditional mutant of mutagenic DNA repair (rev 2sup(ts) = rad5-8) of Saccharomyces cerevisiae recovery of survival and mutation frequencies can be monitored by incubating UV-irradiated cells in growth medium at a permissive temperature (23 0 C) before plating and a shift to restrictive temperature (36 0 C). Inhibition of protein synthesis with cycloheximide during incubation at permissive conditions blocks this REV 2 dependent recovery process in stationary phase rev 2sup(ts) cells, whereas it can be reduced but not totally abolished in exponentially growing cells. These results indicate a strict dependence on post-irradiation protein synthesis in stationary phase cells and argue for a considerable constitutive level and only limited inducibility in logarithmic phase cells. The UV inducibility of the REV 2 coded function in stationary phase cells could be confirmed by analysis of dose-response pattern of the his 5-2 reversion: in stationary phase rev 2sup(ts) cells, the quadratic component of the biphasic linear-quadratic induction kinetics found at 23 0 C, which is interpreted as the consequence of induction of mutagenic repair, is eliminated at 36 0 C. (author)

  5. Indications for an inducible component of error-prone DNA repair in yeast.

    Science.gov (United States)

    Siede, W; Eckardt, F

    1984-01-01

    In a thermoconditional mutant of mutagenic DNA repair (rev 2ts = rad 5-8) of Saccharomyces cerevisiae recovery of survival and mutation frequencies can be monitored by incubating UV-irradiated cells in growth medium at a permissive temperature (23 degrees C) before plating and a shift to restrictive temperature (36 degrees C). Inhibition of protein synthesis with cycloheximide during incubation at permissive conditions blocks this REV 2 dependent recovery process in stationary phase rev 2ts cells, whereas it can be reduced but not totally abolished in exponentially growing cells. These results indicate a strict dependence on post-irradiation protein synthesis in stationary phase cells and argue for a considerable constitutive level and only limited inducibility in logarithmic phase cells. The UV inducibility of the REV 2 coded function in stationary phase cells could be confirmed by analysis of the dose-response pattern of the his 5-2 reversion: in stationary phase rev 2ts cells, the quadratic component of the biphasic linear-quadratic induction kinetics found at 23 degrees C, which is interpreted as the consequence of induction of mutagenic repair, is eliminated at 36 degrees C.

  6. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...