WorldWideScience

Sample records for perinatal brain damage

  1. Stimulation of Functional Vision in Children with Perinatal Brain Damage

    OpenAIRE

    Alimović, Sonja; Mejaški-Bošnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual st...

  2. Stimulation of functional vision in children with perinatal brain damage.

    Science.gov (United States)

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  3. Perinatal brain damage : The term infant

    NARCIS (Netherlands)

    Hagberg, Henrik; David Edwards, A.; Groenendaal, Floris

    2016-01-01

    Perinatal brain injury at term is common and often manifests with neonatal encephalopathy including seizures. The most common aetiologies are hypoxic–ischaemic encephalopathy, intracranial haemorrhage and neonatal stroke. Besides clinical and biochemical assessment the diagnostic evaluation rely

  4. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  5. Diagnostic and prognostic value of asphyxia, Sarnat's clinical classification, and CT-scan in perinatal brain damage

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshihide; Wakita, Yoshiharu; Kubonishi, Sakae; Yoshikawa, Seishi (Kochi Prefectural Central Hospital (Japan)); Ito, Toshiyuki; Okada, Yasusuke

    1990-11-01

    A retrospective review was made of 145 babies, excluding those with congenital heart disease or chromosome aberration, admitted for CT scanning. The study was done to determine the diagnostic and prognostic value of CT findings, as well as the presence of asphyxia and the clinical stage based on the Sarnat's classification, in perinatal brain damage. The patients had a minimum follow up of 2 years for the evaluation of neurologic manifestations, such as cerebral palsy, epilepsy and mental retardation. Among babies weighing 2,000 g or more at birth, neonatal asphyxia was significantly correlated with neurologic prognosis. In addition, both clinical stages and CT findings were significantly correlated with neurologic prognosis, irrespective of birth weight. The correlation between clinical stages and CT findings was significant, irrespective of body weight, however, a significant correlation between clinical stages and neonatal asphyxia was restricted to those weighing 2,000 g or more. These findings suggest that the presence of asphyxia, clinical stages and CT findings are complementary in the diagnosis and prognosis evaluation of perinatal brain damage. (N.K.).

  6. Cerebral Dysfunctions Related to Perinatal Organic Damage: Clinical-Neuropathologic Correlations.

    Science.gov (United States)

    Towbin, Abraham

    1978-01-01

    Recent neuropathology studies identify hypoxia as the main cause of perinatal cerebral damage. Cerebral lesions present at birth, with transition to chronic scar lesions, are correlated to mental retardation, cerebral palsy, epilepsy, and minimal brain dysfunction. Gestation age and severity of hypoxic exposure essentially determine the cerebral…

  7. NEUROSPECIFIC ENOLASE IN DIAGNOSTICS FOR PERINATAL DAMAGE TO THE CENTRAL NERVOUS SYSTEM IN PREMATURE INFANTS

    Directory of Open Access Journals (Sweden)

    E.G. Novopol'tseva

    2010-01-01

    Full Text Available Neurospecific enolase is an endoenzyme of the central nervous system (CNS present in neurons of the brain and peripheral neuraltissue. This is currently the only known general marker of all differentiated neurons. The article illustrates the results of determining this enzyme in premature infants with fetal infections and assessment of their importance as a marker of damage to CNS in this group of children. A high level of neurospecific enolase in children with infectious and inflammatory diseases is not only the marker of damage to blood-brain barrier, but also reflects the nature of damage (hypoxia, intoxication, inflammation. This parameter in premature infants with various pathologies may serve as a degree of perinatal damage severity, and along with other parameters, determine the performed therapy tactics. Key words: neurospecific enolase, marker of CNS damage, perinatal damage, children. (Pediatric Pharmacology. – 2010; 7(3:66-70

  8. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  9. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  10. Ischemic perinatal brain damage. Neuropathologic and CT correlations

    Energy Technology Data Exchange (ETDEWEB)

    Crisi, G; Mauri, C; Canossi, G; Della Giustina, E

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis. 31 refs.

  11. Brain susceptibility to oxidative stress in the perinatal period.

    Science.gov (United States)

    Perrone, Serafina; Tataranno, Luisa M; Stazzoni, Gemma; Ramenghi, Luca; Buonocore, Giuseppe

    2015-11-01

    Oxidative stress (OS) occurs at birth in all newborns as a consequence of the hyperoxic challenge due to the transition from the hypoxic intrauterine environment to extrauterine life. Free radical (FRs) sources such as inflammation, hyperoxia, hypoxia, ischaemia-reperfusion, neutrophil and macrophage activation, glutamate and free iron release, all increases the OS during the perinatal period. Newborns, and particularly preterm infants, have reduced antioxidant defences and are not able to counteract the harmful effects of FRs. Energy metabolism is central to life because cells cannot exist without an adequate supply of ATP. Due to its growth, the mammalian brain can be considered as a steady-state system in which ATP production matches ATP utilisation. The developing brain is particularly sensitive to any disturbances in energy generation, and even a short-term interruption can lead to long-lasting and irreversible damage. Whenever energy failure develops, brain damage can occur. Accumulating evidence indicates that OS is implicated in the pathogenesis of many neurological diseases, such as intraventricular haemorrhage, hypoxic-ischaemic encephalopathy and epilepsy.

  12. Patterns of damage in the mature neonatal brain

    International Nuclear Information System (INIS)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea

    2006-01-01

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  13. Patterns of damage in the mature neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea [Children' s Hospital ' ' Vittore Buzzi' ' , Departments of Radiology and Neuroradiology, Milan (Italy)

    2006-07-15

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  14. Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Ward, Phil; Allsop, Joanna; Counsell, Serena [Imperial College London, Hammersmith Hospital, Robert Steiner MR Unit, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom); Srinivasan, Latha; Dyet, Leigh; Cowan, Frances [Imperial College, Hammersmith Hospital, Department of Paediatrics, Imaging Sciences Department, Clinical Sciences Centre, London (United Kingdom)

    2006-07-15

    Neonatal MR imaging is invaluable in assessing the term born neonate who presents with an encephalopathy. Successful imaging requires adaptations to both the hardware and the sequences used for adults. The perinatal and postnatal details often predict the pattern of lesions sustained and are essential for correct interpretation of the imaging findings, but additional or alternative diagnoses in infants with apparent hypoxic ischaemic encephalopathy should always be considered. Perinatally acquired lesions are usually at their most obvious between 1 and 2 weeks of age. Very early imaging (<3 days) may be useful to make management decisions in ventilated neonates, but abnormalities may be subtle at that stage. Diffusion-weighted imaging is clinically useful for the early identification of ischaemic white matter in the neonatal brain but is less reliable in detecting lesions within the basal ganglia and thalami. The pattern of lesions seen on MRI can predict neurodevelopmental outcome. Additional useful information may be obtained by advanced techniques such as MR angiography, venography and perfusion-weighted imaging. Serial imaging with quantification of both structure size and tissue damage provides invaluable insights into perinatal brain injury. (orig.)

  15. The Probable Effects of Cytokines in Intrauterine Infections and Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Mehmet Oflaz

    2013-10-01

    Full Text Available Perinatal brain injuries and the subsequent development of cerebral palsy are closely associated with intrauterine infections and inflammatory response. Premature prenatal rupture of membranes and premature births are also closely linked to infections and inflammation, and the presence of both infection / inflammation and premature birth together greatly increase the risk for cerebral palsy. Periventricular leukolamacia, a common neonatal brain white matter lesion, is a major risk factor for cerebral palsy. Inflammatory cytokines released during the course of intrauterine infection play an important role in the genesis of brain white matter lesion. Maternal intrauterine infection appears to increase the risk of preterm delivery, which in turn is associated with an increased risk of intraventricular hemorrhage, neonatal white matter damage, and subsequent cerebral palsy. Proinflammatory cytokines IL-1, IL-6 and Tumor necrosis factor-%u03B1 might be the link between prenatal intrauterine infection and neonatal brain damage, and interrupting the proinflammatory cytokine cascade might prevent later disability in those born near the end of the second trimester.

  16. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    Directory of Open Access Journals (Sweden)

    María I. Herrera

    2018-03-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP and western blot (for pNF H/M, MAP-2, and GFAP. Behavior was also studied throughout Open Field (OF Test, Passive Avoidance (PA Task and Elevated Plus Maze (EPM Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain.

  17. Categorization skills and recall in brain damaged children: a multiple case study.

    Science.gov (United States)

    Mello, Claudia Berlim de; Muszkat, Mauro; Xavier, Gilberto Fernando; Bueno, Orlando Francisco Amodeo

    2009-09-01

    During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

  18. Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers.

    Science.gov (United States)

    Regard, Marianne; Knoch, Daria; Gütling, Eva; Landis, Theodor

    2003-03-01

    Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.

  19. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  20. Brain pertechnetate SPECT in perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Sfakianakis, G.; Curless, R.; Goldberg, R.; Clarke, L.; Saw, C.; Sfakianakis, E.; Bloom, F.; Bauer, C.; Serafini, A.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found in all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.

  1. Regional brain gray and white matter changes in perinatally HIV-infected adolescents☆

    Science.gov (United States)

    Sarma, Manoj K.; Nagarajan, Rajakumar; Keller, Margaret A.; Kumar, Rajesh; Nielsen-Saines, Karin; Michalik, David E.; Deville, Jaime; Church, Joseph A.; Thomas, M. Albert

    2013-01-01

    Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM) and white matter (WM) volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years) compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted images with voxel based morphometry (VBM) analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC), bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain. PMID:24380059

  2. Regional brain gray and white matter changes in perinatally HIV-infected adolescents

    Directory of Open Access Journals (Sweden)

    Manoj K. Sarma

    2014-01-01

    Full Text Available Despite the success of antiretroviral therapy (ART, perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM and white matter (WM volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years using magnetic resonance imaging (MRI-based high-resolution T1-weighted images with voxel based morphometry (VBM analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC, bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain.

  3. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Romero

    2017-01-01

    Full Text Available The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  4. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration.

    Science.gov (United States)

    Romero, Juan Ignacio; Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Hanschmann, Eva-Maria; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Rodríguez de Fonseca, Fernando; Lillig, Christopher Horst; Capani, Francisco

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  5. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Bregant, Tina; Rados, Milan; Vasung, Lana; Derganc, Metka; Evans, Alan C; Neubauer, David; Kostovic, Ivica

    2013-11-01

    A severe form of perinatal hypoxic-ischaemic encephalopathy (HIE) carries a high risk of perinatal death and severe neurological sequelae while in mild HIE only discrete cognitive disorders may occur. To compare total brain volumes and region-specific cortical measurements between young adults with mild-moderate perinatal HIE and a healthy control group of the same age. MR imaging was performed in a cohort of 14 young adults (9 males, 5 females) with a history of mild or moderate perinatal HIE. The control group consisted of healthy participants, matched with HIE group by age and gender. Volumetric analysis was done after the processing of MR images using a fully automated CIVET pipeline. We measured gyrification indexes, total brain volume, volume of grey and white matter, and of cerebrospinal fluid. We also measured volume, thickness and area of the cerebral cortex in the parietal, occipital, frontal, and temporal lobe, and of the isthmus cinguli, parahippocampal and cingulated gyrus, and insula. The HIE patient group showed smaller absolute volumetric data. Statistically significant (p right hemisphere, of cortical areas in the right temporal lobe and parahippocampal gyrus, of cortical volumes in the right temporal lobe and of cortical thickness in the right isthmus of the cingulate gyrus were found. Comparison between the healthy group and the HIE group of the same gender showed statistically significant changes in the male HIE patients, where a significant reduction was found in whole brain volume; left parietal, bilateral temporal, and right parahippocampal gyrus cortical areas; and bilateral temporal lobe cortical volume. Our analysis of total brain volumes and region-specific corticometric parameters suggests that mild-moderate forms of perinatal HIE lead to reductions in whole brain volumes. In the study reductions were most pronounced in temporal lobe and parahippocampal gyrus. Copyright © 2013 European Paediatric Neurology Society. All rights reserved.

  6. Cerebellar cytokine expression in a rat model for fetal asphyctic preconditioning and perinatal asphyxia

    DEFF Research Database (Denmark)

    Vlassaks, Evi; Brudek, Tomasz; Pakkenberg, Bente

    2014-01-01

    the effects of perinatal asphyxia and fetal asphyctic preconditioning on the inflammatory cytokine response in the cerebellum. Fetal asphyxia was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global perinatal asphyxia was induced by placing the uterine horns...... was decreased 96 h postfetal asphyxia. When applied as preconditioning stimulus, fetal asphyxia attenuates the cerebellar cytokine response. These results indicate that sublethal fetal asphyxia may protect the cerebellum from perinatal asphyxia-induced damage via inhibition of inflammation.......Asphyctic brain injury is a major cause of neuronal inflammation in the perinatal period. Fetal asphyctic preconditioning has been shown to modulate the cerebral inflammatory cytokine response, hereby protecting the brain against asphyctic injury at birth. This study was designated to examine...

  7. Maternal Pseudo-Bartter Syndrome Associated with Severe Perinatal Brain Injury.

    Science.gov (United States)

    Vora, Shrenik; Ibrahim, Thowfique; Rajadurai, Victor Samuel

    2017-09-15

    Maternal electrolyte imbalance is rarely reported as causative factor of severe perinatal brain injury. This case outlines a unique maternal and neonatal pseudo-Bartter syndrome presented with metabolic alkalosis and hypochloremia due to maternal severe vomiting. Neonatal MRI brain revealed extensive brain hemorrhages with porencephalic cysts. Subsequent investigation workup points towards maternal severe metabolic alkalosis as its cause. Careful medical attention should be paid to pregnant women with excessive vomiting to ensure a healthy outcome for both the mother and the baby.

  8. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Bryan Leaw

    2017-07-01

    Full Text Available Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI, there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.

  9. Vasoparalysis associated with brain damage in asphyxiated term infants

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1990-01-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage

  10. Vasoparalysis associated with brain damage in asphyxiated term infants

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B. (Rigshospitalet, Copenhagen (Denmark))

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.

  11. Prenatal Enrichment And Recovery From Perinatal Cortical Damage: Effects Of Maternal Complex Housing

    Directory of Open Access Journals (Sweden)

    Robbin eGibb

    2014-06-01

    Full Text Available Birth is a particularly vulnerable time for acquiring brain injury. Unfortunately, very few treatments are available for those affected. Here we explore the effectiveness of prenatal intervention in an animal model of early brain damage. We used a complex housing paradigm as a form of prenatal enrichment. Six nulliparous dams and one male rat were placed in complex housing (condomom group for 12 hours per day until the dams' delivered their pups. At parturition the dams were left in their home (standard cages with their pups. Four dams were housed in standard cages (cagemom group throughout pregnancy and with their pups until weaning. At postnatal day 3 (P3 infants of both groups received frontal cortex removals or sham surgery. Behavioural testing began on P60 and included the Morris water task and a skilled reaching task. Brains were processed for Golgi analyses. Complex housing of the mother had a significant effect on the behaviour of their pups. Control animals from the condomom group outperformed those of the cagemom group in the water task. Condomom animals with lesions performed better than their cagemom cohorts in both the water task and in skilled reaching. Condomom animals showed an increase in cortical thickness at anterior planes and thalamic area at both anterior and posterior regions. Golgi analyses revealed an increase in spine density. These results suggest that prenatal enrichment alters brain organization in manner that is prophylactic for perinatal brain injury. This result could have significant implications for the prenatal management of infants expected to be at risk for difficult birth.

  12. Use of brain lactate levels to predict outcome after perinatal asphyxia

    DEFF Research Database (Denmark)

    Leth, H; Toft, P.B.; Peitersen, Birgit

    1996-01-01

    Perinatal asphyxia is an important cause of neurological disability, but early prediction of outcome can be difficult. We performed proton magnetic resonance spectroscopy (MRS) and global cerebral blood flow measurements by xenon-133 clearance in 16 infants with evidence of perinatal asphyxia...... neurological deficits and the rest seemed to be progressing normally at neurodevelopmental follow-up at 1 year of age. A significant correlation was found between initial brain lactate levels and severe outcome (p = 0.0003) just as between cerebral hyperperfusion (mean cerebral blood flow (CBF) 86 ml(100 g)-1...

  13. Using Event-Related Potentials to Study Perinatal Nutrition and Brain Development in Infants of Diabetic Mothers

    OpenAIRE

    deRegnier, Raye-Ann; Long, Jeffrey D.; Georgieff, Michael K.; Nelson, Charles A.

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies ha...

  14. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  15. Brain and Cognitive-Behavioural Development after Asphyxia at Term Birth

    Science.gov (United States)

    de Haan, Michelle; Wyatt, John S.; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer

    2006-01-01

    Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has…

  16. Focal perinatal acquired brain injury - a sonographic study of the course

    Energy Technology Data Exchange (ETDEWEB)

    Franek, A.

    1985-06-01

    A case of a perinatal acquired focal brain lesion is reported, and the process of resorption and healing demonstrated by ultrasound. Within four weeks a cortical area of increased echogenicity was resorbed. After two months, the resulting porencephalic cyst had been transformed into glial tissue of very high echogenicity. The neurologic development of two children with such glial focus was good. These cases demonstrate that porencephalic cysts are not always the final state after resorption of a focal brain lesion. They are no reliable prognostic indicator of poor neurological outcome. Traumatic and complicated delivery, asphyxia and coagulopathy are conditions which have been found several times in connection with a focal brain lesion. In contrast to periventricular injury, prematurity does not seem to be a factor of higher risk.

  17. Perinatal brain injury, visual motor function and poor school outcome of regional low birth weight survivors at age nine.

    Science.gov (United States)

    Zhang, Jun; Mahoney, Ashley Darcy; Pinto-Martin, Jennifer A

    2013-08-01

    To explore the relationship between perinatal brain injury, visual motor function (VMF) and poor school outcome. Little is known about the status and underlying mechanism of poor school outcome as experienced by low birth weight survivors. This is a secondary data analysis. The parental study recruited 1104 low birth weight (LBW) infants weighing ≤ 2000 g from three medical centres of Central New Jersey between 1984 and 1987. Seven hundred and seventy-seven infants survived the neonatal period, and their developmental outcomes had been following up regularly until now. The development data of the survivors were used to achieve the research aims. Initial school outcome assessment was carried out in 9-year-old, using the Woodcock-Johnson Academic Achievement Scale. The severity and range of perinatal brain injury was determined by repeated neonatal cranial ultrasound results obtained at 4 hours, 24 hours and 7 days of life. Seventeen and a half per cent of the sample experienced poor school performance at age 9 as defined by lower than one standard deviation (SD) of average performance score. Children with the most severe injury, PL/VE, had the lowest mathematics (F = 14·54, p = 0·000) and reading (anova results: F = 11·56, p = 0·000) performances. Visual motor function had a significant effect on children's overall school performance (Hotelling's trace value was 0·028, F = 3·414, p = 0·018), as well as subtest scores for reading (p = 0·006) and mathematics (p = 0·036). However, visual motor function was not a mediator in the association of perinatal brain injury and school outcome. Perinatal brain injury had a significant long-term effect on school outcome. Low birth weight infants with history of perinatal brain injury need be closely monitored to substantially reduce the rates of poor school outcome and other neurodevelopmental disabilities. © 2012 Blackwell Publishing Ltd.

  18. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years.

    Directory of Open Access Journals (Sweden)

    Margaretha J Brouwer

    Full Text Available First, to apply a recently extended scoring system for preterm brain injury at term-equivalent age (TEA-MRI in a regional extremely preterm cohort; second, to identify independent perinatal factors associated with this score; and third, to assess the prognostic value of this TEA-MRI score with respect to early neurodevelopmental outcome.239 extremely preterm infants (median gestational age [range] in weeks: 26.6 [24.3-27.9], admitted to the Wilhelmina Children's Hospital between 2006 and 2012 were included. Brain abnormalities in white matter, cortical and deep grey matter and cerebellum and brain growth were scored on T1- and T2-weighted TEA-MRI using the Kidokoro scoring system. Neurodevelopmental outcome was assessed at two years corrected age using the Bayley Scales of Infant and Toddler Development, third edition. The association between TEA-MRI and perinatal factors as well as neurodevelopmental outcome was evaluated using multivariable regression analysis.The distribution of brain abnormalities and brain metrics in the Utrecht cohort differed from the original St. Louis cohort (p 7 days (β [95% confidence interval, CI]: 1.3 [.5; 2.0] and parenteral nutrition >21 days (2.2 [1.2; 3.2] were independently associated with higher global brain abnormality scores (p < .001. Global brain abnormality scores were inversely associated with cognitive (β in composite scores [95% CI]: -.7 [-1.2; -.2], p = .004, fine motor (β in scaled scores [95% CI]: -.1 [-.3; -.0], p = .007 and gross motor outcome (β in scaled scores [95% CI]: -.2 [-.3; -.1], p < .001 at two years corrected age, although the explained variances were low (R2 ≤.219.Patterns of brain injury differed between cohorts. Prolonged mechanical ventilation and parenteral nutrition were identified as independent perinatal risk factors. The prognostic value of the TEA-MRI score was rather limited in this well-performing cohort.

  19. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.

    Science.gov (United States)

    Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa

    2007-01-01

    Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.

  20. Using event-related potentials to study perinatal nutrition and brain development in infants of diabetic mothers.

    Science.gov (United States)

    deRegnier, Raye-Ann; Long, Jeffrey D; Georgieff, Michael K; Nelson, Charles A

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies have shown that infants of diabetic mothers have impairments in recognition memory from birth through 8 months of age. The purpose of this study was to evaluate longitudinal development of recognition memory using ERPs in infants of diabetic mothers compared with control infants. Infants of diabetic mothers were divided into high and low risk status based upon their birth weights and iron status and compared with healthy control infants. Infants were tested in the newborn period for auditory recognition memory, at 6 months for visual recognition memory and at 8 months for cross modal memory. ERPs were evaluated for developmental changes in the slow waves that are thought to reflect memory and the Nc component that is thought to reflect attention. The results of the study showed differences in development between the IDMs and control infants in the development of the slow waves over the left anterior temporal leads and age-related patterns of development in the NC component. These results are consistent with animal models showing that perinatal iron deficiency affects the development of the memory networks of the brain. This study highlights the value of using ERPs to translate basic science information obtained from animal models to the development of the human infant.

  1. Neglect severity after left and right brain damage.

    Science.gov (United States)

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  3. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Praticò Andrea D

    2010-09-01

    Full Text Available Abstract Hypoxic-ischemic encephalopathy (HIE is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  4. BLOOD BIOMARKERS FOR EVALUATION OF PERINATAL ENCEPHALOPATHY

    Directory of Open Access Journals (Sweden)

    Ernest Marshall Graham

    2016-07-01

    Full Text Available Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the liquid brain biopsy. A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.

  5. Modulating the Oxytocin System During the Perinatal Period: A New Strategy for Neuroprotection of the Immature Brain?

    Directory of Open Access Journals (Sweden)

    Manuela Zinni

    2018-04-01

    Full Text Available Oxytocin is a neurohypophysal hormone known for its activity during labor and its role in lactation. However, the function of oxytocin (OTX goes far beyond the peripheral regulation of reproduction, and the central effects of OTX have been extensively investigated, since it has been recognized to influence the learning and memory processes. OTX has also prominent effects on social behavior, anxiety, and autism. Interaction between glucocorticoids, OTX, and maternal behavior may have long-term effects on the developmental program of the developing brain subjected to adverse events during pre and perinatal periods. OTX treatment in humans improves many aspects of social cognition and behavior. Its effects on the hypothalamic–pituitary–adrenal axis and inflammation appear to be of interest in neonates because these properties may confer benefits when the perinatal brain has been subjected to injury. Indeed, early life inflammation and abnormal adrenal response to stress have been associated with an abnormal white matter development. Recent investigations demonstrated that OTX is involved in the modulation of microglial reactivity in the developing brain. This review recapitulates state-of-the art data supporting the hypothesis that the OTX system could be considered as an innovative candidate for neuroprotection, especially in the immature brain.

  6. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...... a crucial role in the development of perinatal hypoxic brain injury....

  7. Narrative discourse in children with early focal brain injury.

    Science.gov (United States)

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  8. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain.

    Science.gov (United States)

    Fang, Fangfang; Gao, Yue; Wang, Tingwei; Chen, Donglong; Liu, Jingli; Qian, Wenyi; Cheng, Jie; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-03-14

    Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    Science.gov (United States)

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  10. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE. Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon, in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35% or xenon (35% were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be

  11. Inflammatory injury to the neonatal brain – what can we do?

    Directory of Open Access Journals (Sweden)

    Noa eOfek-shlomai

    2014-04-01

    Full Text Available Abstract Perinatal brain damage is one of the leading causes of life long disability. This damage could be hypoxic-ischemic, inflammatory or both.This mini-review discusses different interventions aiming at minimizing inflammatory processes in the neonatal brain, both before and after insult. Current options of anti-inflammatory measures for neonates remain quite limited. We describe current anti-inflammatory intervention strategies such as avoiding perinatal infection and inflammation, and reducing exposure to inflammatory processes. We describe the known effects of anti-inflammatory drugs such as steroids, antibiotics, and indomethacin, and the possible anti-inflammatory role of other substances such as IL-1receptor antagonists, erythropoietin, caffeine, estradiol, insulin like growth factor and melatonin as well as endogenous protectors, and genetic regulation of inflammation. If successful, these may decrease mortality and long term morbidity among term and preterm infants.

  12. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2014-01-01

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  13. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  14. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years

    NARCIS (Netherlands)

    Brouwer, Margaretha J; Kersbergen, Karina J; van Kooij, Britt J M; Benders, Manon J N L; van Haastert, Ingrid C; Koopman-Esseboom, C; Neil, Jeffrey J; de Vries, Linda S; Kidokoro, Hiroyuki; Inder, Terrie E; Groenendaal, Floris

    OBJECTIVES: First, to apply a recently extended scoring system for preterm brain injury at term-equivalent age (TEA-)MRI in a regional extremely preterm cohort; second, to identify independent perinatal factors associated with this score; and third, to assess the prognostic value of this TEA-MRI

  15. Brain uptake of C14-cycloleucine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O; Synder, S H

    1969-01-01

    Comparisons were made as to extra vasalation of fluorescence Na and uptake of C14-cycloleucine between barrier damaged and undamaged rabbit brain hemispheres. The results show that mercury ions damage the blood-brain barrier and thus the uptake of C14-cycloleucine.

  16. NEUROGENETIC ASPECTS OF PERINATAL HYPOXIC-ISCHEMIC AFFECTIONS OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    George A. Karkashadze

    2016-01-01

    Full Text Available Neurogenetics is a thriving young science greatly contributing to the generally accepted concept of the brain development in health and disease. Thereby; scientists are not only able to highlight new key points in traditional ideas about the origin of diseases; but also to completely rethink their view on the problem of pathology development. In particular; new data on neurogenetics of perinatal affections of the central nervous system (CNS has appeared. Genetic factors in varying degrees affect perinatal hypoxic-ischemic CNS affections. Prematurity determination stays the most studied among them. Nevertheless; there is increasing evidence of significant epigenetic regulations of neuro-expression caused by hypoxia; malnutrition of a pregnant woman; stress; smoking; alcohol; drugs that either directly pathologically affect the developing brain; or form a brain phenotype sensitive to a perinatal CNS affection. New data obliges to change the approaches to prevention of perinatal CNS affections.

  17. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  19. Perinatal radiation-induced renal damage in the beagle

    International Nuclear Information System (INIS)

    Jaenke, R.S.; Angleton, G.M.

    1990-01-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated

  20. Functional Topography of Early Periventricular Brain Lesions in Relation to Cytoarchitectonic Probabilistic Maps

    Science.gov (United States)

    Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto

    2008-01-01

    Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…

  1. Congenital and perinatal cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Chun Soo Kim

    2010-01-01

    Full Text Available Cytomegalovirus (CMV is currently the most common agent of congenital infection and the leading infectious cause of brain damage and hearing loss in children. Symptomatic congenital CMV infections usually result from maternal primary infection during early pregnancy. One half of symptomatic infants have cytomegalic inclusion disease (CID, which is characterized by involvement of multiple organs, in particular, the reticuloendothelial and central nervous system (CNS. Moreover, such involvement may or may not include ocular and auditory damage. Approximately 90% of infants with congenital infection are asymptomatic at birth. Preterm infants with perinatal CMV infection can have symptomatic diseases such as pneumonia, hepatitis, and thrombocytopenia. Microcephaly and abnormal neuroradiologic imaging are associated with a poor prognosis. Hearing loss may occur in both symptomatic and asymptomatic infants with congenital infection and may progress through childhood. Congenital infection is defined by the isolation of CMV from infants within the first 3 weeks of life. Ganciclovir therapy can be considered for infants with symptomatic congenital CMV infection involving the CNS. Pregnant women of seronegative state should be counseled on the importance of good hand washing and other control measures to prevent CMV infection. Heat treatment of infected breast milk at 72?#608;for 5 seconds can eliminate CMV completely.

  2. Pilot Assessment of Brain Metabolism in Perinatally HIV-Infected Youths Using Accelerated 5D Echo Planar J-Resolved Spectroscopic Imaging.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Keller, Margaret A; Michalik, David E; Church, Joseph A; Nielsen-Saines, Karin; Deville, Jaime; Souza, Raissa; Brecht, Mary-Lynn; Thomas, M Albert

    2016-01-01

    To measure cerebral metabolite levels in perinatally HIV-infected youths and healthy controls using the accelerated five dimensional (5D) echo planar J-resolved spectroscopic imaging (EP-JRESI) sequence, which is capable of obtaining two dimensional (2D) J-resolved spectra from three spatial dimensions (3D). After acquisition and reconstruction of the 5D EP-JRESI data, T1-weighted MRIs were used to classify brain regions of interest for HIV patients and healthy controls: right frontal white (FW), medial frontal gray (FG), right basal ganglia (BG), right occipital white (OW), and medial occipital gray (OG). From these locations, respective J-resolved and TE-averaged spectra were extracted and fit using two different quantitation methods. The J-resolved spectra were fit using prior knowledge fitting (ProFit) while the TE-averaged spectra were fit using the advanced method for accurate robust and efficient spectral fitting (AMARES). Quantitation of the 5D EP-JRESI data using the ProFit algorithm yielded significant metabolic differences in two spatial locations of the perinatally HIV-infected youths compared to controls: elevated NAA/(Cr+Ch) in the FW and elevated Asp/(Cr+Ch) in the BG. Using the TE-averaged data quantified by AMARES, an increase of Glu/(Cr+Ch) was shown in the FW region. A strong negative correlation (r 0.6) were shown between Asp/(Cr+Ch) and CD4 counts in the FG and BG. The complimentary results using ProFit fitting of J-resolved spectra and AMARES fitting of TE-averaged spectra, which are a subset of the 5D EP-JRESI acquisition, demonstrate an abnormal energy metabolism in the brains of perinatally HIV-infected youths. This may be a result of the HIV pathology and long-term combinational anti-retroviral therapy (cART). Further studies of larger perinatally HIV-infected cohorts are necessary to confirm these findings.

  3. Low cerebral blood flow in hypotensive perinatal distress

    International Nuclear Information System (INIS)

    Lou, H.C.; Lassen, N.A.; Friis-Hansen, B.

    1977-01-01

    Hypoxic brain injury is the most important neurological problem in the neonatal period and accounts for more neurological deficits in children than any other lesion. The neurological deficits are notably mental retardation, epilepsy and cerebral palsy. The pathogenesis has hitherto been poorly understood. Arterial hypoxia has been taken as the obvious mechanism but this does not fully explain the patho-anatomical findings. In the present investigation we have examined the arterial blood pressure and the cerebral blood flow in eight infants a few hours after birth. The 133Xe clearance technique was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays a crucial role in the development of perinatal hypoxic brain injury. (author)

  4. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  5. Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood

    Science.gov (United States)

    Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.

    2005-01-01

    Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362

  6. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood.

    Science.gov (United States)

    Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G

    2005-05-17

    Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

  7. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  8. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  9. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Sex Differences in the Effects of Unilateral Brain Damage on Intelligence

    Science.gov (United States)

    Inglis, James; Lawson, J. S.

    1981-05-01

    A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.

  11. The neuroimaging evidence for chronic brain damage due to boxing

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, I.F. [Lysholm Radiological Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2000-01-01

    A number of imaging techniques have been used to investigate changes produced in the brain by boxing. Most morphological studies have failed to show significant correlations between putative abnormalities on imaging and clinical evidence of brain damage. Fenestration of the septum pellucidum, with formation of a cavum, one of the most frequent observations, does not appear to correlate with neurological or physiological evidence of brain damage. Serial studies on large groups may be more informative. Magnetic resonance spectroscopy and cerebral blood flow studies have been reported in only small numbers of boxers; serial studies are not available to date. (orig.)

  12. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  13. Tei index in neonatal respiratory distress and perinatal asphyxia

    OpenAIRE

    Ahmed Anwer Attia Khattab

    2015-01-01

    Cardiovascular compromise is a common complication of neonatal respiratory distress and perinatal asphyxia. Tei index is a Doppler-derived index for the assessment of overall left ventricular function that combines systolic and diastolic time intervals. Aim: Assess the role of MPI versus cardiac troponin I as early indicator of hypoxic cardiac damage in neonates with respiratory distress or perinatal asphyxia. The present work was conducted on forty neonates, 15 with neonatal respiratory dist...

  14. Intrauterine infection/inflammation during pregnancy and offspring brain damages: Possible mechanisms involved

    Directory of Open Access Journals (Sweden)

    Golan Hava

    2004-04-01

    Full Text Available Abstract Intrauterine infection is considered as one of the major maternal insults during pregnancy. Intrauterine infection during pregnancy could lead to brain damage of the developmental fetus and offspring. Effects on the fetal, newborn, and adult central nervous system (CNS may include signs of neurological problems, developmental abnormalities and delays, and intellectual deficits. However, the mechanisms or pathophysiology that leads to permanent brain damage during development are complex and not fully understood. This damage may affect morphogenic and behavioral phenotypes of the developed offspring, and that mice brain damage could be mediated through a final common pathway, which includes over-stimulation of excitatory amino acid receptor, over-production of vascularization/angiogenesis, pro-inflammatory cytokines, neurotrophic factors and apoptotic-inducing factors.

  15. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  16. Assessment of brain damage in a geriatric population through use of a visual-searching task.

    Science.gov (United States)

    Turbiner, M; Derman, R M

    1980-04-01

    This study was designed to assess the discriminative capacity of a visual-searching task for brain damage, as described by Goldstein and Kyc (1978), for 10 hospitalized male, brain-damaged patients, 10 hospitalized male schizophrenic patients, and 10 normal subjects in a control group, all of whom were approximately 65 yr. old. The derived data indicated, at a statistically significant level, that the visual-searching task was effective in successfully classifying 80% of the brain-damaged sample when compared to the schizophrenic patients and discriminating 90% of the brain-damaged patients from normal subjects.

  17. Sex differences in spatiotemporal expression of AR, ERα, and ERβ mRNA in the perinatal mouse brain.

    Science.gov (United States)

    Mogi, Kazutaka; Takanashi, Haruka; Nagasawa, Miho; Kikusui, Takefumi

    2015-01-01

    It has been shown that every masculinized function might be organized by a particular contribution of androgens vs. estrogens in a critical time window. Here, we aimed to investigate the sex differences in brain testosterone levels and in the spatiotemporal dynamics of steroid receptor mRNA expression in perinatal mice, by using enzyme immunoassay and real-time PCR, respectively. We found that testosterone levels in the forebrain transiently increased around birth in male mice. During the perinatal period, levels of androgen receptor mRNA in the hypothalamus (hypo) and prefrontal cortex (PFC) were higher in male mice than in female mice. Estrogen receptor α (ERα) mRNA levels in the hypo and hippocampus were higher in male mice than in female mice before birth. In contrast, ERβ mRNA expression in the PFC was higher in female mice immediately after birth. These spatiotemporal sex differences in steroid receptor expression might contribute to organizing sex differences of not only reproductive function, but also anxiety, stress responses, and cognition in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation

    Directory of Open Access Journals (Sweden)

    Wu Hsin-Chieh

    2011-04-01

    Full Text Available Abstract Background Apoptosis, neuroinflammation and blood-brain barrier (BBB damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI insults. c-Jun N-terminal kinase (JNK is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups. Methods Overweight (OF pups were established by reducing the litter size to 6, and control (NF pups by keeping the litter size at 12 from postnatal (P day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+ cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose polymerase (PARP, and phospho-JNK and phospho-BimEL levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK. Results Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+ cells, cleaved levels of caspase-3 and PARP, and ED1-(+ activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+ neurons and RECA1-(+ vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-BimEL levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in

  19. GCN2 in the Brain Programs PPARγ2 and Triglyceride Storage in the Liver during Perinatal Development in Response to Maternal Dietary Fat

    Science.gov (United States)

    Xu, Xu; Hu, Jingjie; McGrath, Barbara C.; Cavener, Douglas R.

    2013-01-01

    The liver plays a central role in regulating lipid metabolism and facilitates efficient lipid utilization and storage. We discovered that a modest increase in maternal dietary fat in mice programs triglyceride storage in the liver of their developing offspring. The activation of this programming is not apparent, however, until several months later at the adult stage. We found that the perinatal programming of adult hepatic triglyceride storage was controlled by the eIF2α kinase GCN2 (EIF2AK4) in the brain of the offspring, which stimulates epigenetic modification of the Pparγ2 gene in the neonatal liver. Genetic ablation of Gcn2 in the offspring exhibited reduced hepatic triglyceride storage and repressed expression of the peroxisome proliferator-activated receptor gamma 2 (Pparγ2) and two lipid droplet protein genes, Fsp27 and Cidea. Brain-specific, but not liver-specific, Gcn2 KO mice exhibit these same defects demonstrating that GCN2 in the developing brain programs hepatic triglyceride storage. GCN2 and nutrition-dependent programming of Pparγ2 is correlated with trimethylation of lysine 4 of histone 3 (H3K4me3) in the Pparγ2 promoter region during neonatal development. In addition to regulating hepatic triglyceride in response to modest changes in dietary fat, Gcn2 deficiency profoundly impacts the severity of the obese-diabetic phenotype of the leptin receptor mutant (db/db) mouse, by reducing hepatic steatosis and obesity but exacerbating the diabetic phenotype. We suggest that GCN2-dependent perinatal programming of hepatic triglyceride storage is an adaptation to couple early nutrition to anticipated needs for hepatic triglyceride storage in adults. However, increasing the hepatic triglyceride set point during perinatal development may predispose individuals to hepatosteatosis, while reducing circulating fatty acid levels that promote insulin resistance. PMID:24130751

  20. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Pache, F.; Paul, F. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Finke, C. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Humboldt-Universitaet zu Berlin, Berlin School of Mind and Brain, Berlin (Germany); Hamm, B. [Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ruprecht, K. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Scheel, M. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany)

    2016-12-15

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  1. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    International Nuclear Information System (INIS)

    Pache, F.; Paul, F.; Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U.; Finke, C.; Hamm, B.; Ruprecht, K.; Scheel, M.

    2016-01-01

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  2. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    Mori, Tatsuro; Kawamata, Tatsuro; Katayama, Yoichi

    2008-01-01

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  3. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  4. Computerized axial tomography in the detection of brain damage

    International Nuclear Information System (INIS)

    Cala, L.A.; Mastaglia, F.L.

    1980-01-01

    The cranial computerized axial tomography (CAT) findings in groups of patients with epilepsy, migraine, hypertension, and other general medical disorders have been reviewed to assess the frequency and patterns of focal and diffuse brain damage. In addition to demonstrating focal lesions in a proportion of patients with seizures and in patients presenting with a stroke, the CAT scan showed a premature degree of cerebral atrophy in an appreciable proportion of patients with long-standing epilepsy, hypertension and diabetes, and in some patients with migraine, valvular and ischaemic heart disease, chronic obstructive airways disease, and chronic renal failure. The value of CAT as a means of screening for brain damage in groups of individuals at risk is discussed

  5. Cognitive outcome in childhood after unilateral perinatal brain injury

    NARCIS (Netherlands)

    van Buuren, L.M.; van der Aa, N.E.; Dekker, H.C.; Vermeulen, R.J.; van Nieuwenhuizen, O.; van Schooneveld, M.M.J.; de Vries, L.S.

    2013-01-01

    Aim: The aim of the study was to assess cognitive outcome in children with periventricular haemorrhagic infarction (PVHI) or perinatal arterial ischaemic stroke (PAIS) and relate these findings to early developmental outcome and neonatal magnetic resonance imaging findings. Method: A

  6. Dental deafferentation and brain damage: A review and a hypothesis

    Directory of Open Access Journals (Sweden)

    Yi-Tai Jou

    2018-04-01

    Full Text Available In the last few decades, neurobiological and human brain imaging research have greatly advanced our understanding of brain mechanisms that support perception and memory, as well as their function in daily activities. Knowledge of the neurobiological mechanisms behind the deafferentation of stomatognathic systems has also expanded greatly in recent decades. In particular, current studies reveal that the peripheral deafferentations of stomatognathic systems may be projected globally into the central nervous system (CNS and become an associated critical factor in triggering and aggravating neurodegenerative diseases.This review explores basic neurobiological mechanisms associated with the deafferentation of stomatognathic systems. Further included is a discussion on tooth loss and other dental deafferentation (DD mechanisms, with a focus on dental and masticatory apparatuses associated with brain functions and which may underlie the changes observed in the aging brain. A new hypothesis is presented where DD and changes in the functionality of teeth and the masticatory apparatus may cause brain damage as a result of altered cerebral circulation and dysfunctional homeostasis. Furthermore, multiple recurrent reorganizations of the brain may be a triggering or contributing risk factor in the onset and progression of neurodegenerative conditions such as Alzheimer's disease (AD. A growing understanding of the association between DD and brain aging may lead to solutions in treating and preventing cognitive decline and neurodegenerative diseases. Keywords: Dental deafferentation, Alzheimer's disease, Brain damage, Temporal-mandibular joint

  7. Perioperative brain damage after cardiovascular surgery; Clinical evaluation including CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Michiyuki; Kuriyama, Yoshihiro; Sawada, Toru; Fujita, Tsuyoshi; Omae, T. (National Cardiovascular Center, Suita, Osaka (Japan))

    1989-08-01

    We examined 39 cases (1.6%) of post-operative brain damages out of 2,445 sequential cases of cardiovascular surgery in NCVC during past three years. In this study, we investigated clinical course and CT findings of each patient in details and analyzed the causes of the post operative brain damages. Of 39 cases, 23 (59%) were complicated with cerebral ischemia, 8 (21%) with subdural hematoma (SDH), 2 (5%) with intracranial hemorrhage (ICH) and 1 (2%) with subarachnoid hemorrhage (SAH), respectively. 5 cases (13%) had unclassified brain damages. In 23 cases of cerebral ischemia there were 5 cases of hypotension-induced ischemia, 4 cases of hypoxic encephalopathy, 3 cases of ischemia induced by intra-operative maneuvers, 3 cases of embolism after operation and a single case of 'microembolism'. Seven cases could not be classified into any of these categories. Duration of ECC was 169.9 {plus minus} 48.5 min on the average in patients with such brain damages as SDH, ICH, SAH and cardiogenic embolism, which were thought not to be related with ECC. On the other hand, that of the patients hypotensive ischemia or 'microembolism' gave an average value of 254.5 {plus minus} 96.8 min. And these patients were thought to have occurred during ECC. There was a statistically significant difference between these two mean values. (J.P.N.).

  8. Perinatal loss and neurological abnormalities among children of the atomic bomb. Nagasaki and Hiroshima revisited, 1949 to 1989

    International Nuclear Information System (INIS)

    Yamazaki, J.N.; Schull, W.J.

    1990-01-01

    Studies of the survivors of the atomic bombing of Hiroshima and Nagasaki who were exposed to ionizing radiation in utero have demonstrated a significant increase in perinatal loss and the vulnerability of the developing fetal brain to injury. These studies have also helped to define the stages in the development of the human brain that are particularly susceptible to radiation-related damage. Exposure at critical junctures in development increases the risk of mental retardation, small head size, subsequent seizures, and poor performance on conventional tests of intelligence and in school. The most critical period, 8 through 15 weeks after fertilization, corresponds to that time in development when neuronal production increases and migration of immature neurons to their cortical sites of function occurs. The epidemiologic data are, however, too sparse to settle unequivocally the nature of the dose-response function and, in particular, whether there is or is not a threshold to damage. If a threshold does exist, it appears to be in the 0.10- to 0.20-Gy fetal-dose range in this vulnerable gestational period

  9. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  10. Systems approach to the study of brain damage in the very preterm newborn

    Science.gov (United States)

    Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf

    2015-01-01

    Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780

  11. Inflammation and oxidative stress biomarkers in neonatal brain hypoxia and prediction of adverse neurological outcome: a review

    Directory of Open Access Journals (Sweden)

    Marianna Varsami

    2013-06-01

    Full Text Available Despite advances in perinatal care, the outcome of newborns with hypoxic-ischemic encephalopathy is poor and the issue still remains challenging in neonatology. The use of an easily approachable and practical biomarker not only could identify neonates with severe brain damage and subsequent adverse outcome, but could also target the group of infants that would benefit from a neuroprotective intervention. Recent studies have suggested interleukin-1b, interleukin-6, tumour necrosis alpha (TNF-a and neuron specific enolase (NSE to be potential biomarkers of brain damage in asphyxiated newborns. S100B, lactate dehydrogenase, nitrated albumin-nitrotyrosine, adrenomedullin, activin-A, non protein bound iron, isoprostanes, vascular endothelial growth factor and metalloproteinases have also been proposed by single-centre studies to play a similar role in the field. With this review we aim to provide an overview of existing data in the literature regarding biomarkers for neonatal brain damage.

  12. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  13. Impact of perinatal asphyxia on the GABAergic and locomotor system.

    Science.gov (United States)

    Van de Berg, W D J; Kwaijtaal, M; de Louw, A J A; Lissone, N P A; Schmitz, C; Faull, R L M; Blokland, A; Blanco, C E; Steinbusch, H W M

    2003-01-01

    Perinatal asphyxia can cause neuronal loss and depletion of neurotransmitters within the striatum. The striatum plays an important role in motor control, sensorimotor integration and learning. In the present study we investigated whether perinatal asphyxia leads to motor deficits related to striatal damage, and in particular to the loss of GABAergic neurons. Perinatal asphyxia was induced in time-pregnant Wistar rats on the day of delivery by placing the uterus horns, containing the pups, in a 37 degrees C water bath for 20 min. Three motor performance tasks (open field, grip test and walking pattern) were performed at 3 and 6 weeks of age. Antibodies against calbindin and parvalbumin were used to stain GABAergic striatal projection neurons and interneurons, respectively. The motor tests revealed subtle effects of perinatal asphyxia, i.e. small decrease in motor activity. Analysis of the walking pattern revealed an increase in stride width at 6 weeks of age after perinatal asphyxia. Furthermore, a substantial loss of calbindin-immunoreactive (-22%) and parvalbumin-immunoreactive (-43%) cells was found in the striatum following perinatal asphyxia at two months of age. GABA(A) receptor autoradiography revealed no changes in GABA binding activity within the striatum, globus pallidus or substantia nigra. We conclude that perinatal asphyxia resulted in a loss of GABAergic projection neurons and interneurons in the striatum without alteration of GABA(A) receptor affinity. Despite a considerable loss of striatal neurons, only minor deficits in motor performance were found after perinatal asphyxia.

  14. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Doormaal, Pieter Jan van [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands); Meander Medical Center Amersfoort, Department of Radiology, PO Box 1502, Amersfoort (Netherlands); Meiners, Linda C.; Sijens, Paul E. [University Medical Center Groningen and University of Groningen, Department of Radiology, Groningen (Netherlands); Horst, Hendrik J. ter; Veere, Christa N. van der [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands)

    2012-04-15

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  15. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    International Nuclear Information System (INIS)

    Doormaal, Pieter Jan van; Meiners, Linda C.; Sijens, Paul E.; Horst, Hendrik J. ter; Veere, Christa N. van der

    2012-01-01

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  16. Consequences of prenatal radiation exposure on perinatal and postnatal development

    International Nuclear Information System (INIS)

    Konermann, G.

    1982-01-01

    Acute and long-term teratogenic effects were studied in X-irradiated mice. There is evidence of a maximum susceptibility for intrauterine irradiation damage during early organogenesis with the accumulation of several processes of organ induction. Dose response curves are compared for the irradiation days 7, 10 and 13 post conceptionem based on the incidence of skeletal defects. Exposures during advanced stages of prenatal development promote the manifestation of long-term maturation defects. Corresponding postnatal phenomena and dose-relationships are described for pre- and perinatally irradiated mice. The data include late proliferative effects on liver and brain, lipid synthesis during the premyelination in brain, cerebral tigroid formation, insulin synthesis (histochemical data) in the Islands of Langerhans cells as well as disorders in the neuronal process formation. It is demonstrated that postnatal teratogenesis manifests itself as an elongated chain of interdependent processes of retardation and stabilization, the predominance of each depending on the irradiation dose and its time of application during development. In view of the generally fluctuating character of long-term maturation defects, an extended period of observation seems to be of great practical importance. (orig.)

  17. [Perinatal clomiphene citrate treatment changes sexual orientations of male mice].

    Science.gov (United States)

    He, Feng-Qin; Zhang, Heng-Rui

    2013-10-01

    Perinatal period and adolescence are critical for brain development, which is the biological basis of an individual's sexual orientation and sexual behavior. In this study, animals were divided into two groups and their sexual orientations were observed: one group experienced drug treatments during the perinatal period, and the other group was castrated at puberty. The results showed that estradiol treatment had no effect on mature male offspring's sexual orientations, but 9 days and 14 days of clomiphene citrate treatment significantly increased the chance of homosexuality and effeminized behavior. In addition, the sexual orientation of mature normal male offspring, which were castrated when they were 21 days old,was not significant different from the control animals. These findings suggest that the inhibition of perinatal estrogen activities could suppress individual male-typical responses, enhance female-typical responses and induce homosexual orientations. Moreover, the masculinizing effects of estrogen were more obvious during perinatal period than adolescence.

  18. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    NARCIS (Netherlands)

    van Doormaal, Pieter Jan; Meiners, Linda C.; ter Horst, Hendrik J.; Veere, van der Christa; Sijens, Paul E.

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and

  19. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  20. The use of computed tomography in brain damage testing

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1980-01-01

    The article deals with the diagnosis of brain damage by the use of computerized tomography - especially referring to the injuries of boxers. Three conditions may be evaluated with computerized tomography: i) fenestration of the septum pellucidum; ii) cortical atrophy; and, iii) cerebral atrophy. It also appears that computerized tomography has a place in the evaluation of injuries sustained in the ring, as well as the detection of accelerated ageing of the brain or atrophy

  1. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  2. Long-term sequelae of perinatal asphyxia in the aging rat

    DEFF Research Database (Denmark)

    Weitzdoerfer, R; Gerstl, N; Hoeger, H

    2002-01-01

    Information on the consequences of perinatal asphyxia (PA) on brain morphology and function in the aging rat is missing although several groups have hypothesized that PA may be responsible for neurological and psychiatric deficits in the adult. We therefore decided to study the effects of PA...... the platform of the MWM was moved to a new location, were observed in asphyxiated rats. We showed that deteriorated cognitive functions accompanied by aberrant expression of hippocampal SERT and impaired relearning are long-term sequelae of perinatal asphyxia, a finding that may form the basis...

  3. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    Science.gov (United States)

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  4. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  5. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  6. Perinatal exposure to diesel exhaust affects gene expression in mouse cerebrum

    Energy Technology Data Exchange (ETDEWEB)

    Tsukue, Naomi [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Noda, Chiba (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi, Saitama (Japan); Japan Automobile Research Institute, Health Effects Research Group, Energy and Environment Research Division, Tsukuba, Ibaraki (Japan); Watanabe, Manabu; Kumamoto, Takayuki; Takeda, Ken [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Noda, Chiba (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi, Saitama (Japan); Takano, Hirohisa [Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi, Saitama (Japan); National Institute for Environmental Studies, Pathophysiology Research Team, Tsukuba, Ibaraki (Japan)

    2009-11-15

    Many environmental toxins alter reproductive function and affect the central nervous system (CNS). Gonadal steroid hormones cause differentiation of neurons and affect brain function and behavior during the perinatal period, and the CNS is thought to be particularly susceptible to toxic insult during this period. It was, therefore, hypothesized that inhalation of diesel exhaust (DE) during the fetal or suckling period would disrupt the sexual differentiation of brain function in mice, and the effects of exposure to DE during the perinatal period on sexual differentiation related gene expression of the brain were investigated. In the fetal period exposure group, pregnant ICR mice were exposed to DE from 1.5 days post-coitum (dpc) until 16 dpc. In the neonatal period exposure group, dams and their offspring were exposed to DE from the day of birth [postnatal day (PND)-0] until PND-16. Then, the cerebrums of males and females at PND-2, -5, and -16 from both groups were analyzed for expression level of mRNA encoding stress-related proteins [cytochrome P450 1A1 (CYP1A1), heme oxygenase-1 (HO-1)] and steroid hormone receptors [estrogen receptor alpha (ER alpha), estrogen receptor beta (ER beta), androgen receptor (AR)]. Expression levels of ER alpha and ER beta mRNA were increased in the cerebrum of newborns in the DE exposure groups as well as mRNA for CYP1A1 and HO-1. Results indicate that perinatal exposure to DE during the critical period of sexual differentiation of the brain may affect endocrine function. (orig.)

  7. Perinatal risk factors for pneumothorax and morbidity and mortality in very low birth weight infants.

    Science.gov (United States)

    García-Muñoz Rodrigo, Fermín; Urquía Martí, Lourdes; Galán Henríquez, Gloria; Rivero Rodríguez, Sonia; Tejera Carreño, Patricia; Molo Amorós, Silvia; Cabrera Vega, Pedro; Rodríguez Ramón, Fernando

    2017-11-01

    To determine the perinatal risk factors for pneumothorax in Very-Low-Birth-Weight (VLBW) infants and the associated morbidity and mortality in this population. Retrospective analysis of data collected prospectively from a cohort of VLBW neonates assisted in our Unit (2006-2013). We included all consecutive in-born patients with ≤ 1500 g, without severe congenital anomalies. Perinatal history, demographics, interventions and clinical outcomes were collected. Associations were evaluated by logistic regression analysis. During the study period, 803 VLBW infants were assisted in our Unit, of whom 763 were inborn. Ten patients (1.2%) died in delivery room, and 18 (2.2%) with major congenital anomalies were excluded. Finally, 735 (91.5%) neonates were included in the study. Seventeen (2.3%) developed pneumothorax during the first week of life [median (IQR): 2 (1-2) days]. After correcting for GA and other confounders, prolonged rupture of membranes [aOR =1.002 (95% CI 1.000-1.003); p = 0.040] and surfactant administration [aOR = 6.281 (95% CI 1.688-23.373); p = 0.006] were the independent risk factors associated with pneumothorax. Patients with pneumothorax had lower probabilities of survival without major brain damage (MBD): aOR = 0.283 (95% CI = 0.095-0.879); p = 0.029. Pneumothorax in VLBW seems to be related to perinatal inflammation and surfactant administration, and it is significantly associated with a reduction in the probabilities of survival without MBD.

  8. Gender differences in alcohol-induced neurotoxicity and brain damage.

    Science.gov (United States)

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. In Vivo Detection of Perinatal Brain Metabolite Changes in a Rabbit Model of Intrauterine Growth Restriction (IUGR.

    Directory of Open Access Journals (Sweden)

    Rui V Simões

    Full Text Available Intrauterine growth restriction (IUGR is a risk factor for abnormal neurodevelopment. We studied a rabbit model of IUGR by magnetic resonance imaging (MRI and spectroscopy (MRS, to assess in vivo brain structural and metabolic consequences, and identify potential metabolic biomarkers for clinical translation.IUGR was induced in 3 pregnant rabbits at gestational day 25, by 40-50% uteroplacental vessel ligation in one horn; the contralateral horn was used as control. Fetuses were delivered at day 30 and weighted. A total of 6 controls and 5 IUGR pups underwent T2-w MRI and localized proton MRS within the first 8 hours of life, at 7T. Changes in brain tissue volumes and respective contributions to each MRS voxel were estimated by semi-automated registration of MRI images with a digital atlas of the rabbit brain. MRS data were used for: (i absolute metabolite quantifications, using linear fitting; (ii local temperature estimations, based on the water chemical shift; and (iii classification, using spectral pattern analysis.Lower birth weight was associated with (i smaller brain sizes, (ii slightly lower brain temperatures, and (iii differential metabolite profile changes in specific regions of the brain parenchyma. Specifically, we found estimated lower levels of aspartate and N-acetylaspartate (NAA in the cerebral cortex and hippocampus (suggesting neuronal impairment, and higher glycine levels in the striatum (possible marker of brain injury. Our results also suggest that the metabolic changes in cortical regions are more prevalent than those detected in hippocampus and striatum.IUGR was associated with brain metabolic changes in vivo, which correlate well with the neurostructural changes and neurodevelopment problems described in IUGR. Metabolic parameters could constitute non invasive biomarkers for the diagnosis and abnormal neurodevelopment of perinatal origin.

  10. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates.

    Directory of Open Access Journals (Sweden)

    Steven J Korzeniewski

    Full Text Available We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI.Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age.Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55 Mental (OR 2.3; 95% CI 1.5-3.5 and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7 Development Indices (MDI, PDI, and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8. Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3, but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI.hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly.

  11. Inferencing Processes after Right Hemisphere Brain Damage: Effects of Contextual Bias

    Science.gov (United States)

    Blake, Margaret Lehman

    2009-01-01

    Purpose: Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method: Fourteen adults with no brain damage…

  12. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  13. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-06-01

    Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.

  15. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Zozulya, Y A; Vinnitsky, A R; Stepanenko, I V [Institute of Neurosurgery, Academy of Medical Sciences, Kiev (Ukraine)

    1997-09-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ``small - dose`` radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs.

  16. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Zozulya, Y.A.; Vinnitsky, A.R.; Stepanenko, I.V.

    1997-01-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  17. DNA damage in the oligodendrocyte lineage and its role in brain aging.

    Science.gov (United States)

    Tse, Kai-Hei; Herrup, Karl

    2017-01-01

    Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  19. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum.

    Science.gov (United States)

    Pae, Eung-Kwon; Yoon, Audrey J; Ahuja, Bhoomika; Lau, Gary W; Nguyen, Daniel D; Kim, Yong; Harper, Ronald M

    2011-12-01

    Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Selective deficit of second language: a case study of a brain-damaged Arabic-Hebrew bilingual patient

    Directory of Open Access Journals (Sweden)

    Ibrahim Raphiq

    2009-03-01

    Full Text Available Abstract Background An understanding of how two languages are represented in the human brain is best obtained from studies of bilingual patients who have sustained brain damage. The primary goal of the present study was to determine whether one or both languages of an Arabic-Hebrew bilingual individual are disrupted following brain damage. I present a case study of a bilingual patient, proficient in Arabic and Hebrew, who had sustained brain damage as a result of an intracranial hemorrhage related to herpes encephalitis. Methods The patient's performance on several linguistic tasks carried out in the first language (Arabic and in the second language (Hebrew was assessed, and his performance in the two languages was compared. Results The patient displayed somewhat different symptomatologies in the two languages. The results revealed dissociation between the two languages in terms of both the types and the magnitude of errors, pointing to aphasic symptoms in both languages, with Hebrew being the more impaired. Further analysis disclosed that this dissociation was apparently caused not by damage to his semantic system, but rather by damage at the lexical level. Conclusion The results suggest that the principles governing the organization of lexical representations in the brain are not similar for the two languages.

  1. Fetal brain damage following maternal carbon monoxide intoxication: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, M D; Myers, R E

    1974-01-01

    Techniques of fetal monitoring, including fetal blood sampling in utero, were employed to study the physiological effects of acute maternal carbon monoxide intoxication on nine term-pregnant female rhesus monkeys exposed to 0.1 to 0.3% inspired carbon monoxide over 1 to 3 hr. The mothers tolerated carboxyhemoglobin levels exceeding 60% without clinical sequelae, whereas the fetuses promptly developed profound hypoxia upon exposure of the mothers to CO. The fetal COHb levels rose only gradually over 1 to 3 hr, and thus contributed only slightly to the development of early fetal hypoxia. The fetal hypoxia was associated with bradycardia, hypotension, and metabolic and respiratory acidosis. Severity of intrauterine hypoxia was closely correlated with the appearance of brain damage. Brain swelling associated with hemorrhagic necrosis of the cerebral hemispheres (severe brain damage) appeared only in fetuses whose arterial oxygen content was reduced below 1.0 ml/100 ml for at least 45 min during the maternal CO intoxication.

  2. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Kotíková, K.; Nurieva, O.; Hlušička, J.; Kačer, P.; Urban, P.; Vaněčková, M.; Seidl, Z.; Diblík, P.; Kuthan, P.; Navrátil, Tomáš; Pelclová, D.

    2017-01-01

    Roč. 55, č. 4 (2017), s. 249-259 ISSN 1556-3650 Institutional support: RVO:61388955 Keywords : brain damage * leukotrienes * methanol poisoning * Neuroinflammation * nontraumatic brain injury * sequelae of poisoning Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 3.677, year: 2016

  3. Perinatal exposure to music protects spatial memory against callosal lesions.

    Science.gov (United States)

    Amagdei, Anca; Balteş, Felicia Rodica; Avram, Julia; Miu, Andrei C

    2010-02-01

    Several studies have indicated that the exposure of rodents to music modulates brain development and neuroplasticity, by mechanisms that involve facilitated hippocampal neurogenesis, neurotrophin synthesis and glutamatergic signaling. This study focused on the potential protection that the perinatal exposure to music, between postnatal days 2 and 32, could offer against functional deficits induced by neonatal callosotomy in rats. The spontaneous alternation and marble-burying behaviors were longitudinally measured in callosotomized and control rats that had been exposed to music or not. The results indicated that the neonatal callosotomy-induced spontaneous alternation deficits that became apparent only after postnatal day 45, about the time when the rat corpus callosum reaches its maximal levels of myelination. The perinatal exposure to music efficiently protected the spontaneous alternation performance against the deficits induced by callosotomy. The present findings may offer important insights into music-induced neuroplasticity, relevant to brain development and neurorehabilitation. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  5. Effect of Marine Collagen Peptides on Physiological and Neurobehavioral Development of Male Rats with Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    Linlin Xu

    2015-06-01

    Full Text Available Asphyxia during delivery produces long-term deficits in brain development. We investigated the neuroprotective effects of marine collagen peptides (MCPs, isolated from Chum Salmon skin by enzymatic hydrolysis, on male rats with perinatal asphyxia (PA. PA was performed by immersing rat fetuses with uterine horns removed from ready-to-deliver rats into a water bath for 15 min. Caesarean-delivered pups were used as controls. PA rats were intragastrically administered with 0.33 g/kg, 1.0 g/kg and 3.0 g/kg body weight MCPs from postnatal day 0 (PND 0 till the age of 90-days. Behavioral tests were carried out at PND21, PND 28 and PND 90. The results indicated that MCPs facilitated early body weight gain of the PA pups, however had little effects on early physiological development. Behavioral tests revealed that MCPs facilitated long-term learning and memory of the pups with PA through reducing oxidative damage and acetylcholinesterase (AChE activity in the brain, and increasing hippocampus phosphorylated cAMP-response element binding protein (p-CREB and brain derived neurotrophic factor (BDNF expression.

  6. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  7. Shock treatment, brain damage, and memory loss: a neurological perspective.

    Science.gov (United States)

    Friedberg, J

    1977-09-01

    The author reviews reports of neuropathology resulting from electroconvulsive therapy in experimental animals and humans. Although findings of petechial hemorrhage, gliosis, and neuronal loss were well established in the decade following the introduction of ECT, they have been generally ignored since then. ECT produces characteristic EEG changes and severe retrograde amnesia, as well as other more subtle effects on memory and learning. The author concludes that ECT results in brain disease and questions whether doctors should offer brain damage to their patients.

  8. Basic fibroblast growth factor enhances cell proliferation in the dentate gyrus of neonatal rats following hypoxic-ischemic brain damage.

    Science.gov (United States)

    Zhu, Huan; Qiao, Lixing; Sun, Yao; Yin, Liping; Huang, Li; Jiang, Li; Li, Jiaqing

    2018-04-23

    Perinatal hypoxic-ischemic insult is considered a major contributor to child mortality and morbidity and leads to neurological deficits in newborn infants. There has been a lack of promising neurotherapeutic interventions for hypoxic-ischemic brain damage (HIBD) for clinical application in infants. The present study aimed to investigate the correlation between neurogenesis and basic fibroblast growth factor (bFGF) in the hippocampal dentate gyrus (DG) region in neonatal rats following HIBD. Cell proliferation was examined by detecting BrdU signals, and the role of bFGF in cell proliferation in the DG region following neonatal HIBD was investigated. Cell proliferation was induced by HIBD in the hippocampal DG of neonatal rats. Furthermore, bFGF gene expression was upregulated in the hippocampus in neonatal rats, particularly between 7 and 14 days after HIBD. Moreover, intraperitoneal injection of exogenous bFGF enhanced cell proliferation in the hippocampal DG following neonatal HIBD. Taken together, these data indicate that cell proliferation in the DG could be induced by neonatal HIBD, and bFGF promotes proliferation following neonatal HIBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  10. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  11. Impact of Perinatal Systemic Hypoxic–Ischemic Injury on the Brain of Male Offspring Rats: An Improved Model of Neonatal Hypoxic–Ischemic Encephalopathy in Early Preterm Newborns

    Science.gov (United States)

    Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Ma, Lian; Chen, Yunbin

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions. PMID:24324800

  12. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Directory of Open Access Journals (Sweden)

    Begoña Pellicer

    2011-01-01

    Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.

  15. Early brain development toward shaping of human mind: an integrative psychoneurodevelopmental model in prenatal and perinatal medicine.

    Science.gov (United States)

    Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G

    2013-01-01

    The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized

  16. New light on white matter damage of the premature brain: a neonatologist’s point of view

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Marcialis

    2014-06-01

    Full Text Available Periventricular leucomalacia (PVL is traditionally considered a multifactorial lesion related to three main mechanisms: ischemia, inflammation and excitotoxicity. For years it was believed that hypoperfusion, associated with the peculiar vascular anatomy of the premature brain (border zones, was the conditio sine qua non in the pathogenesis of PVL. More recently this theory has been questioned. Many studies have stressed the importance of the association between inflammation/infection and white matter injury and have supported the multi hit hypothesis according to which several (genetic, hormonal, immune and nutritional factors may team up in a multi-hit fashion. The emerging concept is that the fetal white cell activation together with the interaction between the innate and adaptive immune system play a main role in white matter damage. Currently there are increasing evidence that PVL is a disease of connectivity. In this article we review the news in the basics of pathogenesis, the incidence, the definition and the diagnosis of PVL. Furthermore, recent follow-up studies and neuroprotective therapies are mentioned. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  17. Assessment of outcome after severe brain damage.

    Science.gov (United States)

    Jennett, B; Bond, M

    1975-03-01

    Persisting disability after brain damage usually comprises both mental and physical handicap. The mental component is often the more important in contributing to overall social disability. Lack of an objective scale leads to vague and over-optimistic estimates of outcome, which obscure the ultimate results of early management. A five-point scale is described--death, persistent vegetative state, severe disability, moderate disability, and good recovery. Duration as well as intensity of disability should be included in an index of ill-health; this applies particularly after head injury, because many disabled survivors are young.

  18. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  19. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  20. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  1. Perinatal and chronic hypothyroidism impair behavioural development in male and female rats.

    NARCIS (Netherlands)

    Wijk, van N.; Rijntjes, E.; Heijning, van de B.J.

    2008-01-01

    Perinatal and chronic hypothyroidism impair behavioural development in male and female rats. EXP PHYSIOL 00(0) 000-000, 0000. - A lack of thyroid hormone, i.e. hypothyroidism, during early development results in multiple morphological and functional alterations in the developing brain. In the

  2. Vitamin-caused faulty perinatal hormonal imprinting and its consequences in adult age.

    Science.gov (United States)

    Csaba, G

    2017-09-01

    Lipid-soluble vitamins (vitamins A, D, E, and K) are actually hormones (exohormones), as they can be directly bound by hormone receptors or are in connection with molecules, which influence hormone receptors. Vitamin D is a transition between endo- and exohormones and the possibility of similar situation in case of other lipid-soluble hormones is discussed. The perinatal exposition with these "vitamins" can cause faulty perinatal hormonal imprinting with similar consequences as the faulty imprinting by the synthetic endohormones, members of the same hormone family or industrial, communal, or medical endocrine disruptors. The faulty imprinting leads to late (lifelong) consequences with altered hormone binding by receptors, altered sexuality, brain function, immunity, bone development, and fractures, etc. In addition, as hormonal imprinting is an epigenetic process, the effect of a single exposure by fat-soluble vitamins is inherited to the progeny generations. As vitamins are handled differently from hormones; however, perinatal treatments take place frequently and sometimes it is forced, the negative late effect of faulty perinatal vitamin-caused hormonal imprinting must be considered.

  3. A neurocorrective approach for MMPI-2 use for brain-damaged patients

    NARCIS (Netherlands)

    Balen, H.G.G. van; Mey, H.R.A. De; Limbeek, J. van

    1999-01-01

    Conventional administration of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) to aetiologically distinct brain-damaged out-patients (n = 137) revealed significant indications of psychological maladjustment. An adjustment for the endorsement of aetiology-specific items pertaining to

  4. Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2006-01-01

    Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…

  5. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Mira, Rodrigo G; Torres, Angie K; Jara, Claudia; Pérez, María José; Vergara, Erick H; Cerpa, Waldo; Quintanilla, Rodrigo A

    2017-12-01

    Adolescence is a period of multiple changes where social behaviors influence interpersonal-relations. Adolescents live new experiences, including alcohol consumption which has become an increasing health problem. The age of onset for consumption has declined in the last decades, and additionally, the adolescents now uptake greater amounts of alcohol per occasion. Alcohol consumption is a risk factor for accidents, mental illnesses or other pathologies, as well as for the appearance of addictions, including alcoholism. An interesting topic to study is the damage that alcohol induces on the central nervous system (CNS) in the young population. The brain undergoes substantial modifications during adolescence, making brain cells more vulnerable to the ethanol toxicity. Over the last years, the brain mitochondria have emerged as a cell organelle which is particularly susceptible to alcohol. Mitochondria suffer severe alterations which can be exacerbated if the amount of alcohol or the exposure time is increased. In this review, we focus on the changes that the adolescent brain undergoes after drinking, placing particular emphasis on mitochondrial damage and their consequences against brain function. Finally, we propose the mitochondria as an important mediator in alcohol toxicity and a potential therapeutic target to reduce or treat brain conditions associated with excessive alcohol consumption. © 2017 Wiley Periodicals, Inc.

  6. Prevalence, and Intellectual Outcome of Unilateral Focal Cortical Brain Damage as a Function of Age, Sex and Aetiology

    Directory of Open Access Journals (Sweden)

    C. M. J. Braun

    2002-01-01

    Full Text Available Neurologists and neuropsychologists are aware that aging men are more at risk than women for brain damage, principally because of the well known male-predominant risk for cardiovascular disease and related cerebrovascular accidents. However, a disproportion in prevalence of brain damage between the sexes in childhood may be less suspected. Furthermore, sex-specific risk for other aetiologies of brain damage may be little known, whether in the pediatric or adult populations. Proposals of a sex difference in cognitive recovery from brain damage have also been controversial. Six hundred and thirty five “consecutive” cases with cortical focal lesions including cases of all ages and both sexes were reviewed. Aetiology of the lesion was determined for each case as was postlesion IQ. Risk was highly male prevalent in all age groups, with a predominance of cardiovascular aetiology explaining much of the adult male prevalence. However, several other aetiological categories were significantly male prevalent in juveniles (mitotic, traumatic, dysplasic and adults (mitotic, traumatic. There was no sex difference in outcome (i.e., postlesion IQ of these cortical brain lesions for the cohort as a whole, after statistical removal of the influence of lesion extent, aetiology and presence of epilepsy. Mechanisms potentially responsible for sex differences in prevalence, aetiology of brain damage, and recovery, are reviewed and discussed.

  7. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure].

    Science.gov (United States)

    Shan, Ying; Qin, Jiong; Chang, Xing-zhi; Yang, Zhi-xian

    2004-04-01

    The brain damage caused by repeated febrile seizure (FS) during developing age is harmful to the intellectual development of children. So how to decrease the related damage is a very important issue. The main purpose of the present study was to find out whether the non-specific opiate antagonist naloxone at low dose has the neuroprotective effect on seizure-induced brain damage. Warm water induced rat FS model was developed in this study. Forty-seven rats were randomly divided into two groups: normal control group (n = 10) and hyperthermic seizure groups (n = 37). The latter was further divided into FS control group (n = 13) and naloxone-treated group (n = 24). The dose of naloxone is different in two naloxone-treated groups (12/each group), in one group the dose was 1 mg/kg, in the other one 2 mg/kg. Seven febrile seizures were induced in each rat of hyperthermic seizure groups with the interval of 2 days. The rats were weighed and injected intraperitoneally with naloxone once the FS occurred in naloxone-treated group, while the rats of the other groups were injected with 0.9% sodium chloride. Latency, duration and grade of FS in different groups were observed and compared. HE-staining and the electron microscopy (EM) were used to detect the morphologic and ultrastructural changes of hippocampal neurons. In naloxone-treated group, the rats' FS duration and FS grade (5.02 +/- 0.63, 2.63 +/- 0.72) were significantly lower (t = 5.508, P seizure, it could lighten the brain damage resulted from repeated FS to some extent.

  8. Psychotherapy of the child with true brain damage.

    Science.gov (United States)

    Christ, Adolph E

    1978-07-01

    Psychotherapy of the child with true brain damage presents special problems and requires special approaches. Those who are cognitively primitive--at the sensorimotor or preoperational stage of development--require a crisis approach; those at the concrete or formal operational stage can be treated with a modified insight-oriented approach. Development of a therapeutic alliance, establishment of workable defense mechanisms, identification and clarification of unalterable cognitive defects and issues of termination unique to this special population are discussed.

  9. ETIOPATHOGENIC CHARACTERISTICS OF THE INTRAVENTRICULAR HEMORRHAGES IN THE STRUCTURE OF PERINATAL BRAIN INJURIES: A LITERATURE REVIEW AND THE RESULTS OF OWN RESEARCH

    Directory of Open Access Journals (Sweden)

    B. M. Glukhov

    2017-01-01

    Full Text Available Background. The term «intraventricular hemorrhage of the newborn» was first introduced in the Soviet Union in 1970s. In the first soviet guidelines on pediatric neurology, the intraventricular hemorrhage (IVH was considered as a complication after birth injury induced by a mechanical trauma to the fetal head due to the choroidal vascular plexus. The first large-scale studies devoted to IVH in children were conducted in the USA in the 1970s after the introduction of ultrasound examination of brain, which is the main instrumental method for IVH diagnostics. In 1978, the specialists manage to explore the germinal matrix of the brain in the fetus and newborn, which is believed to be the main source of IVH in premature newborns. This structure was shown to give rise to brain neuroblasts and glia: this is a capillary-rich area that consists of poorly differentiated randomly arranged cells, and has a soft connective-tissue carcass that can cause IVH in this area in newborns. According to a currently accepted approach, risk factors for IVH are divided into 3 pathogenetic groups: antenatal, intranatal and postnatal. Among the antenatal risk factors, the main role belongs to the prenatal infection, especially viral infection. Besides, mother comorbidities (first of all cardiovascular and endocrine diseases and pathological pregnancy (threatened abortion, severe gestosis and placental insufficiency are also considered as important predictors of IVH. The internatal risk factors include placental detachment, precipitate labor, disseminated intravascular coagulation syndrome in mother etc. In this article the authors present a detailed review of currently available data as well as the results of own studies.Objective: to provide an overview of the stages of the IVH investigation, to identify the main features of the IVH etiopathogenesis comparing to other perinatal disorders of the central nervous system, and to assess the consequences of IVH.Materials and

  10. Maternal hypertension during pregnancy modifies the response of the immature brain to hypoxia-ischemia: Sequential MRI and behavioral investigations

    International Nuclear Information System (INIS)

    Letourneur, Annelise; Roussel, Simon; Divoux, Didier; Toutain, Jerome; Bernaudin, Myriam; Touzani, Omar; Freret, Thomas; Boulouard, Michel; Schumann-Bard, Pascale; Bouet, Valentine

    2012-01-01

    Hypoxic-ischemic (HI) brain injury occurring during the perinatal period is still a major cause of mortality and morbidity. We assessed the impact of maternal hypertension, the most common medical disorder of pregnancy, on the anatomical and functional consequences of HI insult in the immature brain. Rat pups from spontaneously hypertensive (SHR) and normotensive (Wistar Kyoto - WKY) dams were subjected to HI brain damage at postnatal day 7 (P7). Brain lesion and functional deficits were analyzed from 10 min to 35 days after HI, using magnetic resonance imaging (MRI), sensorimotor and cognitive tests. MRI data revealed that SHR pups displayed less brain damage than WKY, attested by an initial smaller lesion followed by a reduced tissue loss at chronic stage (57.1±21.6 and 31.1±27% ipsilateral hemisphere atrophy in WKY and SHR, respectively). Behavioral analyses showed less HI-induced behavioral deficits in motor coordination (rotarod test) and spatial learning (Morris watermaze test) in pups from hypertensive dams compared to those from normotensive ones. The data suggest that maternal hypertension causes prenatal stress that may render the immature brain more resistant to subsequent hypoxia-ischemia, related to a preconditioning phenomenon. (authors)

  11. Driving safety after brain damage: follow-up of twenty-two patients with matched controls.

    Science.gov (United States)

    Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V

    1990-02-01

    Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  13. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Epilepsy in Hemiplegic Cerebral Palsy Due to Perinatal Arterial Ischaemic Stroke

    Science.gov (United States)

    Wanigasinghe, Jithangi; Reid, Susan M.; Mackay, Mark T.; Reddihough, Dinah S.; Harvey, A. Simon; Freeman, Jeremy L.

    2010-01-01

    Aim: The aim of this study was to describe the frequency, risk factors, manifestations, and outcome of epilepsy in children with hemiplegic cerebral palsy (CP) due to perinatal arterial ischaemic stroke (AIS). Method: The study group comprised 63 participants (41 males, 22 females) from a population-based CP register whose brain imaging showed…

  15. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Yu Chengfu; Liu Yimin; Yang Yi; Shi Jing; Wu Yihang; Zhang Weisen; Mao Xiaofen; Luo Jing

    2006-01-01

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ 2 =4.232, P 2 =0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  16. Neuroimmunological Disturbance Features in Premature Infants with Perinatal Infections

    Directory of Open Access Journals (Sweden)

    Nailya J. Rahimova

    2018-01-01

    Full Text Available Infectious diseases in newborns are commonly intrauterine infections which affect greatly on the morbidity and mortality rates in neonates.Background: The purpose of this study was to analyse the neurological status, taking into account the neuroimmunological indicators (neuron-specific enolase (NSE, interleukin-1β (IL1β, Interleukin-6 (IL6 in the serum of neonates with perinatal infections.Metods: We conducted a complex clinical, laboratory, and instrumental examination of 433 infants with perinatal infections with a gestation period of 27–37 weeks. Determination of the level of NSE, IL1β, IL6 was performed with the standard method of the immune-enzyme analysis.Results. Hypoxic ischemic, hemorrhagic, infectious lesion of the central nervous system (CNS were more common in newborns with mixed infection and sepsis. High levels of NSE, IL6, IL1β in the serum of the examined newborns reflect a combined, deeper character of the CNS damage.Conclusion: Significant diagnostic value of neuroimmunological indicators in the blood serum of newborns with perinatal infections makes it possible to use them as a markers for assessing the severity of the CNS lesions.

  17. Perinatal Health Statistics as the Basis for Perinatal Quality Assessment in Croatia

    Science.gov (United States)

    Rodin, Urelija; Filipović-Grčić, Boris; Đelmiš, Josip; Glivetić, Tatjana; Juras, Josip; Mustapić, Željka; Grizelj, Ruža

    2015-01-01

    Context. Perinatal mortality indicators are considered the most important measures of perinatal outcome. The indicators reliability depends on births and deaths reporting and recording. Many publications focus on perinatal deaths underreporting and misclassification, disabling proper international comparisons. Objective. Description of perinatal health care quality assessment key indicators in Croatia. Methods. Retrospective review of reports from all maternities from 2001 to 2014. Results. According to reporting criteria for birth weight ≥500 g, perinatal mortality (PNM) was reduced by 31%, fetal mortality (FM) by 32%, and early neonatal mortality (ENM) by 29%. According to reporting criteria for ≥1000 g, PNM was reduced by 43%, FM by 36%, and ENM by 54%. PNM in ≥22 weeks' (wks) gestational age (GA) was reduced by 28%, FM by 30%, and ENM by 26%. The proportion of FM at 32–36 wks GA and at term was the highest between all GA subgroups, as opposed to ENM with the highest proportion in 22–27 wks GA. Through the period, the maternal mortality ratio varied from 2.4 to 14.3/100,000 live births. The process indicators have been increased in number by more than half since 2001, the caesarean deliveries from 11.9% in 2001 to 19.6% in 2014. Conclusions. The comprehensive perinatal health monitoring represents the basis for the perinatal quality assessment. PMID:26693484

  18. Perinatal Health Statistics as the Basis for Perinatal Quality Assessment in Croatia

    Directory of Open Access Journals (Sweden)

    Urelija Rodin

    2015-01-01

    Full Text Available Context. Perinatal mortality indicators are considered the most important measures of perinatal outcome. The indicators reliability depends on births and deaths reporting and recording. Many publications focus on perinatal deaths underreporting and misclassification, disabling proper international comparisons. Objective. Description of perinatal health care quality assessment key indicators in Croatia. Methods. Retrospective review of reports from all maternities from 2001 to 2014. Results. According to reporting criteria for birth weight ≥500 g, perinatal mortality (PNM was reduced by 31%, fetal mortality (FM by 32%, and early neonatal mortality (ENM by 29%. According to reporting criteria for ≥1000 g, PNM was reduced by 43%, FM by 36%, and ENM by 54%. PNM in ≥22 weeks’ (wks gestational age (GA was reduced by 28%, FM by 30%, and ENM by 26%. The proportion of FM at 32–36 wks GA and at term was the highest between all GA subgroups, as opposed to ENM with the highest proportion in 22–27 wks GA. Through the period, the maternal mortality ratio varied from 2.4 to 14.3/100,000 live births. The process indicators have been increased in number by more than half since 2001, the caesarean deliveries from 11.9% in 2001 to 19.6% in 2014. Conclusions. The comprehensive perinatal health monitoring represents the basis for the perinatal quality assessment.

  19. The clinical use of near infrared spectroscopy-monitored cerebral oxygen saturation and extraction in the preterm infant

    NARCIS (Netherlands)

    Lemmers, P.M.A.

    2010-01-01

    Survival of extremely preterm infants has greatly improved over the last decades. Despite this, perinatal brain damage with adverse neurodevelopmental outcome is still affecting a considerable number of these infants. Although the etiology of brain damage is multifactorial and even partly unknown,

  20. Atomoxetine, a selective norepinephrine reuptake inhibitor, improves short-term histological outcomes after hypoxic-ischemic brain injury in the neonatal male rat.

    Science.gov (United States)

    Toshimitsu, Masatake; Kamei, Yoshimasa; Ichinose, Mari; Seyama, Takahiro; Imada, Shinya; Iriyama, Takayuki; Fujii, Tomoyuki

    2018-03-30

    Despite the recent progress of perinatal medicine, perinatal hypoxic-ischemic (HI) insult remains an important cause of brain injury in neonates, and is pathologically characterized by neuronal loss and the presence of microglia. Neurotransmitters, such as norepinephrine (NE) and glutamate, are involved in the pathogenesis of hypoxic-ischemic encephalopathy via the interaction between neurons and microglia. Although it is well known that the monoamine neurotransmitter NE acts as an anti-inflammatory agent in the brain under pathological conditions, its effects on perinatal HI insult remains elusive. Atomoxetine, a selective NE reuptake inhibitor, has been used clinically for the treatment of attention-deficit hyperactivity disorder in children. Here, we investigated whether the enhancement of endogenous NE by administration of atomoxetine could protect neonates against HI insult by using the neonatal male rat model. We also examined the involvement of microglia in this process. Unilateral HI brain injury was induced by the combination of left carotid artery dissection followed by ligation and hypoxia (8% O 2 , 2 h) in postnatal day 7 (P7) male rat pups. The pups were randomized into three groups: the atomoxetine treatment immediately after HI insult, the atomoxetine treatment at 3 h after HI insult, or the vehicle treatment group. The pups were euthanized on P8 and P14, and the brain regions including the cortex, striatum, hippocampus, and thalamus were evaluated by immunohistochemistry. HI insult resulted in severe brain damage in the ipsilateral hemisphere at P14. Atomoxetine treatment immediately after HI insult significantly increased NE levels in the ipsilateral hemisphere at 1 h after HI insult and reduced the neuronal damage via the increased phosphorylation of cAMP response element-binding protein (pCREB) in all brain regions examined. In addition, the number of microglia was maintained under atomoxetine treatment compared with that of the vehicle

  1. Vision restoration after brain and retina damage: the "residual vision activation theory".

    Science.gov (United States)

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive

  2. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  3. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    Science.gov (United States)

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  4. Early predictors of brain damage in full-term newborns with hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Alkholy UM

    2017-08-01

    Full Text Available Usama M Alkholy,1 Nermin Abdalmonem,1 Ahmed Zaki,2 Yasser F Ali,1 Soma Abdalla Mohamed,3 Nasser I Abdelsalam,1 Mustafa Ismail Abu Hashim,1 Mohamed Abou Sekkien,3 Yasser Makram Elsherbiny4 1Pediatric Department, Zagazig University, Egypt; 2Pediatric Department, Mansoura University, Egypt; 3Pediatric Department, Al Azhar University, Egypt; 4Clinical Pathology Department, Menoufia University, Egypt Objective of the study: To evaluate the value of serum creatine phosphokinase-brain specific (CK-BB and urinary lactate/creatinine (L/C ratio as early indicators of brain damage in full-term newborns with hypoxic ischemic encephalopathy (HIE.Patients and methods: A case–control study including 25 full-term new-born infants with perinatal asphyxia who were admitted to neonatal intensive care unit (NICU with a proven diagnosis of HIE, compared to 20 healthy age- and sex-matched full-term newborns. All newborn infants were subjected to full history taking, clinical examination, routine investigations (cord blood gases and complete blood picture, and assessment of serum CK-BB (cord blood, 6 and 24 hours after birth and urinary L/C ratio (collected within the first 6 hours, on the 2nd and 3rd day after birth.Results: The serum CK-BB and urinary L/C ratio in infants with HIE were significantly higher in samples collected throughout the monitoring period when compared with the control group (all P<0.001. The cord CK-BB and urinary L/C ratio within the first 6 hours were significantly higher in infants with severe HIE than in infants with mild and moderate HIE (P<0.001. Cord CK-BB level at 12.5 U/L had 100% sensitivity and 84% specificity in the detection of severe HIE infants. Urinary L/C ratio of more than 10.5 collected within the first 6 hours after birth had 100% sensitivity and 78% specificity for the detection of severe HIE infants.Conclusion: The serum CK-BB and urinary L/C ratio in HIE infants were significantly increased early in the course of the

  5. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  6. MRI findings of brain damage due to neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Wang Lu; Fan Guoguang; Ji Xu; Sun Baohai; Guo Qiyong

    2009-01-01

    Objective: To report the MRI findings of brain damage observed in neonatal patients who suffered from isolated hypoglycemia and to explore the value of diffusion-weighted imaging(DWI) in early detection of neonatal hypoglycemic brain injury. Methods: Twelve neonates with isolated hypoglycemia (10 of the 12 were diagnosed to suffer from hypoglycemic encephalopathy) were enrolled in this study. They were first scanned at age from 3 days to 10 days with T 1 WI, T 2 WI and DWI(b is 0 s/mm 2 , 1000 s/mm 2 ), and 4 of them were then scanned from 7 days to 10 days following the initial scan. All acquired MR images were retrospectively analysed. Results: First series of DWI images showed distinct hyperintense signal in 11 cases in several areas including bilateral occipital cortex (2 cases), right occipital cortex (1 case), left occipital cortex and subcortical white matter(1 case), bilateral occipital cortex and subcortical white matter (2 cases), bilateral parieto-occipital cortex (2 cases), bilateral parieto-occipital cortex and subcortical white matter(2 cases), the splenium of corpus callosum (4 cases), bilateral corona radiata( 2 cases), left caudate nucleus and globus pallidus (1 case), bilateral thalamus (1 case), bilaterally posterior limb of internal capsule (1 case). In the initial T 1 WI and T 2 WI images, there were subtle hypointensity in the damaged cortical areas (3 cases), hyperintensity in the bilaterally affected occipital cortex( 1 case) on T 1 weighted images, and hyperintensity in the affected cortex and subcortical white matter with poor differentiation on T 2 weighted images. The followed-up MRI of 4 cases showed regional encephalomalacia in the affected occipital lobes(4 cases), slightly hyperintensity on T 2 weighted images in the damaged occipital cortex (2 cases), extensive demyelination (1 case), disappearance of hyperintensity of the splenium of corpus callosum (1 case), and persistent hyperintensity in the splenium of corpus callosum (1 case

  7. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie, E-mail: ettieg@iibr.gov.il

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  8. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    International Nuclear Information System (INIS)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-01-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  9. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  10. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  11. MATHEMATICAL MODEL OF DIAGNOSTICS OF PERINATAL DAMAGE OF THE CENTRAL NERVOUS SYSTEM IN INFANTS IN THE NEONATAL PERIOD

    Directory of Open Access Journals (Sweden)

    I. V. Shalkevich

    2017-01-01

    Full Text Available Questions of relevance and timeliness of diagnostics of perinatal disturbances of the central nervous system in newborns are considered in the article. Research objective was to determine the reliable recognition of the development of newborn encephalopathy at the age of the first two weeks of life according to neurological examination and neurosonography parameters with Doppler study of cerebral vessels. Features of the neurology status and data of ultrasonic examination of brain with Doppler study of cerebral vessels in 58 newborns with pathology of the nervous system and 23 healthy newborns are investigated. 10 sings of the neurological status and 10 parameters of ultrasonic examination are analyzed. By results of the obtained findings, prognostic rule is developed, governed by application of discriminant analysis of the studied signs, allowing to diagnose encephalopathy in newborn with sensitivity and specificity of 95% in the first week of life. Its application promotes timely identification and the beginning of therapy at infants from risk group of development of severe neurological dysfunction and preventing the growth of disability among infants.

  12. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  13. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    Science.gov (United States)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  14. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells

    Directory of Open Access Journals (Sweden)

    Margie eCastillo-Melendez

    2013-10-01

    Full Text Available In the research, clinical and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical and logistical considerations, together with the propensity for native cells to form terratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs, or umbilical cord blood (UCB stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells and mesenchymal stem cells, and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain

  15. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    Science.gov (United States)

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. FACTORS CONTRIBUTING TO PERINATAL MORTALITY : OPTIMIZING OUTCOME

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2015-03-01

    Full Text Available OBJECTIVE: To evaluate the various causes of perinatal deaths and adopt strategies to improve perinatal outcome at a referral teaching hospital in North Kerala. METHODS: A prospective observational study conducted at Institute of Maternal and Child Health, Government Medical College, Kozhikode. All perinatal deaths during the period January 2013 to December 2014 were analysed and from this factors responsible for perinatal deaths were identified. RESULTS: Out of total 30,042 deliveries , there were 966 perinatal deaths during the study period. 566 were still births and 400 early neonatal deaths. The perinatal mortality rate was 31.1 per 1000 live births. Perinatal asphyxia was the major cause of perinatal mortality. The important factors contributing to perinatal asphyxia were prematurity (39%, abruptio placenta (19% and MSAF ( 12%. Among the antenatal factors, hypertensive disorders of pregnancy leading to iatrogenic elective preterm delivery were the most important. CONCLUSION: Perinatal asphyxia due to prematurity and low birth weight emerged as the most important cause of perinatal mortality in this study and hypertensive disorders of pregnancy were the most important antenatal complication leading to prematurity

  17. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  18. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    Science.gov (United States)

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Sequestosome 1 Deficiency Delays, but Does Not Prevent Brain Damage Formation Following Acute Brain Injury in Adult Mice

    Directory of Open Access Journals (Sweden)

    Anne Sebastiani

    2017-12-01

    Full Text Available Neuronal degeneration following traumatic brain injury (TBI leads to intracellular accumulation of dysfunctional proteins and organelles. Autophagy may serve to facilitate degradation to overcome protein debris load and therefore be an important pro-survival factor. On the contrary, clearing may serve as pro-death factor by removal of essential or required proteins involved in pro-survival cascades. Sequestosome 1 (SQSTM1/p62 is a main regulator of the autophagic pathway that directs ubiquinated cargoes to autophagosomes for degradation. We show that SQSTM1 protein levels are suppressed 24 h and by trend 5 days after trauma. In line with these data the expression of Sqstm1 mRNA is reduced by 30% at day 3 after and stays depressed until day 5 after injury, indicating an impaired autophagy post controlled cortical impact (CCI. To determine the potential role of SQSTM1-dependent autophagy after TBI, mice lacking SQSTM1 (SQSTM1-KO and littermates (WT were subjected to CCI and brain lesion volume was determined 24 h and 5 days after insult. Lesion volume is 17% smaller at 24 h and immunoblotting reveals a reduction by trend of cell death marker αII-spectrin cleavage. But there is no effect on brain damage and cell death markers 5 days after trauma in SQSTM1-KO compared with WT. In line with these data neurofunctional testing does not reveal any differences. Additionally, gene expression of inflammatory (Tnf-α, iNos, Il-6, and Il-1β and protein degradation markers (Bag1 and Bag3 were quantified by real-time PCR. Protein levels of LC3, BAG1, and BAG3 were analyzed by immunoblotting. Real-time PCR reveals minor changes in inflammatory marker gene expression and reduced Bag3 mRNA levels 5 days after trauma. Immunoblotting of autophagy markers LC3, BAG1, and BAG3 does not show any difference between KO and WT 24 h and 5 days after TBI. In conclusion, genetic ablation of SQSTM1-dependent autophagy leads to a delay but shows no persistent effect on post

  20. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  1. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  2. Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity.

    Science.gov (United States)

    François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni

    2016-04-01

    Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a

  3. Paradoxical false memory for objects after brain damage.

    Science.gov (United States)

    McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M

    2010-12-03

    Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.

  4. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  5. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    Science.gov (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  6. Neuroradiological findings in perinatally HIV-infected children. Neuroradiologische Befunde bei perinatal HIV-infizierten Kindern

    Energy Technology Data Exchange (ETDEWEB)

    Spreer, J [Radiologische Abt., Universitaetsklinik Koeln (Germany); Enenkel-Stoodt, S [Abt. fuer Allgemeine Paediatrie 2, Universitaetsklinik Frankfurt am Main (Germany); Funk, M [Abt. fuer Paediatrische Haematologie und Onkologie, Universitaetsklinik Frankfurt am Main (Germany); Fiedler, A [Abt. fuer Paediatrische Neurologie, Universitaetsklinik Frankfurt am Main (Germany); Simone, A de [Neuroradiologische Abt., Universitaetsklinik Frankfurt am Main (Germany); Hacker, H [Neuroradiologische Abt., Universitaetsklinik Frankfurt am Main (Germany)

    1994-08-01

    The neuroradiological studies (CT, MRI, angiography) in 21 children with perinatal HIV infection were reviewed retrospectively. No patient showed an intracranial mass lesion; after intravenous contrast medium application there was no case with disturbed blood-brain barrier. Common non-specific findings were atrophy and delayed myelination. In 7 cases atrophy was combined with multifocal nearly symmetric white matter lesions, which characteristically spared the U-fibres. Further findings included an intramedullary ring-shaped structure in the cervical cord, an AIDS-associated vasculopathy and symmetric calcifications in the basal ganglia. The spectrum of neuroradiological findings in paediatric AIDS patients differs from that in adults. Knowledge of these age-specific findings is important because the number of HIV-infected children is rising. (orig.)

  7. Vitamin B-12 and Perinatal Health.

    Science.gov (United States)

    Finkelstein, Julia L; Layden, Alexander J; Stover, Patrick J

    2015-09-01

    Vitamin B-12 deficiency (importance of adequate vitamin B-12 status periconceptionally and during pregnancy cannot be overemphasized, given its fundamental role in neural myelination, brain development, and growth. Infants born to vitamin B-12-deficient women may be at increased risk of neural tube closure defects, and maternal vitamin B-12 insufficiency (pregnancy complications, few prospective studies and, to our knowledge, only 1 randomized trial have examined the effects of vitamin B-12 supplementation during pregnancy. The role of vitamin B-12 in the etiology of adverse perinatal outcomes needs to be elucidated to inform public health interventions. © 2015 American Society for Nutrition.

  8. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  9. Brain damage associated with apraxia of speech: evidence from case studies.

    Science.gov (United States)

    Moser, Dana; Basilakos, Alexandra; Fillmore, Paul; Fridriksson, Julius

    2016-08-01

    The site of crucial damage that causes acquired apraxia of speech (AOS) has been debated in the literature. This study presents five in-depth cases that offer insight into the role of brain areas involved in AOS. Four of the examined participants had a primary impairment of AOS either with (n = 2) or without concomitant mild aphasia (n = 2). The fifth participant presented with a lesion relatively isolated to the left anterior insula (AIns-L), damage that is rarely reported in the literature, but without AOS. Taken together, these cases challenge the role of the AIns-L and implicate the left motor regions in AOS.

  10. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  11. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    Science.gov (United States)

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  12. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  13. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Tei index in neonatal respiratory distress and perinatal asphyxia

    Directory of Open Access Journals (Sweden)

    Ahmed Anwer Attia Khattab

    2015-09-01

    Full Text Available Cardiovascular compromise is a common complication of neonatal respiratory distress and perinatal asphyxia. Tei index is a Doppler-derived index for the assessment of overall left ventricular function that combines systolic and diastolic time intervals. Aim: Assess the role of MPI versus cardiac troponin I as early indicator of hypoxic cardiac damage in neonates with respiratory distress or perinatal asphyxia. The present work was conducted on forty neonates, 15 with neonatal respiratory distress (group I, 15 with perinatal asphyxia (group II, and 10 apparently healthy neonates as a control (group III. All have: Detailed history-thorough clinical examination-Plain X-ray-ECG-Two dimensional, M-mode and Doppler echocardiographic examination with the measurement of both myocardial performance index (MPI of the right and left ventricle-Serum cardiac troponin I. Results: There was statistically significant increase in serum cardiac troponin I in groups I and II than group III. Left and right ventricular myocardial performance index (MPI were increased in group I and II than the control group. No correlation between Tei index and each of postnatal age, apgar score at 5-min, heart rate, serum cardiac troponin I, ejection fraction and fractional shortening, but there was direct relationship between MPI and LVEDD and inverse relationship between MPI and each of EF% and FS%. But there was significant correlation between L.V. MPI and gestational age. Conclusion: Tei index was higher in neonates with respiratory distress and neonates with perinatal asphyxia than in normal neonates despite normal or even increased ejection fraction which indicates that these patients may have subclinical ventricular dysfunction which should be followed up carefully.

  15. Neonatal encephalopathic cerebral injury in South India assessed by perinatal magnetic resonance biomarkers and early childhood neurodevelopmental outcome.

    Directory of Open Access Journals (Sweden)

    Peter J Lally

    Full Text Available Although brain injury after neonatal encephalopathy has been characterised well in high-income countries, little is known about such injury in low- and middle-income countries. Such injury accounts for an estimated 1 million neonatal deaths per year. We used magnetic resonance (MR biomarkers to characterise perinatal brain injury, and examined early childhood outcomes in South India.We recruited consecutive term or near term infants with evidence of perinatal asphyxia and a Thompson encephalopathy score ≥6 within 6 h of birth, over 6 months. We performed conventional MR imaging, diffusion tensor MR imaging and thalamic proton MR spectroscopy within 3 weeks of birth. We computed group-wise differences in white matter fractional anisotropy (FA using tract based spatial statistics. We allocated Sarnat encephalopathy stage aged 3 days, and evaluated neurodevelopmental outcomes aged 3½ years using Bayley III.Of the 54 neonates recruited, Sarnat staging was mild in 30 (56%; moderate in 15 (28% and severe in 6 (11%, with no encephalopathy in 3 (6%. Six infants died. Of the 48 survivors, 44 had images available for analysis. In these infants, imaging indicated perinatal rather than established antenatal origins to injury. Abnormalities were frequently observed in white matter (n = 40, 91% and cortex (n = 31, 70% while only 12 (27% had abnormal basal ganglia/thalami. Reduced white matter FA was associated with Sarnat stage, deep grey nuclear injury, and MR spectroscopy N-acetylaspartate/choline, but not early Thompson scores. Outcome data were obtained in 44 infants (81% with 38 (79% survivors examined aged 3½ years; of these, 16 (42% had adverse neurodevelopmental outcomes.No infants had evidence for established brain lesions, suggesting potentially treatable perinatal origins. White matter injury was more common than deep brain nuclei injury. Our results support the need for rigorous evaluation of the efficacy of rescue hypothermic

  16. Perinatal asphyxia: CNS development and deficits with delayed onset

    Directory of Open Access Journals (Sweden)

    Mario eHerrera-Marschitz

    2014-03-01

    Full Text Available Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified.In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by over expression of sentinel proteins, such as poly(ADP-ribose polymerase-1 (PARP-1, competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.

  17. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    Directory of Open Access Journals (Sweden)

    Giorgia Martello

    2013-08-01

    Full Text Available Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  18. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development

    Science.gov (United States)

    Schulz, Kalynn M.; Sisk, Cheryl L.

    2016-01-01

    Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females. PMID:27497718

  19. Drug-related perinatal damage from the pathological point of view

    Directory of Open Access Journals (Sweden)

    Daniela Fanni

    2014-06-01

    Full Text Available Drug dosage in the perinatal period represents a continuous challenge for the neonatologist because of interindividual variability of drug metabolism. The human liver plays a central role in the uptake, transport, metabolism and excretion of the vast majority of xenobiotics and drugs. The protein products of human CYP3A account for the largest portion of CYP450 proteins in human liver. At least 50% of currently used drugs in neonatal intensive care units (NICUs are substrates of CYP3A4 including antibiotics, antivirals, antifungals, immunomodulators, benzodiazepines, proton pump inhibitors, steroid hormones and acetaminophen. The variable CYP3A4 and CYP3A7 expression recently reported in neonatal liver suggests the existence of a marked interindividual variability in drug metabolism during the intrauterine and neonatal lives and, as a consequence, the need of an individualized tailored therapeutic approach in NICUs. The increased risk for adverse effects reported for some drugs in neonates could be related to pharmacokinetic peculiarities of the newborn liver. The fetal and neonatal liver in infants undergoing drug-induced liver injury (DILI is always characterized by the overlapping between developmental and pathological changes, the differential diagnosis between these changes representing often a challenge for the pathologist. Data here reported clearly evidence the peculiarity of the histological examination of the newborn liver, as compared to the adult liver. In conclusion, the role of the pathologist in the interpretation of liver reactions to drugs may be relevant, only when supported by the dialogue with neonatologists. A deep knowledge of the events taking place during liver development at different gestational ages is necessary for a dedicated neonatal pathologist, in order to avoid misinterpretation of the histological changes related to liver development, giving them a pathological significance. Proceedings of the International

  20. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment

    OpenAIRE

    Donega, Vanessa; van Velthoven, Cindy TJ; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia–ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategie...

  1. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  2. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  3. [Can implementation of intensified perinatal survey be effective in improving the quality of perinatal care?].

    Science.gov (United States)

    Troszyński, Michał

    2010-01-01

    Intensive scientific research and rapid technical progress have influenced the rapid fall in term newborn mortality. At the same time new problems have arisen such as saving the lives of infants with low and very low birth weight. Solving these problems needs reorganization of perinatal care, better equipment, especially in reference units and in outpatient clinics, as well as more intensive staff training. to obtain information whether implementation of intensified perinatal survey of fetus and newborn mortality can improve the quality of perinatal care in Poland. Implementation of the survey based on Central Statistics Office (GUS) data, Ministry of Health MZ-29 section X Document and the author's own studies. In the year 2008 newborn with birth weight less than 2500 g, constituted 6,06% liveborn infants, newborn weighing from 1000 to 2499 g - 5%, those with weight from 500 to 999 g - 0.51% of all live born infants. These figures differ according to voivodeship. The intensive survey concerning birth weight and perinatal mortality indeces in voivodeshipPoland, as well as in individual voivodeships, showed differences between data from the Central Statistics Office and data from the Ministry of Health MZ-29 document. This may be due to different methods of registrating newborn deaths eg. newborns transfered in the first weekoflife from the maternity ward to intensive care neonatal ward or to other specialistic departaments. Another reason for the difference may be discharge of the newborn data according to the place of birth or the mother's place of permanent domicile registration. This causes disturbances in flow of infomation resulting in ineffective analysis of perinatal mortality and of perinatal care evaluation. In the ongoing analysis it was found that in Poland stillbirths occur twice as often as perinatal deaths (4.3 per thousands) stillbirths and 2.15 per thousands perinatal deaths), with significant differences between voivodeships. This makes it

  4. Deficiency of vasodilator-stimulated phosphoprotein (VASP increases blood-brain-barrier damage and edema formation after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Peter Kraft

    2010-12-01

    Full Text Available Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification.Focal cerebral ischemia was induced in Vasp(-/- mice and wild-type (WT littermates by transient middle cerebral artery occlusion (tMCAO. Evan's Blue tracer was applied to visualize the extent of blood-brain-barrier (BBB damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p0.05 towards worse neurological outcomes.Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.

  5. Automated detection of unfilled pauses in speech of healthy and brain-damaged individuals

    NARCIS (Netherlands)

    Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Yvonne

    Automated detection of un lled pauses in speech of healthy and brain-damaged individuals Roelant Ossewaardea,b, Roel Jonkersa, Fedor Jalvingha,c, Roelien Bastiaansea aCenter for Language and Cognition, University of Groningen; bInstitute for ICT, HU University of Applied Science, Utrecht; cSt.

  6. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. PERINATAL ASPHYXIA AS POTENTIAL SOURCE OF CHILDREN WITH DEVELOPMENTAL PSYCHO-MOTOR DIFFICULTIES

    Directory of Open Access Journals (Sweden)

    Elizabeta ZISOVSKA

    1997-09-01

    Full Text Available Besides the great improvement of aostetrics and neanatal intensive care, certain percentage of new born children suffer from perinatal asphyxia (PA and that is one of the first reasons for hypoxic and ischemic brain damage which leads to neuro-developing handicap. In order to show how strong is the correaltion between PA and permanent sequele, an early, precise and prompt diagnosis of asphyxia and its influence on neonatal brain is neccessary.This study presents answers to the following issues.1.Which parameters define precisely the perinatal asphyxia?2.How great is the PA incidence on our material?3.What is the percentage of postasphyxic encephalopathy (PAE in the group of asphyxic new born children?4.Which of these children bear high risk for developmental psycho-motor difficulties?MaterialThe new born children delivered on time in the Clinic of Gynecology and Obstetrics.Methods1.Early diagnosis of PA according to the score consisted of high specific, sensitivity and positive and predictive value2.Consequent neurological check-ups and PAE cathegori-zation for seven days3.Ultrasound examination of CNS through big fontanelle4.Lab analysesResults5.639 successive new born children delivered on time were examined. The included scouring system covers APGAR score at the 5th minute, cardiotocographic record, base deficit in ABS, meconium around the amniotic water. According to this system, 81 child passed the PA , i.e., 14,3/ 1.000 new born children delivered on time. Out of them, 54 have signs of PAE (9,5/1000 new born children delivered on time, i.e., 66,6% of all asphyxia new born children. Classification has been made according to the PAE grade: 34 children survived the first grade (62,9%, 11 children survived the second grade (20,4% and 9 new born children survived the third grade (16,7%. According to data in literature and long year studies of this issue, the children from the group who passed the second and the third grade of PAE have the risk

  8. Effects of perinatal exposure to environmentally persistent organic pollutants and heavy metals on neurobehavioral development in Japanese children: IV. Thyroid hormones and neonatal neurobehavioral status

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Nakai, K.; Oka, T.; Kurokawa, N.; Satoh, H. [Dept. of Environmental Health Sciences, Tohoku Univ. Graduate School of Medicine, Sendai (Japan); Hosokawa, T. [Dept. of Human Development, Tohoku Univ., Sendai (Japan); Okamura, K. [Dept. of Obstetrics, Tohoku Univ. Graduate School of Medicine, Sendai (Japan); Sakai, T. [Miyagi Childrens Hospital, Sendai (Japan)

    2004-09-15

    From several epidemiological studies, it has been reported that there are some associations between perinatal exposures to PCBs, dioxins and heavy metals, and neurobehavioral defects such as postnatal growth delay and poorer cognitive function. We have started a prospective cohort study to examine the effects of perinatal exposures to environmentally persistent organic pollutants on neurobehavioral development in Japanese children. Thyroid hormones (THs) are essential for normal brain development. A lack of THs in pregnancy can result in congenital hypothyroidism, which causes moderate to severe intellectual defects. It has been reported that perinatal exposure to PCBs adversely affects on children's intellectual functions. The chemical structures of some PCBs resembles thyroxine (T4), and therefore, it is suspected that the action mechanism of PCBs is disruption of TH function. Some PCBs and their metabolites are thought to bind with transthyretine (TTR), which is necessary for the transfer of T4 into the brain, and this may cause a shortage of T4 in the developing brain. To examine the effects of perinatal exposure to PCBs on children's development, it is essential to evaluate the functions of THs at a fundamental level. In this report, we examined the correlations of THs in maternal peripheral blood and cord blood, and the association between THs and neonatal neurobehavioral status.

  9. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sensitivity of the Halstead and Wechsler Test Batteries to brain damage: Evidence from Reitan's original validation sample.

    Science.gov (United States)

    Loring, David W; Larrabee, Glenn J

    2006-06-01

    The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.

  11. Perceptual relearning of binocular fusion after hypoxic brain damage: four controlled single-case treatment studies.

    Science.gov (United States)

    Schaadt, Anna-Katharina; Schmidt, Lena; Kuhn, Caroline; Summ, Miriam; Adams, Michaela; Garbacenkaite, Ruta; Leonhardt, Eva; Reinhart, Stefan; Kerkhoff, Georg

    2014-05-01

    Hypoxic brain damage is characterized by widespread, diffuse-disseminated brain lesions, which may cause severe disturbances in binocular vision, leading to diplopia and loss of stereopsis, for which no evaluated treatment is currently available. The study evaluated the effects of a novel binocular vision treatment designed to improve binocular fusion and stereopsis as well as to reduce diplopia in patients with cerebral hypoxia. Four patients with severely reduced convergent fusion, stereopsis, and reading duration due to hypoxic brain damage were treated in a single-subject baseline design, with three baseline assessments before treatment to control for spontaneous recovery (pretherapy), an assessment immediately after a treatment period of 6 weeks (posttherapy), and two follow-up tests 3 and 6 months after treatment to assess stability of improvements. Patients received a novel fusion and dichoptic training using 3 different devices designed to slowly increase fusional and disparity angle. After the treatment, all 4 patients improved significantly in binocular fusion, subjective reading duration until diplopia emerged, and 2 of 4 patients improved significantly in local stereopsis. No significant changes were observed during the pretherapy baseline period and the follow-up period, thus ruling out spontaneous recovery and demonstrating long-term stability of treatment effects. This proof-of-principle study indicates a substantial treatment-induced plasticity after hypoxia in the relearning of binocular vision and offers a viable treatment option. Moreover, it provides new hope and direction for the development of effective rehabilitation strategies to treat neurovisual deficits resulting from hypoxic brain damage.

  12. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  13. Perinatal tuberculosis: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Edna Lúcia S. de Souza

    Full Text Available Despite the high prevalence of tuberculosis in adults and children, the congenital and perinatal forms of tuberculosis are rare. In Brazil, there has been only one published case of congenital tuberculosis and two cases of the perinatal form of this disease. We report a case of perinatal tuberculosis presenting with pneumonia. Alcohol-acid-resistant bacilli were found in the gastric lavage. Diagnosis of this disease presentation requires a high index of suspicion.

  14. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  15. Bisecting real and fake body parts: effects of prism adaptation after right brain damage

    Directory of Open Access Journals (Sweden)

    Nadia eBolognini

    2012-06-01

    Full Text Available The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive information. In a previous study (Sposito et al., 2010, we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the mid-point of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of prism adaptation, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury.

  16. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  17. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  18. Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy--Creatine prophylaxis and the need for multi-organ protection.

    Science.gov (United States)

    Ellery, Stacey J; Dickinson, Hayley; McKenzie, Matthew; Walker, David W

    2016-05-01

    Birth asphyxia or hypoxia arises from impaired placental gas exchange during labor and remains one of the leading causes of neonatal morbidity and mortality worldwide. It is a condition that can strike in pregnancies that have been uneventful until these final moments, and leads to fundamental loss of cellular energy reserves in the newborn. The cascade of metabolic changes that occurs in the brain at birth as a result of hypoxia can lead to significant damage that evolves over several hours and days, the severity of which can be ameliorated with therapeutic cerebral hypothermia. However, this treatment is only applied to a subset of newborns that meet strict inclusion criteria and is usually administered only in facilities with a high level of medical surveillance. Hence, a number of neuropharmacological interventions have been suggested as adjunct therapies to improve the efficacy of hypothermia, which alone improves survival of the post-hypoxic infant but does not altogether prevent adverse neurological outcomes. In this review we discuss the prospect of using creatine as a dietary supplement during pregnancy and nutritional intervention that can significantly decrease the risk of brain damage in the event of severe oxygen deprivation at birth. Because brain damage can also arise secondarily to compromise of other fetal organs (e.g., heart, diaphragm, kidney), and that compromise of mitochondrial function under hypoxic conditions may be a common mechanism leading to damage of these tissues, we present data suggesting that dietary creatine supplementation during pregnancy may be an effective prophylaxis that can protect the fetus from the multi-organ consequences of severe hypoxia at birth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Perinatal methadone exposure affects dopamine, norepinephrine, and serotonin in the weanling rat.

    Science.gov (United States)

    Robinson, S E; Maher, J R; Wallace, M J; Kunko, P M

    1997-01-01

    On gestational day 7 pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. On postnatal day 21, dopamine (DA), norepinephrine (NE), serotonin (5-HT), and their metabolites were analyzed. Perinatal methadone exposure disrupted dopaminergic, noradrenergic, and serotonergic activity in a brain region- and gender-specific fashion. The ratio of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) to DA was reduced in the frontal cortex of males exposed to methadone postnatally. No effects of perinatal methadone exposure were observed on DA and DOPAC in the striatum. The ratio of 3-methoxy-4-hydroxyphenylglycol (MOPEG) to NE in the hippocampus was increased significantly in males exposed to methadone prenatally. Striatal and parietal cortical 5-hydroxyindoleacetic acid (5-HIAA), but not its ratio to 5-HT, was increased slightly in rats exposed to methadone postnatally. Although parietal cortical 5-HT, 5-HIAA, and 5-hydroxytryptophan were all affected by perinatal methadone exposure, the ratios of metabolite and precursor to 5-HT were not affected. Effects of methadone exposure appeared to depend upon the developmental stage at which exposure occurred and did not appear to result from the phenomenon of neonatal withdrawal. Changes in activity of these three neurotransmitter systems may contribute to the effect of perinatal methadone on the activity of other neurons, such as cholinergic neurons.

  20. Role of Perinatal Inflammation in Neonatal Arterial Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Antoine Giraud

    2017-11-01

    Full Text Available Based on the review of the literature, perinatal inflammation often induced by infection is the only consistent independent risk factor of neonatal arterial ischemic stroke (NAIS. Preclinical studies show that acute inflammatory processes take place in placenta, cerebral arterial wall of NAIS-susceptible arteries and neonatal brain. A top research priority in NAIS is to further characterize the nature and spatiotemporal features of the inflammatory processes involved in multiple levels of the pathophysiology of NAIS, to adequately design randomized control trials using targeted anti-inflammatory vasculo- and neuroprotective agents.

  1. Ancillary procedure for early diagnosis of brain damage in children

    International Nuclear Information System (INIS)

    Sumi, Masatoshi; Sha, Tenei; Ryo, Fukko; Kagawa, Kotaro.

    1979-01-01

    CT scan of the head was performed on 14 patients with cerebral palsy, 16 with central coordination disorders, and 16 controls, and findings showing cerebral atrophy and enlargement of the cerebral ventricle were obtained in cases both of cerebral palsy and of central coordination disorders. To objectify these findings, 10 items were selected and evaluated according to 4 grades (0 - 3) and were compared. As a result, it was concluded that CT scan is an excellent ancillary procedure for early diagnosis of brain damages. (Tsunoda, M.)

  2. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  3. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    Directory of Open Access Journals (Sweden)

    Daisuke Ibi

    2015-11-01

    Full Text Available Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.

  4. Effects of maternal stress and perinatal fluoxetine exposure on behavioral outcomes of adult male offspring.

    Science.gov (United States)

    Kiryanova, V; Meunier, S J; Vecchiarelli, H A; Hill, M N; Dyck, R H

    2016-04-21

    Women of child-bearing age are the population group at highest risk for depression. In pregnant women, fluoxetine (Flx) is the most widely prescribed selective serotonin reuptake inhibitor (SSRI) used for the treatment of depression. While maternal stress, depression, and Flx exposure have been shown to effect neurodevelopment of the offspring, separately, combined effects of maternal stress and Flx exposure have not been extensively examined. The present study investigated the effects of prenatal maternal stress and perinatal exposure to the SSRI Flx on the behavior of male mice as adults. C57BL/6 dams exposed to chronic unpredictable stress from embryonic (E) day 4 to E18 and non-stressed dams were administered Flx (25 mg/kg/d) in the drinking water from E15 to postnatal day 12. A separate control group consisted of animals that were not exposed to stress or Flx. At 12 days of age, brain levels of serotonin were assessed in the male offspring. At two months of age, the male offspring of mothers exposed to prenatal stress (PS), perinatal Flx, PS and Flx, or neither PS or Flx, went through a comprehensive behavioral test battery. At the end of testing brain-derived neurotropic factor (BDNF) levels were assessed in the frontal cortex of the offspring. Maternal behavior was not altered by either stress or Flx treatment. Treatment of the mother with Flx led to detectible Flx and NorFlx levels and lead to a decrease in serotonin levels in pup brains. In the adult male offspring, while perinatal exposure to Flx increased aggressive behavior, prenatal maternal stress decreased aggressive behavior. Interestingly, the combined effects of stress and Flx normalized aggressive behavior. Furthermore, perinatal Flx treatment led to a decrease in anxiety-like behavior in male offspring. PS led to hyperactivity and a decrease in BDNF levels in the frontal cortex regardless of Flx exposure. Neither maternal stress or Flx altered offspring performance in tests of cognitive

  5. Eliminating Perinatal HIV Transmission

    Centers for Disease Control (CDC) Podcasts

    In this podcast, CDC’s Dr. Steve Nesheim discusses perinatal HIV transmission, including the importance of preventing HIV among women, preconception care, and timely HIV testing of the mother. Dr. Nesheim also introduces the revised curriculum Eliminating Perinatal HIV Transmission intended for faculty of OB/GYN and pediatric residents and nurse midwifery students.

  6. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  7. Categorization skills and recall in brain damaged children: a multiple case study Habilidades de categorização e recordação em crianças com lesões cerebrais: um estudo de casos multiplos

    Directory of Open Access Journals (Sweden)

    Claudia Berlim de Mello

    2009-09-01

    Full Text Available During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.No desenvolvimento, as crianças tornam-se capazes de associar estímulos em categorias e de se beneficiar dessas associações para sua recordação posterior. Lesões cerebrais na infância podem interferir nesse desenvolvimento. Neste estudo, essas habilidades foram avaliadas em crianças com lesões cerebrais. A etiologia, topografia e época de instalação da lesão variaram. As tarefas incluíram: nomeação e recordação imediata de 30 figuras relacionadas perceptual e semanticamente; associação livre; recordação tardia e recordação com pistas. Testes neuropsicológicos tradicionais também foram usados. Duas crianças com lesões adquiridas na fase escolar associaram as figuras baseadas em relações perceptivas e não categóricas e apresentaram déficits de recordação tardia e com pistas, ao contrario das outras duas com lesões perinatais

  8. Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe

    2017-09-01

    The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli. © 2015 The British Psychological Society.

  9. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  10. Correction of the acid-base balance in the presence of the hypoxic-ischemic brain damage in newborns

    Directory of Open Access Journals (Sweden)

    K. S. Kiriakov

    2018-01-01

    Full Text Available One of the current problems of perinatal neurology is the hypoxic-ischemic brain damage in newborns associated with the influence of the hypoxia upon the fetus, intranatal and postnatal asphyxia on one hand and a lack of the efficient therapy schemes on the other hand. Due to this, the purpose of this pilotstudy isto identify the effects of drug Cytoflavin, included into the complex therapy scheme for the newborns with the cerebral ischemia of II-III stages, on the blood acid-base balance. A retrospective analysis of the results of the complex therapy for 16 newborns with the moderate (14 children and severe (2 children brain ischemia was performed. Cytoflavin was included in the standard therapy schemes for all children at a dose of 2 ml/kg per day at a dilution of 5% glucose solution at the ratio of 1:5, intravenously, microfluidically for 20 hours for 3 days. In addition to the standard examination, the blood acid-base balance assessment using the follow-up microgasometric method was included (after 60 min and then every 6 hours until 72 hours of observation. All children had positive tendency to the arresting of the metabolic acidosis (in the form of the decrease of the base deficiency after 24 hours and increase of pH level (the level of 7.30 was reached by 12 hours of age in full-term newborns and 24 hour of age in the preterm newborns. The revealed positive changes in the time of the metabolic acidosis arresting along with the small volumes of the infusion and good tolerability are the cause for the planning of the subsequent, more large-scale studies. 

  11. Obstetric and perinatal effects of active and/or passive smoking during pregnancy

    OpenAIRE

    Nakamura,Mary Uchiyama; Alexandre,Sandra Maria; Santos,Jorge Francisco Kuhn dos; Souza,Eduardo de; Sass,Nelson; Beck,Anna Paula Auritscher; Trayna,Evelyn; Andrade,Carla Maria de Araújo; Barroso,Teresa; Kulay Júnior,Luiz

    2004-01-01

    CONTEXT: Cigarette smoke, whether inhaled voluntarily or not, causes damage to the mother-infant pair. The antenatal period may present the best opportunity for performing effective anti-smoking campaigns. OBJECTIVE: To study the obstetric and perinatal effects of smoking on pregnancy and the infant. TYPE OF STUDY: Prospective study, interviewing pregnant women who were randomly selected at the maternity hospital as they were being discharged after giving birth. SETTING: Hospital Municipal Ve...

  12. Perinatal risk factors in offenders with severe personality disorder: a population-based investigation.

    Science.gov (United States)

    Fazel, Seena; Bakiyeva, Liliya; Cnattingius, Sven; Grann, Martin; Hultman, Christina M; Lichtenstein, Paul; Geddes, John R

    2012-10-01

    Although perinatal factors are associated with the development of several psychiatric disorders, it is unknown whether these factors are linked with personality disorder. Cases of personality disorder were drawn from a national registry of all forensic psychiatric evaluations (n = 150). Two control groups were used: (1) A sample of forensic evaluations without any psychiatric disorder (n = 97) allowing for a nested case-control investigation; and (2) A population-based sample matched by age and gender with no history of psychiatric hospitalization (n = 1498). Prematurity (personality disorder, both in the nested and the population-based case-control comparisons with adjusted odds ratios (OR) for this risk factor ranging from 2 to 4. Asphyxia (adjusted OR = 2.4, 95% CI: 1.4-4.1) and complicated delivery (adjusted OR = 1.5, 1.0-2.1) were associated with personality disorder in the population-based study, and the former remained significant in multivariate models. Overall, perinatal complications were found to be associated with a later diagnosis of personality disorder in this selected sample. As with other psychiatric disorders where such associations have been demonstrated, changes during the perinatal period may lead to abnormal brain development and function.

  13. Effects of Perinatal Exposure to PCBs on Neuropsychological Functions in the Rotterdam Cohort at 9 Years of Age

    NARCIS (Netherlands)

    Vreugdenhil, H.J.I.; Emmen, H.H.; Mulder, P.G.H.; Weisglas-Kuperus, N.

    2004-01-01

    PCBs are known for their neurotoxic properties, especially on the developing brain. To increase insight into the neurotoxic effects of PCB exposure, the authors studied the effects of perinatal exposure to environmental levels of these compounds on different neuropsychological domains. In 9-year-old

  14. Reflecting on Co-Creating a Smart Learning Ecosystem for Adolescents with Congenital Brain Damage

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Rehm, Matthias; Lund, Maja K. L.

    2018-01-01

    . In this paper we present a first part of an ongoing collaboration with a special needs education facility for adolescents with congenital and acquired brain damage, that is interested in exploring the transformation of the institutional space into a smart learning ecosystem. We exemplify our research approach...

  15. Origin and dynamics of oligodendrocytes in the developing brain : Implications for perinatal white matter injury

    NARCIS (Netherlands)

    van Tilborg, Erik; de Theije, Caroline G.M.; van Hal, Maurik; Wagenaar, Nienke; de Vries, Linda S.; Benders, Manon J.; Rowitch, David H; Nijboer, Cora H.

    2018-01-01

    Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise pathophysiology

  16. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    Jeon, Myounggun; Yoon, Eui-Sung; Cho, Il-Joo; Cho, Jeiwon; Jung, Dahee; Kim, Yun Kyung; Shin, Sehyun

    2014-01-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  17. Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.

    Science.gov (United States)

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    Science.gov (United States)

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  19. MRI patterns of hypoxic-ischemic brain injury in preterm and full term infants – classical and less common MR findings

    International Nuclear Information System (INIS)

    Cabaj, Astra; Bekiesińska-Figatowska, Monika; Mądzik, Jaroslaw

    2012-01-01

    Hypoxic-ischemic brain injury occurring in antenatal, perinatal or early postnatal period constitutes an important diagnostic problem in both term and prematurely born neonates. Over the past several years magnetic resonance imaging (MRI) has become relatively easily accessible in Poland. On the basis of the central nervous system MRI, the experienced radiologist are able to determine the location of the hypoxic-ischemic lesions, their extent and evolution. Therefore he can help clinicians to answer the question whether the brain damage of the newborn is responsible for its clinical condition and he can contribute to determining the prognosis of the infant’s future development. The aim of this study is to present the current knowledge of different types of hypoxic-ischemic brain lesions based on our personal experience and MR images from the archives of the Department of Diagnostic Imaging at the Institute of Mother and Child

  20. Cultural processes in psychotherapy for perinatal loss: Breaking the cultural taboo against perinatal grief.

    Science.gov (United States)

    Markin, Rayna D; Zilcha-Mano, Sigal

    2018-03-01

    This paper argues that there is a cultural taboo against the public recognition and expression of perinatal grief that hinders parents' ability to mourn and their psychological adjustment following a loss. It is proposed that this cultural taboo is recreated within the therapy relationship, as feelings of grief over a perinatal loss are minimized or avoided by the therapist and parent or patient. Importantly, it is suggested that if these cultural dynamics are recognized within the therapy relationship, then psychotherapy has the immense opportunity to break the taboo by validating the parent's loss as real and helping the parent to mourn within an empathic and affect-regulating relationship. Specifically, it is suggested that therapists break the cultural taboo against perinatal grief and help parents to mourn through: acknowledging and not pathologizing perinatal grief reactions, considering intrapsychic and cultural factors that impact a parent's response to loss, exploring cultural reenactments within the therapy relationship, empathizing with the parent's experience of loss and of having to grieve within a society that does not recognize perinatal loss, coregulating the parent's feelings of grief and loss, and helping patients to create personally meaningful mourning rituals. Lastly, the impact of within and between cultural differences and therapist attitudes on the therapy process is discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Inflammation, caffeine and adenosine in neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max

    2014-01-01

    Background: Brain injury during the neonatal period has potentially lifelong consequences for a child. Perinatal infections and inflammation can induce preterm birth and unfavorable cognitive development, Thus inflammation has received enthusiastic interest for potential therapeutic approaches seeking to protect the newborn brain. Experimental evidence demonstrates that inflammation induces brain injury succeeding the initial insult. A key cytokine in brain injury is the tumor necrosis factor...

  2. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    Science.gov (United States)

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (pOxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  3. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as nov...

  4. Various irrigation fluids affect postoperative brain edema and cellular damage during experimental neurosurgery in rats.

    Science.gov (United States)

    Doi, Kazuhisa; Kawano, Takeshi; Morioka, Yujiro; Fujita, Yasutaka; Nishimura, Masuhiro

    2006-12-01

    This study was conducted to investigate how various irrigation fluids used during neurosurgical procedures affect the degree of postoperative brain edema and cellular damage during experimental neurosurgery in rats. The cerebral cortex was exposed and incised crosswise with a surgical knife under irrigation with an artificial CSF, lactated Ringer's solution, or normal saline. Four hours after injury, irrigation was stopped and brain tissue samples were obtained from injured and uninjured sites. Specific gravity, cerebrovascular permeability, and TTC staining of the samples were evaluated. Incision and irrigation of the brain were not performed on the control group. At the injured site, specific gravities of the samples in the normal saline group and the lactated Ringer's solution group were significantly lower than the specific gravity in the artificial CSF group. The EB concentration was significantly higher in the lactated Ringer's solution group and relatively high in the normal saline group as compared with the artificial CSF group. TTC staining did not differ significantly between the artificial CSF group and the control group. It was significantly lower in the lactated Ringer's solution group and the normal saline group than in the control group and the artificial CSF group. As compared with normal saline and lactated Ringer's solution, artificial CSF reduced postoperative brain edema, cerebrovascular permeability, and cellular damage in sites injured by experimental neurosurgery in rats.

  5. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    Full Text Available Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs, two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4, is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4

  6. The implementation of unit-based perinatal mortality audit in perinatal cooperation units in the northern region of the Netherlands

    Directory of Open Access Journals (Sweden)

    van Diem Mariet Th

    2012-07-01

    Full Text Available Abstract Background Perinatal (mortality audit can be considered to be a way to improve the careprocess for all pregnant women and their newborns by creating an opportunity to learn from unwanted events in the care process. In unit-based perinatal audit, the caregivers involved in cases that result in mortality are usually part of the audit group. This makes such an audit a delicate matter. Methods The purpose of this study was to implement unit-based perinatal mortality audit in all 15 perinatal cooperation units in the northern region of the Netherlands between September 2007 and March 2010. These units consist of hospital-based and independent community-based perinatal caregivers. The implementation strategy encompassed an information plan, an organization plan, and a training plan. The main outcomes are the number of participating perinatal cooperation units at the end of the project, the identified substandard factors (SSF, the actions to improve care, and the opinions of the participants. Results The perinatal mortality audit was implemented in all 15 perinatal cooperation units. 677 different caregivers analyzed 112 cases of perinatal mortality and identified 163 substandard factors. In 31% of cases the guidelines were not followed and in 23% care was not according to normal practice. In 28% of cases, the documentation was not in order, while in 13% of cases the communication between caregivers was insufficient. 442 actions to improve care were reported for ‘external cooperation’ (15%, ‘internal cooperation’ (17%, ‘practice organization’ (26%, ‘training and education’ (10%, and ‘medical performance’ (27%. Valued aspects of the audit meetings were: the multidisciplinary character (13%, the collective and non-judgmental search for substandard factors (21%, the perception of safety (13%, the motivation to reflect on one’s own professional performance (5%, and the inherent postgraduate education (10%. Conclusion

  7. Drug-related perinatal damage from the pharmacological point of view

    Directory of Open Access Journals (Sweden)

    Laura Cuzzolin

    2014-06-01

    Full Text Available Medications prescribed to the mother during pregnancy make the foetus vulnerable to adverse effects and the same vulnerability is evident in the phase of adaptation to extrauterine life, particularly delicate in preterm newborns. Among different tissues, the liver and the kidney are particularly sensitive to drugs essentially because they are physiologically immature at birth and have an important role in regulating the effects of medicines inside the body with their primary detoxifying functions. In this minireview hepatic and renal risks related to prenatal and postnatal exposure to paracetamol and NSAIDs have been examined, being these drugs frequently used during pregnancy and in the neonate for their analgesic/antipyretic effects. Moreover, from an analysis of the literature several case reports of neonatal poisoning deriving from transplacentally-acquired overdoses or administration in the first period of life have been reported. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  8. Perinatal grief in Latino parents.

    Science.gov (United States)

    Whitaker, Claudia; Kavanaugh, Karen; Klima, Carrie

    2010-01-01

    Extensive research exists that describes the meaning of perinatal loss to some parents, but the experience of loss from the perspective of Latino parents is not clearly understood. Additionally, current perinatal bereavement practices used often to facilitate memory making for parents (such as viewing or holding the baby, taking photographs, or collecting mementos) are based on research done primarily with non-Latino families. Are these common practices appropriate for this population? Because there is a paucity of research on this topic, this article describes what has been written over the past 30 years on the topic of grief and perinatal loss in Latino culture.

  9. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kleiboer, B.J.; Kogel, A.J. van der

    1991-01-01

    The cellular basis of radiation-induced demyelination and white matter necrosis of the central nervous system (CNS), is poorly understood. Glial cells responsible for myelination in the CNS might be the target cells of this type of damage. Glial cells with stem cell properties derived from the perinatal and adult rat CNS can be cultured in vitro. These cells are able to differentiate into oligodendrocytes or type-2 astrocytes (O-2A) depending on the culture conditions. Growth factors produced by monolayers of type-1 astrocytes inhibit premature differentiation of O-2A progenitor cells and allow colony formation. A method which employs these monolayers of type-1 astrocytes to culture O-2A progenitor cells has been adapted to allow the analysis of colonies of surviving cells after X-irradiation. In vitro survival curves were obtained for glial progenitor cells derived from perinatal and adult optic nerves. The intrinsic radiosensitivity of perinatal and adult O-2A progenitor cells showed a large difference. Perinatal O-2A progenitor cells are quite radiosensitive, in contrast to adult O-2A progenitor cells. For both cell types an inverse relationship was found between the dose and the size of colonies derived from surviving cells. Surviving O-2A progenitor cells maintain their ability to differentiate into oligo-dendrocytes or type-2 astrocytes. This system to assess radiation-induced damage to glial progenitor cells in vitro systems to have a great potential in unraveling the cellular basis of radiation-induced demyelinating syndromes of the CNS. (author). 28 refs.; 4 figs.; 1 tab

  10. Serum S-100β protein as a biomarker for brain damage in patients with encephalopathy

    International Nuclear Information System (INIS)

    Takeda, Munekazu; Yaguchi, Arino; Yamada, Sou; Nagai, Atsushi; Yuzawa, Junji

    2008-01-01

    Cerebrospinal fluid concentrations of S-100β protein, an acidic calcium-binding protein found in astrocytes and Schwann cells, increase after central nervous system damage. Serum S-100β protein, thus, has been expected to be a biochemical marker of brain cell damage. Several reports show a relation between severity of head injury and serum S-100β protein levels, although, there are still not significant advances in the study of S-100β regarding the prediction of the clinical outcome in brain diseases. The objective of the present study was to verify S-100β as a marker for the clinical outcome in patients with encephalopathy. Serum S-100β protein concentrations (pg/ml) were measured daily using enzyme-linked immunosorbent assay (ELISA) until discharge from the intensive care unit (ICU) in 82 patients (54 men, 28 women; age 20-93 years [mean 61.0±19.2]) with moderate or severe encephalopathy. There were 50 survivors and 32 non-survivors. S-100β levels were significantly lower in survivors (240.2 pg/ml) than in non-survivors (1,594.8 pg/ml) from day 1 until ICU discharge. The electroencephalogram (EEG) and computed tomography (CT) abnormalities were correlated with S-100β levels. The optimal cut-off value at 451.2 pg/ml calculated from receiver operating characteristic (ROC) curve analysis showed the sensitivity of 80.2% and specificity of 78.1% for ICU mortality. Our results indicate that serum S-100β protein could be a useful biomarker to assess brain damage and predict prognosis in patients with encephalopathy. (author)

  11. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke

    Directory of Open Access Journals (Sweden)

    Kai-Li Lee

    2013-08-01

    Conclusion: Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.

  12. Perinatal safety: from concept to nursing practice.

    Science.gov (United States)

    Lyndon, Audrey; Kennedy, Holly Powell

    2010-01-01

    Communication and teamwork problems are leading causes of documented preventable adverse outcomes in perinatal care. An essential component of perinatal safety is the organizational culture in which clinicians work. Clinicians' individual and collective authority to question the plan of care and take action to change the direction of a clinical situation in the patient's best interest can be viewed as their "agency for safety." However, collective agency for safety and commitment to support nurses in their role of advocacy is missing in many perinatal care settings. This article draws from Organizational Accident Theory, High Reliability Theory, and Symbolic Interactionism to describe the nurse's role in maintaining safety during labor and birth in acute care settings and suggests actions for supporting the perinatal nurse at individual, group, and systems levels to achieve maximum safety in perinatal care.

  13. Perinatal Safety: From Concept to Nursing Practice

    Science.gov (United States)

    Kennedy, Holly Powell

    2010-01-01

    Communication and teamwork problems are leading causes of documented preventable adverse outcomes in perinatal care. An essential component of perinatal safety is the organizational culture in which clinicians work. Clinicians’ individual and collective authority to question the plan of care and take action to change the direction of a clinical situation in the patient’s best interest can be viewed as their “agency for safety.” However, collective agency for safety and commitment to support nurses in their advocacy role is missing in many perinatal care settings. This paper draws from Organizational Accident Theory, High Reliability Theory, and Symbolic Interactionism to describe the nurse’s role in maintaining safety during labor and birth in acute care settings, and suggests actions for supporting the perinatal nurse at individual, group, and systems levels to achieve maximum safety in perinatal care. PMID:20147827

  14. Eliminating Perinatal HIV Transmission

    Centers for Disease Control (CDC) Podcasts

    2012-11-26

    In this podcast, CDC’s Dr. Steve Nesheim discusses perinatal HIV transmission, including the importance of preventing HIV among women, preconception care, and timely HIV testing of the mother. Dr. Nesheim also introduces the revised curriculum Eliminating Perinatal HIV Transmission intended for faculty of OB/GYN and pediatric residents and nurse midwifery students.  Created: 11/26/2012 by Division of HIV/AIDS Prevention.   Date Released: 11/26/2012.

  15. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  16. Perinatal risk factors for strabismus

    DEFF Research Database (Denmark)

    Torp-Pedersen, Tobias; Boyd, Heather A; Poulsen, Gry

    2010-01-01

    Little is known about the aetiological factors underlying strabismus. We undertook a large cohort study to investigate perinatal risk factors for strabismus, overall and by subtype.......Little is known about the aetiological factors underlying strabismus. We undertook a large cohort study to investigate perinatal risk factors for strabismus, overall and by subtype....

  17. Perinatal risk factors for neonatal encephalopathy: an unmatched case-control study.

    Science.gov (United States)

    Tann, Cally J; Nakakeeto, Margaret; Willey, Barbara A; Sewegaba, Margaret; Webb, Emily L; Oke, Ibby; Mutuuza, Emmanuel Derek; Peebles, Donald; Musoke, Margaret; Harris, Kathryn A; Sebire, Neil J; Klein, Nigel; Kurinczuk, Jennifer J; Elliott, Alison M; Robertson, Nicola J

    2018-05-01

    Neonatal encephalopathy (NE) is the third leading cause of child mortality. Preclinical studies suggest infection and inflammation can sensitise or precondition the newborn brain to injury. This study examined perinatal risks factor for NE in Uganda. Unmatched case-control study. Mulago National Referral Hospital, Kampala, Uganda. 210 term infants with NE and 409 unaffected term infants as controls were recruited over 13 months. Data were collected on preconception, antepartum and intrapartum exposures. Blood culture, species-specific bacterial real-time PCR, C reactive protein and placental histology for chorioamnionitis and funisitis identified maternal and early newborn infection and inflammation. Multivariable logistic regression examined associations with NE. Neonatal bacteraemia (adjusted OR (aOR) 8.67 (95% CI 1.51 to 49.74), n=315) and histological funisitis (aOR 11.80 (95% CI 2.19 to 63.45), n=162) but not chorioamnionitis (aOR 3.20 (95% CI 0.66 to 15.52), n=162) were independent risk factors for NE. Among encephalopathic infants, neonatal case fatality was not significantly higher when exposed to early neonatal bacteraemia (OR 1.65 (95% CI 0.62 to 4.39), n=208). Intrapartum antibiotic use did not improve neonatal survival (p=0.826). After regression analysis, other identified perinatal risk factors (n=619) included hypertension in pregnancy (aOR 3.77), male infant (aOR 2.51), non-cephalic presentation (aOR 5.74), lack of fetal monitoring (aOR 2.75), augmentation (aOR 2.23), obstructed labour (aOR 3.8) and an acute intrapartum event (aOR 8.74). Perinatal infection and inflammation are independent risk factors for NE in this low-resource setting, supporting a role in the aetiological pathway of term brain injury. Intrapartum antibiotic administration did not mitigate against adverse outcomes. The importance of intrapartum risk factors in this sub-Saharan African setting is highlighted. © Article author(s) (or their employer(s) unless otherwise stated in the

  18. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation.

    Directory of Open Access Journals (Sweden)

    Clara Luh

    Full Text Available It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo, isoflurane (iso or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter. Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score, cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS and microglia (via immunohistochemical staining for Iba1 were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm(3; iso = 20.5±3.7 mm(3; comb = 19.5±4.6 mm(3. Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm(3; iso = 31.5±4.0 mm(3; comb = 44.2±6.2 mm(3. Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.. The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm(3; iso = 150±36/mm(3; comb = 113±40/mm(3. A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.

  19. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  20. Perinatal death audits in a peri-urban hospital in Kampala, Uganda ...

    African Journals Online (AJOL)

    Background: The perinatal mortality of 70 deaths per 1,000 total births in Uganda is unacceptably high. Perinatal death audits are important for improvement of perinatal care and reduction of perinatal morality. We integrated perinatal death audits in routine care, and describe its effect on perinatal mortality rate at Nsambya ...

  1. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain.

    Science.gov (United States)

    Sahin, Duygu; Ozgur, Elcin; Guler, Goknur; Tomruk, Arın; Unlu, Ilhan; Sepici-Dinçel, Aylin; Seyhan, Nesrin

    2016-09-01

    We aimed to evaluate the effect of 2100MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone on the brain of rats during 10 and 40 days of exposure. The female rats were randomly divided into four groups. Group I; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 2 weeks, group II; control 10 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 2 weeks, group III; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 8 weeks and group IV; control 40 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 8 weeks. After the genomic DNA content of brain was extracted, oxidative DNA damage (8-hydroxy-2'deoxyguanosine, pg/mL) and malondialdehyde (MDA, nmoL/g tissue) levels were determined. Our main finding was the increased oxidative DNA damage to brain after 10 days of exposure with the decreased oxidative DNA damage following 40 days of exposure compared to their control groups. Besides decreased lipid peroxidation end product, MDA, was observed after 40 days of exposure. The measured decreased quantities of damage during the 40 days of exposure could be the means of adapted and increased DNA repair mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure.

    Science.gov (United States)

    Yu, Ning; Tong, Yun; Zhang, Danni; Zhao, Shanshan; Fan, Xinli; Wu, Lihui; Ji, Hua

    2018-05-19

    Glyphosate is the active ingredient in numerous herbicide formulations. The roles of glyphosate in embryo-toxicity and neurotoxicity have been reported in human and animal models. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. However, the role of glyphosate in neuronal development is still not fully understood. Our previous study found that perinatal glyphosate exposure resulted in differential microRNA expression in the prefrontal cortex of mouse offspring. However, the mechanism of glyphosate-induced neurotoxicity in the developing brain is still not fully understood. Considering the pivotal role of Circular RNAs (circRNAs) in the regulation of gene expression, a circRNA microarray method was used in this study to investigate circRNA expression changes in the hippocampus of mice with perinatal glyphosate exposure. The circRNA microarrays revealed that 663 circRNAs were significantly altered in the perinatal glyphosate exposure group compared with the control group. Among them, 330 were significantly upregulated, and the other 333 were downregulated. Furthermore, the relative expression levels of mmu-circRNA-014015, mmu-circRNA-28128 and mmu-circRNA-29837 were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that stress-associated steroid metabolism pathways, such as aldosterone synthesis and secretion pathways, may be involved in the neurotoxicity of glyphosate. These results showed that circRNAs are aberrantly expressed in the hippocampus of mice with perinatal glyphosate exposure and play potential roles in glyphosate-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Prognostic value of correlation analysis of perinatal anamnesis

    Directory of Open Access Journals (Sweden)

    V. V. Sofronov

    2017-01-01

    Full Text Available Objective research: is to establish the prognostic value of the analysis of correlative relationships of qualitative indicators of the perinatal history. Correlative groups of interactions of the investigated qualitative indicators in the antenatal, intranatal and postnatal periods are constructed. It was shown that in antenatal history for newborns 22–37 weeks. gestation (group 1 the most important parameters are the «gestational age», «chronic respiratory diseases in the mother,» «premature birth in an anamnesis,» and «exacerbation of chronic infections during pregnancy»; for newborns 38–41 weeks. gestation (2nd group – «cervical erosion», «ovarian cyst», «fibromyoma» and «colpitis ». In the intranatal history for children of the 1st group, the most important parameters are «anhydrous period» and «prolonged labor»; for children of the second group – only «prolonged labor». In the postnatal history for the first group, the two most important parameters are the «gestational age» and the «zonal elevation of the brain echogenicity,» and for the 2 nd group only the parameter «degree of asphyxia» is as important. The obtained results confirm the main known interrelationships of parameters of the perinatal history. At the same time, nontrivial connections between the parameters of the perinatal history: «allergic diseases in the mother» – «threatened miscarriage » – «ovarian cyst»; «chronic respiratory diseases in the mother» – «allergic diseases of the mother» – «diseases of the digestive system in the father.»

  4. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    Science.gov (United States)

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  5. Role of sound stimulation in reprogramming brain connectivity.

    Science.gov (United States)

    Chaudhury, Sraboni; Nag, Tapas C; Jain, Suman; Wadhwa, Shashi

    2013-09-01

    Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.

  6. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  7. Perinatal exposure to methadone affects central cholinergic activity in the weanling rat.

    Science.gov (United States)

    Robinson, S E; Mo, Q; Maher, J R; Wallace, M J; Kunko, P M

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. Perinatal methadone exposure disrupted cholinergic activity on postnatal day 21 as measured by the turnover rate of acetylcholine (TRACh) in both female and male rats, although there were some sexually-dimorphic responses. The most profoundly affected brain region was the striatum, where prenatal exposure to methadone increased ACh turnover, whether or not the rats continued to be exposed to methadone postnatally. It appears unlikely that neonatal withdrawal contributes to brain regional changes in ACh turnover, as continued postnatal exposure to methadone did not prevent the prenatal methadone induced changes.

  8. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  9. Improving perinatal outcome: towards individualized care

    NARCIS (Netherlands)

    Kazemier, B.M.

    2015-01-01

    Unfortunately not all pregnancies and deliveries take place without complications. Complications during pregnancy or delivery can lead to maternal morbidity and poor perinatal outcomes such as perinatal mortality or (severe) neonatal morbidity. First assessment in antenatal care is to distinguish

  10. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  11. Can neuropsychological testing produce unequivocal evidence of brain damage? II. Testing for right vs. left differences.

    Science.gov (United States)

    Reitan, Ralph M; Wolfson, Deborah

    2008-01-01

    Sensation and perception, as well as motor functions, have played an important role in the history of psychology. Although tests of these abilities are sometimes included in neuropsychological assessments, comparisons of intraindividual performances on the two sides of the body (as a basis for drawing conclusions and comparisons about the functional status of the two cerebral hemispheres) are in many instances neglected or considered only casually. This study, utilizing several motor and sensory-perceptual tests, compared intraindividual differences on the two sides of the body in a group of controls and a group of persons with brain damage. The results indicated that the sensory-perceptual tests were particularly effective in differentiating the groups. More than 60% of the group with brain damage had greater differences on the two sides of the body than did any of the controls. These findings suggest that a substantial proportion of persons with cerebral disease or damage may be subject to unequivocal identification using sensory-perceptual tests that take only about 20 minutes to administer. These tests may serve a valuable role as an adjunct to comprehensive neuropsychological evaluation and should be further evaluated in this respect.

  12. Collaborative survey of perinatal loss in planned and unplanned home births. Northern Region Perinatal Mortality Survey Coordinating Group.

    Science.gov (United States)

    1996-11-23

    To document the outcome of planned and unplanned births outside hospital. Confidential review of every pregnancy ending in stillbirth or neonatal death in which plans had been made for home delivery, irrespective of where delivery eventually occurred. The review was part of a sustained collaborative survey of all perinatal deaths. Northern Regional Health Authority area. All 558,691 registered births to women normally resident in the former Northern Regional Health Authority area during 1981-94. Perinatal death. The estimated perinatal mortality during 1981-94 among women booked for a home birth was 14 deaths in 2888 births. This was less than half that among all women in the region. Only three of the 14 women delivered outside hospital. Independent review suggested that two of the 14 deaths might have been averted by different management. Both births occurred in hospital, and in only one was management before admission of the mother judged inappropriate. Perinatal loss to the 64 women who booked for hospital delivery but delivered outside and to the 67 women who delivered outside hospital without ever making arrangements to receive professional care during labour accounted for the high perinatal mortality (134 deaths in 3466 deliveries) among all births outside hospital. The perinatal hazard associated with planned home birth in the few women who exercised this option (unplanned delivery outside hospital.

  13. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  14. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  15. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  16. Toxicological aspects of interesterified fat: Brain damages in rats.

    Science.gov (United States)

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Brain uptake of Se 75-selenomethionine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O

    1969-01-01

    Previous experimental studies have indicated that perfusing the vessels of the brain with mercuric ions may not only cause damage to the blood-brain barrier in allowing the extravasation of acid dyes, but also have the ostensibly contrary effect of diminishing the uptake of radioactive tracers for important nutrients. These observations were based on the direct comparison of the two hemispheres of the same animal, one perfused with mercuric ions and the other serving as a control. The present paper reports the results of a corresponding investigation with Se75-L-selenomethionine. This methionine analogue seems to be transported and metabolized in much the same way as natural methionine and is conveniently assayed due to the labelling into a ..gamma..-emitting isotope. In addition, as in this study, a check as to whether or not the mercuric ions caused asymmetry of the blood flow was desired, and the similar ..gamma..-emitting I 131-iodoantipyrine was used for this purpose. The long half-life of Se75 made it easy to distinguish in the same specimens its activity from that of the blood flow indicator.

  18. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    Science.gov (United States)

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Brain stimulation and constraint for perinatal stroke hemiparesis: The PLASTIC CHAMPS Trial.

    Science.gov (United States)

    Kirton, Adam; Andersen, John; Herrero, Mia; Nettel-Aguirre, Alberto; Carsolio, Lisa; Damji, Omar; Keess, Jamie; Mineyko, Aleksandra; Hodge, Jacquie; Hill, Michael D

    2016-05-03

    To determine whether the addition of repetitive transcranial magnetic stimulation (rTMS) and/or constraint-induced movement therapy (CIMT) to intensive therapy increases motor function in children with perinatal stroke and hemiparesis. A factorial-design, blinded, randomized controlled trial (clinicaltrials.gov/NCT01189058) assessed rTMS and CIMT effects in hemiparetic children (aged 6-19 years) with MRI-confirmed perinatal stroke. All completed a 2-week, goal-directed, peer-supported motor learning camp randomized to daily rTMS, CIMT, both, or neither. Primary outcomes were the Assisting Hand Assessment and the Canadian Occupational Performance Measure at baseline, and 1 week, 2 and 6 months postintervention. Outcome assessors were blinded to treatment. Interim safety analyses occurred after 12 and 24 participants. Intention-to-treat analysis examined treatment effects over time (linear mixed effects model). All 45 participants completed the trial. Addition of rTMS, CIMT, or both doubled the chances of clinically significant improvement. Assisting Hand Assessment gains at 6 months were additive and largest with rTMS + CIMT (β coefficient = 5.54 [2.57-8.51], p = 0.0004). The camp alone produced large improvements in Canadian Occupational Performance Measure scores, maximal at 6 months (Cohen d = 1.6, p = 0.002). Quality-of-life scores improved. Interventions were well tolerated and safe with no decrease in function of either hand. Hemiparetic children participating in intensive, psychosocial rehabilitation programs can achieve sustained functional gains. Addition of CIMT and rTMS increases the chances of improvement. This study provides Class II evidence that combined rTMS and CIMT enhance therapy-induced functional motor gains in children with stroke-induced hemiparetic cerebral palsy. © 2016 American Academy of Neurology.

  20. Perinatal mortality and socio-spatial inequalities

    Directory of Open Access Journals (Sweden)

    Eunice Francisca Martins

    2013-09-01

    Full Text Available OBJECTIVE: to analyze the social inequalities in the distribution of perinatal mortality in Belo Horizonte. MATERIAL AND METHODS: the perinatal deaths of residents in Belo Horizonte in the period 2003 to 2007 were studied on the basis of the Information Systems on Mortality and Newborns. The space analysis and the Health Vulnerability Index were used to identify existing inequalities in the sanitary districts regarding coverage and risk, determined by the Odds Ratio and a value p<0.05. The multivariate analysis was used to describe a model for perinatal mortality. RESULTS: there was a proved variation in the numbers of perinatal mortality per one thousand total births in the sanitary districts (12.5 to 19.4, coverage areas (5.3 to 49.4 and areas of risk (13.2 to 20.7. The mortality rate diminished as the maternal schooling increased. The death rates deriving from asphyxia/hypoxia and non-specified fetal death grew with the increase of risk in the area. CONCLUSION: it was verified that the perinatal deaths are distributed in a differentiated form in relation to the space and the social vulnerabilities. The confrontation of this complex problem requires the establishment of intersecting partnerships.

  1. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  2. Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia: a preliminary report

    International Nuclear Information System (INIS)

    Chateil, J.F.; Quesson, B.; Thiaudiere, E.; Delalande, C.; Canioni, P.; Brun, M.; Diard, F.; Sarlangue, J.; Billeaud, C.

    1999-01-01

    Objectives. Perinatal hypoxic ischaemic injury is a significant cause of neurodevelopmental impairment. The aim of this study was to evaluate localised proton magnetic resonance spectroscopy ( 1 H-MRS) after birth asphyxia. Materials and methods. Thirty newborn infants suspected of having perinatal asphyxia (Apgar score 1 H-MRS was recorded in a single voxel, localised in white matter, using a STEAM sequence. Results. Image quality was good in 25 of 30 babies. 1 H-MRS was performed in 19 of 30 subjects, with adequate quality in 16. Choline, creatine/phosphocreatine and N-acetylaspartate peaks and peak-area ratios were analysed. Lactate was detected in four infants. The N-acetylaspartate/choline ratio was lower in infants with an impaired neurological outcome, but the difference was not statistically significant. Conclusions. This study suggests that 1 H-MRS may be useful for assessing cerebral metabolism in the neonate. A raised lactate level and decreased N-acetylaspartate/choline ratio may be predictive of a poor outcome. However, in our experience this method is limited by the difficulty in performing the examination during the first hours after birth in critically ill babies, the problems related to use of a monovoxel sequence, the dispersion of the ratios and the lack of determination of the absolute concentration of the metabolites. (orig.)

  3. EFFECTS OF CANNABIDIOL PLUS HYPOTHERMIA ON SHORT-TERM NEWBORN PIG BRAIN DAMAGE AFTER ACUTE HYPOXIA-ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Hector Lafuente

    2016-07-01

    Full Text Available Background: Hypothermia is standard treatment for neonatal encephalopathy, but near 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms to hypothermia and would improve neuroprotection. Cannabidiol could be a good candidate.Objective: To test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets.Methods: Hypoxic-ischemic animals were randomized to receive 30 min after the insult: 1 normothermia- and vehicle-treated group; 2 normothermia- and cannabidiol-treated group; 3 hypothermia- and vehicle-treated group; and 4 hypothermia- and cannabidiol-treated group. Six hours after treatment, brains were processed to qualify the number of neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate and excitotoxicity (glutamate/Nacetyl-aspartate. Western blot studies were performed to quantify protein nitrosylation (oxidative stress and expression of caspase-3 (apoptosis and TNFα (inflammation.Results: Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on histological damage, was greater than either hypothermia or cannabidiol alone.Conclusion: Cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage.

  4. Perinatal Mortality Among Twins In Lagos University Teaching ...

    African Journals Online (AJOL)

    Background: Perinatal mortality rate is reported to be higher in twins than in singletons. More than two decades ago, Abudu and Agarin reported a twinning rate of 21.1/1000 maternities and perinatal mortality rate of 142.6/1000 among twins in Lagos. Objective: To determine the current perinatal mortality rate and risk factors ...

  5. Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment.

    Science.gov (United States)

    Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen

    2013-10-17

    Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008). Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24h and weighed every 24h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA "comet" tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length - 119 vs. 153; tail moment - 101 vs. 136; olive moment - 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=-0.75, p<0.02). Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  7. Perinatal Exposure to Glufosinate Ammonium Herbicide Impairs Neurogenesis and Neuroblast Migration through Cytoskeleton Destabilization.

    Science.gov (United States)

    Herzine, Ameziane; Laugeray, Anthony; Feat, Justyne; Menuet, Arnaud; Quesniaux, Valérie; Richard, Olivier; Pichon, Jacques; Montécot-Dubourg, Céline; Perche, Olivier; Mortaud, Stéphane

    2016-01-01

    Neurogenesis, a process of generating functional neurons from neural precursors, occurs throughout life in restricted brain regions such as the subventricular zone (SVZ). During this process, newly generated neurons migrate along the rostral migratory stream to the olfactory bulb to replace granule cells and periglomerular neurons. This neuronal migration is pivotal not only for neuronal plasticity but also for adapted olfactory based behaviors. Perturbation of this highly controlled system by exogenous chemicals has been associated with neurodevelopmental disorders. We reported recently that perinatal exposure to low dose herbicide glufosinate ammonium (GLA), leads to long lasting behavioral defects reminiscent of Autism Spectrum Disorder-like phenotype in the offspring (Laugeray et al., 2014). Herein, we demonstrate that perinatal exposure to low dose GLA induces alterations in neuroblast proliferation within the SVZ and abnormal migration from the SVZ to the olfactory bulbs. These disturbances are not only concomitant to changes in cell morphology, proliferation and apoptosis, but are also associated with transcriptomic changes. Therefore, we demonstrate for the first time that perinatal exposure to low dose GLA alters SVZ neurogenesis. Jointly with our previous work, the present results provide new evidence on the link between molecular and cellular consequences of early life exposure to the herbicide GLA and the onset of ASD-like phenotype later in life.

  8. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  9. Value of the perinatal autopsy : Critique

    NARCIS (Netherlands)

    Gordijn, SJ; Erwich, JJHM; Khong, TY

    2002-01-01

    In consenting to a perinatal autopsy, the primary motive of parents may be to find the exact cause of death. A critical review on the value of perinatal autopsies was performed to see whether parents could be counseled regarding their main motive. A literature search was performed in MEDLINE,

  10. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  11. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils.

    Science.gov (United States)

    Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong

    2004-09-15

    Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.

  12. [Tobacco control policies and perinatal health].

    Science.gov (United States)

    Peelen, M J; Sheikh, A; Kok, M; Hajenius, P; Zimmermann, L J; Kramer, B W; Hukkelhoven, C W; Reiss, I K; Mol, B W; Been, J V

    2017-01-01

    Study the association between the introduction of tobacco control policies in the Netherlands and changes in perinatal outcomes. National quasi-experimental study. We used Netherlands Perinatal Registry data (now called Perined) for the period 2000-2011. We studied whether the introduction of smoke-free legislation in workplaces plus a tobacco tax increase and mass media campaign in January 2004, and extension of the smoke-free law to the hospitality industry accompanied by another tax increase and media campaign in July 2008, was associated with changes in perinatal outcomes. We studied all singleton births (gestational age: 24+0 to 42+6 weeks). Our primary outcome measures were: perinatal mortality, preterm birth and being small-for-gestational-age (SGA). Interrupted time series logistic regression analyses were performed to investigate changes in these outcomes occurred after the introduction of the aforementioned tobacco control policies (ClinicalTrials.gov: NCT02189265). Among 2,069,695 singleton births, 13,027 (0.6%) perinatal deaths, 116,043 (5.6%) preterm live-births and 187,966 (9.1%) SGA live-births were observed. The policies introduced in January 2004 were not associated with significant changes in any of the primary outcome measures. A -4.4% (95% CI: -6.4 to -2.4; p hospitality industry, a further tax increase and another media campaign. This translates to an estimated over 500 cases of SGA being averted per year. A reduction in SGA births, but not preterm birth or perinatal mortality, was observed in the Netherlands after extension of the smoke-free workplace law to include bars and restaurants, in conjunction with a tax increase and media campaign in 2008.

  13. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.

    Science.gov (United States)

    Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2017-11-14

    Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.

  14. Piano training in youths with hand motor impairments after damage to the developing brain

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  15. Experiences with perinatal loss from the health professionals’ perspective La vivencia de la pérdida perinatal desde la perspectiva de los profesionales de la salud A experiência da perda perinatal a partir da perspectiva dos profissionais de saúde

    Directory of Open Access Journals (Sweden)

    Sonia María Pastor Montero

    2011-12-01

    Full Text Available The purpose of this paper is to know the experience of health professionals in situations of perinatal death and grief and to describe their action strategies in the management of perinatal loss. A qualitative study with a phenomenological approach was carried out through interviews conducted with 19 professionals. Three thematic categories were identified: Healthcare practice, feelings aroused by perinatal loss and meaning and beliefs about perinatal loss and grief. The results revealed that the lack of knowledge and skills to deal with perinatal loss are identified as the main reason behind unsuitable attitudes that are usually adopted in these situations. This generates anxiety, helplessness and frustration that compromise professional competency. The conclusion reached is that the promotion of training programs to acquire knowledge, skills and abilities in management of perinatal bereavement and the development of a clinical practice guideline for perinatal loss are necessary.El objetivo de este artículo es conocer la experiencia vivida por los profesionales de la salud en situaciones de muerte y duelo perinatal y describir las estrategias de actuación ante la pérdida perinatal. Se trata de un estudio cualitativo con un enfoque fenomenológico realizado a 19 profesionales a través de entrevistas. Se identificaron 3 categorías temáticas: la práctica asistencial, los sentimientos que despierta la pérdida perinatal y significado y creencias sobre la pérdida y el duelo perinatal. Los resultados ponen de manifiesto que la falta de conocimientos y de recursos para enfrentar la pérdida perinatal hace que se adopten actitudes poco adecuadas en estas situaciones, generando una sensación de ansiedad, impotencia y frustración que compromete la competencia profesional. Se concluye que es fundamental promover programas de formación para adquirir conocimientos y destrezas sobre el duelo perinatal y elaborar una guía de práctica cl

  16. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  17. Perinatal testosterone contributes to mid-to-post pubertal sex differences in risk for binge eating in male and female rats.

    Science.gov (United States)

    Culbert, Kristen M; Sinclair, Elaine B; Hildebrandt, Britny A; Klump, Kelly L; Sisk, Cheryl L

    2018-02-01

    Exposure to testosterone early in life may contribute to sex differences and pubertal changes in risk for eating pathology (i.e., females > males, after pubertal onset). Specifically, perinatal testosterone permanently alters brain structure/function and drives the masculinization of several sex-differentiated behaviors. However, the effects of perinatal testosterone are often not evident until puberty when increases in gonadal hormones activate the expression of sex typical behavior, including eating behaviors (e.g., chow intake; saccharin preference) in rodents. Despite perinatal testosterone's masculinizing effects on general feeding behavior, it remains unknown if perinatal testosterone exposure contributes to sex differences in pathological eating. The current study addressed this gap by examining whether perinatal testosterone exposure decreases risk for binge eating proneness after pubertal onset in male and female rats. Sprague-Dawley rats (n = 40 oil-treated control females; n = 39 testosterone-treated females; n = 40 oil-treated control males) were followed longitudinally across pre-to-early puberty, mid-to-late puberty, and adulthood. The binge eating prone (BEP)/binge eating resistant (BER) rodent model was used to identify individual differences in binge eating proneness across the dimensional spectrum. As expected, testosterone-treated females and control males showed masculinized (i.e., lower) risk for binge eating as compared to control females, but only after midpuberty. These animal data are significant in suggesting that perinatal testosterone exposure may protect against binge eating and underlie sex differences in binge eating prevalence during and after puberty. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin.

    Science.gov (United States)

    Huong, Nguyen Thi Thu; Murakami, Yukihisa; Tohda, Michihisa; Watanabe, Hiroshi; Matsumoto, Kinzo

    2005-08-01

    Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.

  19. Genotoxicity of Styrene–Acrylonitrile Trimer in Brain, Liver, and Blood Cells of Weanling F344 Rats

    Science.gov (United States)

    Hobbs, Cheryl A.; Chhabra, Rajendra S.; Recio, Leslie; Streicker, Michael; Witt, Kristine L.

    2012-01-01

    Styrene–acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. PMID:22351108

  20. [Perinatal sources of stem cells].

    Science.gov (United States)

    Piskorska-Jasiulewicz, Magdalena Maria; Witkowska-Zimny, Małgorzata

    2015-03-08

    Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton's jelly.

  1. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    Science.gov (United States)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While

  2. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    OpenAIRE

    Papagno, Costanza; Martello, Giorgia; Mattavelli, Giulia

    2013-01-01

    Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract) noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left ...

  3. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  4. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations.

    Science.gov (United States)

    Panksepp, Jaak; Fuchs, Thomas; Garcia, Victor Abella; Lesiak, Adam

    2007-12-17

    Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS). Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects) can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  5. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  6. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  7. Socioeconomic differences in perinatal health and disease

    DEFF Research Database (Denmark)

    Mortensen, Laust Hvas; Andersen, Anne-Marie Nybo; Helweg-Larsen, Karin

    2011-01-01

    been used to examine the influence of socioeconomic factors on perinatal health. Conclusion: Danish register data is an invaluable source of information on socioeconomic differences in perinatal health. Danish registers continue to provide excellent opportunities for research and surveillance...

  8. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    Directory of Open Access Journals (Sweden)

    Igor Ferraz da Silva

    2018-01-01

    Full Text Available The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs. OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.

  9. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Perinatal market penetration rate. A tool to evaluate regional perinatal programs.

    Science.gov (United States)

    Powers, W F; McGill, L

    1987-01-01

    Very small babies born in tertiary centers fare better than outborn babies referred for tertiary care after birth. Viewing the 1001-1500 gm regional cohort of fetuses as a potential "market" for center delivery, and measuring a center's penetration into this market, quantitates how well a center draws to itself these small, high-risk fetuses for delivery. An Illinois center's annual penetration rate into its regional market for the years 1973-1983 is presented and significant increases are found. The penetration rates of nine Illinois perinatal centers are calculated and wide discrepancies are found. Defining a high-risk regional cohort as a market stresses a perinatal center's obligation to its region. The penetration rate into a defined market measures how well a center fulfills this obligation.

  11. Perinatal sources of stem cells

    Directory of Open Access Journals (Sweden)

    Magdalena Maria Piskorska-Jasiulewicz

    2015-03-01

    Full Text Available Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton’s jelly.

  12. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  13. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism

    Science.gov (United States)

    Tyler, Christina R.; Solomon, Benjamin R.; Ulibarri, Adam L.; Allan, Andrea M.

    2014-01-01

    Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic–pituitary–adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism. PMID:24952232

  14. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  15. Perinatal Mortality Trends in Ethiopia | Berhan | Ethiopian Journal of ...

    African Journals Online (AJOL)

    BACKGROUND: Although the magnitude of perinatal mortality in Ethiopia was among the highest in Sub Saharan Africa, there was no systematic review done to assess the trend and causes of perinatal death. The objective of this review was to assess the trend of perinatal mortality rate (PMR) and the causes attributed to ...

  16. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.

    Science.gov (United States)

    Buchholz, Daniel R

    2015-12-15

    Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases of adulthood, including diabetes and cardiovascular disease. Endocrine and molecular mechanisms that regulate perinatal development and that underlie the connections between early life events and adult diseases are not well elucidated. Such mechanisms are difficult to study in uterus-enclosed mammalian embryos because of confounding maternal effects. To elucidate mechanisms of developmental endocrinology in the perinatal period, Xenopus laevis the African clawed frog is a valuable vertebrate model. Frogs and humans have identical hormones which peak at birth and metamorphosis, have conserved hormone receptors and mechanisms of gene regulation, and have comparable roles for hormones in many target organs. Study of molecular and endocrine mechanisms of hormone-dependent development in frogs is advantageous because an extended free-living larval period followed by metamorphosis (1) is independent of maternal endocrine influence, (2) exhibits dramatic yet conserved developmental effects induced by thyroid and glucocorticoid hormones, and (3) begins at a developmental stage with naturally undetectable hormone levels, thereby facilitating endocrine manipulation and interpretation of results. This review highlights the utility of frog metamorphosis to elucidate molecular and endocrine actions, hormone interactions, and endocrine disruption, especially with respect to thyroid hormone. Knowledge from the frog model is expected to provide fundamental insights to aid medical understanding of endocrine disease, stress, and endocrine disruption affecting the perinatal period in humans

  17. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  18. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  19. A cross-talk between brain-damage patients and infants on action and language.

    Science.gov (United States)

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-06-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to bear insights from the study of brain-damaged patients exhibiting language disorders and from the study of the mechanisms for language acquisition in infants. Cognitive neuropsychology studies have assessed how damage to representations supporting action production impacts patients' ability to process action-related words. While correlations between verbal and nonverbal (motor) impairments are very common in patients, damage to the representations for action production can leave the ability to understand action-words unaffected; likewise, actions can still be produced successfully in cases of impaired action-word understanding. Studies with infants have evaluated the relevance of sensorimotor information when infants learn to map a novel word onto an action that they are performing or perceiving. These results demonstrate that sensorimotor information is insufficient to fully account for the complexity of verb learning: in this process, infants seem to privilege abstract constructs such as goal, intentionality and causality, as well as syntactic constraints, over the perceptual and motor dimensions of an action. Altogether, the empirical data suggest that, while not crucial for verb learning and understanding, sensorimotor processes can contribute to solving the problem of symbol grounding and/or serve as a primary mechanism in social cognition, to learn about others' goals and intentions. By assessing the relevance of sensorimotor representations in the way action-related words are acquired and represented, we aim to provide a useful set of criteria for testing specific predictions made by different theories of concepts

  20. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  1. Trends in perinatal health after assisted reproduction

    DEFF Research Database (Denmark)

    Henningsen, Anna-Karina Aaris; Gissler, M.; Skjaerven, R.

    2015-01-01

    STUDY QUESTIONS Has the perinatal outcome of children conceived after assisted reproductive technology (ART) improved over time? SUMMARY ANSWER The perinatal outcomes in children born after ART have improved over the last 20 years, mainly due to the reduction of multiple births. WHAT IS KNOWN...... with ART outcome and health data from Denmark, Finland, Norway and Sweden. PARTICIPANTS, SETTING AND METHODS We analysed the perinatal outcome of 62 379 ART singletons and 29 758 ART twins, born from 1988 to 2007 in four Nordic countries. The ART singletons were compared with a control group of 362 215...

  2. Perinatal tumours: the contribution of radiology to management

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, Veronica; Ryan, Stephanie; Twomey, Eilish [Children' s University Hospital, Radiology Department, Dublin (Ireland)

    2008-06-15

    A formal classification does not exist and they are probably best classified by their location. Overall the most common neoplasms are - Extracranial teratoma - Neuroblastoma - Soft-tissue tumours - Brain tumours - Leukaemia - Renal tumours - Liver tumours - Retinoblastoma. The prognosis is generally poor, although there are some exceptions such as congenital neuroblastoma and hepatoblastoma. These tumours have a tendency to regress and have a benign clinical course despite a clear malignant histological picture. Other tumours, though histologically benign, may be fatal because of their size and location. Large benign masses may cause airway or cardiovascular compromise and death. Others may cause significant mass effect preventing normal organ development. As normal embryonic cells have a high mitotic rate it is not surprising that perinatal tumours may have a rapid growth rate and become enormous in size. (orig.)

  3. Perinatal exposure to glufosinate ammonium herbicide impairs neurogenesis and neuroblast migration through cytoskeleton destabilization

    Directory of Open Access Journals (Sweden)

    Ameziane Herzine

    2016-08-01

    Full Text Available Neurogenesis, a process of generating functional neurons from neural precursors, occurs throughout life in restricted brain regions such as the subventricular zone (SVZ. During this process, newly generated neurons migrate along the rostral migratory stream to the olfactory bulb to replace granule cells and periglomerular neurons. This neuronal migration is pivotal not only for neuronal plasticity but also for adapted olfactory based behaviors. Perturbation of this highly controlled system by exogenous chemicals has been associated with neurodevelopmental disorders. We reported recently that perinatal exposure to low dose herbicide glufosinate ammonium (GLA, leads to long lasting behavioral defects reminiscent of Autism Spectrum Disorder-like phenotype in the offspring (Laugeray, Herzine et al. 2014 . Herein, we demonstrate that perinatal exposure to low dose GLA induces alterations in neuroblast proliferation within the SVZ and abnormal migration from the SVZ to the olfactory bulbs. These disturbances are not only concomitant to changes in cell morphology, proliferation and apoptosis, but are also associated with transcriptomic changes. Therefore, we demonstrate for the first time that perinatal exposure to low dose GLA alters SVZ neurogenesis. Jointly with our previous work, the present results provide new evidence on the link between molecular and cellular consequences of early life exposure to the herbicide GLA and the onset of ASD-like phenotype later in life.

  4. Altered structural brain changes and neurocognitive performance in pediatric HIV

    Directory of Open Access Journals (Sweden)

    Santosh K. Yadav

    2017-01-01

    Full Text Available Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  5. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  6. Potentially avoidable perinatal deaths in Denmark and Sweden 1991

    DEFF Research Database (Denmark)

    Langhoff-Roos, J; Borch-Christensen, H; Larsen, S

    1996-01-01

    to some extent could reflect differences in the quality of care, indicated by the numbers of perinatal deaths in categories of potentially avoidable deaths. MATERIAL AND METHODS: Medical records of 97% of all perinatal deaths in 1991 in the two countries were analyzed. A new classification focusing......BACKGROUND: Since 1950 the perinatal mortality has been significantly higher in Denmark than in Sweden. In 1991 the rate in Denmark was 8.0/1000 deliveries compared to 6.5/1000 in Sweden. An international audit was designed to investigate whether the perinatal death rates in the two countries...

  7. Potentially avoidable perinatal deaths in Denmark and Sweden 1991

    DEFF Research Database (Denmark)

    Langhoff-Roos, J; Borch-Christensen, H; Larsen, S

    1996-01-01

    BACKGROUND: Since 1950 the perinatal mortality has been significantly higher in Denmark than in Sweden. In 1991 the rate in Denmark was 8.0/1000 deliveries compared to 6.5/1000 in Sweden. An international audit was designed to investigate whether the perinatal death rates in the two countries...... to some extent could reflect differences in the quality of care, indicated by the numbers of perinatal deaths in categories of potentially avoidable deaths. MATERIAL AND METHODS: Medical records of 97% of all perinatal deaths in 1991 in the two countries were analyzed. A new classification focusing...

  8. The analysis of perinatal morbidity and mortality in conditions of perinatal center and the ways of its decrease

    Directory of Open Access Journals (Sweden)

    Нана Мерабівна Пасієшвілі

    2016-01-01

    Full Text Available Aim of research. The analysis of perinatal morbidity and mortality in the condition of one perinatal center of Ukraine and optimization of the possible ways of its decrease.Methods of research. There was analyze the work of Kharkiv regional center in 2011–2015 years taking into account the rates of perinatal morbidity and mortality and factors that have influence on it. There were studied the next parameters: the number of newborns, its apportionment on the weight category, survival, general morbidity, mortality structure of the full-term and premature children. Statistical processing of the received results was carried out using Statistica 6.0 program.Results of research. The frequency of normal delivery in perinatal center is in average 58,9 %. The rates of neonatal mortality decreased– 4,11 ‰ (in 2011 year – 8,23 ‰ and early neonatal one – 3,34 ‰ (in 2011 year – 6,44 ‰. The survival of newborns with extremely low body weight (500- 999 g in first 0-168 hours was 62,50 %; with body weight 1000 – 1499 g – 82,35 %; with body weight at delivery 1500-2499 g was 98,17 %, survival of newborns with body weight > 2500 g in the first 0-6 days was 99,75 % .The morbidity structure of full-term children still almost unchangeable during the last 5 years: asphyxia, congenital defects of development, arrest of foetus growth, cerebral ischemia, intrauterine infection, birth trauma. The morbidity structure of premature ones: respiratory disorder syndrome, intrauterine infection; asphyxia, congenital defects of development, arrest of foetus growth.Among the mortality causes the main ones were congenial defects of development (prevailed in full-term children and intrauterine infection (on the first place in premature children. The perinatal mortality rate in 2015 year was 18,22 %о, in 2011year – 26,65 %о . The maternal foetus infection is the very frequent cause of stillbirth and pre-term birth and as the result the birth of small

  9. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  10. Accumulation of neuronal DNA damage as an early covariate of determinant of death after whole-brain irradiaton

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Weinstein, R.E.

    1979-01-01

    The state of the DNA from cerebellar neurons of male Sprague-Dawley rats after whole-brain irradiation with 2000 rad of x rays was determined at various times by obtaining DNA sedimentation profiles using alkaline sucrose gradients in slow reorienting zonal rotors. It took more than 4 weeks after irradiation for the neuronal DNA distributions to return to those obtained from the unirradiated controls. At 7 weeks, the DNA from irradiated neurons sedimented more rapidly than that from unirradiated neurons. Accumulation of the neuronal DNA damage (degradation.) which led to slower sedimenting DNA species began by Week 10 and continued until the majority of the irradiated rats began to die at Week 20. We propose as a working hypothesis that the accumulation of neuronal DNA damage initially observed 10 weeks after 2000 rad of whole-brain irradiation may reflect or cause changes in the central nervous system that later result in the death of the animal

  11. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    International Nuclear Information System (INIS)

    Gorski, R.A.

    1986-01-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period

  12. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  13. [Depersonalization syndrome after acquired brain damage. Overview based on 3 case reports and the literature and discussion of etiological models].

    Science.gov (United States)

    Paulig, M; Böttger, S; Sommer, M; Prosiegel, M

    1998-12-01

    Depersonalization after brain damage is still only rarely reported and poorly understood. We describe three patients between the ages of 21 and 25 who experienced depersonalization and derealization for periods of 6 weeks to 4 months, two after traumatic brain injury, the third after surgical and radiation treatment of a pineocytoma. Each one believed to be living in a nightmare and thought about committing suicide in order to wake up. One patient developed symptoms as described in Cotard delusion. Aspects of neuroanatomy, psychodynamics, and anthropology are discussed with reference to the literature. Frontal and temporal lesions seem only to play a facilitating role but not to be a necessary condition. There is evidence for additional influence of psychological and premorbid personality factors. Summarizing the current state of information we consider depersonalization with the experience of being in a dream or being dead as a heuristic reaction to brain damage. Similar models have already been discussed in neuropsychological disorders as for instance reduplicative paramnesias, neglect, and anosognosia.

  14. Effects of perinatal daidzein exposure on subsequent behavior and central estrogen receptor α expression in the adult male mouse.

    Science.gov (United States)

    Yu, Chengjun; Tai, Fadao; Zeng, Shuangyan; Zhang, Xia

    2013-06-03

    Daidzein is one of the most important isoflavones present in soy and it is unique as it can be further metabolized to equol, a compound with greater estrogenic activity than other isoflavones. The potential role of daidzein in the prevention of some chronic diseases has drawn public attention and increased its consumption in human, including in pregnant women and adolescent. It is unclear whether perinatal exposure to daidzein through maternal diets affects subsequent behavior and central estrogen receptor α (ERα) expression in male adults. Following developmental exposure to daidzein through maternal diets during perinatal period, subsequent anxiety-like behavior, social behavior, spatial learning and memory of male mice at adulthood were assessed using a series of tests. The levels of central ER α expression were also examined using immunocytochemistry. Compared with the controls, adult male mice exposed to daidzein during the perinatal period showed significantly less exploration, higher levels of anxiety and aggression. They also displayed more social investigation for females and a tendency to improve spatial learning and memory. The mice with this early daidzein treatment demonstrated significantly higher levels of ERα expression in several brain regions such as the bed nucleus of the stria terminalis, medial preoptic, arcuate hypothalamic nucleus and central amygdaloid mucleus, but decreased it in the lateral septum. Our results indicated that perinatal exposure to daidzein enhanced masculinization on male behaviors which is assocciated with alterations in ERα expression levels led by perinatal daidzein exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Perinatal western-type diet and associated gestational weight gain alter postpartum maternal mood.

    Science.gov (United States)

    Bolton, Jessica L; Wiley, Melanie G; Ryan, Bailey; Truong, Samantha; Strait, Melva; Baker, Dana Creighton; Yang, Nancy Y; Ilkayeva, Olga; O'Connell, Thomas M; Wroth, Shelley W; Sánchez, Cristina L; Swamy, Geeta; Newgard, Christopher; Kuhn, Cynthia; Bilbo, Staci D; Simmons, Leigh Ann

    2017-10-01

    The role of perinatal diet in postpartum maternal mood disorders, including depression and anxiety, remains unclear. We investigated whether perinatal consumption of a Western-type diet (high in fat and branched-chain amino acids [BCAA]) and associated gestational weight gain (GWG) cause serotonin dysregulation in the central nervous system (CNS), resulting in postpartum depression and anxiety (PPD/A). Mouse dams were fed one of four diets (high-fat/high BCAA, low-fat/high BCAA, high-fat, and low-fat) prior to mating and throughout gestation and lactation. Postpartum behavioral assessments were conducted, and plasma and brain tissues assayed. To evaluate potential clinical utility, we conducted preliminary human studies using data from an extant sample of 17 primiparous women with high GWG, comparing across self-reported postpartum mood symptoms using the Edinburgh Postnatal Depression Scale (EPDS) for percent GWG and plasma amino acid levels. Mouse dams fed the high-fat/high BCAA diet gained more weight per kcal consumed, and BCAA-supplemented dams lost weight more slowly postpartum. Dams on BCAA-supplemented diets exhibited increased PPD/A-like behavior, decreased dopaminergic function, and decreased plasma tyrosine and histidine levels when assessed on postnatal day (P)8. Preliminary human data showed that GWG accounted for 29% of the variance in EPDS scores. Histidine was also lower in women with higher EPDS scores. These findings highlight the role of perinatal diet and excess GWG in the development of postpartum mood disorders.

  16. Responding to the challenge of adolescent perinatal depression ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Evidence shows that a critical gap exists in the management of perinatal ... intervention program for adolescent perinatal depression, and determine the factors required ... Affairs Canada, IDRC, and the Canadian Institutes of Health Research.

  17. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    Science.gov (United States)

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  18. Minimal Brain Damage/Dysfunction (MBD) en de ontwikkeling van de wetenschappelijke kinderstudie in Nederland, ca. 1950-1990

    NARCIS (Netherlands)

    Bakker, Nelleke

    2014-01-01

    This paper discusses the reception in the Netherlands of Minimal Brain Damage/Dysfunction (MBD) and related labels for normally gifted children with learning disabilities and behavioural problems by child scientists of all sorts from the 1950s up to the late 1980s, when MBD was replaced with

  19. Inference Generation during Text Comprehension by Adults with Right Hemisphere Brain Damage: Activation Failure Versus Multiple Activation.

    Science.gov (United States)

    Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini

    2004-01-01

    ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…

  20. The implementation of unit-based perinatal mortality audit in perinatal cooperation units in the northern region of the Netherlands

    NARCIS (Netherlands)

    van Diem, M.T.; Timmer, A.; Bergman, K.A.; Bouman, K.; van Egmond, N.; Stant, D.A.; Ulkeman, L.H.M.; Veen, W.B.; Erwich, J.J.H.M.

    2012-01-01

    Background: Perinatal (mortality) audit can be considered to be a way to improve the careprocess for all pregnant women and their newborns by creating an opportunity to learn from unwanted events in the care process. In unit-based perinatal audit, the caregivers involved in cases that result in

  1. Histological evaluation of brain damage caused by crude quinolizidine alkaloid extracts from lupines.

    Science.gov (United States)

    Bañuelos Pineda, J; Nolasco Rodríguez, G; Monteon, J A; García López, P M; Ruiz Lopez, M A; García Estrada, J

    2005-10-01

    The effects of the intracerebroventricular (ICV) administration of crude extracts of lupin quinolizidine alkaloids (LQAs) were studied in adult rat brain tissue. Mature L. exaltatus and L. montanus seeds were collected in western Mexico, and the LQAs from these seeds were extracted and analyzed by capillary gas chromatography. This LQA extract was administered to the right lateral ventricle of adult rats through a stainless steel cannula on five consecutive days. While control animals received 10 microl of sesame oil daily (vehicle), the experimental rats (10 per group) received 20 ng of LQA from either L. exaltatus or from L. montanus. All the animals were sacrificed 40 h after receiving the last dose of alkaloids, and their brains were removed, fixed and coronal paraffin sections were stained with haematoxylin and eosin. Immediately after the administration of LQA the animals began grooming and suffered tachycardia, tachypnea, piloerection, tail erection, muscular contractions, loss of equilibrium, excitation, and unsteady walk. In the brains of the animals treated with LQA damaged neurons were identified. The most frequent abnormalities observed in this brain tissue were "red neurons" with shrunken eosinophilic cytoplasm, strongly stained pyknotic nuclei, neuronal swelling, spongiform neuropil, "ghost cells" (hypochromasia), and abundant neuronophagic figures in numerous brain areas. While some alterations in neurons were observed in control tissues, unlike those found in the animals treated with LQA these were not significant. Thus, the histopathological changes observed can be principally attributed to the administration of sparteine and lupanine present in the alkaloid extracts.

  2. Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial; a randomized double blind placebo controlled multicenter study

    Directory of Open Access Journals (Sweden)

    von Lindern Jeannette

    2010-02-01

    Full Text Available Abstract Background Hypoxic-ischaemic encephalopathy is associated with development of cerebral palsy and cognitive disability later in life and is therefore one of the fundamental problems in perinatal medicine. The xanthine-oxidase inhibitor allopurinol reduces the formation of free radicals, thereby limiting the amount of hypoxia-reperfusion damage. In case of suspected intra-uterine hypoxia, both animal and human studies suggest that maternal administration of allopurinol immediately prior to delivery reduces hypoxic-ischaemic encephalopathy. Methods/Design The proposed trial is a randomized double blind placebo controlled multicenter study in pregnant women at term in whom the foetus is suspected of intra-uterine hypoxia. Allopurinol 500 mg IV or placebo will be administered antenatally to the pregnant woman when foetal hypoxia is suspected. Foetal distress is being diagnosed by the clinician as an abnormal or non-reassuring foetal heart rate trace, preferably accompanied by either significant ST-wave abnormalities (as detected by the STAN-monitor or an abnormal foetal blood scalp sampling (pH Primary outcome measures are the amount of S100B (a marker for brain tissue damage and the severity of oxidative stress (measured by isoprostane, neuroprostane, non protein bound iron and hypoxanthine, both measured in umbilical cord blood. Secondary outcome measures are neonatal mortality, serious composite neonatal morbidity and long-term neurological outcome. Furthermore pharmacokinetics and pharmacodynamics will be investigated. We expect an inclusion of 220 patients (110 per group to be feasible in an inclusion period of two years. Given a suspected mean value of S100B of 1.05 ug/L (SD 0.37 ug/L in the placebo group this trial has a power of 90% (alpha 0.05 to detect a mean value of S100B of 0.89 ug/L (SD 0.37 ug/L in the 'allopurinol-treated' group (z-test2-sided. Analysis will be by intention to treat and it allows for one interim analysis

  3. Acoustic alterations of ultrasonic vocalization in rat pups induced by perinatal hypothyroidism.

    Science.gov (United States)

    Wada, Hiromi

    2017-03-01

    Perinatal hypothyroidism causes serious damage to auditory functions that are essential for vocalization development. In rat pups, perinatal hypothyroidism potentially affects the development of ultrasonic vocalization (USV) as a result of hearing deficits. This study examined the effect of perinatal hypothyroidism on the development of USVs in rat pups. Twelve pregnant rats were divided into three groups and treated with the anti-thyroid drug methimazole (MMI) via drinking water, from gestational day 15 to postnatal day (PND) 21. The MMI concentration (w/v) was 0% (control group), 0.01% (low-dose group), or 0.015% (high-dose group). After birth, the pups were individually separated from the dam and littermates on PNDs 5, 10, 15, and 20, and their USVs were recorded for 5min. On PNDs 5 and 10, compared with the control group, the low- and high-dose groups exhibited reductions of both frequency-modulated and downward USVs. On PND 15, however, the low- and high-dose groups displayed increases in number, duration, and amplitude of USVs compared with those in the control group. Lower body weights were observed for the low- and high-dose groups than for the control group. Total thyroxine concentrations in plasma were dose-dependently reduced. The onset of auditory functions appeared on PNDs 11-14. Thus, the rat pups were unable to hear externally produced USVs before PND 11. USVs emitted on PNDs 5 and 10 might have been spontaneous and independent of the pups' own or littermate-emitted USVs. The developmental retardation of vocalization-related organs or muscles might underlie the acoustic alterations of USVs on PNDs 5 and 10. The greater number, duration, and amplitude of USVs on PND 15, after which the hearing onset occurred, suggested that the elevation of auditory thresholds occurred as a result of hearing deficits in the low- and high-dose groups. Perinatal hypothyroidism appears to have caused acoustic alterations in the USV development. Copyright © 2016 Elsevier

  4. Perinatal mortality in the Cape Province, 1989 - 1991

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... ... of deliveries, the low- birth-weight rate and the perinatal mortality rate at ... mortality rates were in the northern and eastern Cape. Conclusion. The perinatal ..... World Health Organisation. World Health Statistics Annual. Vol.

  5. Perinatal Practices & Traditions Among Asian Indian Women.

    Science.gov (United States)

    Goyal, Deepika

    2016-01-01

    As the population in the United States grows more diverse, nurses caring for childbearing women must be aware of the many cultural traditions and customs unique to their patients. This knowledge and insight supports women and their families with the appropriate care, information, and resources. A supportive relationship builds trust, offers guidance, and allows for the new family to integrate information from nurses and other healthcare providers with the practice of certain perinatal cultural traditions. The Asian Indian culture is rich in tradition, specifically during the perinatal period. To support the cultural beliefs and practices of Asian Indian women during this time, nurses need to be aware of and consider multiple factors. Many women are navigating the new role of motherhood while making sense of and incorporating important cultural rituals. The purpose of this article is to provide an overview of perinatal cultural practices and traditions specific to the Asian Indian culture that perinatal nurses may observe in the clinical setting. Cultural traditions and practices specific to the pregnancy and postpartum period are described together with symbolism and implications for nursing practice. It is important to note that information regarding perinatal customs is provided in an effort to promote culturally sensitive nursing care and may not pertain to all Asian Indian women living in the United States.

  6. Género, salud materna y la paradoja perinatal

    OpenAIRE

    Simone Grilo DINIZ

    2010-01-01

    En los últimos 20 años mejoraron prácticamente todos los indicadores de salud materna en el Brasil, así como hubo un amplio acceso a los servicios de salud. Gender, maternal health and the perinatal paradox1 Gênero, saúde materna e o paradoxo perinatal Género, salud materna y la paradoja perinatal REFLEXÕES SOBRE HUMANIZAÇÃO E A REALIDADE DOS SERVIÇOS REFLECTIONS ON HUMANIZATION AND THE REALITY OF HEALTH SERVICES REFLEXIONES SOBRE LA HUMANIZACIÓN Y LA REALIDAD DE LO...

  7. Methadone and perinatal outcomes: a prospective cohort study.

    LENUS (Irish Health Repository)

    Cleary, Brian J

    2012-08-01

      Methadone use in pregnancy has been associated with adverse perinatal outcomes and neonatal abstinence syndrome (NAS). This study aimed to examine perinatal outcomes and NAS in relation to (i) concomitant drug use and (ii) methadone dose.

  8. Perinatal mortality and associated risk factors: a case control study ...

    African Journals Online (AJOL)

    BACKGROUND: Perinatal mortality is reported to be five times higher in developing than in developed nations. Little is known about the commonly associated risk factors for perinatal mortality in Southern Nations National Regional State of Ethiopia. METHODS: A case control study for perinatal mortality was conducted in ...

  9. Improvement of perinatal outcome in diabetic pregnant women.

    Science.gov (United States)

    Szilagyi, A; Szabo, I

    2001-01-01

    Obstetrical and perinatal outcomes in newborns of diabetic pregnant women depend on metabolic control and fetal surveillance during pregnancy. The effects of fetal surveillance on perinatal mortality and morbidity was analyzed in diabetic pregnant women with appropriate glucose control in our regional center for diabetes and pregnancy. 480 deliveries complicated by frank or gestational diabetes occurred in our Department in the period of 1988-1999. Perinatal mortality and morbidity, prevalence of premature deliveries, methods of fetal surveillance, options for respiratory distress syndrome (RDS) profilaxis, cesarean section rate, timing of delivery and its indications and occurrence of malformations have been analyzed. It was found that malformation rate and perinatal mortality may be reduced to even lower level than that of in healthy pregnant women by appropriate glucose control and by using the latest methods of intrauterine fetal surveillance including cardiotocography (non stress test and oxytocin challenge test), doppler fetal artery velocimetry and fetal pulse oximetry. Timing of delivery was needed in 35% of the cases with IDDM and 15% of gestational diabetes due to chronic placental insufficiency. If labour induction was needed before the 38 weeks, amniocentesis was performed to test fetal lung maturity. Direct fetal glucocorticoid administration was used to enhance fetal lung maturation in 14 cases. C-section rate was slightly higher than that of in non diabetic pregnant women. Our perinatal morbidity data (macrosomia, hyperbilirubinemia, hypoglycemia, injuries, infections) are comparable with the data from the literature. Although perinatal mortality with the help of thorough fetal surveillance is even better in diabetic pregnant women than in non diabetic patients, future eye should be focused on factors affecting perinatal morbidity, because it is still higher than in newborns of healthy mothers.

  10. Perinatal pathology: practice suggestions for limited-resource settings.

    Science.gov (United States)

    Roberts, Drucilla J

    2013-06-01

    The practice of perinatal pathology in much of the world suffers, as do all subspecialties of anatomic pathology, from inadequate resources (equipment, consumables, and both professional and technical personnel), from lack of education (not only of the pathologist but also of the clinicians responsible for sending the specimens, and the technicians processing the specimens), and from lack of appropriate government sector support. Perinatal pathology has significant public health-related utility and should be championing its service by providing maternal and fetal/infant mortality and morbidity data to governmental health ministries. It is with this pathologic data that informed decisions can be made on health-related courses of action and allocation of resources. These perinatal pathology data are needed to develop appropriate public health initiatives, specifically toward achieving the Millennium Developmental Goals as the best way to effectively decrease infant and maternal deaths and to determine causes of perinatal mortality and morbidity. The following overview will focus on the utility of perinatal pathology specifically as related to its public health function and will suggest methods to improve its service in resource-poor settings. This article is offered not as a critique of the current practice that most pathologists find themselves working in globally, but to provide suggestions for improving perinatal pathology services, which could be implemented with the limited available resources and manpower most pathology departments currently have. In addition, we offer suggestions for graded improvements ("ramping up") over time.

  11. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble[(3,5,5-Trimethylhexanoyl)ferrocene

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (......, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.......Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl......)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of a- and ¿-tocopherols and glutathione (GSH) were also higher. In contrast, the brain...

  12. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

    Science.gov (United States)

    Adén, Ulrika; Halldner, Linda; Lagercrantz, Hugo; Dalmau, Ishar; Ledent, Catherine; Fredholm, Bertil B

    2003-03-01

    Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated with the use of histopathological scoring and measurements of residual brain areas at 5 days, 3 weeks, and 3 months after HI. Behavioral evaluation of brain injury by locomotor activity, rotarod, and beam-walking test was made 3 weeks and 3 months after HI. Cortical cerebral blood flow, assessed by laser-Doppler flowmetry, and rectal temperature were measured during HI. Reduction in cortical cerebral blood flow during HI and rectal temperature did not differ between wild-type (A2AR(+/+)) and knockout mice. In the A2AR(-/-) animals, brain injury was aggravated compared with wild-type mice. The A2AR(-/-) mice subjected to HI displayed increased forward locomotion and impaired rotarod performance in adulthood compared with A2AR(+/+) mice subjected to HI, whereas beam-walking performance was similarly defective in both groups. These results suggest that, in contrast to the situation in adult animals, A2AR play an important protective role in neonatal HI brain injury.

  13. Verbal autopsy in establishing cause of perinatal death | Iriya | East ...

    African Journals Online (AJOL)

    Introduction: Perinatal mortality is a sensitive indicator of health status of a community and is also highly amenable to intervention. The causes of perinatal deaths in developing countries are often difficult to establish. Verbal autopsy has been used in several countries for children and adults, but seldom for perinatal cause.

  14. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    Science.gov (United States)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  15. Magnitude of income-related disparities in adverse perinatal outcomes

    OpenAIRE

    Shankardass, Ketan; O’Campo, Patricia; Dodds, Linda; Fahey, John; Joseph, KS; Morinis, Julia; Allen, Victoria M

    2014-01-01

    Background To assess and compare multiple measurements of socioeconomic position (SEP) in order to determine the relationship with adverse perinatal outcomes across various contexts. Methods A birth registry, the Nova Scotia Atlee Perinatal Database, was confidentially linked to income tax and related information for the year in which delivery occurred. Multiple logistic regression was used to examine odds ratios between multiple indicators of SEP and multiple adverse perinatal outcomes in 11...

  16. Information Architecture for Perinatal Registration in the Netherlands.

    Science.gov (United States)

    Goossen, William T F; Arns-Schiere, Anne Marieke

    In the Netherlands, the perinatal registry has undergone significant changes in the past decades. The purpose of this article is to describe the current health care information architecture for the national perinatal registry, including how the national data set is arranged and how electronic messages are used to submit data. We provide implications for women's health care providers based on the creation and implementation of the Dutch perinatal registry system. Copyright © 2017 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  17. Improving perinatal outcome: towards individualized care

    OpenAIRE

    Kazemier, B.M.

    2015-01-01

    Unfortunately not all pregnancies and deliveries take place without complications. Complications during pregnancy or delivery can lead to maternal morbidity and poor perinatal outcomes such as perinatal mortality or (severe) neonatal morbidity. First assessment in antenatal care is to distinguish women who require standard care from those requiring special attention. At the moment, we can make some global risk assessments, but are not able to give a women a risk assessment that is adapted for...

  18. Functional and morphologic damage in the neonatally irradiated canine kidney

    International Nuclear Information System (INIS)

    Peneyra, R.S.; Jaenke, R.S.

    1985-01-01

    Perinatal irradiation of the developing kidney results in progressive glomerulosclerosis (PGS) and renal failure. This syndrome may result from direct radiation damage to mature deep cortical nephrons and/or nephron functional adaptations resulting from outer cortical nephron ablation. Beagle dogs received single, whole-body exposures (330 R) to 60 Co gamma radiation at 4 days of age (IR4) to study the combined effects of direct radiation damage and nephron loss, or at 30 days of age (IR30) to study the effects of renal irradiation alone. To study the effects of nephron loss alone, dogs underwent unilateral nephrectomy (UN4) or superficial hyperthermic renal ablation (HY4) at 4 days of age. Nephron loss due to irradiation (IR4) and partial renal ablation (UN4 and HY4) was associated with compensatory nephron hypertrophy and increased single nephron glomerular filtration rate (SNGFR), while irradiation at 30 days resulted in transitory decreased SNGFR. Similar degrees of PGS occurred in IR4 dogs which experienced both irradiation and loss of nephrons and UN4 and HY4 dogs which experienced only loss of nephrons. PGS of lesser severity also occurred in IR30 dogs. These findings indicate that PGS associated with perinatal renal irradiation results from direct radiation damage to deep cortical nephrons and compensatory functional changes occurring in response to loss of renal mass

  19. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    Science.gov (United States)

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi [Juntendo Univ., Tokyo (Japan). School of Medicine

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  1. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  2. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not?

    OpenAIRE

    Rosenfeld, Cheryl S.

    2017-01-01

    Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differenti...

  3. Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing

    Science.gov (United States)

    Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta

    2005-01-01

    We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…

  4. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel?

    Directory of Open Access Journals (Sweden)

    Hendaus MA

    2016-09-01

    Full Text Available Mohamed A Hendaus,1,2 Fatima A Jomha,3 Ahmed H Alhammadi1,2 1Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation, 2Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar; 3School of Pharmacy, Lebanese International University, Khiara, Lebanon Abstract: Perinatal hypoxic-ischemic encephalopathy (HIE affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE. Keywords: melatonin, hypoxia, use, encephalopathy

  5. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Science.gov (United States)

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  6. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  7. Tendência da mortalidade perinatal em Belo Horizonte, 1984 a 2005 Tendencia de la mortalidad perinatal en Belo Horizonte, 1984 a 2005 Tendency of perinatal mortality in Belo Horizonte, 1984 to 2005

    Directory of Open Access Journals (Sweden)

    Eunice Francisca Martins

    2010-06-01

    Full Text Available O estudo objetivou analisar a tendência da mortalidade perinatal no município de Belo Horizonte no período de 1984 a 2005. A fonte dos dados foi o Sistema de Informação de Mortalidade (SIM. Realizou-se regressão linear simples para estimar a tendência de redução do percentual de informações ignoradas no SIM e das taxas de mortalidade. A melhora da qualidade da informação foi estatisticamente significativa apenas para a escolaridade materna e peso ao nascer. A redução média da mortalidade perinatal no período foi de 57,52%. O decréscimo da mortalidade perinatal nas duas últimas décadas em Belo Horizonte foi significativo, mas esforços devem ser direcionados no sentido de melhorar a completude do SIM para variáveis importantes na elaboração dos indicadores perinatais.El estudio apuntó a analizar la tendencia de la mortalidad perinatal en el distrito municipal de Belo Horizonte en el periodo de 1984 a 2005. La fuente de los datos era el Sistema de Información de Mortalidad. Tuvieron lugar la regresión lineal simple para estimar la tendencia de reducción del percentil de información desconocida en el sistema y de los impuestos de mortalidad. La mejora de la calidad de la información fue los significantes sólo para la educación maternal y peso al nacer. La reducción elemento de la mortalidad perinatal en el periodo era de 57,52%. La disminución de la mortalidad perinatal en las últimas dos décadas en Belo Horizonte era significante, pero deben dirigirse los esfuerzos en el sentido de mejorar el completude del sistema para las variables importantes en la elaboración del perinatais de los indicadores.The study aimed at to analyze the tendency of the mortality perinatal in the municipal district of Belo Horizonte in the period from 1984 to 2005. The source of the data was the System of Information of Mortality. Took place simple lineal regression to esteem the tendency of reduction of the percentile of unknown

  8. The Perinatal Mental Health and Wellness Project: Improving perinatal mental health outcomes by working together across sectors

    OpenAIRE

    Herde, Emily Louise

    2018-01-01

    This paper reports on the Perinatal Mental Health and Wellness Project which aimed to develop and evaluate a collaborative model for mental health promotion, illness prevention and early intervention in the perinatal period. The project took on a place-based action research approach, developing and trialling the model with expectant parents (n=537) engaged with Redcliffe Hospital Maternity Services in the Metro North Hospital and Health Service in Queensland, Australia, from 2015 – 2017.In Au...

  9. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    International Nuclear Information System (INIS)

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  12. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    International Nuclear Information System (INIS)

    Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-01-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  13. Anxiety measures validated in perinatal populations: a systematic review.

    Science.gov (United States)

    Meades, Rose; Ayers, Susan

    2011-09-01

    Research and screening of anxiety in the perinatal period is hampered by a lack of psychometric data on self-report anxiety measures used in perinatal populations. This paper aimed to review self-report measures that have been validated with perinatal women. A systematic search was carried out of four electronic databases. Additional papers were obtained through searching identified articles. Thirty studies were identified that reported validation of an anxiety measure with perinatal women. Most commonly validated self-report measures were the General Health Questionnaire (GHQ), State-Trait Anxiety Inventory (STAI), and Hospital Anxiety and Depression Scales (HADS). Of the 30 studies included, 11 used a clinical interview to provide criterion validity. Remaining studies reported one or more other forms of validity (factorial, discriminant, concurrent and predictive) or reliability. The STAI shows criterion, discriminant and predictive validity and may be most useful for research purposes as a specific measure of anxiety. The Kessler 10 (K-10) may be the best short screening measure due to its ability to differentiate anxiety disorders. The Depression Anxiety Stress Scales 21 (DASS-21) measures multiple types of distress, shows appropriate content, and remains to be validated against clinical interview in perinatal populations. Nineteen studies did not report sensitivity or specificity data. The early stages of research into perinatal anxiety, the multitude of measures in use, and methodological differences restrict comparison of measures across studies. There is a need for further validation of self-report measures of anxiety in the perinatal period to enable accurate screening and detection of anxiety symptoms and disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Relationship between maternal hemoglobin and perinatal outcome

    International Nuclear Information System (INIS)

    Bakhtiar, U.J.; Khan, Y.; Nisar, R.

    2007-01-01

    To Study the Relationship between Maternal Hemoglobin and Perinatal outcome in a cohort of 860 pregnant women and to highlight the importance of antenatal care regarding maternal health and fetal outcome. All Singleton pregnancies delivering at Pakistan Railway Hospital Rawalpindi from January 2004 to December 2005 that fulfilled the required criteria were included. Out of the 860 patients, 402 were anemic (<11gm/dl) and 458 were non anemic. Perinatal outcome included preterm delivery, low birth weight, intrauterine growth retardation, perinatal death, low apgr scores and intrauterine fetal deaths. Risk of preterm and Low birth weight among anemic women was 3.4 and 1.8 times more than non anaemic women. The neonates of anemic woman also had 1.7 times increased risk of having low apgr scores at 1 min. Among anemic women there was 2.2 times greater risk of intrauterine fetal death than the non-anemic women. Regular antenatal care from first trimester has a vital role in assessing and managing maternal anemia timely and it directly affects the perinatal outcome. The patients with anemia have also higher risk of having low birth weight, preterm births and intra uterine fetal death. (author)

  15. Ethical issues in perinatal mental health research.

    Science.gov (United States)

    Brandon, Anna R; Shivakumar, Geetha; Lee, Simon Craddock; Inrig, Stephen J; Sadler, John Z

    2009-11-01

    To review the background of current ethical standards for the conduct of perinatal mental health research and describe the ethical challenges in this research domain. Current literature reflects a growing sentiment in the scientific community that having no information regarding the impact of psychiatric treatment on the mother and developing fetus/infant poses dangers that may exceed the risks involved in research. However, without sufficient consensus across the scientific community, both regulatory bodies and perinatal researchers find themselves without a framework for decision making that satisfactorily limits the risks and facilitates the benefits of participation of pregnant and lactating women in clinical research. Psychiatric research in perinatal mental health is critically important as it enables clinicians and patients to participate in informed decision-making concerning treatment for psychiatric disorders. Specific areas of concern include fetal safety, maternal risk, the therapeutic misconception, commercial interests, forensic/legal issues, the informed consent process, and study design. Developing guidelines that address ethical challenges and include the views and concerns of multiple stakeholders could improve the access of perinatal women to the benefits of participation in mental health research in addition to providing evidence-based mental healthcare for this subpopulation.

  16. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lisa Mailleux

    2017-12-01

    Full Text Available Background: In children with unilateral cerebral palsy (uCP virtually nothing is known on the relation between structural brain damage and upper limb (UL kinematics quantified with three-dimensional movement analysis (3DMA. This explorative study aimed to (1 investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM vs. cortical and deep gray matter (CDGM lesions and (2 to explore the relation between UL kinematics and lesion location and extent within each lesion timing group.Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of maximum velocity, trajectory straightness], the Arm Profile Score (APS and Arm Variable Scores (AVS were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale.Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters (p < 0.03 and more movement pathology (APS, p = 0.003 compared to the PWM group, mostly characterized by increased wrist flexion (p = 0.01. In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness (r = 0.53–0.90. Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50–0.65 and with the APS (r = 0.51–0.63. In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation (r = 0.35–0.42. Regression analysis

  17. The experience of women with an eating disorder in the perinatal period: a meta-ethnographic study.

    Science.gov (United States)

    Fogarty, Sarah; Elmir, Rakime; Hay, Phillipa; Schmied, Virginia

    2018-05-02

    Pregnancy is a time of enormous body transformation. For those with an eating disorder during pregnancy this time of transformation can be distressing and damaging to both the mother and the child. In this meta-ethnographic study, we aimed to examine the experiences of women with an Eating Disorder in the perinatal period; that is during pregnancy and two years following birth. A meta-ethnographic framework was used in this review. After a systematic online search of the literature using the keywords such as pregnancy, eating disorders, anorexia, bulimia, binge eating disorder, perinatal, postnatal and post-partum, 11 papers, involving 94 women, were included in the review. A qualitative synthesis of the papers identified 2 key themes. The key theme that emerged during pregnancy was: navigating a 'new' eating disorder. The key that emerged in the perinatal period was return to the 'old' eating disorder. Following a tumultuous pregnancy experience, many described returning to their pre-pregnancy eating behaviors and thoughts. These experiences highlight the emotional difficulty experienced having an eating disorder whilst pregnant but they also point to opportunities for intervention and a continued acceptance of body image changes. More research is needed on the experiences of targeted treatment interventions specific for pregnant and postpartum women with an eating disorder and the effectiveness of putative treatment interventions during this period.

  18. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  19. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  20. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  1. Perinatal maternal stress and serotonin signaling: effects on pain sensitivity in offspring.

    Science.gov (United States)

    Knaepen, Liesbeth; Pawluski, Jodi L; Patijn, Jacob; van Kleef, Maarten; Tibboel, Dick; Joosten, Elbert A

    2014-07-01

    It has been estimated that 20% of pregnant women are facing perinatal stress and depression. Perinatal maternal stress has been shown to increase pain sensitivity in offspring. For the treatment of their depressive symptoms, pregnant women are frequently prescribed selective serotonin reuptake inhibitors (SSRIs). Since the descending pain inhibitory circuit matures perinatally, perinatal SSRI exposure has been shown to affect pain sensitivity in offspring. In the present review, we summarize experimental and clinical evidence for the effect of perinatal maternal stress and SSRI exposure on pain sensitivity in offspring. Both experimental and clinical studies show the effect of perinatal maternal stress on regulation of the hypothalamic-pituitary-adrenal (HPA) system and the serotonin pain inhibitory system. Alterations in these two systems likely underlie long-term alterations in the development of pain sensitivity. This review sheds light on the effect of perinatal maternal stress and treatment with SSRIs on offspring pain sensitivity, in relation to the developing HPA system and 5-HT signaling. © 2013 Wiley Periodicals, Inc.

  2. Staffing Needs for Quality Perinatal Care in Tanzania

    African Journals Online (AJOL)

    Erah

    and the required nursing staff for perinatal care in 16 health institutions in Dar es ... attitudes, lack of morale, absenteeism, ... countries in Africa, Asia and Europe. ... midwives working in the perinatal care ... method. 10 . Registered nurses were those who according to the National ... would spend doing other related official.

  3. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  4. Signs of long-term adaptation to permanent brain damage as revealed by prehension studies of children with spastic hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.; Latash, M.L.; Levin, M.

    2003-01-01

    This chapter focusses on signs of long-term adaptation to permanent brain damage in children with spastic hemiparesis. First, we recognize that adaptation processes may occur at various time scales. Then, we formulate a tentative strategy to infer signs of adaptation from behavioral data.

  5. [Perinatal mortality in foreign workers (author's transl)].

    Science.gov (United States)

    Höfling, H J; Jonas, R; Brusis, E; Lochmüller, H; Selbmann, H K; Holzmann, K; Zander, J

    1975-03-01

    From 1970 to 1972, there were 216 perinatal deaths among 5595 newborns at the I. Frauenklinik der Universität München. 54 of these deaths were children of foreign workers (so-called "Gastarbeiter"). The data have been processed on punch cards and analysed by a computer. The differences noted underwent significance testing by the CHI-Quadrat test. Only statistical significant results are published. The perinatal mortality in the above period shows no difference between foreign and German ward patients. There is, however, a significant lower perinatal mortality in private patients. We feel that this difference is due to a significant lower rate of prematures in the private patient group. The cocial status as well as higher interest and motivation in health resulting in better prenatal care are discussed as causal reasons for this fact.

  6. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy.

    Science.gov (United States)

    Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre

    2012-01-01

    To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.

  7. Detecting the severity of perinatal anxiety with the Perinatal Anxiety Screening Scale (PASS).

    Science.gov (United States)

    Somerville, Susanne; Byrne, Shannon L; Dedman, Kellie; Hagan, Rosemary; Coo, Soledad; Oxnam, Elizabeth; Doherty, Dorota; Cunningham, Nadia; Page, Andrew C

    2015-11-01

    The Perinatal Anxiety Screening Scale (PASS; Somerville et al., 2014) reliably identifies perinatal women at risk of problematic anxiety when a clinical cut-off score of 26 is used. This study aimed to identify a severity continuum of anxiety symptoms with the PASS to enhance screening, treatment and research for perinatal anxiety. Antenatal and postnatal women (n=410) recruited from the antenatal clinics and mental health services at an obstetric hospital completed the Edinburgh Postnatal Depression Scale (EPDS), the Depression, Anxiety and Stress Scale (DASS-21), the Spielberg State-Trait Anxiety Inventory (STAI), the Beck Depression Inventory II (BDI), and the PASS. The women referred to mental health services were assessed to determine anxiety diagnoses via a diagnostic interview conducted by an experienced mental health professional from the Department of Psychological Medicine - King Edward Memorial Hospital. Three normative groups for the PASS, namely minimal anxiety, mild-moderate anxiety, and severe anxiety, were identified based on the severity of anxiety indicated on the standardised scales and anxiety diagnoses. Two cut-off points for the normative groups were calculated using the Jacobson-Truax method (Jacobson and Truax, 1991) resulting in three severity ranges: 'minimal anxiety'; 'mild-moderate anxiety'; and 'severe anxiety'. The most frequent diagnoses in the study sample were adjustment disorder, mixed anxiety and depression, generalised anxiety, and post-traumatic stress disorder. This may limit the generalisability of the severity range results to other anxiety diagnoses including obsessive compulsive disorder and specific phobia. Severity ranges for the PASS add value to having a clinically validated cut-off score in the detection and monitoring of problematic perinatal anxiety. The PASS can now be used to identify risk of an anxiety disorder and the severity ranges can indicate developing risk for early referrals for further assessments

  8. Paradoxical centrally increased diffusivity in perinatal arterial ischemic stroke

    International Nuclear Information System (INIS)

    Stence, Nicholas V.; Mirsky, David M.; Deoni, Sean C.L.; Armstrong-Wells, Jennifer

    2016-01-01

    Restricted diffusion on acute MRI is the diagnostic standard for perinatal arterial ischemic stroke. In a subset of children with perinatal arterial ischemic stroke, primarily those with large infarct volumes, we noted a core of centrally increased diffusivity with a periphery of restricted diffusion. Given the paradoxical diffusion-weighted imaging (DWI) appearance observed in some children with perinatal arterial ischemic stroke, we sought to determine its significance and hypothesized that: (1) centrally increased diffusivity is associated with larger infarcts in perinatal arterial ischemic stroke and (2) this tissue is irreversibly injured (infarcted). We reviewed all perinatal arterial ischemic stroke cases in a prospective cohort study from Aug. 1, 2000, to Jan. 1, 2012. Infarct volumes were measured by drawing regions of interest around the periphery of the area of restricted diffusion on DWI. The Mann-Whitney U test was used to compare means between groups. Of 25 eligible cases, centrally increased diffusivity was seen in 4 (16%). Cases with centrally increased diffusivity had larger average infarct volumes (mean 117,182 mm 3 vs. 36,995 mm 3 ; P = 0.008), higher average apparent diffusion coefficient (ADC) values in the infarct core (1,679 x 10 -6 mm 2 /s vs. 611 x 10 -6 mm 2 /s, P < 0.0001), and higher ADC ratio (1.2 vs. 0.5, P < 0.0001). At last clinical follow-up, children with perinatal arterial ischemic stroke and centrally increased diffusivity were more often treated for ongoing seizures (75% vs. 0%; P < 0.001) than those without. Centrally increased diffusivity was associated with larger stroke volume and the involved tissue was confirmed to be infarcted on follow-up imaging. Radiologists should be aware of this unusual appearance of perinatal arterial ischemic stroke in order to avoid underestimating infarct volume or making an incorrect early diagnosis. (orig.)

  9. Paradoxical centrally increased diffusivity in perinatal arterial ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Stence, Nicholas V.; Mirsky, David M.; Deoni, Sean C.L. [University of Colorado Anschutz School of Medicine, Department of Radiology, Aurora, CO (United States); Children' s Hospital Colorado, Department of Radiology, Aurora, CO (United States); Armstrong-Wells, Jennifer [University of Colorado Anschutz School of Medicine, Department of Pediatrics (Neurology) and OB/GYN, Aurora, CO (United States); University of Colorado Hemophilia and Thrombosis Center, Aurora, CO (United States)

    2016-01-15

    Restricted diffusion on acute MRI is the diagnostic standard for perinatal arterial ischemic stroke. In a subset of children with perinatal arterial ischemic stroke, primarily those with large infarct volumes, we noted a core of centrally increased diffusivity with a periphery of restricted diffusion. Given the paradoxical diffusion-weighted imaging (DWI) appearance observed in some children with perinatal arterial ischemic stroke, we sought to determine its significance and hypothesized that: (1) centrally increased diffusivity is associated with larger infarcts in perinatal arterial ischemic stroke and (2) this tissue is irreversibly injured (infarcted). We reviewed all perinatal arterial ischemic stroke cases in a prospective cohort study from Aug. 1, 2000, to Jan. 1, 2012. Infarct volumes were measured by drawing regions of interest around the periphery of the area of restricted diffusion on DWI. The Mann-Whitney U test was used to compare means between groups. Of 25 eligible cases, centrally increased diffusivity was seen in 4 (16%). Cases with centrally increased diffusivity had larger average infarct volumes (mean 117,182 mm{sup 3} vs. 36,995 mm{sup 3}; P = 0.008), higher average apparent diffusion coefficient (ADC) values in the infarct core (1,679 x 10{sup -6} mm{sup 2}/s vs. 611 x 10{sup -6} mm{sup 2}/s, P < 0.0001), and higher ADC ratio (1.2 vs. 0.5, P < 0.0001). At last clinical follow-up, children with perinatal arterial ischemic stroke and centrally increased diffusivity were more often treated for ongoing seizures (75% vs. 0%; P < 0.001) than those without. Centrally increased diffusivity was associated with larger stroke volume and the involved tissue was confirmed to be infarcted on follow-up imaging. Radiologists should be aware of this unusual appearance of perinatal arterial ischemic stroke in order to avoid underestimating infarct volume or making an incorrect early diagnosis. (orig.)

  10. Evaluating the quality of perinatal anxiety information available online.

    Science.gov (United States)

    Kirby, Paige L; Reynolds, Kristin A; Walker, John R; Furer, Patricia; Pryor, Teaghan A M

    2018-06-22

    The Internet is an easily accessible source of information for women experiencing anxiety in pregnancy and/or postpartum to use when seeking health information. However, the Internet has several drawbacks, including inaccurate content that may be perceived as being accurate, non-biased, and evidence-based. Prior research indicates that anxiety and postpartum mental health websites have poor quality in terms of describing treatment options. There is a lack of research and knowledge in the area of perinatal anxiety, and an absence of research evaluating perinatal anxiety websites. The purpose of this study was to evaluate the quality of information regarding perinatal anxiety available on the Internet. Websites concerning perinatal anxiety were selected using the Google search engine. Each website was evaluated based on quality of health information, website usability, and readability. The 20 websites included in this study had low to moderate quality scores based on the DISCERN tool. There were no associations found between website order and website quality, or between website readability and website quality. Many websites had high PEMAT scores for the understandability section, which included content, style, and layout of information; however, most did not use visual aids to enhance comprehension. Most websites had low actionability scores, suggesting that information may not be useful in describing what actions may be taken to manage perinatal anxiety. This study highlights the need for high-quality websites concerning perinatal anxiety that are easy to navigate and provide the public with evidence-based information.

  11. Magnitude of income-related disparities in adverse perinatal outcomes.

    Science.gov (United States)

    Shankardass, Ketan; O'Campo, Patricia; Dodds, Linda; Fahey, John; Joseph, Ks; Morinis, Julia; Allen, Victoria M

    2014-03-04

    To assess and compare multiple measurements of socioeconomic position (SEP) in order to determine the relationship with adverse perinatal outcomes across various contexts. A birth registry, the Nova Scotia Atlee Perinatal Database, was confidentially linked to income tax and related information for the year in which delivery occurred. Multiple logistic regression was used to examine odds ratios between multiple indicators of SEP and multiple adverse perinatal outcomes in 117734 singleton births between 1988 and 2003. Models for after tax family income were also adjusted for neighborhood deprivation to gauge the relative magnitude of effects related to SEP at both levels. Effects of SEP were stratified by single- versus multiple-parent family composition, and by urban versus rural location of residence. The risk of small for gestational age and spontaneous preterm birth was higher across all the indicators of lower SEP, while risk for large for gestational age was lower across indicators of lower SEP. Higher risk of postneonatal death was demonstrated for several measures of lower SEP. Higher material deprivation in the neighborhood of residence was associated with increased risk for perinatal death, small for gestational age birth, and iatrogenic and spontaneous preterm birth. Family composition and urbanicity were shown to modify the association between income and some perinatal outcomes. This study highlights the importance of understanding the definitions of SEP and the mechanisms that lead to the association between income and poor perinatal outcomes, and broadening the types of SEP measures used in some cases.

  12. Nuclear medicine in the detection of radiation associated normal tissue damage of kidney, brain and salivary glands

    International Nuclear Information System (INIS)

    Liu Xiaomei; Li Dongxue; Pan Liping

    2005-01-01

    The radiation induced damage of kidney, brain and salivary glands is an important complicating disease after limit radiotherapy. The routine technology of nuclear medicine, such as tracing and imaging technique conduce to dose-effect calculations used in the planning of modern radiotherapy to three major organ systems and early detection of irradiation induced organ dysfunctions, as well as increased availability of radiotherapy. (authors)

  13. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Resting-State Functional Connectivity and Cognitive Impairment in Children with Perinatal Stroke

    Directory of Open Access Journals (Sweden)

    Nigul Ilves

    2016-01-01

    Full Text Available Perinatal stroke is a leading cause of congenital hemiparesis and neurocognitive deficits in children. Dysfunctions in the large-scale resting-state functional networks may underlie cognitive and behavioral disability in these children. We studied resting-state functional connectivity in patients with perinatal stroke collected from the Estonian Pediatric Stroke Database. Neurodevelopment of children was assessed by the Pediatric Stroke Outcome Measurement and the Kaufman Assessment Battery. The study included 36 children (age range 7.6–17.9 years: 10 with periventricular venous infarction (PVI, 7 with arterial ischemic stroke (AIS, and 19 controls. There were no differences in severity of hemiparesis between the PVI and AIS groups. A significant increase in default mode network connectivity (FDR 0.1 and lower cognitive functions (p<0.05 were found in children with AIS compared to the controls and the PVI group. The children with PVI had no significant differences in the resting-state networks compared to the controls and their cognitive functions were normal. Our findings demonstrate impairment in cognitive functions and neural network profile in hemiparetic children with AIS compared to children with PVI and controls. Changes in the resting-state networks found in children with AIS could possibly serve as the underlying derangements of cognitive brain functions in these children.

  15. Post-traumatic stress disorder in the perinatal period: A concept analysis.

    Science.gov (United States)

    Vignato, Julie; Georges, Jane M; Bush, Ruth A; Connelly, Cynthia D

    2017-12-01

    To report an analysis of the concept of perinatal post-traumatic stress disorder. Prevalence of perinatal post-traumatic stress disorder is rising in the USA, with 9% of the U.S. perinatal population diagnosed with the disorder and an additional 18% being at risk for the condition. Left untreated, adverse maternal-child outcomes result in increased morbidity, mortality and healthcare costs. Concept analysis via Walker and Avant's approach. The databases Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline, Academic Search Premier and PsychINFO were searched for articles, written in English, published between 2006-2015, containing the terms perinatal and post-traumatic stress disorder. Perinatal post-traumatic stress disorder owns unique attributes, antecedents and outcomes when compared to post-traumatic stress disorder in other contexts, and may be defined as a disorder arising after a traumatic experience, diagnosed any time from conception to 6 months postpartum, lasting longer than 1 month, leading to specific negative maternal symptoms and poor maternal-infant outcomes. Attributes include a diagnostic time frame (conception to 6 months postpartum), harmful prior or current trauma and specific diagnostic symptomatology defined in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition. Antecedents were identified as trauma (perinatal complications and abuse), postpartum depression and previous psychiatric history. Consequences comprised adverse maternal-infant outcomes. Further research on perinatal post-traumatic stress disorder antecedents, attributes and outcomes in ethnically diverse populations may provide clinicians a more comprehensive framework for identifying and treating perinatal post-traumatic stress disorder. Nurses are encouraged to increase their awareness of perinatal post-traumatic stress disorder for early assessment and intervention, and prevention of adverse maternal-infant outcomes. © 2017 John Wiley

  16. FEATURES OF MEMORY IN CHILDREN OF PRESCHOOL AGE WITH CONSEQUENCES OF PERINATAL LESIONS OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    T. S. Krivonogova

    2014-01-01

    Full Text Available The ability of memory was investigated in 524 children, aged 4 to 7; with remote consequences of perinatal damage of the central nervous system (CNS. A weak memory ability was detected in 42% of children with dysfunctions of the general and fine motility and in 59% of children with impaired speech. Severe gestosis, anemia in pregnancy (stage II and a delayed intrauterine fetal development were found to have a negative influence on memory shaping process.

  17. [Studies on flomoxef in the perinatal period].

    Science.gov (United States)

    Cho, N; Fukunaga, K; Kunii, K; Kobayashi, I

    1991-06-01

    Pharmacokinetic, bacteriological and clinical studies on flomoxef (FMOX) in the perinatal period were carried out with the following summary of the results. Antibacterial effects of FMOX on the growth of methicillin-resistant Staphylococcus aureus (MRSA, MIC 400 micrograms/ml), methicillin-sensitive S. aureus (MSSA, MIC 0.78 microgram/ml), Escherichia coli (MIC 3.13 micrograms/ml and MIC 0.20 microgram/ml) in amniotic fluid were determined and it was found that the activity of FMOX was enhanced in the amniotic fluid. FMOX rapidly penetrated into tissues and sera of pregnant women upon intravenous injection and its maternal serum concentrations reached their peak levels shortly after administration. Placental penetration of FMOX to the fetus was good and, after single intravenous injection of 1 g, the concentrations of FMOX in the umbilical cord serum and amniotic fluid exceeded MICs against major causative organisms of perinatal infections. These results indicate that single intravenous injection of FMOX 1 g twice a day is effective for the treatment and prophylaxis of perinatal infections. Injection of FMOX for the treatment of 14 cases of puerperal infections showed excellent clinical effectiveness with 100% clinical effect and 81.8% bacteriological response. No side-effect was observed in any case. All of these results suggested clinical usefulness of FMOX in the perinatal period.

  18. Effects of Perinatal and Other Constitutional Factors on Intelligence.

    Science.gov (United States)

    Vernon, Philip E.

    1979-01-01

    The author cites representative studies on the relationship of intelligence to nine specific factors: undernutrition and malnutrition; mother's health during pregnancy; prematurity; anoxia; smoking during pregnancy; childhood ill-health; twins; birth order; and brain damage. (SJL)

  19. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    Science.gov (United States)

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  20. Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Chateil, J.F. [Service de Radiologie A, Hopital Pellegrin, Bordeaux (France)]|[Unite de Radiopediatrie, Hopital Pellegrin, Bordeaux (France); Quesson, B.; Thiaudiere, E.; Delalande, C.; Canioni, P. [Resonance Magnetique des Systemes Biologiques, CNRS, Bordeaux (France); Brun, M.; Diard, F. [Service de Radiologie A, Hopital Pellegrin, Bordeaux (France); Sarlangue, J.; Billeaud, C. [Service de Neonatalogie, Hopital Pellegrin, Bordeaux (France)

    1999-03-01

    Objectives. Perinatal hypoxic ischaemic injury is a significant cause of neurodevelopmental impairment. The aim of this study was to evaluate localised proton magnetic resonance spectroscopy ({sup 1}H-MRS) after birth asphyxia. Materials and methods. Thirty newborn infants suspected of having perinatal asphyxia (Apgar score < 3) were studied. The mean gestational age was 37 weeks, mean age at the MR examination was 18 days and mean weight was 2.9 kg. A 1.5-T unit was used for imaging and spectroscopy. None of the babies had mechanically assisted ventilation. No sedation was used. Axial T1-weighted and T2-weighted images were obtained. {sup 1}H-MRS was recorded in a single voxel, localised in white matter, using a STEAM sequence. Results. Image quality was good in 25 of 30 babies. {sup 1}H-MRS was performed in 19 of 30 subjects, with adequate quality in 16. Choline, creatine/phosphocreatine and N-acetylaspartate peaks and peak-area ratios were analysed. Lactate was detected in four infants. The N-acetylaspartate/choline ratio was lower in infants with an impaired neurological outcome, but the difference was not statistically significant. Conclusions. This study suggests that {sup 1}H-MRS may be useful for assessing cerebral metabolism in the neonate. A raised lactate level and decreased N-acetylaspartate/choline ratio may be predictive of a poor outcome. However, in our experience this method is limited by the difficulty in performing the examination during the first hours after birth in critically ill babies, the problems related to use of a monovoxel sequence, the dispersion of the ratios and the lack of determination of the absolute concentration of the metabolites. (orig.) With 3 figs., 2 tabs., 20 refs.

  1. Correlation of behavior with brain damage after in utero exposure to toxic agents

    International Nuclear Information System (INIS)

    Norton, S.; Kimler, B.F.

    1987-01-01

    Early postnatal behaviors involving sensorimotor integration were measured along with thickness of the sensorimotor cortex in rats irradiated with 1.0 Gy on gestational day 11 or 17. Body weight and morphology of anterior pituitary cells were recorded. Irradiation on day 17 was more effective in reducing cortical thickness and body weight and performance on behavioral tests and less effective in altering pituitary cells than irradiation on day 11. Prediction of behavioral effects, using cortical layers, body weight and pituitary morphology as predictors in stepwise multiple regression, was measured in both irradiated and control rats. Cortical Layer V more than I more than IV and VI as significant predictors of behavior. The best predictions accounted for about half of the variance in the data. When behavioral data were used to predict brain damage, the best predictor was negative geotaxis. Significant association of behavior with Layers V and VI was found. These experiments show the difficulties in correlating complex behaviors with specific brain areas and, at the same time, implicate especially Layer V of the sensorimotor cortex in these behaviors

  2. Brain white matter damage in aging and cognitive ability in youth and older age☆

    Science.gov (United States)

    Valdés Hernández, Maria del C.; Booth, Tom; Murray, Catherine; Gow, Alan J.; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A.; Aribisala, Benjamin S.; Bastin, Mark E.; Starr, John M.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = −0.14, p cognitive ability, after accounting for prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging. PMID:23850341

  3. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Amin Mottahedin

    2017-07-01

    Full Text Available The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.

  4. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    Science.gov (United States)

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  5. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impedance recordings

    NARCIS (Netherlands)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment

  6. Midwifery care: a perinatal mental health case scenario.

    Science.gov (United States)

    Marnes, Joanne; Hall, Pauline

    2013-12-01

    The establishment of the National Perinatal Depression Initiative (NPDI, 2008-2013) has brought a focus across Australia for the need to identify women at risk of perinatal mental health disorders, suggesting that routine screening by relevant health professionals may aid earlier detection, better care and improved outcomes. Midwives are frequently the primary point of contact in the perinatal period and thus ideally placed to identify, interpret and manage complex situations, including screening for perinatal mental health disorders. This paper offers strategies that could be implemented into daily midwifery practice in order to achieve the goals consistent with the National Perinatal Depression Initiative. A case study (Jen) and discussion, guided by recommendations from the Australian Nursing and Midwifery Competency standards and beyondblue Clinical Practice Guidelines, are used to demonstrate how midwifery care can be provided. In accordance with her legal obligations, the midwife should act within her scope of practice to undertake a series of psychosocial and medical assessments in order to best determine how midwifery care and support can be of benefit to Jen, her infant and her family. Suggestions described include administration of validated screening questionnaires, clinical interview, physical assessment, discussion with partner, awareness of the mother-infant interactions and questioning around baby's sleep and feeding. Based on evaluation of the information gained from a bio-psycho-social assessment, suggestions are made as to the midwifery care options that could be applied. Copyright © 2013 Australian College of Midwives. All rights reserved.

  7. Communication Impairments in Patients with Right Hemisphere Damage

    Directory of Open Access Journals (Sweden)

    Abusamra, Valeria

    2009-06-01

    Full Text Available Right brain damages can manifest deficits of communicative skills, which sometimes cause an important inability.The communication impairments following a right hemisphere damage are distinct from those in aphasia and may affect discursive, lexico-semantic, pragmatic, and prosodic components of communication. It is calculated that this troubles affect almost a 50% of this patients.However, these impairments have essentially been studied separately and their possible coexistence in a same individual is still unknown. Moreover, the clinical profiles of communication impairments following a right hemisphere damage, including their correlation with underlying cognitive deficits, are still unreported. The goal of this article is to offer an overview of the verbal communication deficits that can be found in right-hemisphere-damaged individuals. These deficits can interfere, at different levels, with prosody, the semantic processing of words and discourse and pragmatic abilities. In spite of the incapability that they produce, communicational impairments in right brain damaged are usually neglected. Probably, the sub-diagnostic is due to the lack of an appropriate classification or to the absent of adequate assessment tools. In fact, patients with right brain damages might present harsh communicational deficits but perform correctly on aphasia tests because the last ones are not designed to detect this kind of deficit but left brain damaged impairments. Increasing our knowledge about the role of the right-hemisphere in verbal communication will have major theoretical and clinical impacts; it could facilitate the diagnosis of right brain patients in the clinical circle and it will help to lay the foundations to elaborate methods and strategies of intervention.

  8. Pharmacological manipulation of serotonin receptors during brain embryogenesis favours stress resiliency in female rats

    Directory of Open Access Journals (Sweden)

    Gianluca Lavanco

    2018-02-01

    Full Text Available Manipulations of the serotonin transmission during early development induce long-lasting changes in the serotonergic circuitry throughout the brain. However, little is known on the developmental consequences in the female progeny. Therefore, this study aimed at exploring the behavioural effects of pre- and postnatal stimulation of the serotonergic system by 5-methoxytryptamine in adolescent female rats on behavioural reactivity and anxiety- like phenotype. Our results show that perinatal 5- methoxythyptamine decreased total distance travelled and rearing frequency in the novel enviroment, and increased the preference for the centre of the arena in the open field test. Moreover, perinatal 5-methoxytryptamine increased the percentages of entries and time spent on the open arms of the elevated plus maze, with respect to perinatally vehicle-exposed rats. Thus, perinatal stimulation of serotonin receptors does not impair the functional response to the emotional challenges in female rats, favouring the occurrence of a stress-resilient phenotype.

  9. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    Science.gov (United States)

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  10. Introduction of a qualitative perinatal audit at Muhimbili National Hospital, Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Thomas Angela N

    2009-09-01

    Full Text Available Abstract Background Perinatal death is a devastating experience for the mother and of concern in clinical practice. Regular perinatal audit may identify suboptimal care related to perinatal deaths and thus appropriate measures for its reduction. The aim of this study was to perform a qualitative perinatal audit of intrapartum and early neonatal deaths and propose means of reducing the perinatal mortality rate (PMR. Methods From 1st August, 2007 to 31st December, 2007 we conducted an audit of perinatal deaths (n = 133 with birth weight 1500 g or more at Muhimbili National Hospital (MNH. The audit was done by three obstetricians, two external and one internal auditors. Each auditor independently evaluated the cases narratives. Suboptimal factors were identified in the antepartum, intrapartum and early neonatal period and classified into three levels of delay (community, infrastructure and health care. The contribution of each suboptimal factor to adverse perinatal outcome was identified and the case graded according to possible avoidability. Degree of agreement between auditors was assessed by the kappa coefficient. Results The PMR was 92 per 1000 total births. Suboptimal factors were identified in 80% of audited cases and half of suboptimal factors were found to be the likely cause of adverse perinatal outcome and were preventable. Poor foetal heart monitoring during labour was indirectly associated with over 40% of perinatal death. There was a poor to fair agreement between external and internal auditors. Conclusion There are significant areas of care that need improvement. Poor monitoring during labour was a major cause of avoidable perinatal mortality. This type of audit was a good starting point for quality assurance at MNH. Regular perinatal audits to identify avoidable causes of perinatal deaths with feed back to the staff may be a useful strategy to reduce perinatal mortality.

  11. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  12. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  13. Neuroprotection of lamotrigine on hypoxic-ischemic brain damage in neonatal rats: Relations to administration time and doses

    Directory of Open Access Journals (Sweden)

    Yong-Hong Yi

    2008-06-01

    Full Text Available Yong-Hong Yi1, Wen-Chao Guo1, Wei-Wen Sun1, Tao Su1, Han Lin1, Sheng-Qiang Chen1, Wen-Yi Deng1, Wei Zhou2, Wei-Ping Liao11Department of Neurology, Institute of Neurosciences and the Second Affiliated Hospital, 2Department of Neonatology, Affiliated Guangzhou Children’s Hospital, Guangzhou Medical College, Guangzhou, Guangdong Province, P.R. ChinaAbstract: Lamotrigine (LTG, an antiepileptic drug, has been shown to be able to improve cerebral ischemic damage by limiting the presynaptic release of glutamate. The present study investigated further the neuroprotective effect of LTG on hypoxic-ischemic brain damage (HIBD in neonatal rats and its relations to administration time and doses. The HIBD model was produced in 7-days old SD rats by left common carotid artery ligation followed by 2 h hypoxic exposure (8% oxygen. LTG was administered intraperitoneally with the doses of 5, 10, 20, and 40 mg/kg 3 h after operation and the dose of 20 mg/kg 1 h before and 3 h, 6 h after operation. Blood and brain were sampled 24 h after operation. Nissl staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL, and neuron-specific enolase (NSE immunohistochemical staining were used for morphological studies. Water content in left cortex and NSE concentration in serum were determined. LTG significantly reduced water content in the cerebral cortex, as well as the number of TUNEL staining neurons in the dentate gyrus and cortex in hypoxic-ischemia (HI model. Furthermore, LTG significantly decreased the NSE level in serum and increased the number of NSE staining neurons in the cortex. These effects, except that on water content, were dose-dependent and were more remarkable in the pre-treated group than in the post-treated groups. These results demonstrate that LTG may have a neuroprotective effect on acute HIBD in neonates. The effect is more prominent when administrated with higher doses and before HI.Keywords: hypoxic-ischemic brain

  14. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  15. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    Science.gov (United States)

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  16. Perinatal outcomes among Asian-white interracial couples.

    Science.gov (United States)

    Nystrom, Michael J; Caughey, Aaron B; Lyell, Deirdre J; Druzin, Maurice L; El-Sayed, Yasser Y

    2008-10-01

    To investigate whether perinatal outcomes among interracial Asian-white couples are different than among Asian-Asian and white-white couples. This was a retrospective study of Asian, white, and Asian-white couples delivered at the Lucile Packard Children's Hospital from 2000-2005. Asian-white couples were subdivided into white-mother/Asian-father or Asian-mother/white-father. Perinatal outcomes included gestational diabetes, hypertensive disorders of pregnancy, preterm delivery, birth weight >4000 g and interracial Asian-white couples.

  17. Perinatal Chicken Pox (Varicella Zoster Virus Infection

    Directory of Open Access Journals (Sweden)

    Ali Annagur

    2013-04-01

    Full Text Available Chickenpox is due to infection with the varicella zoster virus (VZV, a human alphaherpervirus found worldwide. Classically, the cinical disease is a febrile illness with a pruritic vesicular rash. Maternal chickenpox between 5 days before delivery to 2 days after delivery (perinatal varicella can cause severe and even fatal illness in the newborn. A 7-day old girl baby presented on day 4 of postnatal with the complaints of widespread vesicular rash and non-suckling. Mother of the baby also had a similar eruption four day prior to delivery, which was clinically characteristic of varicella. Considering history and clinical presentation, a diagnosis of perinatal chickenpox was considered and the baby was treated with acyclovir which she responded and recovered. Herein, the clinical feasures and treatment of chickenpox infection in the perinatal period have been emphasized with this case report. [Cukurova Med J 2013; 38(2.000: 311-314

  18. Prevalence and factors influencing perinatal mortality in rural mysore, India.

    Science.gov (United States)

    Siddalingappa, Hugara; Murthy M R, Nrayana; Kulkarni, Praveen; N C, Ashok

    2013-12-01

    With decreasing Infant Mortality Rate, Perinatal Mortality is gaining importance as it takes into consideration most of the factors influencing child birth and its survival, mortality during this period is a better indicator of quality of Maternal and Child Health services. To estimate the Prevalence of perinatal mortality and its associated risk factors. Cross sectional community based study was carried out in rural field practice area catering 26,700 population. All births during 2010 among permanent residents of this area were included. House to house survey was conducted to collect details regarding Antenatal, intra-natal and post-natal history by interviewing mother using a pre-tested questionnaire. Hospital records were also referred when available. Nine perinatal deaths had occurred out of 314 births in a span of one year with a perinatal, early neonatal mortality rates of 28.93, 19.29 per 1000 live births respectively and still birth rate of 9.55 per 100 total births. Higher Perinatal Mortality Rate(PNMR) was observed in mothers who got married before 18 years, conceived during teenage, having anaemia, delivered at home, normal vaginal deliveries and having suffered by intra-partal and placental complications. Male babies, babies fed with prelacteal feeds, born out of intra-uterine complications, having low birth weight, had delayed first cry, premature births and twin births showed higher risk for mortality. The prevalence of perinatal mortality in the present study was 28.93 per 1000 live births. Even though this was well below the national and state values indicating improved quality of Maternal and Child Health care, it also gives way for relooking into strategies for further bringing down the perinatal deaths.

  19. Maternal and fetal determinants of perinatal transmission of HIV ...

    African Journals Online (AJOL)

    All effort should be geared toward identifying those positive and minimized or modify risks factors through behavior change, prompt initiation of treatment and prophylaxis for those found positive with a view to reduce the incidence of perinatal transmission. Key Words: perinatal transmission, HIV, maternal, fetal determinants, ...

  20. Perinatal Western Diet Consumption Leads to Profound Plasticity and GABAergic Phenotype Changes within Hypothalamus and Reward Pathway from Birth to Sexual Maturity in Rat

    Directory of Open Access Journals (Sweden)

    Julie Paradis

    2017-08-01

    Full Text Available Perinatal maternal consumption of energy dense food increases the risk of obesity in children. This is associated with an overconsumption of palatable food that is consumed for its hedonic property. The underlying mechanism that links perinatal maternal diet and offspring preference for fat is still poorly understood. In this study, we aim at studying the influence of maternal high-fat/high-sugar diet feeding [western diet (WD] during gestation and lactation on the reward pathways controlling feeding in the rat offspring from birth to sexual maturity. We performed a longitudinal follow-up of WD and Control offspring at three critical time periods (childhood, adolescence, and adulthood and focus on investigating the influence of perinatal exposure to palatable diet on (i fat preference, (ii gene expression profile, and (iii neuroanatomical/architectural changes of the mesolimbic dopaminergic networks. We showed that WD feeding restricted to the perinatal period has a clear long-lasting influence on the organization of homeostatic and hedonic brain circuits but not on fat preference. We demonstrated a period specific evolution of the preference for fat that we correlated with specific brain molecular signatures. In offspring from WD fed dams, we observed during childhood the existence of fat preference associated with a higher expression of key gene involved in the dopamine (DA systems; at adolescence, a high-fat preference for both groups, progressively reduced during the 3 days test for the WD group and associated with a reduced expression of key gene involved in the DA systems for the WD group that could suggest a compensatory mechanism to protect them from further high-fat exposure; and finally at adulthood, a preference for fat that was identical to control rats but associated with profound modification in key genes involved in the γ-aminobutyric acid network, serotonin receptors, and polysialic acid–NCAM-dependent remodeling of the

  1. CEREBRAL CORTEX DAMAGE INDUCED BY ACUTE ORAL ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... This study examines alcohol-induced cerebral cortex damage and the association with oxidative ... alcohol has profound effects on the function ... Chronic use of ..... Alcohol induced brain damage and liver damage in young.

  2. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Stephan A.; O' Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V. [Hammersmith Hospital Campus, Imaging Sciences Department, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London (United Kingdom); Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P. [MRC Clinical Sciences Centre, Clinical Research Facility, London (United Kingdom); Hammersmith Hospital, Lipid Clinic, London (United Kingdom)

    2007-11-15

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 {+-} 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 {+-} 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 {+-} 4.2 vs. 4.5 {+-} 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  3. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Schmitz, Stephan A.; O'Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V.; Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P.

    2007-01-01

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 ± 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 ± 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 ± 4.2 vs. 4.5 ± 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  4. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    Science.gov (United States)

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  5. Perinatal Asphyxia: A Review from a Metabolomics Perspective

    Directory of Open Access Journals (Sweden)

    Claudia Fattuoni

    2015-04-01

    Full Text Available Perinatal asphyxia is defined as an oxygen deprivation that occurs around the time of birth, and may be caused by several perinatal events. This medical condition affects some four million neonates worldwide per year, causing the death of one million subjects. In most cases, infants successfully recover from hypoxia episodes; however, some patients may develop HIE, leading to permanent neurological conditions or impairment of different organs and systems. Given its multifactor dependency, the timing, severity and outcome of this disease, mainly assessed through Sarnat staging, are of difficult evaluation. Moreover, although the latest newborn resuscitation guideline suggests the use of a 21% oxygen concentration or room air, such an approach is still under debate. Therefore, the pathological mechanism is still not clear and a golden standard treatment has yet to be defined. In this context, metabolomics, a new discipline that has described important perinatal issues over the last years, proved to be a useful tool for the monitoring, the assessment, and the identification of potential biomarkers associated with asphyxia events. This review covers metabolomics research on perinatal asphyxia condition, examining in detail the studies reported both on animal and human models.

  6. The value of incorporating avoidable factors into perinatal audits ...

    African Journals Online (AJOL)

    Objective. To assess whether incorporating a system of identifying, classifying and grading avoidable factors into a perinatal audit can be useful in identifying problem areas. Design. Descriptive study. Setting. Black urban population, Pretoria, South Africa. Subjects. All perinatal deaths of infants weighing more than 1 000 g ...

  7. Perinatal outcomes of pregnancies conceived by assisted reproductive technologies

    Directory of Open Access Journals (Sweden)

    Šljivančanin Tamara

    2015-01-01

    Full Text Available Introduction. Recent epidemiological studies showed significantly higher incidence of perinatal complications in newborns and women after the use of assisted reproductive technologies (ART. Multiple pregnancies are more frequent after the use of ART. Singleton pregnancies following ART are more prone to preterm birth, low and very low birth weight (LBW and VLBW, small for gestational age (SGA and perinatal mortality. Objective. The aim of this study was to summarize the results of relevant articles and to evaluate whether the mode of conception is the determining factor for different pregnancy outcomes after assisted and natural conceptions. Methods. Eleven studies were included in this review. The following outcomes were observed: preterm and very preterm birth, SGA, LBW, VLBW, perinatal mortality, admission to neonatal intensive care unit (NICU, and Apgar score (As ≤7 at fifth minute. Qualitative analysis and quantitative assessment were performed. Results. For singletons, odds ratios were 1.794 (95% confidence interval 1.660-1.939 for preterm birth, 1.649 (1.301-2.089 for LBW, 1.265 (1.048-1.527 for SGA. Admission to NICU, As≤7 at fifth minute and perinatal mortality showed significantly different frequency after assisted conception. Summary of results for twin gestations showed no significant difference between ART and spontaneous conception for preterm birth (32-36 weeks, very preterm birth (<32 weeks, LBW and VLBW. Conclusion. Analyzed studies showed that infants from ART have significantly worse perinatal outcome compared with natural conception. More observational studies should be conducted in order to establish the exact mechanism leading to more frequent perinatal morbidity and mortality after the use of ART.

  8. Genetic and perinatal effects of abused substances

    Energy Technology Data Exchange (ETDEWEB)

    Brande, M.C.; Zimmerman, A.M.

    1987-01-01

    This book provides an overview of the effects of several abused drugs, including opiates, cannabinoids, alcohol, nicotine, and cocaine, with special emphasis on the actions of these substances at the molecular and cellular levels. The first half deals with genetic effects, including molecular genetics, biochemical genetics, pharmacogenetics, cytogenetics, and genetic toxicity. The second half focuses on perinatal effects and covers: drug abuse during pregnancy; biochemical aspects of marihuana on male reproduction; and long-term behavioral and neuroendocrine effects of perinatal alcohol exposure.

  9. Impact of prenatal antimicrobial treatment on fetal brain damage due to autogenous fecal peritonitis in Wistar rats: A Histomorphometric Study

    Directory of Open Access Journals (Sweden)

    Neylane Gadelha

    2017-10-01

    Full Text Available Purpose: To investigate brain neuronal density in newborn rats whose mothers were subjected to fecal peritonitis and compare findings between rats born to mothers treated and not treated with antimicrobials. Methods: Peritonitis was induced with a 10% fecal suspension (4mL/kg in 2 pregnant rats. Of these, 1 received antimicrobial treatment 24 hours after peritonitis induction: moxifloxacin and dexamethasone plus 2 mL of the inner bark of the Schinus terebinthifolius raddi extract. One pregnant rat underwent no intervention and served as a control. Results: The newborn brains of rats born to mothers with fecal peritonitis were significantly smaller and of less firm consistency. Brain neuronal density was lower in the untreated group than in the control and treated groups (P<0.01. Conclusions: Untreated peritonitis caused brain damage in the offspring, which was averted by effective early antimicrobial treatment. This approach may provide an early avenue for translation of such therapy in humans. Keywords: peritonitis, brain injuries, rats

  10. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    Science.gov (United States)

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  11. Perinatal-lethal Gaucher disease presenting as hydrops fetalis.

    Science.gov (United States)

    BenHamida, Emira; Ayadi, Imene; Ouertani, Ines; Chammem, Maroua; Bezzine, Ahlem; BenTmime, Riadh; Attia, Leila; Mrad, Ridha; Marrakchi, Zahra

    2015-01-01

    Perinatal-lethal Gaucher disease is very rare and is considered a variant of type 2 Gaucher disease that occurs in the neonatal period. The most distinct features of perinatal-lethal Gaucher disease are non-immune hydrops fetalis. Less common signs of the disease are hepatosplenomegaly, ichthyosis and arthrogryposis. We report a case of Gaucher's disease (type 2) diagnosed in a newborn who presented with Hydrops Fetalis.

  12. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke

    OpenAIRE

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L.; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L.; Vexler, Zinaida S.

    2016-01-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral arter...

  13. Preterm birth and cerebral palsy. Predictive value of pregnancy complications, mode of delivery, and Apgar scores

    DEFF Research Database (Denmark)

    Topp, Monica Wedell; Langhoff-Roos, J; Uldall, P

    1997-01-01

    BACKGROUND: Preterm infants are at 8 times higher risk than term infants for pre- and perinatal brain damage, resulting in cerebral palsy. In this paper we have analysed the influence of prenatal and birth-related risk factors on cerebral palsy in preterm infants. METHODS: In a register-based stu...

  14. The long-term psychiatric and medical prognosis of perinatal mental illness.

    Science.gov (United States)

    Meltzer-Brody, Samantha; Stuebe, Alison

    2014-01-01

    The perinatal period provides an important window into a woman's long-term health. Perinatal mental illness is a common condition conferring potential serious long-term psychiatric and medical consequences for the mother and family. It is known that childbirth acts as a powerful trigger for depressive episodes in some women, and that women with histories of a mood disorder are particularly vulnerable. Some evidence links perinatal mental illness with obstetrical complications and reduced lactation initiation and duration. Therefore, perinatal mental illness may be a marker for long-term risk, and may contribute directly to subsequent cardiometabolic disease through both neuroendocrine mechanisms and the effects of mental illness on health behaviours. In clinical practice, these associations underscore the importance of screening and treating women with perinatal mental illness to ensure best possible long-term outcomes. Early screening and treatment may both mitigate the primary disease process and reduce the risk of comorbid medical conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Perinatal Depression – the Fourth Inflammatory Morbidity of Pregnancy? Theory and Literature Review

    Science.gov (United States)

    Osborne, Lauren M.; Monk, Catherine

    2015-01-01

    Perinatal depression is one of the leading causes of maternal morbidity and mortality. The biological etiology of this disorder remains in question, despite considerable research into the contributions of hormonal imbalance, the role of monoamines, and dysregulation of the HPA axis. Because inflammation is known to be associated with major depression in men and non-perinatal women as well as with other important morbidities of pregnancy (such as preeclampsia, preterm birth, and gestational diabetes), and because these morbidities may correlate with perinatal depression, inflammation may be a common physiological pathway that can also help explain perinatal depression. In this paper, we review the theoretical background of inflammation in perinatal depression and then review the literature concerning immune and inflammatory factors in the etiology and course of perinatal depression. We close with recommendations for future studies in this still relatively unexplored area. Identification and understanding of a common pathophysiology between other pregnancy morbidities and perinatal depression would link physical and mental well-being, likely leading to better treatment and prevention. PMID:23608136

  16. Perinatal outcomes in 375 children born after oocyte donation

    DEFF Research Database (Denmark)

    Malchau, Sara S; Loft, Anne; Larsen, Elisabeth C

    2013-01-01

    To describe perinatal outcomes in children born after oocyte donation (OD) compared with in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and spontaneous conception (SC).......To describe perinatal outcomes in children born after oocyte donation (OD) compared with in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and spontaneous conception (SC)....

  17. A current landscape of provincial perinatal data collection in Canada.

    Science.gov (United States)

    Massey, Kiran A; Magee, Laura A; Dale, Sheryll; Claydon, Jennifer; Morris, Tara J; von Dadelszen, Peter; Liston, Robert M; Ansermino, J Mark

    2009-03-01

    The Canadian Perinatal Network (CPN) was launched in 2005 as a national perinatal database project designed to identify best practices in maternity care. The inaugural project of CPN is focused on interventions that optimize maternal and perinatal outcomes in women with threatened preterm birth at 22+0 to 28+6 weeks' gestation. To examine existing data collection by perinatal health programs (PHPs) to inform decisions about shared data collection and CPN database construction. We reviewed the database manuals and websites of all Canadian PHPs and compiled a list of data fields and their definitions. We compared these fields and definitions with those of CPN and the Canadian Minimal Dataset, proposed as a common dataset by the Canadian Perinatal Programs Coalition of Canadian PHPs. PHPs collect information on 2/3 of deliveries in Canada. PHPs consistently collect information on maternal demographics (including both maternal and neonatal personal identifiers), past obstetrical history, maternal lifestyle, aspects of labour and delivery, and basic neonatal outcomes. However, most PHPs collect insufficient data to enable identification of obstetric (and neonatal) practices associated with improved maternal and perinatal outcomes. In addition, there is between-PHP variability in defining many data fields. Construction of a separate CPN database was needed although harmonization of data field definitions with those of the proposed Canadian Minimal Dataset was done to plan for future shared data collection. This convergence should be the goal of researchers and clinicians alike as we construct a common language for electronic health records.

  18. Repair of neonatal brain injury : bringing stem cell-based therapy into clinical practice

    NARCIS (Netherlands)

    Wagenaar, Nienke; Nijboer, Cora H.; van Bel, Frank

    2017-01-01

    Hypoxic-ischaemic brain injury is one of most important causes of neonatal mortality and long-term neurological morbidity in infants born at term. At present, only hypothermia in infants with perinatal hypoxic-ischaemic encephalopathy has shown benefit as a neuroprotective strategy. Otherwise,

  19. Total perinatally related losses at Tygerberg Hospital – a ...

    African Journals Online (AJOL)

    Objective. To determine the leading causes of perinatal deaths and to evaluate any changes, with the inclusion of placental histology. Method. At perinatal mortality meetings, primary and final causes of death were assigned for the period 1 July 2006 - 30 June 2007. All singleton babies born to women residing in the ...

  20. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  1. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  2. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    Science.gov (United States)

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  3. Perinatal management and long-term cardiac outcome in fetal arrhythmia

    NARCIS (Netherlands)

    Hahurij, N.D.; Blom, N.A.; Lopriore, E.; Aziz, M.I.; Nagel, H.T.; Rozendaal, L.; Vandenbussche, F.P.H.A.

    2011-01-01

    BACKGROUND: cardiac arrhythmias are commonly observed in the fetus, however, may have major consequences for fetal development and post natal life. AIMS: to evaluate the perinatal management and cardiac outcome of fetuses with tachy- or bradyarrhythmia. STUDY DESIGN: perinatal management, outcome

  4. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  5. Neurodevelopmental retardation, as assessed clinically and with magnetoencephalography and electroencephalography, associated with perinatal dioxin exposure.

    Science.gov (United States)

    Ten Tusscher, G W; Leijs, M M; de Boer, L C C; Legler, J; Olie, K; Spekreijse, H; van Dijk, B W; Vulsma, T; Briët, J; Ilsen, A; Koppe, J G

    2014-09-01

    In 1980s Western Europe, human perinatal exposure to background levels of dioxins was rather high. We therefore evaluated the neurodevelopment of our cohort during the prepubertal period and in adolescence. At prepubertal age (7-12 years) 41 children were tested. Both neuromotor functioning and psychological testing were performed (Dutch version of the Wechsler Intelligence Scale for Children (WISC-R) and the Dutch version of the Child Behavior Checklist for ages 4-18 years (CBCL 4-18) and the Teacher Report Form (TRF)). Neurophysiological tests were performed using magnetoencephalography and electroencephalography. In adolescence (14-18 years) the behavior of 33 children was studied again (CBCL and TRF). And the levels of dioxins and dioxin-like PCBs (dl-PCBs) were measured in serum. At prepubertal age no association was found between perinatal dioxin exposure and verbal, performal and total IQ or with the Touwen's test for neuromotor development. There were behavioral problems associated with both prenatal and postnatal dioxin exposure. In adolescence there were problems associated with the current dioxin levels and dioxin-like-PCBs. Neurophysiological tests revealed clear negative dysfunction. An increase in latency time after a motion stimulus (N2b) of 13 ms (= a delay of 10%) is associated with the higher prenatal dioxin exposure. A similar delay was measured in testing cognitive ability by analyzing the odd ball measurements, N200 and P300, together with an amplitude decrease of 12 %. The delay is indicative of a defective myelinisation and the decrease in amplitude of a loss of neurons. We found effects on behavior in association with the perinatal dioxin exposure and in adolescence in association with the current dioxin levels. Neurophysiological testing is instrumental in the detection of effects of perinatal background levels of chemicals on brain development in normal, healthy children. The clinical, neurological and psychological tests commonly used are

  6. Perinatal mental health service provision in Switzerland and in the UK.

    Science.gov (United States)

    Amiel Castro, Rita T; Schroeder, Katrin; Pinard, Claudia; Blöchlinger, Patricia; Künzli, Hansjörg; Riecher-Rössler, Anita; Kammerer, Martin

    2015-01-01

    The epidemiology of maternal perinatal-psychiatric disorders as well as their effect on the baby is well recognised. Increasingly well researched specialised treatment methods can reduce maternal morbidity, positively affect mother-baby bonding and empower women's confidence as a mother. Here, we aimed to compare guidelines and the structure of perinatal-psychiatric service delivery in the United Kingdom and in Switzerland from the government's perspective. Swiss cantons provided information regarding guidelines and structure of service delivery in 2000. A subsequent survey using the same questionnaire was carried out in 2007. In the UK, similar information was accessed through published reports from 2000-2012. Guidelines for perinatal psychiatry exist in the UK, whereas in Switzerland in 2000 none of the 26 cantons had guidelines, and in 2007 only one canton did. Joint mother-baby admissions on general psychiatric wards were offered by 92% of the Swiss cantons. In the UK, pregnant women and joint mother-baby admissions are only advised onto specialised perinatal-psychiatric units. In Switzerland, in 2007, three specialised units (max. 24 beds) were in place corresponding to 1 unit per 2.5 million people, while in the UK there were 22 mother-baby units (168 beds) in 2012 (1 unit per 2.8 million). In the UK, less than 50% of trusts provided specialised perinatal-psychiatric health care. The main difference between the UK and Switzerland was the absence of guidelines, regular assessment and plans for future development of perinatal psychiatry in Switzerland. There are still geographical differences in the provision of perinatal-psychiatric services in the UK.

  7. Pragmatic and executive functions in traumatic brain injury and right brain damage: An exploratory comparative study

    Directory of Open Access Journals (Sweden)

    Nicolle Zimmermann

    Full Text Available Abstract Objective: To describe the frequency of pragmatic and executive deficits in right brain damaged (RBD and in traumatic brain injury (TBI patients, and to verify possible dissociations between pragmatic and executive functions in these two groups. Methods: The sample comprised 7 cases of TBI and 7 cases of RBD. All participants were assessed by means of tasks from the Montreal Communication Evaluation Battery and executive functions tests including the Trail Making Test, Hayling Test, Wisconsin Card Sorting Test, semantic and phonemic verbal fluency tasks, and working memory tasks from the Brazilian Brief Neuropsychological Assessment Battery NEUPSILIN. Z-score was calculated and a descriptive analysis of frequency of deficits (Z< -1.5 was carried out. Results: RBD patients presented with deficits predominantly on conversational and narrative discursive tasks, while TBI patients showed a wider spread pattern of pragmatic deficits. Regarding EF, RBD deficits included predominantly working memory and verbal initiation impairment. On the other hand, TBI individuals again exhibited a general profile of executive dysfunction, affecting mainly working memory, initiation, inhibition, planning and switching. Pragmatic and executive deficits were generally associated upon comparisons of RBD patients and TBI cases, except for two simple dissociations: two post-TBI cases showed executive deficits in the absence of pragmatic deficits. Discussion: Pragmatic and executive deficits can be very frequent following TBI or vascular RBD. There seems to be an association between these abilities, indicating that although they can co-occur, a cause-consequence relationship cannot be the only hypothesis.

  8. Evaluation of acute radiation damage of the human brain by 1H-MRS

    International Nuclear Information System (INIS)

    Matsushima, Shigeru; Kinosada, Yasutomi.

    1993-01-01

    Fourteen patients (17 cases) were treated with the whole brain irradiation. Physiological changes in white matter were measured by in vivo 1 H magnetic resonance spectroscopy ( 1 H-MRS). Phantom examination proved the accuracy of our 1 H-MRS method to be valid. The measurement was performed 2 or 3 times in each case at the radiation doses ranging from 0 to 40 Gy with 2 Gy daily fractionation. For the measurement of 1 H-MRS, 1.5 T whole body MR system was used and stimulated echo acquisition mode (STEAM) with chemical shift selective (CHESS) pulse was applied. Volume of the interest (VOI) was 2.5x2.5x2.5 cm 3 , and the repetition time and echo time were 2000 ms and 272 ms, respectively. Acute radiation damage of the brain was evaluated by the change of peak area ratio (PAR) of choline, creatine and N-acetyl aspartate (NAA). 1 H-MRS spectra before irradiation were different from those observed during irradiation. There were statistically significant (p 1 H-MRS is a powerful modality, detecting the subtle physiological change which is difficult to evaluate with conventional images. (author)

  9. Prenatal and perinatal risk factors and the clinical implications on autism spectrum disorder.

    Science.gov (United States)

    Chien, Yi-Ling; Chou, Miao-Chun; Chou, Wen-Jiun; Wu, Yu-Yu; Tsai, Wen-Che; Chiu, Yen-Nan; Gau, Susan Shur-Fen

    2018-06-01

    Prenatal and perinatal factors may increase the risk of autism spectrum disorder. However, little is known about whether unaffected siblings of probands with autism spectrum disorder also share the phenomenon and whether the prenatal/perinatal factors are related to the clinical severity of autistic symptoms. We compared the frequency of prenatal and perinatal factors among 323 probands with autism spectrum disorder (mean age ± standard deviation, 10.7 ± 3.5 years; males, 91.0%), 257 unaffected siblings (11.7 ± 4.5; 42.8%), and 1504 typically developing controls (8.9 ± 1.6 years; 53.1%); and investigated their effects on the severity of autistic symptoms. We found that probands with autism spectrum disorder and their unaffected siblings had more prenatal/perinatal events than typically developing controls with higher numbers of prenatal/perinatal factors in probands than in unaffected siblings. The prenatal/perinatal events were associated with greater stereotyped behaviors, social-emotional problems, socio-communication deficits, and overall severity. We also found that six prenatal/perinatal factors (i.e. preeclampsia, polyhydramnios, oligoamnios, placenta previa, umbilical cord knot, and gestational diabetes) were associated with the severity of autistic symptoms, particularly stereotyped behaviors and socio-communication deficits. Our findings suggest that prenatal and perinatal factors may potentially moderate the clinical expression of autism spectrum disorder. The underlying mechanism warrants further research.

  10. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  11. Impacts of online and group perinatal education: a mixed methods study protocol for the optimization of perinatal health services.

    Science.gov (United States)

    Roch, Geneviève; Borgès Da Silva, Roxane; de Montigny, Francine; Witteman, Holly O; Pierce, Tamarha; Semenic, Sonia; Poissant, Julie; Parent, André-Anne; White, Deena; Chaillet, Nils; Dubois, Carl-Ardy; Ouimet, Mathieu; Lapointe, Geneviève; Turcotte, Stéphane; Prud'homme, Alexandre; Painchaud Guérard, Geneviève; Gagnon, Marie-Pierre

    2018-05-29

    Prenatal education is a core component of perinatal care and services provided by health institutions. Whereas group prenatal education is the most common educational model, some health institutions have opted to implement online prenatal education to address accessibility issues as well as the evolving needs of future parents. Various studies have shown that prenatal education can be effective in acquisition of knowledge on labour and delivery, reducing psychological distress and maximising father's involvement. However, these results may depend on educational material, organization, format and content. Furthermore, the effectiveness of online prenatal education compared to group prenatal education remains unclear in the literature. This project aims to evaluate the impacts of group prenatal education and online prenatal education on health determinants and users' health status, as well as on networks of perinatal educational services maintained with community-based partners. This multipronged mixed methods study uses a collaborative research approach to integrate and mobilize knowledge throughout the process. It consists of: 1) a prospective cohort study with quantitative data collection and qualitative interviews with future and new parents; and 2) a multiple case study integrating documentary sources and interviews with stakeholders involved in the implementation of perinatal information service networks and collaborations with community partners. Perinatal health indicators and determinants will be compared between prenatal education groups (group prenatal education and online prenatal education) and standard care without these prenatal education services (control group). This study will provide knowledge about the impact of online prenatal education as a new technological service delivery model compared to traditional group prenatal education. Indicators related to the complementarity of these interventions and those available in community settings will

  12. Piano training in youths with hand motor impairments after damage to the developing brain

    Directory of Open Access Journals (Sweden)

    Lampe R

    2015-08-01

    Full Text Available Renée Lampe,1,* Anna Thienel,2 Jürgen Mitternacht,1 Tobias Blumenstein,1 Varvara Turova,1 Ana Alves-Pinto1,* 1Research Unit for Paediatric Neuroorthopaedics and Cerebral Palsy, Orthopaedics Department, Klinikum Rechts der Isar, Technische Universität München, 2Department Sonderpädagogik, Ludwig Maximilians-Universität München, Munich, Germany *These authors contributed equally to this work Abstract: Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. Keywords: manual skill, cerebral palsy, neurodevelopmental disorder, music, rehabilitation

  13. Early oestrogens in shaping reproductive networks: evidence for a potential organisational role of oestradiol in female brain development.

    Science.gov (United States)

    Bakker, J; Brock, O

    2010-07-01

    A central tenet of contemporary theories on mammalian brain and behavioural sexual differentiation is that an organisational action of testosterone, secreted by the male's testes, controls male-typical aspects of brain and behavioural development, whereas no active perinatal sex hormone signalling is required for female-typical sexual differentiation. Furthermore, the available evidence suggests that many, although not all, of the perinatal organisational actions of testosterone on the development of the male brain result from the cellular effects of oestradiol formed via neural aromatisation of testosterone. However, a default developmental programme for the female brain has been criticised. Indeed, we review new results obtained in aromatase knockout mice indicating that oestradiol actively contributes to the differentiation of female-typical aspects of brain and behavioural sexual differentiation. Furthermore, we propose that male-typical neural and behavioural differentiation occurs prenatally in genetic males under the influence of oestradiol, which is avoided in foetal genetic females by the neuroprotective actions of alpha-fetoprotein, whereas female-typical neural and behavioural differentiation normally occurs postnatally in genetic females under the influence of oestradiol that is presumably produced by the ovaries.

  14. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study.

    Science.gov (United States)

    Ding, Yun-Hong; Mrizek, Michael; Lai, Qin; Wu, Yimin; Reyes, Raul; Li, Jie; Davis, William W; Ding, Yuchuan

    2006-11-01

    Exercise reduces ischemia and reperfusion injury in rat stroke models. We investigated whether gradual increases in tumor necrosis factor-alpha (TNF-alpha) reported during exercise down-regulates expression of TNF-alpha receptors I and II (TNFRI and II) in stroke, leading to reduced brain damage. Adult male Sprague Dawley rats were subjected to 30 minutes of exercise on a treadmill each day for 3 weeks. Then, stroke was induced by a 2-hour middle cerebral artery (MCA) occlusion using an intra-luminal filament. Expressions of TNFRI and II mRNA in the brain were detected using a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Protein expressions of TNFRI and II were determined by enzyme-linked immunoabsorbant assay (ELISA) in serum and brain homogenates. Spatial distribution of TNF-alpha receptors in brain regions was determined with immunocytochemistry. In human umbilical vein endothelial cells (HUVEC), we addressed the causal effect of TNF-alpha pretreatment on TNF I and II expression using ELISA and real-time PCR. In exercised rats after stroke, brain infarct was significantly (p<0.01) reduced in the entire MCA supplied regions, associated with a mild expression of TNFRI and II mRNA and protein. The TNF-alpha receptors were restricted to the ischemic core. In contrast, a robust expression of TNFRI and II molecules was found in non-exercised rats subjected to similar ischemia/reperfusion insults. An in vitro study revealed a causal link between TNF-alpha pretreatment and reduced cellular expression of TNF-alpha receptors under hypoxic/reoxygenated conditions. Our results suggest that reduced-brain damage in ischemic rats after exercise preconditioning may be attributable to the reduced expression of TNF-alpha receptors. Chronically increased TNF-alpha expression was also found to reduce TNFI and II responding to acute ischemia/reperfusion insult.

  15. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  16. Prevalence of Cerebral Palsy in Children (Under Five) in and ...

    African Journals Online (AJOL)

    Cerebral palsy (CP) is a non-progressive disorder of posture and movement due to brain damage/insult/lesion before birth, during delivery or in the perinatal period. It is a neurological disorder of childhood with significant medico-social implications. A retrospective hospital based cross sectional study was conducted to ...

  17. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Jones, H M; Hitchcock, R; Adams, N; Thompson, R J [Addenbrooke' s Hospital, Cambridge (UK)

    1980-09-20

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 ..mu..g/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients.

  18. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    International Nuclear Information System (INIS)

    Phillips, J.P.; Jones, H.M.; Hitchcock, R.; Adams, N.; Thompson, R.J.

    1980-01-01

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 μg/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients. (author)

  19. Estudo do sonograma do ducto venoso em fetos com centralização hemodinâmica: avaliação de repercussões perinatais Study of ductus venosus in fetuses with brain sparing reflex: evaluation of perinatal outcomes

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Nassar de Carvalho

    2006-04-01

    Full Text Available OBJETIVO: avaliar a associação da relação sístole ventricular/atrial (S/A do ducto venoso (DV com resultados perinatais em fetos prematuros com centralização de fluxo à dopplervelocimetria. MÉTODOS: o estudo foi delineado como um estudo observacional, transversal, com os dados colhidos de forma prospectiva. A relação S/A do DV foi estudada em 41 fetos centralizados com idade gestacional (IG entre 25 e 33ª semana completa, no período de novembro de 2002 a julho de 2005. Os recém-nascidos foram acompanhados até o 28º dia pós-parto na UTI da Clínica Perinatal Laranjeiras, buscando-se complicações neonatais. A população de estudo foi dividida em dois grupos a partir do resultado do DV. Foram incluídos no grupo normal os fetos com relação S/A menor ou igual a 3,6 e no grupo alterado aqueles com valores de S/A maiores que 3,6. A comparação entre os grupos foi realizada com os testes estatísticos de Mann-Whitney, chi2 e exato de Fisher. Todos os resultados foram considerados estatisticamente significativos se p3,6. Não houve diferença significativa entre os grupos quanto à IG ao nascimento e Apgar PURPOSE: to evaluate the relationship between S/A ratio in ductus venosus (DV and perinatal outcomes in fetuses with brain sparing reflex. METHODS: the study was designed as an observational, sectional study with prospectively collected data. Forty-one fetuses with brain sparing reflex and gestational age between 25 and 33 weeks were studied between November 2002 and July 2005. The newborns were observed during the neonatal period in the intensive care unit of "Clínica Perinatal Laranjeiras" in order to find adverse outcomes. The study population was divided into two groups according to DV assessment. In the normal group all the fetuses with S/A ratio values of 3.6 or less were included, and in the abnormal group the fetuses with values of S/A ratio greater than 3.6. The statistical analysis was performed by the Mann-Whitney U

  20. Depression in perinatally HIV-infected pregnant women compared to non-perinatally HIV-infected and HIV-uninfected pregnant women.

    Science.gov (United States)

    Angrand, Ruth C; Sperling, Rhoda; Roccobono, Kinga; Osborne, Lauren M; Jao, Jennifer

    2018-05-18

    "Depression (as noted in chart by a physician)" was compared between HIV infected pregnant women and controls. Perinatally HIV-infected (PHIV), non-perinatally HIV-infected (NPHIV), and HIV-uninfected (HIV-U) pregnant women were all compared using a logistic regression model. Overall, HIV-infected women had higher rates of depression than HIV-U, with PHIV women demonstrating a clinically and statistically significant increased risk compared to HIV-U women [adjusted OR: 15.9, 95% CI = 1.8-143.8]. Future studies in larger populations are warranted to confirm these findings and further elucidate mental health outcomes of PHIV and NPHIV pregnant women.

  1. Building Perinatal Case Manager Capacity Using Quality Improvement

    OpenAIRE

    Fitzgerald, Elaine

    2015-01-01

    Improving breastfeeding rates among Black women is a potential strategy to address disparities in health outcomes that disproportionately impact Black women and children. This quality improvement (QI) initiative aimed to improve perinatal case manager knowledge and self-efficacy to promote breastfeeding among Black, low-income women who use services through Boston Healthy Start Initiative. QI methodology was used to develop and test a two-part strategy for perinatal case managers to promote a...

  2. Perinatal outcome of preterm cesarean section in a resource-limited ...

    African Journals Online (AJOL)

    Background: The relationship between perinatal outcome and anesthetic technique for preterm cesarean sections has not been explored in South Eastern, Nigeria. Objective: The objective of the following study is to evaluate perinatal outcome in preterm cesarean sections conducted under general anesthesia (GA) and ...

  3. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Xi Lei

    Full Text Available OBJECTIVES: To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. METHODS: Female Sprague-Dawley rats (n = 3 each group were treated with or without an n-3 PUFAs (fish oil enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7 were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control. The 5-bromodeoxyuridine (Brdu was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9, respectively. RESULTS: Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. CONCLUSION: Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working

  4. Análisis del comportamiento de la mortalidad materna y perinatal

    Directory of Open Access Journals (Sweden)

    Angélica Uribe-Meneses

    2011-12-01

    Full Text Available Este estudio se orientó a identificar las causas, calcular la tasa y caracterizar los casos de mortalidad materna y perinatal en la Empresa Social del Estado Hospital Regional Noroccidental del departamento Norte de Santander, entre los años 2006 a 2009. La investigación es de carácter cuantitativo, descriptivo, con enfoque retrospectivo. Se emplearon los siguientes instrumentos para la recolección de información: Ficha SIVIGILA de notificación mortalidad materno perinatal del Instituto Nacional de Salud, encuesta de visita de campo del protocolo para la vigilancia de la mortalidad materno-perinatal del Instituto Nacional de Salud, historias clínicas de cada uno de los casos objeto de estudio. La población es tomada del total de muertes maternas y perinatales de procedencia de la Empresa Social del Estado Hospital Regional Noroccidental del departamento Norte de Santander, la muestra está representada en el 100% de los de casos de mortalidad materna y perinatal de la ESE, que en total son 65 casos, 7 de mortalidad materna y 58 de mortalidad perinatal. Entre las causas identificadas como más prevalentes para la mortalidad materna fueron la eclampsia y/ pre-eclampsia, y la causa de mortalidad perinatal fue el síndrome de dificultad respiratoria, la tasa más alta de mortalidad materna la presentó el municipio del Carmen con 1.49 y convención con 1.41 por 10.000 MEF y la tasa de mortalidad perinatal la presentó el municipio del Carmen con una tasa de 29.65 por 1.000 nacidos vivos.

  5. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    Science.gov (United States)

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age

  6. Reading Development in Typically Developing Children and Children With Prenatal or Perinatal Brain Lesions: Differential School Year and Summer Growth.

    Science.gov (United States)

    Demir-Lira, Özlem Ece; Levine, Susan C

    2016-01-01

    Summer slide, uneven growth of academic skills over the calendar year, captures the fact that the learning gains children make over the school year do not continue at the same pace over the summer, when children are typically not in school. We compared growth of reading skills during the school year and over the summer months in children with pre-or perinatal brain lesion (PL) and typically-developing (TD) children from varying socioeconomic status (SES) backgrounds as a new way to probe the role of structured environmental support in functional plasticity for reading skills in children with PL. Results showed that children with PL performed lower than TD children on both reading decoding and reading comprehension. Group differences were primarily driven by children with larger lesions and children with right hemisphere lesions (RH). For reading comprehension, children with RH showed greater growth during the school year but more slide during the summer months than both TD children and children with left hemisphere lesions, implicating a particularly strong role of structured input in supporting reading comprehension in this group. TD children from lower SES backgrounds fell behind their TD peers from higher SES backgrounds on decoding and reading comprehension, but did not show differential patterns of school year and summer growth. Overall, results highlight the importance of considering the role of a host of factors interacting at multiple levels of analyses, including biological and environmental, in influencing developmental trajectories of typically and atypically-developing children.

  7. Does perinatal asphyxia contribute to neurological dysfunction in preterm infants?

    NARCIS (Netherlands)

    van Iersel, Patricia A. M.; Bakker, Saskia C. M.; Jonker, Arnold J. H.; Hadders-Algra, Mijna

    Background: Children born preterm are known to be at risk for neurodevelopmental disorders. The role of perinatal asphyxia in this increased risk is still a matter of debate. Aim: To analyze the contribution of perinatal asphyxia in a population of preterm infants admitted to a secondary paediatric

  8. Trends in Perinatal Care and Implications for Frontline Nurse Leaders.

    Science.gov (United States)

    Crenshaw, Jeannette T; Adams, Ellise D; Amis, Debby

    2016-01-01

    The perinatal trends presented in this article are based on recent topics from conferences, journals, the media, as well as from input from perinatal nurses. Trends in patient care are influenced by evidence known for decades, new research, emerging and innovative concepts in healthcare, patient and family preferences, and the media. Trends discussed in this article are rethinking the due date, birth outside the hospital setting, obstetric hospitalists as birth attendants, nitrous oxide for pain in childbirth, hydrotherapy and waterbirth in the hospital setting, delayed cord clamping, disrupters of an optimal infant microbiome, skin-to-skin care during cesarean surgery, and breast-sleeping and the breast-feeding dyad. In addition, the authors developed implications for perinatal nurses related to each trend. The goal is to stimulate reflection on evidence that supports or does not support current practice and to stimulate future research by discussing some of the current trends that may influence the care that perinatal nurses provide during the birthing year.

  9. ProvenCare perinatal: a model for delivering evidence/ guideline-based care for perinatal populations.

    Science.gov (United States)

    Berry, Scott A; Laam, Leslie A; Wary, Andrea A; Mateer, Harry O; Cassagnol, Hans P; McKinley, Karen E; Nolan, Ruth A

    2011-05-01

    Geisinger Health System (GHS) has applied its ProvenCare model to demonstrate that a large integrated health care delivery system, enabled by an electronic health record (EHR), could reengineer a complicated clinical process, reduce unwarranted variation, and provide evidence-based care for patients with a specified clinical condition. In 2007 GHS began to apply the model to a more complicated, longer-term condition of "wellness"--perinatal care. ADAPTING PROVENCARE TO PERINATAL CARE: The ProvenCare Perinatal initiative was more complex than the five previous ProvenCare endeavors in terms of breadth, scope, and duration. Each of the 22 sites created a process flow map to depict the current, real-time process at each location. The local practice site providers-physicians and mid-level practitioners-reached consensus on 103 unique best practice measures (BPMs), which would be tracked for every patient. These maps were then used to create a single standardized pathway that included the BPMs but also preserved some unique care offerings that reflected the needs of the local context. A nine-phase methodology, expanded from the previous six-phase model, was implemented on schedule. Pre- to postimplementation improvement occurred for all seven BPMs or BPM bundles that were considered the most clinically relevant, with five statistically significant. In addition, the rate of primary cesarean sections decreased by 32%, and birth trauma remained unchanged as the number of vaginal births increased. Preliminary experience suggests that integrating evidence/guideline-based best practices into work flows in inpatient and outpatient settings can achieve improvements in daily patient care processes and outcomes.

  10. Action plan to reduce perinatal mortality.

    Science.gov (United States)

    Bhakoo, O N; Kumar, R

    1990-01-01

    The government of India has set a goal of reducing perinatal mortality from its current rate of 48/1000 to 30-35/1000 by the year 2000. Perinatal deaths result from maternal malnutrition, inadequate prenatal care, complications of delivery, and infections in the postpartum period. Since reductions in perinatal mortality require attention to social, economic, and behavioral factors, as well as improvements in the health care delivery system, a comprehensive strategy is required. Social measures, such as raising the age at marriage to 18 years for females, improving the nutritional status of adolescent girls, reducing the strenuousness of work during pregnancy, improving female literacy, raising women's status in the society and thus in the family, and poverty alleviation programs, would all help eliminate the extent of complications of pregnancy. Measures required to enhance infant survival include improved prenatal care, prenatal tetanus toxoid immunization, use of sterile disposable cord care kits, the provision of mucus extractors and resuscitation materials to birth attendants, the creation of neonatal care units in health facilities, and more efficient referral of high-risk newborns and mothers. Since 90% of births in rural India take place at home priority must be given to training traditional birth attendants in the identification of high risk factors during pregnancy, delivery, and the newborn period.

  11. Psychosocial impact of perinatal loss among Muslim women

    Directory of Open Access Journals (Sweden)

    Sutan Rosnah

    2012-06-01

    Full Text Available Abstract Background Women of reproductive age are vulnerable to psychosocial problems, but these have remained largely unexplored in Muslim women in developing countries. The aim of this study was to explore and describe psychosocial impact and social support following perinatal loss among Muslim women. Methods A qualitative study was conducted in a specialist centre among Muslim mothers who had experienced perinatal loss. Purposive sampling to achieve maximum variation among Muslims in relation to age, parity and previous perinatal death was used. Data was collected by focus group discussion and in-depth unstructured interview until the saturation point met. Sixteen mothers who had recent perinatal loss of wanted pregnancy, had received antenatal follow up from public or private health clinics, and had delivery in our centre participated for the study. All of them had experienced psychological difficulties including feelings of confusion, emptiness and anxiety over facing another pregnancy. Results Two out of sixteen showed anger and one felt guilt. They reported experiencing a lack of communication and privacy in the hospital during the period of grief. Family members and friends play an important role in providing support. The majority agreed that the decision makers were husbands and families instead of themselves. The respondents felt that repetitive reminder of whatever happened was a test from God improved their sense of self-worth. They appreciated this reminder especially when it came from husband, family or friends closed to them. Conclusion Muslim mothers who had experienced perinatal loss showed some level of adverse psychosocial impact which affected their feelings. Husbands and family members were the main decision makers for Muslim women. Health care providers should provide psychosocial support during antenatal, delivery and postnatal care. On-going support involving husband should be available where needed.

  12. Perinatal Outcome in Patients With Pre-Eclampsia in Benin City ...

    African Journals Online (AJOL)

    Objective: To determine the prevalence of pre-eclampsia and examine its influence on perinatal outcome among Nigerian women. Methods: Among 3780 deliveries over a two-and-half year period, 212 singleton infants were born after preeclamptic pregnancies. We compared the perinatal outcome with those of 636 control ...

  13. Risk factors and prognostic models for perinatal asphyxia at term

    NARCIS (Netherlands)

    Ensing, S.

    2015-01-01

    This thesis will focus on the risk factors and prognostic models for adverse perinatal outcome at term, with a special focus on perinatal asphyxia and obstetric interventions during labor to reduce adverse pregnancy outcomes. For the majority of the studies in this thesis we were allowed to use data

  14. Peer supporters' experiences on an Australian perinatal mental health helpline.

    Science.gov (United States)

    Biggs, Laura J; McLachlan, Helen L; Shafiei, Touran; Small, Rhonda; Forster, Della A

    2018-01-16

    Perinatal mental health is an important public health issue, and peer support is a potentially important strategy for emotional well-being in the perinatal period. PANDA Perinatal Anxiety & Depression Australia provides support to individuals impacted by perinatal mental health issues via the National Perinatal Anxiety & Depression Helpline. Callers receive peer support from volunteers and counselling from paid professional staff. The views and experiences of PANDA peer support volunteers have not previously been studied. We conducted two focus groups and an online survey to explore the experiences of women providing volunteer peer support on the Helpline. Data collection took place in October and November 2013. Two social theories were used in framing and addressing the study aims and in interpreting our findings: the Empathy-Altruism Hypothesis, and the Helper Therapy Principle. All PANDA volunteers were invited to participate (n = 40). Eight volunteers attended a focus group, and 11 survey responses were received. Descriptive statistics were used to analyse quantitative data. All survey respondents 'strongly agreed' that they felt positive about being part of PANDA. Thematic analysis of data from focus groups and open-ended survey responses identified the following themes: motivated to help others, supported to support callers, helping to make a difference and emotional impacts for volunteers. Respondents described a strong desire to support others experiencing emotional distress as a motivator to volunteer. Although perinatal peer support services are designed to benefit those who receive support, this study suggests volunteers may also experience personal benefits from the role. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The relationship between emotion regulation capacity, heart rate variability, and quality of life in individuals with alcohol-related brain damage

    Directory of Open Access Journals (Sweden)

    Steinmetz JP

    2016-08-01

    Full Text Available Jean-Paul Steinmetz,1,2 Claus Vögele,3,4 Christiane Theisen-Flies,5 Carine Federspiel,1,2 Stefan Sütterlin6,7 1Department of Research and Development, ZithaSenior, 2Centre for Memory and Mobility, ZithaSenior, 3Institute for Health and Behaviour, Integrative Research Unit on Social and Individual Development (INSIDE, University of Luxembourg, Luxembourg; 4Research Group Health Psychology, University of Leuven, Leuven, Belgium; 5Home St Joseph, ZithaSenior, Luxembourg; 6Department of Psychology, Lillehammer University College, Lillehammer, 7Division of Surgery and Clinical Neuroscience, Department of Psychosomatic Medicine, Oslo University Hospital – Rikshospitalet, Oslo, Norway Abstract: The reliable measurement of quality of life (QoL presents a challenge in individuals with alcohol-related brain damage. This study investigated vagally mediated heart rate variability (vmHRV as a physiological predictor of QoL. Self- and proxy ratings of QoL and dysexecutive symptoms were collected once, while vmHRV was repeatedly assessed over a 3-week period at weekly intervals in a sample of nine alcohol-related brain damaged patients. We provide robustness checks, bootstrapped correlations with confidence intervals, and standard errors for mean scores. We observed low to very low heart rate variability scores in our patients in comparison to norm values found in healthy populations. Proxy ratings of the QoL scale “subjective physical and mental performance” and everyday executive dysfunctions were strongly related to vmHRV. Better proxy-rated QoL and fewer dysexecutive symptoms were observed in those patients with higher vmHRV. Overall, patients showed low parasympathetic activation favoring the occurrence of dysfunctional emotion regulation strategies. Keywords: heart rate variability, emotion regulation, alcohol-related brain damage, quality of life

  16. The effect of perinatal 60Co gamma radiation on brain weight in beagles

    International Nuclear Information System (INIS)

    Hamilton, B.F.; Benjamin, S.A.; Angleton, G.M.; Lee, A.C.

    1989-01-01

    Beagle dogs were given single, whole-body 60 Co gamma-radiation exposures at one of three prenatal (8, 28, or 55 days postcoitus) or three postnatal (2, 70, or 365 days postpartum) ages to evaluate the relative radiosensitivity of various stages of brain development. A total of 387 dogs received mean doses ranging from 0.16 to 3.83 Gy, and 120 dogs were sham-irradiated. Groups of dogs were sacrificed at preselected times from 70 days to 11 years of age. Brain weight decreased significantly with increasing dose in dogs irradiated at 28 or 55 days postcoitus or at 2 days postpartum. Irradiations at 28 days postcoitus were dramatically more effective in causing a reduction in brain weight than those at 55 days postcoitus or 2 days postpartum. Among dogs given 1.0 Gy or more and followed for up to 4 years, there was a radiation effect evident at all three sensitive exposure ages. Among dogs given lower doses and followed for up to 11 years, there was a significant decrease in brain weight in dogs given 0.80-0.88 Gy at 28 days postcoitus. All decreases in brain weight were present after normalization for radiation-induced reductions in skeletal (body) size. No specific morphologic changes were noted in the brains which showed the radiation-related reductions in size

  17. The effectiveness of regionalization of perinatal care services--a systematic review.

    Science.gov (United States)

    Rashidian, A; Omidvari, A H; Vali, Y; Mortaz, S; Yousefi-Nooraie, R; Jafari, M; Bhutta, Z A

    2014-10-01

    Several reports recommend the implementation of perinatal regionalization for improvements in maternal and neonatal outcomes, while research evidence on the effectiveness of perinatal regionalization has been limited. The interventional studies have been assessed for robust evidence on the effectiveness of perinatal regionalization on improving maternal and neonatal health outcomes. Bibliographic databases of Medline, EMbase, EconLit, HMIC have been searched using sensitive search terms for interventional studies that reported important patient or process outcomes. At least two authors assessed eligibility for inclusion and the risk of biases and extracted data from the included studies. As meta-analysis was not possible, a narrative analysis as well as a 'vote-counting' analysis has been conducted for important outcomes. After initial screenings 53 full text papers were retrieved. Eight studies were included in the review from the USA, Canada and France. Studies varied in their designs, and in the specifications of the intervention and setting. Only three interrupted time series studies had a low risk of bias, of which only one study reported significant reductions in neonatal and infant mortality. Studies of higher risk of bias were more likely to report improvements in outcomes. Implementing perinatal regionalization programs is correlated with improvements in perinatal outcomes, but it is not possible to establish a causal link. Despite several high profile policy statements, evidence of effect is weak. It is necessary to assess the effectiveness of perinatal regionalization using robust research designs in a more diverse range of countries.

  18. Duration and numerical estimation in right brain-damaged patients with and without neglect: Lack of support for a mental time line.

    Science.gov (United States)

    Masson, Nicolas; Pesenti, Mauro; Dormal, Valérie

    2016-08-01

    Previous studies have shown that left neglect patients are impaired when they have to orient their attention leftward relative to a standard in numerical comparison tasks. This finding has been accounted for by the idea that numerical magnitudes are represented along a spatial continuum oriented from left to right with small magnitudes on the left and large magnitudes on the right. Similarly, it has been proposed that duration could be represented along a mental time line that shares the properties of the number continuum. By comparing directly duration and numerosity processing, this study investigates whether or not the performance of neglect patients supports the hypothesis of a mental time line. Twenty-two right brain-damaged patients (11 with and 11 without left neglect), as well as 11 age-matched healthy controls, had to judge whether a single dot presented visually lasted shorter or longer than 500 ms and whether a sequence of flashed dots was smaller or larger than 5. Digit spans were also assessed to measure verbal working memory capacities. In duration comparison, no spatial-duration bias was found in neglect patients. Moreover, a significant correlation between verbal working memory and duration performance was observed in right brain-damaged patients, irrespective of the presence or absence of neglect. In numerical comparison, only neglect patients showed an enhanced distance effect for numerical magnitude smaller than the standard. These results do not support the hypothesis of the existence of a mental continuum oriented from left to right for duration. We discuss an alternative account to explain the duration impairment observed in right brain-damaged patients. © 2015 The British Psychological Society.

  19. Neurometabolite Alterations Associated With Cognitive Performance in Perinatally HIV-Infected Children

    NARCIS (Netherlands)

    van Dalen, Yvonne W.; Blokhuis, Charlotte; Cohen, Sophie; ter Stege, Jacqueline A.; Teunissen, Charlotte E.; Kuhle, Jens; Kootstra, Neeltje A.; Scherpbier, Henriette J.; Kuijpers, Taco W.; Reiss, Peter; Majoie, Charles B. L. M.; Caan, Matthan W. A.; Pajkrt, Dasja

    2016-01-01

    Despite treatment with combination antiretroviral therapy (cART), cognitive impairment is still observed in perinatally HIV-infected children. We aimed to evaluate potential underlying cerebral injury by comparing neurometabolite levels between perinatally HIV-infected children and healthy controls.

  20. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  1. Management of renal dysfunction following term perinatal hypoxia-ischaemia.

    LENUS (Irish Health Repository)

    Sweetman, Deirdre U

    2013-03-01

    Acute kidney injury frequently develops following the term perinatal hypoxia-ischaemia. Quantifying the degree of acute kidney injury is difficult, however, as the methods currently in use are suboptimal. Acute kidney injury management is largely supportive with little evidence basis for many interventions. This review discusses management strategies and novel biomarkers that may improve diagnosis and management of renal injury following perinatal hypoxia-ischaemia.

  2. Substandard factors in perinatal care in The Netherlands : a regional audit of perinatal deaths

    NARCIS (Netherlands)

    Wolleswinkel-van den Bosch, JH; Vredevoogd, CB; Borkent-Polet, M; van Eyck, J; Fetter, WPF; Lagro-Janssen, TLM; Rosink, IH; Treffers, PE; Amelink, M; Richardus, JH; Verloove-Vanhorick, P; Mackenbach, JP

    Background. To determine: 1) whether substandard factors were present in cases of perinatal death, and to what extent another course of action might have resulted in a better outcome, and 2) whether there were differences in the frequency of substandard factors by level of care, particularly between

  3. Factors associated with and causes of perinatal mortality in northeastern Tanzania

    DEFF Research Database (Denmark)

    Schmiegelow, Christentze; Minja, Daniel; Oesterholt, Mayke

    2012-01-01

    , including preeclampsia, small-for-gestational age, preterm delivery, anemia, and health-seeking behavior. Fetal growth was monitored using ultrasound. Finally, the specific causes of the perinatal deaths were evaluated. Main outcome measure. Perinatal mortality. Results. Forty-six deaths occurred. Key...... to the antenatal care program (adjusted OR 0.027, 95%CI 0.003-0.26, p = 0.002) protected against perinatal mortality. The cause of death in 43% of cases was attributed to complications related to labor and specifically to intrapartum asphyxia (30%) and neonatal infection (13%). Among the remaining deaths, 27% (7....../26) were attributed to preeclampsia and 23% (6/26) to small-for-gestational age. Of these, 54% (14/26) were preterm. Conclusions. Preeclampsia, small-for-gestational age and preterm delivery were key risk factors and causes of perinatal mortality in this area of Tanzania. Maternal anemia was also strongly...

  4. Kinesthetic deficits after perinatal stroke: robotic measurement in hemiparetic children.

    Science.gov (United States)

    Kuczynski, Andrea M; Semrau, Jennifer A; Kirton, Adam; Dukelow, Sean P

    2017-02-15

    While sensory dysfunction is common in children with hemiparetic cerebral palsy (CP) secondary to perinatal stroke, it is an understudied contributor to disability with limited objective measurement tools. Robotic technology offers the potential to objectively measure complex sensorimotor function but has been understudied in perinatal stroke. The present study aimed to quantify kinesthetic deficits in hemiparetic children with perinatal stroke and determine their association with clinical function. Case-control study. Participants were 6-19 years of age. Stroke participants had MRI confirmed unilateral perinatal arterial ischemic stroke or periventricular venous infarction, and symptomatic hemiparetic cerebral palsy. Participants completed a robotic assessment of upper extremity kinesthesia using a robotic exoskeleton (KINARM). Four kinesthetic parameters (response latency, initial direction error, peak speed ratio, and path length ratio) and their variabilities were measured with and without vision. Robotic outcomes were compared across stroke groups and controls and to clinical measures of sensorimotor function. Forty-three stroke participants (23 arterial, 20 venous, median age 12 years, 42% female) were compared to 106 healthy controls. Stroke cases displayed significantly impaired kinesthesia that remained when vision was restored. Kinesthesia was more impaired in arterial versus venous lesions and correlated with clinical measures. Robotic assessment of kinesthesia is feasible in children with perinatal stroke. Kinesthetic impairment is common and associated with stroke type. Failure to correct with vision suggests sensory network dysfunction.

  5. Ureaplasma-associated prenatal, perinatal, and neonatal morbidities.

    Science.gov (United States)

    Silwedel, Christine; Speer, Christian P; Glaser, Kirsten

    2017-11-01

    Ureaplasma species (spp.) have been acknowledged as major causative pathogens in chorioamnionitis and prematurity, but may also contribute to key morbidities in preterm infants. Several epidemiological and experimental data indicate an association of neonatal Ureaplasma colonization and/or infection with bronchopulmonary dysplasia. Furthermore, a potential causal relation with other inflammation-induced morbidities, such as intraventricular hemorrhage, white matter injury, necrotizing enterocolitis, and retinopathy of prematurity, has been debated. Areas covered: This review will summarize current knowledge on the role of Ureaplasma spp. in prenatal, perinatal, and neonatal morbidities, while furthermore examining mutual underlying mechanisms. We try to elaborate who is at particular risk of Ureaplasma-induced inflammation and subsequent secondary morbidities. Expert commentary: Most likely by complex interactions with immunological processes, Ureaplasma spp. can induce pro-inflammation, but may also downregulate the immune system. Tissue damage, possibly causing the above mentioned complications, is likely to result from both ways: either directly cytokine-associated, or due to a higher host vulnerability to secondary impact factors. These events are very likely to begin in prenatal stages, with the most immature preterm infants being most susceptible and at highest risk.

  6. Dietary sodium and potassium intake were associated with hypertension, kidney damage and adverse perinatal outcome in pregnant women with preeclampsia.

    Science.gov (United States)

    Yılmaz, Zehra Vural; Akkaş, Elif; Türkmen, Gülenay Gençosmanoğlu; Kara, Özgür; Yücel, Aykan; Uygur, Dilek

    2017-02-01

    In this study, we hypothesized that dietary salt and potassium intake may be related with blood pressure, kidney damage and perinatal outcome in pregnants with preeclampsia (PE). In total, 200 women (50 control women with healthy pregnancy, 150 women with PE) were recruited for the study. Daily salt and potassium intake was estimated based on calculation of 24-hour urinary sodium U[Na+] and potassium U[K+] excretion. U[Na+]/[K+] was calculated by dividing U[Na+] by U[K+]. At the end of the measurements, the pregnant women with PE (n=150) were divided into tertiles according to U[Na+]/[K+]: low Na/K group (n=50, mean U[Na+]/[K+]: 1,04±0,32), medium Na/K group (n=50, mean U[Na+]/[K+]: 2,49± 0,54), high Na/K group (n=50, mean U[Na+]/[K+]: 6,62±3,41). The mean SBP and DBP levels were significantly lower in low Na/K group compared with medium or high Na/K groups (p=0.024, p=0.0002; respectively). Serum creatinine was significantly lower in low Na/K group than high Na/K group (p=0.025). Frequency of severe preeclampsia is lower in low Na/K group than medium or high Na/K groups (p=0.002, p=0.0001; respectively). Birth weight and gestational age at birth were higher in low Na/K group compared with high Na/K group (p=0.045, p=0.0002; respectively). After adjusting for covariates, SBP and DBP and creatinine levels were independently associated with 24 hours urinary [Na+]/[K+] Conclusion: These findings suggest that pregnant with PE with high dietary salt and low potassium intake may have greater maternal and neonatal morbidity risk than pregnant with PE under low dietary salt and high potassium intake.

  7. Perinatal Programming of Asthma: The Role of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Meghan B. Azad

    2012-01-01

    Full Text Available Perinatal programming, a dominant theory for the origins of cardiovascular disease, proposes that environmental stimuli influence developmental pathways during critical periods of prenatal and postnatal development, inducing permanent changes in metabolism. In this paper, we present evidence for the perinatal programming of asthma via the intestinal microbiome. While epigenetic mechanisms continue to provide new explanations for the programming hypothesis of asthma development, it is increasingly apparent that the intestinal microbiota plays an independent and potentially interactive role. Commensal gut bacteria are essential to immune system development, and exposures disrupting the infant gut microbiota have been linked to asthma. This paper summarizes the recent findings that implicate caesarean delivery, breastfeeding, perinatal stress, probiotics, and antibiotics as modifiers of infant gut microbiota in the development of asthma.

  8. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  9. Modified egg as a nutritional supplement during peak brain development: a new target for fortification.

    Science.gov (United States)

    Shapira, Niva

    2009-01-01

    Though eggs have the unique capacity, like breastmilk, to concentrate essential nutrients required for early growth and brain development of offspring - i.e. n-3 PUFA, increasingly deficient and sources contaminated - cholesterol and allergy concerns often exclude them from perinatal recommendations. Egg's potential contribution of key nutrients required for peak brain development are re-evaluated vis-à-vis fortification, accessibility, and risks. Contributions of standard (USDA) and fortified (selected market-available) egg compositions to perinatal requirements for critical brain-supporting nutrients were compared to human and cow milks, and risks and recommendations evaluated. Standard egg has already higher concentrations/kcal of iron, selenium, zinc, choline, vitamins B12 and E, and essential amino acids (plus taurine) than human milk. Fortified egg could further yield significant n-3 PUFA % recommendations for pregnancy-lactation (total n-3 69.6-75.0% [DRI=1400-1300 mg/day]), including DHA (120.1-129.3%, mostly approximately 80% [calculated DRI=140-130 mg/day]), plus antioxidant vitamins A (9.0-15.2%) and E (51.6-65.3%), and minerals iodine (33.6-44.5%) and selenium (33.7-39.3%); % recommendations for children (1-3 y) even more. Cholesterol, important for nerve membranes and learning, may not be generally contraindicated in childbearing-aged women (approximately 10.5% hypercholesterolemia), and early-life egg exposure may increase tolerance. Egg-inclusive perinatal nutrition programs have shown significant contributions. Eggs, especially target-fortified, may provide a unique nutritional supplement for peak brain development continously during pregnancy, nursing, and infancy (from 6 months), especially vs. insufficiencies. Missing nutritional opportunities by egg exclusion vs. concerns of hypercholesterolemia or allergy could be addressed individually, rather than as general recommendations, warranting further research and targeted egg design.

  10. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  11. Nursing diagnosis of grieving: content validity in perinatal loss situations.

    Science.gov (United States)

    Paloma-Castro, Olga; Romero-Sánchez, José Manuel; Paramio-Cuevas, Juan Carlos; Pastor-Montero, Sonia María; Castro-Yuste, Cristina; Frandsen, Anna J; Albar-Marín, María Jesús; Bas-Sarmiento, Pilar; Moreno-Corral, Luis Javier

    2014-06-01

    To validate the content of the NANDA-I nursing diagnosis of grieving in situations of perinatal loss. Using the Fehring's model, 208 Spanish experts were asked to assess the adequacy of the defining characteristics and other manifestations identified in the literature for cases of perinatal loss. The content validity index was 0.867. Twelve of the 18 defining characteristics were validated, seven as major and five as minor. From the manifestations proposed, "empty inside" was considered as major. The nursing diagnosis of grieving fits in content to the cases of perinatal loss according to experts. The results have provided evidence to support the use of the diagnosis in care plans for said clinical situation. © 2013 NANDA International.

  12. Characteristics that perinatal nurse managers desire in new nurse hires.

    Science.gov (United States)

    Falls, Emily; Hensel, Desiree

    2012-04-01

    Nursing leaders have proposed that nurses must have the Quality and Safety Education for Nurses (QSEN) competencies to work in complex health care systems. Using the QSEN framework, this study explored what characteristics perinatal nurse managers desired most in new nurses. This study used a survey design and a convenience sample of perinatal nurse managers working in Indiana hospitals (N = 46). Managers were more likely to hire nurses with experience, positive references, and excellent attendance. Of the QSEN competencies, managers looked most for teamwork and collaboration, followed by safety and patient-centered care. In addition to the traditional qualities desired in new nurses, the QSEN competencies are gaining importance among perinatal managers. Copyright 2012, SLACK Incorporated.

  13. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  14. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  15. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    Science.gov (United States)

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (pmemory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  16. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  17. The Immune System and the Role of Inflammation in Perinatal Depression.

    Science.gov (United States)

    Leff-Gelman, Philippe; Mancilla-Herrera, Ismael; Flores-Ramos, Mónica; Cruz-Fuentes, Carlos; Reyes-Grajeda, Juan Pablo; García-Cuétara, María Del Pilar; Bugnot-Pérez, Marielle Danitza; Pulido-Ascencio, David Ellioth

    2016-08-01

    Major depression during pregnancy is a common psychiatric disorder that arises from a complex and multifactorial etiology. Psychosocial stress, sex, hormones, and genetic vulnerability increase the risk for triggering mood disorders. Microglia and toll-like receptor 4 play a crucial role in triggering wide and varied stress-induced responses mediated through activation of the inflammasome; this leads to the secretion of inflammatory cytokines, increased serotonin metabolism, and reduction of neurotransmitter availability along with hypothalamic-pituitary-adrenal axis hyperactivity. Dysregulation of this intricate neuroimmune communication network during pregnancy modifies the maternal milieu, enhancing the emergence of depressive symptoms and negative obstetric and neuropsychiatric outcomes. Although several studies have clearly demonstrated the role of the innate immune system in major depression, it is still unclear how the placenta, the brain, and the monoaminergic and neuroendocrine systems interact during perinatal depression. Thus, in the present review we describe the cellular and molecular interactions between these systems in major depression during pregnancy, proposing that the same stress-related mechanisms involved in the activation of the NLRP3 inflammasome in microglia and peripheral myeloid cells in depressed patients operate in a similar fashion in the neuroimmune placenta during perinatal depression. Thus, activation of Toll-like receptor 2 and 4 signaling and the NLRP3 inflammasome in placental immune cells may promote a shift of the Th1/Th2 bias towards a predominant Th1/Th17 inflammatory response, associated with increased secretion of pro-inflammatory cytokines, among other secreted autocrine and paracrine mediators, which play a crucial role in triggering and/or exacerbating depressive symptoms during pregnancy.

  18. Social and cultural factors associated with perinatal grief in Chhattisgarh, India.

    Science.gov (United States)

    Roberts, Lisa R; Montgomery, Susanne; Lee, Jerry W; Anderson, Barbara A

    2012-06-01

    Stillbirth is a globally significant public health problem with many medical causes. There are also indirect causal pathways including social and cultural factors which are particularly salient in India's traditional society. The purpose of this study was to explore women's perceptions of stillbirth and to determine how issues of gender and power, social support, coping efforts, and religious beliefs influence perinatal grief outcomes among poor women in rural Chhattisgarh, India. Structured interviews were done face-to-face in 21 randomly selected villages among women of reproductive age (N=355) who had experienced stillbirth (n=178) and compared to those who had not (n=177), in the Christian Hospital, Mungeli catchment area. Perinatal grief was significantly higher among women with a history of stillbirth. Greater perinatal grief was associated with lack of support, maternal agreement with social norms, and younger maternal age. These predictors must be understood in light of an additional finding-distorted sex ratios, which reflect gender discrimination in the context of Indian society. The findings of this study will allow the development of a culturally appropriate health education program which should be designed to increase social support and address social norms, thereby reducing psychological distress to prevent complicated perinatal grief. Perinatal grief is a significant social burden which impacts the health women.

  19. Eating disorders and trauma history in women with perinatal depression.

    Science.gov (United States)

    Meltzer-Brody, Samantha; Zerwas, Stephanie; Leserman, Jane; Holle, Ann Von; Regis, Taylor; Bulik, Cynthia

    2011-06-01

    Although the prevalence of perinatal depression (depression occurring during pregnancy and postpartum) is 10%, little is known about psychiatric comorbidity in these women. We examined the prevalence of comorbid eating disorders (ED) and trauma history in women with perinatal depression. A research questionnaire was administered to 158 consecutive patients seen in a perinatal psychiatry clinic during pregnancy (n=99) or postpartum (n=59). Measures included Structured Clinical Interview for DSM (SCID) IV-based questions for lifetime eating psychopathology and assessments of comorbid psychiatric illness including the State/Trait Anxiety Inventory (STAI), Patient Health Questionnaire (PHQ-9), Edinburgh Postnatal Depression Scale (EPDS), and Trauma Inventory. In this cohort, 37.1% reported a putative lifetime ED history; 10.1% reported anorexia nervosa (AN), 10.1% reported bulimia nervosa (BN), 10.1% reported ED not otherwise specified-purging subtype (EDNOS-P), and 7.0% reported binge eating disorder (BED). Women with BN reported more severe depression (EPDS score, 19.1, standard deviation [SD 4.3], p=0.02; PHQ-severity 14.5, SD 7.4, p=0.02) than the referent group of women with perinatal depression and no ED history (EPDS 13.3, SD=6.1; PHQ 9.0, SD=6.2). Women with AN were more likely to report sexual trauma history than the referent group (62.5% vs. 29.3%, pdepression and histories of physical and sexual trauma. Screening for histories of eating psychopathology is important in women with perinatal depression.

  20. Different critical perinatal periods and hypothalamic sites of oestradiol action in the defeminisation of luteinising hormone surge and lordosis capacity in the rat.

    Science.gov (United States)

    Sakakibara, M; Deura, C; Minabe, S; Iwata, Y; Uenoyama, Y; Maeda, K-I; Tsukamura, H

    2013-03-01

    Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the critical period for defeminising the mechanism regulating the GnRH/LH surge. Animals given perinatal treatments, such as steroidal manipulations, brain local implantation of oestradiol (E(2) ) or administration of an NMDA antagonist, were examined for their ability to show an E(2) -induced LH surge at adulthood. Lordosis behaviour was examined to compare the mechanisms defeminising the GnRH/LH surge and sexual behaviour. A single s.c. oestradiol-benzoate administration on either the day before birth (E21), the day of birth (D0) or day 5 (D5) postpartum completely abolished the E(2) -induced LH surge at adulthood in female rats, although the same treatment did not inhibit lordosis. Perinatal castration on E21 or D0 partially rescued the E2-induced LH surge in genetically male rats, whereas castration from E21 to D5 totally rescued lordosis. Neonatal E(2) implantation in the anterior hypothalamus including the anteroventral periventricular nucleus (AVPV)/preoptic area (POA) abolished the E(2) -induced LH surge in female rats, whereas E(2) implantation in the mid and posterior hypothalamic regions had no inhibitory effect on the LH surge. Lordosis was not affected by neonatal E(2) implantation in any hypothalamic regions. In male rats, neonatal NMDA antagonist treatment rescued lordosis but not the LH surge. Taken together, these results suggest that an anterior hypothalamic region such as the AVPV/POA region is a perinatal site of oestrogen action where the GnRH/LH regulating system is defeminised to abolish the oestrogen-induced surge. The mechanism for defeminisation of the GnRH/LH surge system might be different from