Sample records for peridotite partial melts

  1. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1 (United States)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard


    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  2. Partial reactive crystallization of variable CO2-bearing siliceous MORB-eclogite-derived melt in fertile peridotite and genesis of alkalic basalts with signatures of crustal recycling (United States)

    Mallik, A.; Dasgupta, R.


    The presence of heterogeneity in the form of recycled altered oceanic crust (MORB-eclogite) has been proposed in the source of HIMU ocean island basalts (OIBs) [1]. Partial melts of recycled oceanic crust, however, are siliceous and Mg-poor and thus do not resemble the major element compositions of alkalic OIBs that are silica-poor and Mg-rich. In an upwelling heterogenous mantle, MORB-eclogite undergoes melting deeper than volatile-free peridotite, hence, andesitic partial melt derived from eclogite will react with subsolidus peridotite. We have examined the effect of such a melt-rock reaction under volatile-free conditions at 1375 °C, 3 GPa by varying the melt-rock ratio from 8 to 50 wt.% [2]. We concluded that the reacted melts reproduce certain major element characteristics of oceanic basanites, but not nephelinites. Also, the melt-rock reaction produces olivine and garnet-bearing websteritic residue. Because presence of CO2 has been invoked in the source of many HIMU ocean islands, the effect of CO2 on such a melt-rock reaction needs to be evaluated. Accordingly, we performed reaction experiments on mixtures of 25% and 33% CO2-bearing andesitic partial melt and peridotite at 1375 °C, 3 GPa by varying the dissolved CO2 content of the reacting melts from 1 to 5 wt.% (bulk CO2 from 0.25 to 1.6 wt.%) [3, this study]. Owing to melt-rock reaction, with increasing CO2 in the bulk mixture, (a) modes of olivine and cpx decrease while melt, opx and garnet increase, (b) reacted melts evolve to greater degree of Si-undersaturation (from andesite through basanite to nephelinite), (c) enhanced crystallization of garnet take place with higher CO2 in the melt, reducing alumina content of the reacted melts, and (d) CaO and MgO content of the reacted melts increase, without affecting FeO* and Na2O contents (indicating greater propensity of Ca2+ and Mg2+ over Fe2+ and Na+ to enter silicate melt as carbonate). For a given melt-MgO, the CO2-bearing reacted melts are a better

  3. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites (United States)

    Peng, Q.; Liang, Y.


    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  4. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei


    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  5. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Melting model of Hawaiian plume (United States)

    Takahashi, E.; Gao, S.


    Eclogite component entrained in ascending plume is considered to be essentially important in producing flood basalts (e.g., Columbia River basalt, Takahashi et al., 1998 EPSL), alkalic OIBs (e.g., Kogiso et al.,2003), ferro-picrites (Tuff et al.,2005) and Hawaiian shield lavas (e.g., Hauri, 1996; Takahashi & Nakajima, 2002, Sobolev et al.,2005). Size of the entrained eclogite, which controls the reaction rates with ambient peridotite, however, is very difficult to constrain using geophysical observation. Among Hawaiian shield volcanoes, Koolau is the most enriched end-member in eclogite component (Frey et al, 1994). Reconstruction of Koolau volcano based on submarine study on Nuuanu landslide (AGU Monograph vol.128, 2002, Takahashi Garcia Lipman eds.) revealed that silica-rich tholeiite appeared only at the last stage (Makapuu stage) of Koolau volcano. Chemical compositions of lavas as well as isotopes change abruptly and coherently across a horizon (Shinozaki et al. and Tanaka et al. ibid.). Based on these observation, Takahashi & Nakajima (2002 ibid) proposed that the Makapuu stage lava in Koolau volcano was supplied from a single large eclogite block. In order to study melting process in Hawaiian plume, high-pressure melting experiments were carried out under dry and hydrous conditions with layered eclogite/peridotite starting materials. Detail of our experiments will be given by Gao et al (2015 AGU). Combined previous field observation with new set of experiments, we propose that variation in SiO2 among Hawaiian tholeiites represent varying degree of wall-rock interaction between eclogite and ambient peridotite. Makapuu stage lavas in Koolau volcano represents eclogite partial melts formed at ~3 GPa with various amount of xenocrystic olivines derived from Pacific plate. In other words, we propose that "primary magma" in the melting column of Hawaiian plume ranges from basaltic andesite to ferro-picrite depending on the lithology of the source. Solidus of

  6. Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites (United States)

    Ionov, Dmitri A.; Chanefo, Ingrid; Bodinier, Jean-Louis


    Lherzolite-wehrlite (LW) series xenoliths from the quaternary Tok volcanic field in the southeastern Siberian craton are distinguished from the more common lherzolite-harzburgite (LH) series by (a) low Mg numbers (0.84-0.89) at high modal olivine (66-84%) and (b) widespread replacement of orthopyroxene (0-12%) and spinel by clinopyroxene (7-22%). The LW series peridotites are typically enriched in Ca, Fe, Mn and Ti, and depleted in Si, Ni and Cr relative to refractory LH series rocks (Mg number ≥0.89), which are metasomatised partial melting residues. Numerical modelling of Fe-Mg solid/liquid exchange during melt percolation demonstrates that LW series rocks can form by reaction of host refractory peridotites with evolved (Mg numbers 0.6-0.7), silica-undersaturated silicate melts at high melt/rock ratios, which replace orthopyroxene with clinopyroxene and decrease Mg numbers. This process is most likely related to underplating and fractionation of basaltic magma in the shallow mantle, which also produced olivine-clinopyroxene cumulates found among the Tok xenoliths.

  7. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component (United States)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.


    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.



    A. A. Karimov; M A. Gornova; V. A. Belyaev


    Evidence of melt-rock reaction between suprasubduction zone (SSZ) peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr#) in sp...

  9. The Effect of CO2 on Partial Reactive Crystallization of MORB-Eclogite-derived Basaltic Andesite in Peridotite and Generation of Silica-Undersaturated Basalts (United States)

    Mallik, A.; Dasgupta, R.


    Recycled oceanic crust (MORB-eclogite) is considered to be the dominant heterogeneity in Earth's mantle. Because MORB-eclogite is more fusible than peridotite, siliceous partial melt derived from it must react with peridotite while the latter is still in the subsolidus state. Thus, studying such reactive process is important in understanding melting dynamics of the Earth's mantle. Reaction of MORB-eclogite-derived andesitic partial melt with peridotite can produce alkalic melts by partial reactive crystallization but these melts are not as silica-undersaturated as many natural basanites, nephelinites or melititites [1]. In this study, we constrain how dissolved CO2 in a siliceous MORB-eclogite-derived partial melt affects the reaction phase equilibria involving peridotite and can produce nephelinitic melts. Here we compare experiments on CO2-free [1] and 2.6 wt.% CO2 bearing andesitic melt+lherzolite mixtures conducted at 1375 °C and 3 GPa with added melt fraction of 8-50 wt.%. In both CO2-free and CO2-bearing experiments, melt and olivine are consumed and opx and garnet are produced, with the extent of modal change for a given melt-rock ratio being greater for the CO2-bearing experiments. While the residue evolves to a garnet websterite by adding 40% of CO2-bearing melt, the residue becomes olivine-free by adding 50% of the CO2-free melt. Opx mode increases from 12 to ~55 wt.% for 0 to 40% melt addition in CO2-bearing system and 12 to ~43 wt.% for 0 to 50% melt addition in CO2-free system. Garnet mode, for a similar range of melt-rock ratio, increases from ~10 to ~15 wt.% for CO2 bearing system and to ~11 wt.% for CO2-free system. Reacted melts from 25-33% of CO2-bearing melt-added runs contain ~39 wt.% SiO2 , ~11-13 wt.% TiO2, ~9 wt.% Al2O3, ~11 wt.% FeO*, 16 wt.% MgO, 10-11 wt.% CaO, and 3 wt.% Na2O whereas experiments with a similar melt-rock ratio in a CO2-free system yield melts with 44-45 wt.% SiO2, 6-7 wt.% TiO2, 13-14 wt.% Al2O3, 10-11 wt.% FeO*, 12-13 wt

  10. A Missing Link in Understanding Mantle Wedge Melting, Higashi-akaishi Peridotite, Japan (United States)

    Till, C. B.; Carlson, R. W.; Grove, T. L.; Wallis, S.; Mizukami, T.


    The Sanbagawa subduction-type metamorphic belt in SW Japan represents the deepest exposed portion of a Mesozoic accretionary complex along the Japanese island arc. Located on the island of Shikoku, the Higashi-akaishi peridotite body is the largest ultramafic lens within the Sanbagawa belt and is dominantly composed of dunite, lherzolite and garnet clinopyroxenite, interfingered in one locality with quartz-rich eclogite. Previous work indicates the P-T history of the peridotite includes rapid prograde metamorphism with peak temperatures of 700-810°C and pressures of 2.9-3.8 GPa at approximately 110-120 Ma. Here we present major and trace element and isotopic data for samples within the Higashi-akaishi peridotite body that suggest it records subduction zone melting processes. Ultramafic samples range from 40-52 wt. % SiO2 and 21-45 wt. % MgO with olivine and clinopyroxene Mg#s as high as 0.93 and have trace element concentrations diagnostic of subduction zone processes. The quartz-rich eclogite contains 62 wt. % SiO2, 6 wt. % MgO and 13 wt. % Al2O3 and has trace element concentrations that are enriched relative to the ultramafic samples. 87Sr/86Sr (.703237-.704288), 143Nd/144Nd (ɛNd=+2-6) and Pb isotopic compositions are within the range of Japanese arc rocks. 187Os/188Os values range from typical mantle values (0.123-0.129), to slightly elevated (0.133) in one peridotite with an unusually low Os content, to a high of 0.145 in the quartz-rich eclogite. The presence of garnet porphyroblasts that enclose primary euhedral chlorite, together with the chemical evidence, suggest these samples are associated with mantle melting in the presence of H2O near their peak P-T conditions and may represent both residues and trapped melts within a paleo-mantle wedge. The peak P-T conditions of these rocks are also similar to the solidus conditions of H2O-saturated fertile mantle based on experimental determinations. Thus the Higashi-akaishi peridotite may be a real world analog

  11. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite (United States)

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.


    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  12. Uranium-thorium disequilibria and partitioning on melting of garnet peridotite

    International Nuclear Information System (INIS)

    Beattie, P.


    The abundances of isotopes in the 238 U decay series can be used as both tracers and chronometers of magmatic processes. In the subsolidus asthenosphere, the activity of each daughter isotope (defined as the product of its concentration and decay constant, and denoted by parentheses) is assumed to be equal to that of its parent. By contrast, ( 230 Th/ 238 U) is greater than unity in most recent mid-ocean-ridge and ocean-island basalts, implying that thorium is more incompatible (that is, it is partitioned into the melt phase more strongly) than uranium. Melting of spinel peridotite cannot produce the ( 230 Th) excesses, because measured partition coefficients for pyroxenes and olivine demonstrate that uranium is more incompatible than thorium for this rock. Here I report garnet-melt partitioning data which show that for this mineral-melt pair thorium does behave more incompatibility than uranium, thus supporting the suggestion that mid-ocean-ridge basalts (MORB) are produced by melting initiated at depths where garnet is stable. Using these data, I show that the observed ( 230 Th/ 238 U) ratios of MORB and most ocean-island basalts can be explained by slow, near-fractional melting initiated in the garnet stability field. (author)


    Directory of Open Access Journals (Sweden)

    A. A. Karimov


    Full Text Available Evidence of melt-rock reaction between suprasubduction zone (SSZ peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr# in spinels [Pearce et al., 2000] e.g. REE patterns of clinopyroxene from Voykar are equilibrium to boninitic melts [Belousov et al., 2009]. We show that pyroxenites are formed sequential, orthopyroxenites are originated firstly, websterites – after, and the main forming process is interaction of SSZ peridotites with percolating boninite-like melts.

  14. Peridotitic lithosphere metasomatised by volatile-bearing melts, and its association with intraplate alkaline HIMU-like magmatism

    DEFF Research Database (Denmark)

    Scott, James; Brenna, Marco; Crase, Jordan


    The role of lithospheric mantle metasomatized by CO2-bearing melts in the genesis of HIMU-like alkaline intraplate basalts is investigated using a suite of peridotite xenoliths from New Zealand. The xenoliths have Sr–Nd–Pb–Hf isotope compositions (87Sr/86Sr =0.7029, eNd = +5 to +6, 206Pb/204Pb = ...

  15. Experimental constraints on metasomatism of mantle wedge peridotites by hybridized adakitic melts (United States)

    Corgne, Alexandre; Schilling, Manuel E.; Grégoire, Michel; Langlade, Jessica


    In this study, a series of high-pressure (1.5 GPa) and high-temperature (1000-1300 °C) experiments were performed to investigate the petrological imprints of adakitic metasomatism on mantle wedge peridotites. Reaction couples were prepared using a powdered adakite from Cerro Pampa, Argentina (Mg# 0.7) placed in contact with a cored sample of medium-grained protogranular depleted spinel lherzolite from Pali Aike (Chile). Textural and chemical analyses of the run products allow us to identify key features of modal metasomatism by hybridized adakitic melts. The main changes in phase relations are associated with the following metasomatic reactions: incongruent dissolution of olivine and associated precipitation of secondary orthopyroxene, dissolution of primary spinel and subsequent replacement by secondary high-Cr spinel. In experiments with high water contents (9-12 wt%), precipitation of pargasitic amphibole also occurred, possibly at the expense of primary clinopyroxene. Neither phlogopite nor Ti-oxides were precipitated in any of these experiments. As expected, primary pyroxenes do not show evidence of being significantly altered following the interaction with the produced siliceous melts. Within the adakitic portion of the experimental charge, it was also observed the crystallization of secondary Ti-rich, Cr- and Na-poor diopsidic clinopyroxene, andesine plagioclase and, at low temperature, Fe-enriched secondary orthopyroxene. Considering textural criteria, we interpreted the formation of these minerals as crystallization products of the adakite component and not as true products of metasomatic reactions. The experimental results are used to discuss some of the petrological evidences presented to support modal metasomatism by slab-derived melts of mantle xenoliths extracted from several suprasubduction settings located around the Pacific Ring of Fire.

  16. Lithosphere destabilization by melt percolation during pre-oceanic rifting: Evidence from Alpine-Apennine ophiolitic peridotites (United States)

    Piccardo, Giovanni; Ranalli, Giorgio


    Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies

  17. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria (United States)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.


    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile

  18. Characterizing the nature of melt-rock reaction in peridotites from the Santa Elena Ophiolite, NW Costa Rica (United States)

    Carr, D.; Loocke, M. P.; Snow, J. E.; Gazel, E.


    The Santa Elena Ophiolite (SEO), located on the northwestern coast of Costa Rica, consists primarily of preserved oceanic mantle and crustal rocks thrust above an accretionary complex. The SEO is predominantly characterized by mantle peridotites (i.e., primarily spinel lherzolite with minor amounts of harzburgite and dunite) cut and intruded by minor pegmatitic gabbros, layered gabbros, plagiogranites, and doleritic and basaltic dykes. Previous studies have concluded that the complex formed in a suprasubduction zone (SSZ) setting based on the geochemical nature of the layered gabbros and plagiogranites (i.e., depleted LREE and HFSE and enriched LILE and Pb), as well, as the peridotites (i.e., low-TiO2, Zr, and V, and high MgO, Cr, and Ni)(Denyer and Gazel, 2009). Eighteen ultramafic samples collected during the winter 2010/2011 field season (SECR11) exhibit abundant evidence for melt-rock reaction (e.g., disseminated plagioclase and plagioclase-spinel, clinopyroxene-spinel, and plagioclase-clinopyroxene symplectites) and provide a unique opportunity to characterize the textural and chemical nature of melt-rock reaction in the SEO. We present the results of a petrologic investigation (i.e., petrography and electron probe microanalysis) of 28 thin sections (19 spinel lherzolites, of which 14 are plagioclase-bearing, 4 pyroxenite veins, and 5 harzburgites) derived from the SECR11 sample set. The results of this investigation have the potential to better our understanding of the nature of melt generation and migration and melt-rock interaction in the SEO mantle section and shed further light on the complex petrogenetic history of the SEO. Denyer, P., Gazel, E., 2009, Journal of South American Earth Sciences, 28:429-442.

  19. Immiscible melt droplets in garnet, as represented by ilmenite-magnetite-spinel spheroids in an eclogite-garnet peridotite association, Blanský les Granulite Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vrána, S.; Ackerman, Lukáš; Erban, V.; Halodová, P.


    Roč. 101, č. 1 (2016), s. 82-92 ISSN 0003-004X Institutional support: RVO:67985831 Keywords : eclogite * Fe-Ti-rich melt * garnet peridotite * garnetite * Ilmenite-magnetite-spinel * Invited Centennial article * Moldanubian Zone * UHP crystallization Subject RIV: DD - Geochemistry Impact factor: 2.021, year: 2016

  20. Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites

    DEFF Research Database (Denmark)

    Scott, James; Liu, Jingao; Pearson, D. Graham


    Although trace element concentrations in clinopyroxene serve as a useful tool for assessing the depletion and enrichment history of mantle peridotites, this is not applicable for peridotites in which the clinopyroxene component has been consumed (~ 25% partial melting). Orthopyroxene persists in ...

  1. Electrical conductivity of partially-molten olivine aggregate and melt interconnectivity in the oceanic upper mantle (United States)

    Laumonier, Mickael; Frost, Dan; Farla, Robert; Katsura, Tomoo; Marquardt, Katharina


    A consistent explanation for mantle geophysical anomalies such as the Lithosphere-Astenosphere Boundary (LAB) relies on the existence of little amount of melt trapped in the solid peridotite. Mathematical models have been used to assess the melt fraction possibly lying at mantle depths, but they have not been experimentally checked at low melt fraction (Lanzarote, Canary Islands, Spain) containing various amount of basaltic (MORB-like composition) melt (0 to 100%) at upper mantle conditions. We used the MAVO 6-ram press (BGI) combined with a Solartron gain phase analyser to acquire the electrical resistance of the sample at pressure of 1.5 GPa and temperature up to 1400°C. The results show the increase of the electrical conductivity with the temperature following an Arrhenius law, and with the melt fraction, but the effect of pressure between 1.5 and 3.0 GPa was found negligible at a melt fraction of 0.5 vol.%. The conductivity of a partially molten aggregate fits the modified Archie's law from 0.5 to 100 vol.%. At melt fractions of 0.25, 0.15 and 0.0 vol.%, the EC value deviates from the trend previously defined, suggesting that the melt is no longer fully interconnected through the sample, also supported by chemical mapping. Our results extend the previous results obtained on mixed system between 1 and 10% of melt. Since the melt appears fully interconnected down to very low melt fraction (0.5 vol.%), we conclude that (i) only 0.5 to 1 vol.% of melt is enough to explain the LAB EC anomaly, lower than previously determined; and (ii) deformation is not mandatory to enhance electrical conductivity of melt-bearing mantle rocks.

  2. Melt-peridotite reactions in upwelling EM1-type eclogite bodies

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin


    or simple variations in degrees of mantle melting. The difference is also clear in major elements where the low Nb/U basalts have markedly higher alkali contents but lower FeO and Ni than the high Nb/U basalts. Four melt components have been identified based on olivine fractionation corrected compositions...

  3. Melt migration modeling in partially molten upper mantle (United States)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  4. Oceanization of the lithospheric mantle: the study case of the spinel peridotites from Monte Maggiore (Corsica, France). (United States)

    Piccardo, G. B.


    The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks

  5. An Experimental Study of the Carbonation of Serpentinite and Partially Serpentinised Peridotites

    Directory of Open Access Journals (Sweden)

    Alicja M. Lacinska


    Full Text Available In situ sequestration of CO2 in mantle peridotites has been proposed as a method to alleviate the amount of anthropogenic CO2 in the atmosphere. This study presents the results of 8-month long laboratory fluid-rock experiments on representative mantle rocks from the Oman-United Arab Emirates ophiolite to investigate this process. Small core samples (3 cm long were reacted in wet supercritical CO2 and CO2-saturated brine at 100 bar and 70°C. The extent of carbonate formation, and hence the degree of carbon sequestration, varied greatly depending on rock type, with serpentinite (lizardite-dominated exhibiting the highest capacity, manifested by the precipitation of magnesite MgCO3 and ferroan magnesite (Mg,FeCO3. The carbonate precipitation occurred predominantly on the surface of the core and subordinately within cross-cutting fractures. The extent of the CO2 reactions appeared to be principally controlled by the chemical and mineralogical composition of the rock, as well as the rock texture, with all these factors influencing the extent and rate of mineral dissolution and release of Mg and Fe for subsequent reaction with the CO2. It was calculated that ≈0.7 g of CO2 was captured by reacting ≈23 g of serpentinite, determined by the mass of magnesite formed. This equates to ≈30 kg CO2 per ton of host rock, equivalent to ≈3% carbonation in half a year. However, recycling of carbonate present in veins within the original rock sample could mean that the overall amount is around 2%. The increased reactivity of serpentinite was associated with preferential dissolution of more reactive types of serpentine minerals and brucite that were mainly present in the cross-cutting veins. The bulk of the serpentinite rock was little affected. This study, using relatively short term experiments, suggests that serpentinite might be a good host rock for CO2 sequestration, although long term experiments might prove that dunite and harzburgite could be as

  6. Network topology of olivine-basalt partial melts (United States)

    Skemer, Philip; Chaney, Molly M.; Emmerich, Adrienne L.; Miller, Kevin J.; Zhu, Wen-lu


    The microstructural relationship between melt and solid grains in partially molten rocks influences many physical properties, including permeability, rheology, electrical conductivity and seismic wave speeds. In this study, the connectivity of melt networks in the olivine-basalt system is explored using a systematic survey of 3-D X-ray microtomographic data. Experimentally synthesized samples with 2 and 5 vol.% melt are analysed as a series of melt tubules intersecting at nodes. Each node is characterized by a coordination number (CN), which is the number of melt tubules that intersect at that location. Statistically representative volumes are described by coordination number distributions (CND). Polyhedral grains can be packed in many configurations yielding different CNDs, however widely accepted theory predicts that systems with small dihedral angles, such as olivine-basalt, should exhibit a predominant CN of four. In this study, melt objects are identified with CN = 2-8, however more than 50 per cent are CN = 4, providing experimental verification of this theoretical prediction. A conceptual model that considers the role of heterogeneity in local grain size and melt fraction is proposed to explain the formation of nodes with CN ≠ 4. Correctly identifying the melt network topology is essential to understanding the relationship between permeability and porosity, and hence the transport properties of partial molten mantle rocks.

  7. Numerical modeling of convective erosion and peridotite-melt interaction in big mantle wedge: Implications for the destruction of the North China Craton (United States)

    He, Lijuan


    The deep subduction of the Pacific Plate underneath East Asia is thought to have played a key role in the destruction of the North China Craton (NCC). To test this hypothesis, this paper presents a new 2-D model that includes an initial stable equilibrated craton, the formation of a big mantle wedge (BMW), and erosion by vigorous mantle convection. The model shows that subduction alone cannot thin the cold solid craton, but it can form a low-viscosity BMW. The amount of convective erosion is directly proportional to viscosity within the BMW (η0bmw), and the rheological boundary layer thins linearly with decreasing log10(η0bmw), thereby contributing to an increase in heat flow at the lithospheric base. This model also differs from previous modeling in that the increase in heat flow decays linearly with t1/2, meaning that the overall thinning closely follows a natural log relationship over time. Nevertheless, convection alone can only cause a limited thinning due to a minor increase in basal heat flow. The lowering of melting temperature by peridotite-melt interaction can accelerate thinning during the early stages of this convection. The two combined actions can thin the craton significantly over tens of Myr. This modeling, combined with magmatism and heat flow data, indicates that the NCC evolution has involved four distinct stages: modification in the Jurassic by Pacific Plate subduction and BMW formation, destruction during the Early Cretaceous under combined convective erosion and peridotite-melt interaction, extension in the Late Cretaceous, and cooling since the late Cenozoic.

  8. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle (United States)

    Rudra, A.; Hirschmann, M. M.


    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  9. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica (United States)

    Currier, R. M.


    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  10. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography (United States)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.


    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  11. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.


    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  12. A Re-Os Study of Depleted Trench Peridotites from Northern Mariana (United States)

    Ghosh, T.; Snow, J. E.; Heri, A. R.; Brandon, A. D.; Ishizuka, O.


    Trench peridotites provide information about the influence of subduction initiation on the extent of mantle wedge melting. They preserve melting records throughout subduction history, and as a result, likely experience multiple melt extraction events leading to successive depletion of melt/fluid mobile major and trace elements. To track melting histories of trench peridotites, Re-Os and PGEs can be used as reliable tracers to constrain early melt extraction or re-fertilization events. The Izu-Bonin-Mariana arc, being the largest intra-oceanic subduction system, provides an excellent area to study the formation of supra-subduction zone mantle and crust. Residual peridotite (harzburgite and dunite) samples were collected by dredging from the landward slope of the northern Mariana Trench. The samples are serpentinized to various extents (typical of abyssal peridotites), leaving behind relict grains of spinel, enstatite and olivine embedded within a serpentine matrix along with occasional interstitial diopside. Major element analyses of primary minerals reveal a wide range of variations in Cr# of spinels from 0.31-0.85 indicating 16-20% of melt fraction with dunites apparently experiencing the highest amount of partial melting. For Re-Os and PGE geochemistry, samples with high amounts of spinel (>4 vol %) and variable Cr# were chosen. Initial results show that bulk rock 187Os/188Os ratios range from 0.1113 to 0.1272. All of the samples are sub-chondritic, but in some cases, they are more radiogenic than average abyssal peridotites. Os abundances vary from 1-9 ppb. Sub-chondritic values can be attributed to the samples having evolved from a Re-depleted mantle source indicating a previous melt-extraction event. The cpx-harzburgites, having lower Cr# ( 0.4) are more radiogenic than ultra depleted dunites (Cr# 0.8), which might indicate preferential removal of Os during an apparent higher degree of partial melting experienced by dunites. The higher 187Os/188Os ratios of

  13. Tape casting and partial melting of Bi-2212 thick films

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, D.; Lang, T.; Heeb, B. [Nichtmetallische Werkstoffe, Zuerich (Switzerland)] [and others


    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  14. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths (United States)

    Peslier, Anne H.; Bizmis, Michael


    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  15. Partially melted zone cracking in AA6061 welds

    International Nuclear Information System (INIS)

    Prasad Rao, K.; Ramanaiah, N.; Viswanathan, N.


    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043

  16. Partially melted zone cracking in AA6061 welds

    Energy Technology Data Exchange (ETDEWEB)

    Prasad Rao, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail:; Ramanaiah, N. [Sri Kalahasteeswara Institute of Technology, Srikalahasti (India); Viswanathan, N. [Defence Research and Development Laboratory, Hyderabad (India)


    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043.

  17. Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions (United States)

    Sharygin, Igor S.; Shatskiy, Anton; Litasov, Konstantin D.; Golovin, Alexander V.; Ohtani, Eiji; Pokhilenko, Nikolay P.


    We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca = 1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite + olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300-1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca# = molar 100 × Ca/(Ca + Mg) > 0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca = 1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg2SiO4 (olivine) + 6CaCO3 (liquid) = Ca3MgSi2O8 (merwinite) + 3CaMg(CO3)2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.

  18. The Anita Peridotite, New Zealand

    DEFF Research Database (Denmark)

    Czertowicz, Tom; Scott, James; Waight, Tod Earle


    –93, spinel Cr# of 70, orthopyroxene with low Al2O3, and extremely depleted whole-rock geochemical characteristics indicate that the peridotite body experienced >30% melt extraction, probably within the spinel facies. Mineral compositions show some similarity to those of cratonic peridotitic mantle. Rare Cr....../86Sr (0.705–0.706), eNd ( +6.3 to +11.1), 208Pb/204Pb (37.8–38.9) and eHf ( +5.6 to 36.9) indicate that the metasomatic agent, which caused crystallization of clinopyroxene and plagioclase, had an isotopic composition similar to ocean island basalt. On the basis of isotopic data and mineral chemistry...

  19. Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep) (United States)

    Hesse, Kirsten T.; Gose, Jürgen; Stalder, Roland; Schmädicke, Esther


    Abyssal spinel peridotites from Hess Deep, East Pacific Rise (ODP Leg 147) were investigated concerning their major, minor, and trace element mineral chemistry and the incorporation of structural water in orthopyroxene. The rocks are partially serpentinized harzburgites containing primary minerals of olivine, orthopyroxene, clinopyroxene, and spinel. Orthopyroxene is enstatitic with Mg# (Mg/(Mg + Fe)) between 0.90 and 0.92 and Al2O3 from 0.5 to 2.9 wt.%. The residual harzburgite experienced high degrees of melt removal in the spinel peridotite stability field. The average degree of partial melting was calculated to be 17.5% (range: 16.4-17.8%). Trace element data of ortho- and clinopyroxenes reflect this strong depletion, characteristic for the restitic nature of abyssal peridotites. Mantle re-equilibration temperatures around 1000 °C indicate that, after melt extraction and before exhumation to the ocean floor, the rocks experienced significant cooling in the spinel peridotite facies. Water contents of orthopyroxene range from 86 to 233 wt. ppm H2O with an average concentration of 142 wt. ppm H2O. These results represent the first data on water contents in the sub-pacific mantle obtained by direct measurements of sub-oceanic peridotite. The water contents are not related to mineral chemistry, stratigraphy, melting degree, mantle equilibrium conditions or oxidation state. Calculated post-melt peridotite water contents vary between 40 and 100 wt. ppm H2O. Compared to Mid-Atlantic Ridge peridotites, the East Pacific Rise samples of Leg 147 contain somewhat lower water concentrations than samples from Leg 153 and considerably higher contents than those of Leg 209 (Gose et al., 2009; Schmädicke et al., 2011). In Leg 147, the strongest OH absorbtion band occurs at 3420 cm- 1, wheras orthopyroxene from MAR peridotite (Legs 153 and 209) has its strongest absorbtion band at 3566 and 3522 cm- 1. The mantle equilibrium temperature of Leg 147 peridotites is lower than that

  20. Phase behavior and reactive transport of partial melt in heterogeneous mantle model (United States)

    Jordan, J.; Hesse, M. A.


    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  1. A rotating helical sealing joint capable of partially melting

    International Nuclear Information System (INIS)

    Martin, Jean; Ollier, J.-L.; Petit, Paul.


    A coagulated rotating helical joint providing gas and liquid tightness along a rotating shaft, comprising: a metal sleeve connected to the wall through which passes the rotating sleeve, an intermediate sleeve made of a fusible material, inert with respect to the fluid to be sealingly retained, and finally the rotating shaft provided with an engraved helical thread in register with the intermediate sleeve. Means are provided for regulating the intermediate sleeve temperature so that a thin melted film is formed on said intermediate sleeve when in contact with the rotating threaded shaft. This can be applied in the nuclear industry, including cases when the intermediate sleeve is constituted by the fluid itself, then in the solid state [fr

  2. Orogenic, Ophiolitic, and Abyssal Peridotites (United States)

    Bodinier, J.-L.; Godard, M.


    of ophiolites (mid-ocean ridges versus supra-subduction settings - e.g., Nicolas, 1989). In addition, the mantle structures and mineralogical compositions of tectonically emplaced mantle rocks may be obscured by deformation and metamorphic recrystallization during shallow upwelling, exhumation, and tectonic emplacement. Metamorphic processes range from high-temperature recrystallization in the stability field of plagioclase peridotites ( Rampone et al., 1993) to complete serpentinization (e.g., Burkhard and O'Neill, 1988). Some garnet peridotites record even more complex evolutions. They were first buried to, at least, the stability field of garnet peridotites, and, in some cases to greater than 150 km depths ( Dobrzhinetskaya et al., 1996; Green et al., 1997; Liou, 1999). Then, they were exhumed to the surface, dragged by buoyant crustal rocks ( Brueckner and Medaris, 2000).Alternatively, several peridotite massifs are sufficiently well preserved to allow the observation of structural relationships between mantle lithologies that are larger than the sampling scale of mantle xenoliths. It is possible in these massifs to evaluate the scale of mantle heterogeneities and the relative timing of mantle processes such as vein injection, melt-rock reaction, deformation, etc… Detailed studies of orogenic and ophiolitic peridotites on centimeter- to kilometer-scale provide invaluable insights into melt transfer mechanisms, such as melt flow in lithospheric vein conduits and wall-rock reactions (Bodinier et al., 1990), melt extraction from mantle sources via channeled porous flow ( Kelemen et al., 1995) or propagation of kilometer-scale melting fronts associated with thermalerosion of lithospheric mantle ( Lenoir et al., 2001). In contrast, mantle xenoliths may be used to infer either much smaller- or much larger-scale mantle heterogeneities, such as micro-inclusions in minerals ( Schiano and Clocchiatti, 1994) or lateral variations between lithospheric provinces ( O

  3. Partial melting of UHP calc-gneiss from the Dabie Mountains (United States)

    Liu, Penglei; Wu, Yao; Liu, Qiang; Zhang, Junfeng; Zhang, Li; Jin, Zhenmin


    Exhumation melting has been proposed for the ultra-high pressure (UHP) metamorphic rocks in the Dabie Mountains based on melting experiments. We document here the first petrological and mineralogical evidence demonstrating that the UHP calc-gneisses from the Ganjialing area in the Dabie Mountains experienced partial melting during early exhumation. The assemblage of garnet, phengite (Si = 3.65 pfu), coesite, rutile and carbonate preserved in the calc-gneisses indicates a peak metamorphic condition of 692-757 °C and 4.0-4.8 GPa. Partial melting is indicated by several lines of evidence: the melting textures of phengite, the feldspar-dominated films, bands, branches, blebs and veins, the euhedral K-feldspars, the intergrowth film of plagioclase and K-feldspar, the plagioclase + biotite intergrowth after garnet and the epidote poikiloblasts. Polyphase inclusions in garnet are characterized with wedge-like offshoots and serrate outlines whereas those in epidote display negative crystal shapes, which can be best interpreted by entrapment of former melts. We propose a wet melting reaction of Phn + Q ± Na-Cpx + H2O = Bt + Pl + Grt + felsic melts, which likely took place at ca.650-800 °C and ca.1.0-2.0 GPa, to interpret the melting event in the calc-gneisses. Chemical exchanges between garnet and melts produced new garnet domains with higher almandine, spessartine, MREE, HREE and Y but lower grossular, pyrope, P, Sc, Ti, V and Zr contents. Zr-in-rutile thermometer reveals a low temperature of 620-643 °C at 5 GPa, indicating a later reset for Zr in rutile. Healed fractures are suggested to be responsible for the formation of some polyphase inclusions in garnet.

  4. Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes (United States)

    Perchuk, A. L.; Yapaskurt, V. O.; Griffin, W. L.; Shur, M. Yu.; Gain, S. E. M.


    Piston-cylinder experiments with natural rocks and mineral separates were carried out at 750-900 °C and 2.9 GPa, conditions relevant to hot subduction zones, to study the mechanisms of metasomatic alteration of mantle-wedge rocks such as dunite and lherzolite, and the transfer of trace elements released from a carbonate-bearing amphibolite during its eclogitization. Element transfer from the slab to the mantle lithologies occurred in porous-, focused- and diffusive-flow regimes that remove melt and carbon, and partially water, from the metabasite layer. Porous flow is recorded by dissolution of clinopyroxene and growth of orthopyroxene ± garnet ± magnesite ± chlorite along grain boundaries in the peridotite layers, but is invisible in the metabasite layers. Porous flow of the same fluids/melts produces harzburgite mineralogy in both dunite and lherzolite. The transformation of lherzolite to harzburgite reflects breakdown of clinopyroxene in the lherzolite and diffusion of the liberated calcium into the metabasite layer, i.e. against the direction of major fluid/melt flow. Focused flow develops along the side walls of the capsules, producing a melt-free omphacite ± phengite ± quartz paragenesis in the metabasite, and melt segregations, separated from the host peridotite layers by newly-formed omphacite ± garnet ± phlogopite + orthopyroxene + magnesite. Diffusive flow leads to the formation of orthopyroxene ± magnesite ± garnet reaction zones at the metabasite-peridotite interface and some melt-peridotite interfaces. Melt segregations in the peridotite layers at 850-900 °C are rich in LREE and LILE, strongly depleted in Y and HREE, and have higher Sr/Y and La/Yb ratios than island arc andesites, dacites and rhyolites. These features, and negative anomalies in Nb-Ta and low Nb/Ta, resemble those of high-silica adakites and TTGs, but K2O is high compared to TTGs. Metasomatism in the dunite layer changes the REE patterns of dunite, recording chromatographic

  5. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts (United States)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter


    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  6. Petrology and geochemistry of a peridotite body in Central- Carpathian Paleogene sediments (Sedlice, eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Koppa Matúš


    Full Text Available We studied representative samples from a peridotite body situated NE of Sedlice village within the Central- Carpathian Paleogene sediments in the Central Western Carpathians. The relationship of the peridotite to the surrounding Paleogene sediments is not clear. The fractures of the brecciated peridotite margin are healed with secondary magnesite and calcite. On the basis of the presented bulk-rock and electron microprobe data, the wt. % amounts of mineral phases were calculated. Most of calculated “modal” compositions of this peridotite corresponds to harzburgites composed of olivine (∼70-80 wt. %, orthopyroxene (∼17-24 wt. %, clinopyroxene ( < 5 wt. % and minor spinel ( < 1 wt. %. Harzburgites could originate from lherzolitic protoliths due to a higher degree of partial melting. Rare lherzolites contain porphyroclastic 1-2 mm across orthopyroxene (up to 25 wt. %, clinopyroxene (∼ 5-8 wt. % and minor spinel ( < 0.75 wt. %. On the other hand, rare, olivine-rich dunites with scarce orthopyroxene porphyroclasts are associated with harzburgites. Metamorphic mineral assemblage of low-Al clinopyroxene (3, tremolite, chrysotile, andradite, Cr-spinel to chromite and magnetite, and an increase of fayalite component in part of olivine, indicate low-temperature metamorphic overprint. The Primitive Mantle normalized whole-rock REE patterns suggest a depleted mantle rock-suite. An increase in LREE and a positive Eu anomaly may be consequence of interactive metamorphic fluids during serpentinization. Similar rocks have been reported from the Meliatic Bôrka Nappe overlying the Central Western Carpathians orogenic wedge since the Late Cretaceous, and they could be a potential source of these peridotite blocks in the Paleogene sediments.

  7. Experimental Measurement of Frozen and Partially Melted Water Droplet Impact Dynamics (United States)

    Palacios, Jose; Yan, Sihong; Tan, Jason; Kreeger, Richard E.


    High-speed video of single frozen water droplets impacting a surface was acquired. The droplets diameter ranged from 0.4 mm to 0.9 mm and impacted at velocities ranging from 140 m/sec to 309 m/sec. The techniques used to freeze the droplets and launch the particles against the surfaces is described in this paper. High-speed video was used to quantify the ice accretion area to the surface for varying impact angles (30 deg, 45 deg, 60 deg), impacting velocities, and break-up angles. An oxygen /acetylene cross-flow flame used to ensure partial melting of the traveling frozen droplets is also discussed. A linear relationship between impact angle and ice accretion is identified for fully frozen particles. The slope of the relationship is affected by impact speed. Perpendicular impacts, i.e. 30 deg, exhibited small differences in ice accretion for varying velocities, while an increase of 60% in velocity from 161 m/sec to 259 m/sec, provided an increase on ice accretion area of 96% at an impact angle of 60 deg. The increase accretion area highlights the importance of impact angle and velocity on the ice accretion process of ice crystals. It was experimentally observed that partial melting was not required for ice accretion at the tested velocities when high impact angles were used (45 and 60 deg). Partially melted droplets doubled the ice accretion areas on the impacting surface when 0.0023 Joules were applied to the particle. The partially melted state of the droplets and a method to quantify the percentage increase in ice accretion area is also described in the paper.

  8. First results from analysis of coordinated AVIRIS, TIMS, and ISM (French) data for the Ronda (Spain) and Beni Bousera (Morocco) peridotites (United States)

    Mustard, J. F.; Hurtrez, S.; Pinet, P.; Sotin, C.


    indicates some sections of the peridotite have experienced greater degrees of partial melting. The Beni Bousera peridotite also contains mafic layers and dykes and grades into harzburgite representing similar fundamental shifts in the bulk chemistry of this ultramafic body probably related to an episode of partial melting. The specific mode of emplacement of these bodies is controversial and important for understanding the tectonic evolution of this region. Our investigations are not necessarily designed to help resolve this controversy. Rather, these exposures provide excellent and unusual examples of fertile mantle which have undergone variable degrees of partial melting.

  9. Design, fabrication, and evaluation of a partially melted ice particle cloud facility (United States)

    Soltis, Jared T.

    High altitude ice crystal clouds created by highly convective storm cells are dangerous to jet transport aircraft because the crystals are ingested into the compressor section, partially melt, accrete, and cause roll back or flame out. Current facilities to test engine particle icing are not ideal for fundamental mixed-phase ice accretion experiments or do not generate frozen droplet clouds under representative conditions. The goal of this research was to develop a novel facility capable of testing fundamental partially melted ice particle icing physics and to collect ice accretion data related to mixed-phase ice accretion. The Penn State Icing Tunnel (PSIT) has been designed and fabricated to conduct partially melted ice particle cloud accretion. The PSIT generated a cloud with air assisted atomizing nozzles. The water droplets cool from the 60psi pressure drop as the water exited the nozzle and fully glaciate while flowing in the -11.0°C tunnel air flow. The glaciated cloud flowed through a duct in the center of the tunnel where hot air was introduced. The temperature of the duct was regulated from 3.3°C to 24°C which melted particle the frozen particle from 0% to 90%. The partially melted particle cloud impinged on a temperature controlled flat plate. Ice accretion data was taken for a range of duct temperature from 3.3°C to 24°C and plate temperature from -4.5°C to 7.0°C. The particle median volumetric diameter was 23mum, the total water content was 4.5 g/m 3, the specific humidity was 1.12g/kg, and the wet bulb temperature ranged from 1.0°C to 7.0°C depending on the duct temperature. The boundaries between ice particle bounce off, ice accretion, and water run off were determined. When the particle were totally frozen and the plate surface was below freezing, the ice particle bounced off as expected. Ice accretion was seen for all percent melts tested, but the plate temperature boundary between water runoff and ice accretion increased from 0°C at 8

  10. Sepentinized Peridotite Spinel Composition: Northern Central Indian Ridge at 6°39 (United States)

    Ray, D.; Banerjee, R.; Iyer, S. D.; Balaram, V.; Speakman, J.


    Exposures of serpentinized peridotites on the seafloor at slow-spreading ridges have been interpreted either as accretion of ridge segments in a magma-starved condition along the non-transform setting or as preferential outcrops at ridge offsets in transform fault setting. Here we present the mineral chemistry and geochemistry of serpentinites and serpentinized spinel peridotites recovered from an off axis region (corner high) at south of Vityaz transform fault (6°39'S), Northern Central Indian Ridge. Our purpose is to use mineral chemical data of serpentine and spinel to investigate the effect of low temperature alteration processes and degree of partial melting. Serpentine composition shows presence of high Mg-rich lizardite and chrysotile pseudomorphs and these rocks mostly preserve `mesh rim', `window' and `hourglass' textures, representing extensive hydration during low temperature hydrothermal alteration. In thin section, serpentine veins (mainly lensoidal, pinch and swell or anastomosing) are common, sometime crosscutting the `mesh rim' textures to attest to the intensity of serpentinization process. In one sample, a 1.9 cm-thick feldspathic vein crosscut the serpentinite as a porphyroblast and this indicates discontinuity in magmatic crust caused due to less magma input at off-axis region facilitate the intrusion of short-living feeder dykes of highly fractionated late magmatic liquids within the peridotite. In addition, in hand specimen, presence of smaller-scale striations analogous to slickenlines on serpentinite surfaces suggests low-angle faulting, which could have enhanced pervasive serpentinization during their subsequent emplacement. Individual serpentine grain displays very low Ca content (0.01 wt%) suggesting possible absence of any secondary Ca-rich phases also verified by very low Sr content (connotation. Limited data on composition of individual spinel porphyroclast exhibits substantial variation in their Mg# (mole [Mg/ Mg+Fe2]) and Cr# (mole

  11. Electro-physical properties of superconducting ceramic thick film prepared by partial melting method. (United States)

    Lee, Sang Heon


    BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.

  12. Partial enthalpies of Bi and Te in Bi-Te melts and of In and Te in In-Te melts

    International Nuclear Information System (INIS)

    Yassin, Abeer; Amzil, Abdelhamid; Castanet, Robert


    Full text.Calorimetric measurement are reported which allow the enthalpic behaviour of Bi-Te melts to be established. Further work is required, however, to supplement results obtained for In-Te melts. The partial enthalpies of bismuth and tellurium in the Bi-Te melts at 755K and those of indium and tellurium in the In-Te melts at 1010 and 987K were measured at high dilution by direct reaction calorimetry (drop method) with the help of a Tian-Calvet calorimeter. The limiting partial enthalpies of the components were deduced by extrapolation at infinite dilution: Δh f,∞ B i(755K)/KJ.mol -1 = -34.0 and Δh f,∞ Te(755K) /KJ·mol -1 = -24.1 in the Bi-Te melts Δh f,∞ In(1010K) /KJ·mol -1 = -75.9 and Δh f,∞ Te(1010K) /KJ·mol -1 = -47.8 in the In-Te melts Δh f,∞ In(987K) /KJ·mol -1 = -75.2 and Δh f,∞ Te(987K) /KJ·mol -1 = -48.0 in the In-Te melts

  13. Evidence for partial melting of eclogite from the Moldanubian Zone of the Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Miyazaki, T.; Nakamura, D.; Tamura, A.; Svojtka, Martin; Arai, S.; Hirajima, T.


    Roč. 111, č. 6 (2016), s. 405-419 ISSN 1345-6296 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100131203 Program:Program interní podpory projektů mezinárodní spolupráce AV ČR Institutional support: RVO:67985831 Keywords : partial melting * eclogite * leucocratic pockets * Bohemian Massif * Moldanubian Zone Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.409, year: 2016

  14. A genetic model of progressively partial melting for uranium-bearing granites in south China

    International Nuclear Information System (INIS)

    Zhai Jianping.


    A genetic model of progressively partial and enrichment mechanism of uranium during partial melting of the sources of material studied and the significance of the genetic model in search of uranium deposits is elaborated. This model accounts better for some geological and geochemical features of uranium-bearing granties and suspects the traditional idea that igneous uranium-bearing granites were formed by fusion of U-rich strata surrounding these granites. Finally this paper points out that the infuence of U-rich strata of wall rocks of granites over uranium-bearing granites depends on variation of water solubility in the magma and assimilation of magma to wall rocks during its ascending and crystallization

  15. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount (United States)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.


    interpreted as the result of the combination of extensive partial melting and subsequent percolation of sediment-derived fluids through the mantle wedge [1]. References: [1] Deschamps et al. (2013), Lithos, 178, 96-127.

  16. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland

    Directory of Open Access Journals (Sweden)

    Kristoffer Szilas


    Full Text Available This paper investigates the petrogenesis of the Seqi Ultramafic Complex, which covers a total area of approximately 0.5 km2. The ultramafic rocks are hosted by tonalitic orthogneiss of the ca. 3000 Ma Akia terrane with crosscutting granitoid sheets providing an absolute minimum age of 2978 ± 8 Ma for the Seqi Ultramafic Complex. The Seqi rocks represent a broad range of olivine-dominated plutonic rocks with varying modal amounts of chromite, orthopyroxene and amphibole, i.e. various types of dunite (s.s., peridotite (s.l., as well as chromitite. The Seqi Ultramafic Complex is characterised primarily by refractory dunite, with highly forsteritic olivine with core compositions having Mg# ranging from about 91 to 93. The overall high modal contents, as well as the specific compositions, of chromite rule out that these rocks represent a fragment of Earth's mantle. The occurrence of stratiform chromitite bands in peridotite, thin chromite layers in dunite and poikilitic orthopyroxene in peridotite instead supports the interpretation that the Seqi Ultramafic Complex represents the remnant of a fragmented layered complex or a magma conduit, which was subsequently broken up and entrained during the formation of the regional continental crust.Integrating all of the characteristics of the Seqi Ultramafic Complex points to formation of these highly refractory peridotites from an extremely magnesian (Mg# ∼ 80, near-anhydrous magma, as olivine-dominated cumulates with high modal contents of chromite. It is noted that the Seqi cumulates were derived from a mantle source by extreme degrees of partial melting (>40%. This mantle source could potentially represent the precursor for the sub-continental lithospheric mantle (SCLM in this region, which has previously been shown to be ultra-depleted. The Seqi Ultramafic Complex, as well as similar peridotite bodies in the Fiskefjord region, may thus constitute the earliest cumulates that formed during the

  17. Geochemistry of Ua Huka basalts (Marquesas): partial melting variations and mantle source heterogeneity

    International Nuclear Information System (INIS)

    Ielsch, G.; Caroff, M.; Maury, R.C.; Cotten, J.; Barsczus, H.G.; Guillou, H.


    The main shield volcano of Ua Huka Island (Marquesas Archipelago) was emplaced between 2.2 and 2.4 Ma, and then affected by two caldera collapse events. After a 0.9 Ma-long gap, volcanic activity resumed with the emplacement of two smaller volcanoes in the southwest part of the island, between 1.5 and 0.75 Ma. The geochemical characteristics of Ua Huka mafic lavas, which range from olivine tholeiites to alkali basalts and basanites, are consistent with a temporal decrease in partial melting degrees of a heterogeneous mantle source. The associated temporal variation of the isotopic signatures of Ua Huka basalts implies a more important contribution of a Depleted MORB Mantle (DMM) end-member during the genesis of the youngest basanitic lavas. Such a variation was not previously documented in the Marquesas Archipelago. (authors)

  18. Attenuation and Velocity Structure in Spain and Morocco: Distinguishing Between Water, Temperature, and Partial Melt (United States)

    Bezada, M. J.; Humphreys, E.


    Temperature, melt fraction, and water content affect seismic velocity and attenuation differently. Both are sensitive to temperature, but velocity is more sensitive to melt fraction and attenuation is thought to be more sensitive to water content. For these reasons, combining attenuation measurements with tomographic imaging of velocity structure can help untangle these fields and better resolve lithospheric structure and physical state. We map variations in attenuation beneath Spain and northern Morocco using teleseismic data generated by more than a dozen teleseismic deep-focus earthquakes recorded on a dense array of stations. For each event, we first estimate the source from the best quality recordings. We then apply an attenuation operator to the source estimate, using a range of t* values, to match the record at each station. We invert for a smooth map of t* from the ensemble of measurements. The spatial patterns in t* correlate very well with the tectonic domains in Spain and Morocco. In particular, areas in Spain that resisted deformation during the Variscan and Alpine orogenies produce very little attenuation. Comparing the attenuation map with seismic velocity structure we find that, in Morocco, some areas with strong low-velocity anomalies and recent volcanism do not cause high attenuation. These observations suggest that water content is a more likely cause for seismic attenuation in the study area than temperature, and that the non-attenuative low-velocity anomalies in Morocco are produced by partial mel.

  19. Petrology and Wavespeeds in Central Tibet Indicate a Partially Melted Mica-Bearing Crust (United States)

    Hacker, B. R.; Ritzwoller, M. H.; Xie, J.


    S-wave speeds and Vp/Vs ratios in the middle to deep crust of Tibet are best explained by a partially melted, mica-bearing middle to lower crust with a subhorizontal to gently dipping foliation. Surface-wave tomography [e.g., Yang et al., 2012; Xie et al., 2013] shows that the central Tibetan Plateau (the Qiangtang block) is characterized by i) slow S-wave speeds of 3.3-3.5 km/s at depths from 20-25 km to 45-50 km, ii) S-wave radial anisotropy of at least 4% (Vsh > Vsv) with stronger anisotropy in the west than the east [Duret et al., 2010], and iii) whole-crust Vp/Vs ratios in the range of 1.73-1.78 [Xu et al., 2013]. The depth of the Curie temperature for magnetite inferred from satellite magnetic measurements [Alsdorf and Nelson, 1999], the depth of the α-β quartz transition inferred from Vp/Vs ratios [Mechie et al., 2004], and the equilibration pressures and temperatures of xenoliths erupted from the mid-deep crust [Hacker et al., 2000] indicate that the thermal gradient in Qiangtang is steep, reaching 1000°C at 30-40 km depth. This thermal gradient crosses the dehydration-melting solidi for crustal rocks at 20-30 km depth, implying the presence or former presence of melt in the mid-deep crust. These temperatures do not require the wholesale breakdown of mica at these depths, because F and Ti can stabilize mica to at least 1300°C [Dooley and Patino Douce, 1996]. Petrology suggests, then, that the Qiangtang middle to deep crust consists of a mica-bearing residue from which melt has been extracted or is being extracted. Wavespeeds calculated for mica-bearing rocks with a subhorizontal to gently dipping foliation and minor silicate melt are the best match to the wavespeeds and anisotropy observed by seismology. Alsdorf, D., and D. Nelson, The Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?, Geology, 27, 943-946, 1999. Dooley, D.F., and A.F. Patino Douce, Fluid-absent melting of F-rich phlogopite + rutile +quartz, American

  20. Influence of the oxygen partial pressure on the phase evolution during Bi-2212 wire melt processing

    CERN Document Server

    Scheuerlein, C.; Rikel, M.O.; Kadar, J.; Doerrer, C.; Di Michiel, M.; Ballarino, A.; Bottura, L.; Jiang, J.; Kametani, F.; Hellstrom, E.E.; Larbalestier, D.C.


    We have studied the influence of the oxygen partial pressure pO2 up to 5.5 bar on the phase changes that occur during melt processing of a state-of-the-art Bi-2212 multifilamentary wire. Phase changes have been monitored in situ by high energy synchrotron X-ray diffraction (XRD). We found that the stability of Bi-2212 phase is reduced with increasing pO2. For pO2>1 bar a significant amount of Bi-2212 phase decomposes upon heating in the range 400 to 650 °C. The extent of decomposition strongly increases with increasing pO2, and at pO2=5.5 bar Bi-2212 decomposes completely in the solid state. Textured Bi-2212 can be formed during solidification when pO2 is reduced to 0.45 bar when the precursor is molten. Since the formation of current limiting second phases is very sensitive to pO2 when it exceeds 1 bar, we recommend to reduce the oxygen partial pressure below the commonly used pO2=1 bar, in order to increase the pO2 margins and to make the overpressure process more robust.

  1. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust (United States)

    Ratajeski, K.; Sisson, T.W.; Glazner, A.F.


    Partial melting of mafic intrusions recently emplaced into the lower crust can produce voluminous silicic magmas with isotopic ratios similar to their mafic sources. Low-temperature (825 and 850??C) partial melts synthesized at 700 MPa in biotite-hornblende gabbros from the central Sierra Nevada batholith (Sisson et al. in Contrib Mineral Petrol 148:635-661, 2005) have major-element and modeled trace-element (REE, Rb, Ba, Sr, Th, U) compositions matching those of the Cretaceous El Capitan Granite, a prominent granite and silicic granodiorite pluton in the central part of the Sierra Nevada batholith (Yosemite, CA, USA) locally mingled with coeval, isotopically similar quartz diorite through gabbro intrusions (Ratajeski et al. in Geol Soc Am Bull 113:1486-1502, 2001). These results are evidence that the El Capitan Granite, and perhaps similar intrusions in the Sierra Nevada batholith with lithospheric-mantle-like isotopic values, were extracted from LILE-enriched, hydrous (hornblende-bearing) gabbroic rocks in the Sierran lower crust. Granitic partial melts derived by this process may also be silicic end members for mixing events leading to large-volume intermediate composition Sierran plutons such as the Cretaceous Lamarck Granodiorite. Voluminous gabbroic residues of partial melting may be lost to the mantle by their conversion to garnet-pyroxene assemblages during batholithic magmatic crustal thickening. ?? Springer-Verlag 2005.

  2. Evidence for magmatic underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions (United States)

    Lodge, A.; Nippress, S. E. J.; Rietbrock, A.; García-Yeguas, A.; Ibáñez, J. M.


    In recent years, an increasing number of studies have focussed on resolving the internal structure of ocean island volcanoes. Traditionally, active source seismic experiments have been used to image the volcano edifice. Here we present results using the analysis of compressional to shear (P to S) converted seismic phases from teleseismic events, recorded by stations involved in an active source experiment "TOM-TEIDEVS" (Ibáñez et al., 2008), on the island of Tenerife, Canary Islands. We supplement this data with receiver function (RF) analysis of seismograms from the Canary Islands of Lanzarote and La Palma, applying the extended-time multitaper frequency domain cross-correlation estimation method (Helffrich, 2006). We use the neighbourhood inversion approach of Sambridge (1999a,b) to model the RFs and our results indicate magmatic underplating exists beneath all three islands, ranging from 2 to 8 km, but showing no clear correlation with the age of the island. Beneath both La Palma and Tenerife, we find localized low velocity zones (LVZs), which we interpret as due to partial melt, supported by their correlation with the location of historical earthquakes (La Palma) and recent earthquakes (Tenerife). For Lanzarote, we do not sample the most recently volcanically active region and find no evidence for a LVZ. Instead, we find a simple gradational velocity structure, with discontinuities at ˜4, 10 and 18 km depth, in line with previous studies.

  3. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere (United States)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.


    We report on the first combined Hf-Os isotope systematics of spinel peridotite xenoliths from the Salt Lake Crater (SLC), Pali and Kaau (PK) vents from the island of Oahu, Hawaii. These peridotites are thought to represent the Pacific oceanic lithosphere beneath Oahu, as residues of MORB-type melting at a paleo-ridge some 80-100Ma ago. Clinopyroxene mineral separates in these peridotites have very similar Nd and Sr isotope compositions with the post erosional Honolulu Volcanics (HV) lavas that bring these xenoliths to the surface. This and their relatively elevated Na and LREE contents suggest that these peridotites are not simple residues of MORB-type melting but have experience some metasomatic enrichment by the host HV lavas. However, the SLC and PK xenoliths show an extreme range in Hf isotope compositions towards highly radiogenic values (ɛ Hf= 7-80), at nearly constant Nd isotope compositions (ɛ Nd= 7-10), unlike any OIB or MORB basalt. Furthermore, these Oahu peridotites show a bimodal distribution in their bulk rock 187Os/186Os ratios: the PK peridotites have similar ratios to the abyssal peridotites (0.130-0.1238), while the SLC peridotites have highly subchondritic ratios (0.1237-0.1134) that yield 500Ma to 2Ga Re-depletion ages. Hf-Os isotopes show a broad negative correlation whereby the samples with the most radiogenic 176Hf/177Hf have the most unradiogenic 187Os/186Os ratios. Based on their combined Hf-Os-Nd isotope and major element compositions, the PK peridotites can be interpreted as fragments of the Hawaiian lithosphere, residue of MORB melting 80-100Ma ago, that have been variably metasomatized by the host HV lavas. In contrast, the extreme Hf-Os isotope compositions of the SLC peridotites suggest that they cannot be the source nor residue of any kind of Hawaiian lavas, and that Hf and Os isotopes survived the metasomatism or melt-rock reaction that has overprinted the Nd and Sr isotope compositions of these peridotites. The ancient (>1Ga

  4. Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density

    DEFF Research Database (Denmark)

    Schutt, Derek; Lesher, Charles


    garnet and clinopyroxene enrichment. Using the parameterization of Schutt and Lesher (2006) we show that at cratonic mantle temperatures and pressures, orthopyroxene enrichment results in little change in bulk density (ρbulk) and shear-wave velocity (VS), but decreases compressional wave velocities (VP......We examine the modes and compositions of garnet-bearing peridotite xenoliths from the Kaapvaal Craton to quantify factors governing density and seismic velocity variations within metasomatically altered cratonic mantle. Three distinct compositional trends are resolved by principal component...... analysis. The first reflects differences in residue composition resulting from partial melting. The second is associated with orthopyroxene (opx) enrichment, possibly due to silica addition by subduction zone fluids in the source region of the xenoliths. The third principal component reflects garnet...

  5. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    International Nuclear Information System (INIS)

    Zhu Tianping; Chen, Zhan W.; Gao Wei


    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the α-Mg/β-Mg 17 Al 12 phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, α-Mg re-solidified with a cellular growth, resulting in a serrated interface between α-Mg and α-Mg/β-Mg 17 Al 12 in the weld sample and between α-Mg and β-Mg 17 Al 12 (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained

  6. Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean) (United States)

    Brunelli, Daniele; Seyler, Monique


    Two peridotite suites collected by submersible in the equatorial Atlantic Ocean (Hekinian et al., 2000) were studied for textures, modes, and in situ major and trace element compositions in pyroxenes. Dive SP12 runs along the immersed flank of the St. Peter and Paul Rocks islets where amphibole-bearing, ultramafic mylonites enriched in alkalies and incompatible elements are exposed (Roden et al., 1984), whereas dive SP03 sampled a small intra-transform spreading centre situated about 370 km east of the St. Peter and Paul Rocks. Both suites are characterized by undeformed, coarse-grained granular textures typical of abyssal peridotites, derived from residual mantle after ˜ 15% melting of a DMM source, starting in the garnet stability field. Trace element modelling, textures and lack of mineral zoning indicate that the residual peridotites were percolated, reacted and refertilized by ˜ 2.6% partially aggregated melts in the uppermost level of the melting region. This relatively large amount of refertilization is in agreement with the cold and thick lithosphere inferred by previous studies. Freezing of trapped melts occurred as the peridotite entered the conductive layer, resulting in late-stage crystallization of olivine, clinopyroxene, spinel, ± plagioclase. Chondrite-normalized REE patterns in clinopyroxenes from SP03 indicate that they last equilibrated with (ultra-) depleted partial melts. In contrast, REE concentrations in clinopyroxenes from SP12 display U and S shaped LREE-enriched patterns and the calculated compositions of the impregnating melts span the compositional range of the regional basalts, which vary from normal MORB to alkali basalt sometimes modified by chromatographic fractionation with no, or very limited, mineral reaction. Thus the mylonitic band forming the St. Peter and St. Paul Rocks ridge is not a fragment of subcontinental lithospheric mantle left behind during the opening of the Central Atlantic, nor the source of the alkaline basalts

  7. Evaluation of total and partial structure factors, self-diffusion coefficients, and compressibilities of the cadmium-gallium melt

    International Nuclear Information System (INIS)

    Gopala Rao, R.V.; Das, R.


    The three partial structure factors S/sub 11/(K), S/sub 22/(K), and S/sub 12/(K) defined by Ashcroft and Langreth are computed with a square-well potential as a perturbation over a hard-sphere potential for different atomic fractions or concentrations of cadmium for Cd-Ga melt at 296 0 C. Also, the number-number, concentration-concentration, and the cross-term number-concentration structure factors due to Bhatia-Thornton have been calculated for the seven concentrations of Cd-Ga melt at that temperature. From these partial structure factors total structure factors are computed and are compared with the experimental results. The total structure factors so computed are found to be in excellent agreement with the measured values except in the long-wavelength limit of S(0). Using the partial structure factors in the long-wavelength limit the isothermal compressibilities have been calculated. From these partial structure factors and by using the linear-trajectory approximation of Helfand, the self-diffusion coefficients D/sub i/'s have also been calculated for various atomic fractions of Cd for Cd-Ga alloy at 296 0 C. From these D/sub i/'s, an estimate of the mutual diffusion coefficients has been made to a good approximation

  8. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions (United States)

    Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.


    To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures Ca are largely retained in the coldest part of the metasediment layer in clinopyroxene, Ca-rich garnet and aragonite. The melt is a product of interaction between partial melt or fluid from the sediment and peridotite. It has a silico-carbonatite composition with variable SiO2, MgO, FeO and CaO contents and low Al2O3. The addition of Cl has almost no effect on element

  9. Water content within the oceanic upper mantle of the Southwest Indian Ridge: a FTIR analysis of orthopyroxenes of abyssal peridotites (United States)

    Li, W.; Li, H.; Tao, C.; Jin, Z.


    Water can be present in the oceanic upper mantle as structural OH in nominally anhydrous minerals. Such water has marked effects on manlte melting and rheology properties. However, the water content of MORB source is mainly inferred from MORB glass data that the water budget of oceanic upper mantle is poorly constrained. Here we present water analysis of peridotites from different sites on the Southwest Indian Ridge. The mineral assemblages of these peridotites are olivine, orthopyroxene, clinopyroxene and spinel. As the peridotites have been serpentinized to different degrees, only water contents in orthopyroxnene can be better determined by FTIR spectrometry. The IR absorption bands of all measured orthopyroxenes can be devided into four different groups: (1)3562-3596 cm-1, (2)3515-3520 cm-1, (3)3415-3420 cm-1, (4)3200-3210 cm-1. The positions of these absorption bands are in good agreement with perivious reports. Hydrogen profile measurements performed on larger opx grains in each suite of samples show no obvious variations between core and rims regions, indicating that diffusion of H in orthopyroxene is insignificant. Preliminary measured water contents of orthopyroxene differ by up to one order of magnitude. Opx water contents (80-220 ppm) of most samples are within the range of those found in mantle xenoliths of contentinal settings [1]. Opx water contents of one sample (VM-21V-S9-D5-2: 38-64 ppm) are similar to those from Gakkel Ridge abyssal peridotites (25-60 ppm) [2] but higher than those from Mid-Atlantic Ridge ODP-Leg 209(~15 ppm) [3]. Two other samples show high water concentrations (VM-19ΙΙΙ-S3-TVG2-4: 260-275 ppm, Wb-18-b: 190-265 ppm) which compare well with those from Mid-Atlantic Ridge ODP-Leg 153(160-270 ppm) [4]. Most opx water contents decrease with increasing depletion degree (spl Cr#) consistent with an incompatible behavior of water during partial melting. Recalculated bulk water contents (27-117 ppm) of these peridotites overlap

  10. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting (SLM manufacturing of removable partial dentures (RPD

    Directory of Open Access Journals (Sweden)

    D. Jevremovic


    Full Text Available The presented work discusses the applicability of the selective laser melting technique (SLM in manufacture of removable partial denture (RPD frameworks with the emphasis on material properties. The paper presents initial results of a conducted test of the mechanical properties of the F75 Co-Cr dental alloy used with selective laser melting.

  11. Microfracturing and fluid pathways in serpentinizing abyssal peridotites along the Southwest Indian Ridge (62°-65°E) (United States)

    Rouméjon, S.; Cannat, M.; Agrinier, P.; Godard, M.; Andreani, M.


    At slow spreading ridges, axial detachment faults exhume mantle-derived peridotites. Their interaction with seawater-derived hydrothermal fluids causes serpentinization down to 2-3km from the fault, as inferred from seismic velocity models. It is commonly proposed that fractures allow penetration of seawater into the fault's footwall. At the microscopic scale, the hydration front progresses from a microfracture network toward the center of olivine relicts and forms the serpentine mesh texture. The origin of these microfractures is a matter of debate: tectonic, anisotropic thermal contraction of olivine during peridotite cooling or hierarchical fracturing of the olivine due to volume increase during serpentinization. In this presentation we use petrology and geochemistry to analyze the links between microfractures and serpentinization in a set of highly serpentinized peridotites dredged along the melt-starved easternmost part of the Southwest Indian Ridge (Smoothseafloor cruise). Our observations suggest that thermal contraction of olivine combines with tectonic stresses to fracture fresh peridotite in the brittle lithosphere. These ~60μm-spaced microfractures constitute the initial sample-scale permeability network for fluid penetration, onset of serpentinization and formation of additional hierarchical fractures. As serpentinization proceeds, the volume increase closes the least-developed planes and preferential pathways for fluid circulation become more distant, forming the 200-500μm-wide polygonal pattern typical of the serpentine mesh texture. In about 20% of the recovered samples the mesh serpentine is partially recrystallized forming rims next to later microfractures and serpentine veins. The spacing of these rims, and the limited proportion of affected samples suggest that the scales of the efficient permeability network in the serpentinites at this stage had increased to decimetric and greater scales. We use geochemical constrains to derive temperature

  12. CO partial pressure dependence of the kinetics of melting of HbS aggregates studied in high concentration phosphate buffer (United States)

    Aroutiounian, Svetlana


    Deoxygenated sickle cell hemoglobin (HbS) monomers enter the polymer phase either by incorporation into a critical nucleus, through heterogeneous nucleation and or through linear growth of the polymers when the concentration of monomers exceeds the solubility. CO-bound, R-state HbS monomers do not polymerize. Thus, polymer melting is enhanced by binding of carbon monoxide (CO) to HbS polymerized monomers. In our study, the melting of HbS aggregates mediated by dilution and CO binding to polymerized monomers is observed with time-resolved extinction spectroscopy. The CO partial pressure (pCO) dependence of the kinetics of melting is studied for pCO = 0, 0.25, 0.5, 0.75, 1 atm with difference progress curves. A phenomenological description with slow and fast relaxation modes reveals a variable relaxation time near the pCO=0.5 due to competition of kinetic mechanisms. The slow component increases with increasing pCO. It has a positive intercept due to the combined action of dilution of the sample and CO-ligation. The pCO dependence is near linear due to non-cooperative CO binding. Significant slowing down of aged samples, most likely due to gelation, is observed. As possible mechanism for variable relaxation time near pCO=0.5atm the fractional percolation threshold is discussed. This work was supported by NIH grant HL58091 (awarded to Daniel. B. Kim-Shapiro).

  13. Calcium isotopic composition of mantle peridotites (United States)

    Huang, F.; Kang, J.; Zhang, Z.


    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large Δ44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  14. Garnet peridotite found in the Greater Antilles (United States)

    Abbott, Richard N., Jr.; Draper, Grenville; Keshav, Shantanu

    Although Alpine peridotites are relatively common in collisional orogenic zones, garnet-bearing peridotites are rare and only associated with high pressure/ultra-high pressure or temperature (HP/UHP or T) terranes [Brueckner and Medaris, 2000; Medaris, 1999]. Until recently all reported occurrences of Alpine-type garnet peridotites and HP/UHP terranes were in Eurasia and Africa, with one occurrence in the Seward Peninsula, Alaska [Till, 1981;Lieberman and Till, 1987]. Now a new Alpine-type garnet peridotite locality has been discovered in the Caribbean island of Hispaniola. This discovery is the second of its kind in the Americas.

  15. Reactive-brittle dynamics in peridotite alteration (United States)

    Evans, O.; Spiegelman, M. W.; Kelemen, P. B.


    The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.

  16. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required (United States)

    Dygert, N. J.; Liang, Y.


    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb 1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few

  17. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii (United States)

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika


    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also

  18. Microstructure of Semi-Solid 6063 Alloy Fabricated by Radial Forging Combined with Unidirectional Compression Recrystallization and Partial Melting Process

    Directory of Open Access Journals (Sweden)

    Wang Yongfei


    Full Text Available Radial forging combined with unidirectional compression (RFCUM is introduced in recrystallization and partial melting (RAP to fabricate semi-solid 6063 aluminum alloy, which can be defined as a process of RFCUM-RAP. In this study, the microstructures of semi-solid 6063 alloy prepared by semi-solid isothermal treatment (SSIT and RFCUM-RAP processes are investigated. The results show that, the solid grains of semi-solid alloy prepared by SSIT are large and irregular. However, solid grains of semi-solid billet prepared by RFCUC-RAP are fine and spherical. Additionally, during RFCUC-RAP process, with the increase of isothermal holding time, the shape of solid grain is more and more spherical, but the size of solid grain is gradually increased. To obtain ideal semi-solid microstructure, the optimal isothermal holding temperature and time are 630 °C and 5~10 min, respectively.

  19. Evidence for partial melt in the crust beneath Mt. Paektu (Changbaishan), Democratic People’s Republic of Korea and China (United States)

    Kyong-Song, Ri; Hammond, James O. S.; Chol-Nam, Ko; Hyok, Kim; Yong-Gun, Yun; Gil-Jong, Pak; Chong-Song, Ri; Oppenheimer, Clive; Liu, Kosima W.; Iacovino, Kayla D.; Kum-Ran, Ryu


    Mt. Paektu (also known as Changbaishan) is an enigmatic volcano on the border between the Democratic People’s Republic of Korea (DPRK) and China. Despite being responsible for one of the largest eruptions in history, comparatively little is known about its magmatic evolution, geochronology, or underlying structure. We present receiver function results from an unprecedented seismic deployment in the DPRK. These are the first estimates of the crustal structure on the DPRK side of the volcano and, indeed, for anywhere beneath the DPRK. The crust 60 km from the volcano has a thickness of 35 km and a bulk VP/VS of 1.76, similar to that of the Sino-Korean craton. The VP/VS ratio increases ~20 km from the volcano, rising to >1.87 directly beneath the volcano. This shows that a large region of the crust has been modified by magmatism associated with the volcanism. Such high values of VP/VS suggest that partial melt is present in the crust beneath Mt. Paektu. This region of melt represents a potential source for magmas erupted in the last few thousand years and may be associated with an episode of volcanic unrest observed between 2002 and 2005.

  20. CO2-SO3-rich (carbonate-sulfate) melt/fluids in the lithosphere beneath El Hierro, Canary Islands. (United States)

    Oglialoro, E.; Ferrando, S.; Malaspina, N.; Villa, I. M.; Frezzotti, M. L.


    Mantle xenoliths from the island of El Hierro, the youngest of the Canary Islands, have been studied to characterize fluxes of carbon in the lithosphere of an OIB volcanism region. Fifteen xenoliths (4-10 cm in diameter) were collected in a rift lava flow (15-41 ka) at a new xenolith locality in El Julan cliff (S-SW of the island). Peridotites consist of protogranular to porphyroblastic spinel harzburgites, lherzolites, and subordinate dunites. One spinel clinopyroxenite, and one olivine-websterite were also analyzed. Ultramafic xenoliths were classified as HEXO (harzburgite and dunite with exsolved orthopyroxene), HLCO (harzburgite and lherzolite containing orthopyroxene without visible exsolution lamellae), and HTR (transitional harzburgite with exsolved orthopyroxene porphyroclasts, and poikilitic orthopyroxene) following [1]. While HLCO and HTR peridotites contain mostly CO2 fluid inclusions, HEXO peridotites preserve an early association of melt/fluid inclusions containing dominantly carbonate/sulfate/silicate glass, evolving to carbonate/sulfate/phosphate/spinel aggregates, with exsolved CO2 (± carbonates, anhydrite and H2O). Chemical and Raman analyses identify dolomite, Mg-calcite, anhydrite, sulfohalite [Na6(SO4)2FCl] (± other anhydrous and hydrous alkali-sulfates), apatite, and Cr-spinel in the inclusions. Sulfides are noticeably absent. The microstructure and chemical composition of the metasomatic fluids indicate that the peridotites were infiltrated by a carbonate-sulfate-silicate melt/fluid enriched in CO2, H2O, and P. A mantle origin for this fluid is supported by high densities of CO2inclusions (> 1g/cm3), determined by Raman microspectroscopy and cross-checked by microthermometry. Consequently, El Julan peridotites provide the first evidence for liberating oxidized C and S fluxes from the Earth lithosphere in an OIB source region, and suggest that oxidation of sulfide to sulfate can occur during small-degree partial melting of the upper mantle

  1. The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism (United States)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Rivalenti, Giorgio; Vannucci, Riccardo

    environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust.

  2. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.


    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  3. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation (United States)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.


    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly

  4. Experimental determination of dissolved CO2 content in nominally anhydrous andesitic melts at graphite/diamond saturation - Remobilization of deeply subducted reduced carbon via partial melts of MORB-like eclogite (United States)

    Eguchi, J.; Dasgupta, R.


    Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions

  5. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust


    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  6. Os-Hf-Sr-Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: Effects of pervasive metasomatism in shallow refractory mantle (United States)

    Ionov, Dmitri A.; Shirey, Steven B.; Weis, Dominique; Brügmann, Gerhard


    Os-Hf-Sr-Nd isotopes and PGE were determined in peridotite xenoliths carried to the surface by Quaternary alkali basaltic magmas in the Tokinsky Stanovik Range on the Aldan shield. These data constrain the timing and nature of partial melting and metasomatism in the lithospheric mantle beneath SE Siberian craton. The xenoliths range from the rare fertile spinel lherzolites to the more abundant, strongly metasomatised olivine-rich (70-84%) rocks. Hf-Sr-Nd isotope compositions of the xenoliths are mainly within the fields of oceanic basalts. Most metasomatised xenoliths have lower 143Nd / 144Nd and 176Hf / 177Hf and higher 87Sr / 86Sr than the host basalts indicating that the metasomatism is older and has distinct sources. A few xenoliths have elevated 176Hf / 177Hf (up to 0.2838) and plot above the Hf-Nd mantle array defined by oceanic basalts. 187Os / 188Os in the poorly metasomatised, fertile to moderately refractory (Al2O3 ≥ 1.6%) Tok peridotites range from 0.1156 to 0.1282, with oldest rhenium depletion ages being about 2 Ga. The 187Os / 188Os in these rocks show good correlations with partial melting indices (e.g. Al2O3, modal cpx); the intercept of the Al-187Os / 188Os correlation with lowest Al2O3 estimates for melting residues (∼0.3-0.5%) has a 187Os / 188Os of ∼0.109 suggesting that these peridotites may have experienced melt extraction as early as 2.8 Gy ago. 187Os / 188Os in the strongly metasomatised, olivine-rich xenoliths (0.6-1.3% Al2O3) ranges from 0.1164 to 0.1275 and shows no apparent links to modal or chemical compositions. Convex-upward REE patterns and high abundances of heavy to middle REE in these refractory rocks indicate equilibration with evolved silicate melts at high melt / rock ratios, which may have also variably elevated their 187Os / 188Os. This inference is supported by enrichments in Pd and Pt on chondrite-normalised PGE abundance patterns in some of the rocks. The melt extraction ages for the Tok suite of 2.0 to 2.8 Ga are

  7. [A preliminary study on the forming quality of titanium alloy removable partial denture frameworks fabricated by selective laser melting]. (United States)

    Liu, Y F; Yu, H; Wang, W N; Gao, B


    Objective: To evaluate the processing accuracy, internal quality and suitability of the titanium alloy frameworks of removable partial denture (RPD) fabricated by selective laser melting (SLM) technique, and to provide reference for clinical application. Methods: The plaster model of one clinical patient was used as the working model, and was scanned and reconstructed into a digital working model. A RPD framework was designed on it. Then, eight corresponding RPD frameworks were fabricated using SLM technique. Three-dimensional (3D) optical scanner was used to scan and obtain the 3D data of the frameworks and the data was compared with the original computer aided design (CAD) model to evaluate their processing precision. The traditional casting pure titanium frameworks was used as the control group, and the internal quality was analyzed by X-ray examination. Finally, the fitness of the frameworks was examined on the plaster model. Results: The overall average deviation of the titanium alloy RPD framework fabricated by SLM technology was (0.089±0.076) mm, the root mean square error was 0.103 mm. No visible pores, cracks and other internal defects was detected in the frameworks. The framework fits on the plaster model completely, and its tissue surface fitted on the plaster model well. There was no obvious movement. Conclusions: The titanium alloy RPD framework fabricated by SLM technology is of good quality.

  8. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes (United States)

    Marchesi, Claudio; Garrido, Carlos J.; Harvey, Jason; González-Jiménez, José María; Hidas, Károly; Lorand, Jean-Pierre; Gervilla, Fernando


    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20'N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.

  9. Low-degree partial melting of metapelites - another possible implement for selective concentration of uranium: Example from the Rozna uranium deposit, Bohemian Massif

    International Nuclear Information System (INIS)

    Leichmann, J.; Matula, M.; Broska, I.; Holeczy, D.


    Monazite, as the main carrier of U and Th in host biotite gneiss at the Rozna uranium deposit, was replaced by allanite during the process of partial melting. The transformation was accompanied by a release of U, and to a lesser extent of Th, from the monazite lattice. The liberated U and Th crystallized in the extracted granitic melt mainly in the form of thorogummite or cheralite. The granites are depleted in HFS and LREE. Garnet-poor granites are depleted in HREE as well, whereas garnet-rich types are enriched in HREE. (author)

  10. Water contents of clinopyroxenes from sub-arc mantle peridotites (United States)

    Turner, Michael; Turner, Simon; Blatter, Dawnika; Maury, Rene; Perfit, Michael; Yogodzinski, Gene


    One poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High-Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar-Feni island chain) as well as one intra-plate setting (western Victoria). All of the sub-arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra-plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction-related signature. Material similar to the sub-arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.

  11. Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites (United States)

    Parkinson; Hawkesworth; Cohen


    Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.

  12. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail:; Liang, Mei, E-mail:; Cao, Ya


    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  13. NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites (United States)

    Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.


    Olivines from mantle peridotites have a narrow range of NiO (0.36±0.03 [1σ] wt%), but NiO of olivines in basalts suggest NiO in mantle olivines is actually more variable: e.g., Hawaiian phenocrysts (Fo>90) have NiO >0.55%, and olivines from continental flood basalts can have >0.5% NiO. At the other end of the spectrum, some basaltic suites (e.g., Iceland, MORBs) have Fo>90 olivines with NiO >0.2%. Partial melting calculations on peridotites show it is difficult to generate liquids that crystallize Fo>90 olivines with >0.4% NiO without resorting to complex processes. Hypotheses to explain the variability of NiO in mantle-derived olivines include (1) reaction of peridotite with silica-rich melts of eclogite results in decreasing modal abundance of olivine and increasing NiO in olivine [1,2]; (2) magmas with NiO-rich olivines come from sources enriched in NiO due to a core-derived component [3]. [4] proposed that high Fe/Mn of Hawaiian vs. Icelandic and MORB lavas reflect a core-derived component in their sources. Possible core incorporation is poorly constrained but FeO and NiO are expected to increase by such processes, leading to correlations between NiO and Fe/Mn in mantle rocks with significant core-derived components. We present high-precision analyses of Fo-rich olivines from OIBs, MORBs, komatiites, and mantle peridotites, focusing on NiO contents and Fe/Mn ratios. Our goal is to test hypotheses to explain elevated NiO of Fo-rich olivines in basalts. Olivines are Fo85.1-93.4; more were analyzed, but we focused on this range to avoid complications due to decreasing NiO in olivine with crystallization. Errors (1σ) are 0.01 wt% in NiO and 1.5 in Fe/Mn (wt). Our data show several features: (1) NiO contents and Fe/Mn ratios of Fo>88 olivines are positively correlated, with the low end of the trend (NiO ~0.23%, Fe/Mn ~61) defined by MORB and Iceland and the high end of the trend (NiO ~0.55%, Fe/Mn ~80) by Reunion and Hawaii. Between these end points, there is a

  14. Mantle ingredients for making the fingerprint of Etna alkaline magmas: implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily (United States)

    Viccaro, Marco; Zuccarello, Francesco


    Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions. Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are

  15. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma (United States)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas


    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  16. Extreme incompatibility of helium during mantle melting: Evidence from undegassed mid-ocean ridge basalts (United States)

    Graham, David W.; Michael, Peter J.; Shea, Thomas


    We report total helium concentrations (vesicles + glass) for a suite of thirteen ultradepleted mid-ocean ridge basalts (UD-MORBs) that were previously studied for volatile contents (CO2, H2O) plus major and trace elements. The selected basalts are undersaturated in CO2 + H2O at their depths of eruption and represent rare cases of undegassed MORBs. Sample localities from the Atlantic (2), Indian (1) and Pacific (7) Oceans collectively show excellent linear correlations (r2 = 0.75- 0.92) between the concentrations of helium and the highly incompatible elements C, K, Rb, Ba, Nb, Th and U. Three basalts from Gakkel Ridge in the Arctic were also studied but show anomalous behavior marked by excess lithophile trace element abundances. In the Atlantic-Pacific-Indian suite, incompatible element concentrations vary by factors of 3-4.3, while helium concentration varies by a factor of 13. The strong correlations between the concentrations of helium and incompatible elements are explained by helium behavior as the most incompatible element during mantle melting. Partial melting of an ultradepleted mantle source, formed as a residue of earlier melt extraction, accounts for the observed concentrations. The earlier melting event involved removal of a small degree melt (∼1%) at low but non-zero porosity (0.01-0.5%), leading to a small amount of melt retention that strongly leveraged the incompatible element budget of the ultradepleted mantle source. Equilibrium melting models that produce the range of trace element and helium concentrations from this source require a bulk solid/melt distribution coefficient for helium that is lower than that for other incompatible elements by about a factor of ten. Alternatively, the bulk solid/melt distribution coefficient for helium could be similar to or even larger than that for other incompatible elements, but the much larger diffusivity of helium in peridotite leads to its more effective incompatibility and efficient extraction from a

  17. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii (United States)

    Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.


    We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.

  18. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia) (United States)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.


    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are

  19. Stochastic melting of the marble cake mantle: Evidence from local study of the East Pacific Rise at 12050'N

    International Nuclear Information System (INIS)

    Prinzhofer, A.; Lewin, E.; Allegre, C.J.; Paris-7 Univ., 75


    Isotopes (Nd, Sr and Pb) and trace elements (REE, Ba, Sr, Rb) have been measured on a set of basaltic glasses from a restricted area (40x10 km) at 12 0 50'N on the East Pacific Rise. The huge variation of incompatible element concentrations (factor 70 for Ba concentrations), and the variable degrees of correlation between element concentrations cannot be explained by usual models of melting and fractional crystallization. A rough correlation between the Ce/Yb ratio and the isotopic ratios favors a ''source effect'' for the genesis of the glasses. We have developed a model including both partial melting process acting on a heterogeneous mantle source with two components (peridotites and pyroxenites; ''marble cake mantle'' of Allegre and Turcotte) and fractional crystallization. The purpose of this model is not to obtain values of the four parameters involved (degree of melting in the peridotites, in the pyroxenites, proportion of pyroxenites involved in the melting, degree of fractional crystallization) for each analyzed glass, but to model the whole set of glasses by stochastic genesis and sampling of liquids. We have used the stochastic procedure for the four controlled parameters, currently generating 10,000 ''samples''. Our preferred model for this portion of the East Pacific Ridge is obtained with a degree of melting in the peridotites and in the pyroxenites varying uniformly from 6 to 20%, and from 6 to 50% respectively. The degree of mixing between liquids issued from the two sources varies from 0 to 100%, and the degree of fractional crystallization remains small, without noticeable effect on the concentrations, varying from 0 to 6%. (orig.)

  20. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, Shuta [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)


    Neutron and high-energy x-ray diffraction analyses of molten AgI have been performed and the partial structures are discussed in detail with the aid of the structural modelling procedure of the reverse Monte Carlo (RMC) technique by comparison with those of molten CuI and AgCl. It is well known that AgI and CuI have a superionic solid phase below the melting point, in which the cations favour a tetrahedral configuration, while solid AgCl has a rock-salt structure with an octahedral environment around both Ag and Cl atoms. Even in the molten states, there is a significant difference between superionic and non-superionic melts. The cation is located on the triangular plain formed by three iodine ions in molten AgCl and CuI, while molten AgCl favours a 90 deg. Cl-Ag-Cl bond angle, which is understood to maintain a similar local environment to that in the solid state. The atomic configurations of the RMC model suggest that the cation distributions in superionic melts of CuI and AgI exhibit large fluctuations, while Ag ions in the non-superionic melts of AgCl are distributed much more uniformly.

  1. Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation (United States)

    Pirnia, Tahmineh; Saccani, Emilio; Arai, Shoji


    The Nain ophiolites crop out along the western border of the central East Iran Microcontinent (CEIM) and consist of an ophiolitic mélange in which pargasite-bearing spinel and plagioclase mantle lherzolites are largely represented. Whole-rock and mineral chemistry data suggest that these rocks record the complex history of the asthenospheric and lithospheric mantle evolution. The spinel lherzolites have experienced low-degree ( 5%) partial melting and contain clinopyroxenes with positive Eu anomalies (Eu/Eu* = 1.10-1.48) suggesting that the partial melting occurred under oxidized conditions (fayalite-magnetite-quartz -0.8 to +1.3). The pargasite and coexisting clinopyroxene in these rocks are depleted in light rare earth elements (LREE) (mean chondrite-normalized CeN/SmN = 0.045). The depleted chemistry of this amphibole reflects metasomatism during interaction with H2O-rich subalkaline mafic melts, most likely concurrently with or after the partial melting of the spinel lherzolites. The plagioclase lherzolites were subsequently formed by the subsolidus recrystallization of spinel lherzolites under plagioclase facies conditions as a result of mantle uprising, as evidenced by: (1) the development of plagioclase rims around the spinels; (2) plagioclase + orthopyroxene exsolution textures within some clinopyroxene grains; (3) an increase in plagioclase modal content coupled with an increase in modal olivine and a decrease in modal pyroxene and pargasite; (4) coincident decreases in Al, Mg, and Ni, and increases in Cr, Ti, and Fe in spinel, as well as decreases in Al and Ca, and increases in Cr and Ti in pyroxene and pargasite; and (5) the identical whole rock compositions of the spinel and plagioclase lherzolites, which rules out a magmatic origin for the plagioclase in these units. The Nain lherzolites have similar whole-rock and mineral geochemical compositions to subcontinental peridotites that are typically representative of Iberia-type rifted continental margins

  2. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions (United States)

    Ren, Zhong-Yuan; Wu, Ya-Dong; Zhang, Le; Nichols, Alexander R. L.; Hong, Lu-Bing; Zhang, Yin-Hui; Zhang, Yan; Liu, Jian-Qiang; Xu, Yi-Gang


    Olivine-hosted melt inclusions within lava retain important information regarding the lava's primary magma compositions and mantle sources. Thus, they can be used to infer the nature of the mantle sources of large igneous provinces, which is still not well known and of the subject of debate. We have analysed the chemical compositions and Pb isotopic ratios of olivine-hosted melt inclusions in the Dali picrites, Emeishan Large Igneous Province (LIP), SW China. These are the first in-situ Pb isotope data measured for melt inclusions found in the Emeishan picrites and allow new constraints to be placed on the source lithology of the Emeishan LIP. The melt inclusions show chemical compositional variations, spanning low-, intermediate- and high-Ti compositions, while their host whole rocks are restricted to the intermediate-Ti compositions. Together with the relatively constant Pb isotope ratios of the melt inclusions, the compositional variations suggest that the low-, intermediate- and high-Ti melts were derived from compositionally similar sources. The geochemical characteristics of melt inclusions, their host olivines, and whole-rocks from the Emeishan LIP indicate that Ca, Al, Mn, Yb, and Lu behave compatibly, and Ti, Rb, Sr, Zr, and Nb behave incompatibly during partial melting, requiring a pyroxenite source for the Emeishin LIP. The wide range of Ti contents in the melt inclusions and whole-rocks of the Emeishan basalts reflects different degrees of partial melting in the pyroxenite source at different depths in the melting column. The Pb isotope compositions of the melt inclusions and the OIB-like trace element compositions of the Emeishan basalts imply that mixing of a recycled ancient oceanic crust (EM1-like) component with a peridotite component from the lower mantle (FOZO-like component) could have underwent solid-state reaction, producing a secondary pyroxenite source that was subsequently partially melted to form the basalts. This new model of pyroxenite

  3. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust (United States)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming


    The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional

  4. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway (United States)

    Laurent, Antonin T.; Bingen, Bernard; Duchene, Stephanie; Whitehouse, Martin J.; Seydoux-Guillaume, Anne-magali; Bosse, Valerie


    This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T > 900 °C) granulite facies metamorphism. New U-Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α g-1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91 ± 0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040-990 Ma; M2: 940-930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U-Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040-930 Ma) in the UHT zone, 85 My (ca. 1040-955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040-1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.

  5. Sediment-peridotite interactions in a thermal gradient: mineralogic and geochemical effects and the "sedimentary signature" of arc magmas (United States)

    Woodland, Alan; Girnis, Andrei; Bulatov, Vadim; Brey, Gerhard; Höfer, Heidi; Gerdes, Axel


    Strong thermal and chemical gradients are characteristic of the slab-mantle interface in subduction zones where relatively cold sediments become juxtaposed with hotter peridotite of the mantle wedge. The formation of arc magmas is directly related to mass transfer processes under these conditions. We have undertaken a series of experiments to simulate interactions and mass transfer at the slab-mantle interface. In addition to having juxtaposed sediment and peridotite layers, the experiments were performed under different thermal gradients. The sediment had a composition similar to GLOSS (1) and also served as the source of H2O, CO2 and a large selection of trace elements. The peridotite was a depleted garnet harzburgite formed from a mixture of natural hand-picked olivine, opx and garnet. Graphite was added to this mixture to establish a redox gradient between the two layers. Experiments were performed at 7.5-10 GPa to simulate the processes during deep subduction. The thermal gradient was achieved by displacing the sample capsule (Re-lined Pt) from the center of the pressure cell. The gradient was monitored with separate thermocouples at each end of the capsule and by subsequent opx-garnet thermometry across the sample. Maximum temperatures varied from 1400˚ -900˚ C and gradients ranged from 200˚ -800˚ C. Thus, in some experiments melting occurred in the sediment layer and in others this layer remained subsolidus, only devolatilizing. Major and trace elements were transported both in the direction of melt percolation to the hot zone, as well as down temperature. This leads to the development of zones with discrete phase assemblages. Olivine in the peridotite layer becomes converted to orthopyroxene, which is due to Si addition, but also migration of Mg and Fe towards the sediment. In the coldest part of a sample, the sediment is converted into an eclogitic cpx + garnet assemblage. A thin zone depleted in almost all trace elements is formed in peridotite

  6. Implications of spinel compositions for the petrotectonic history of abyssal peridotite from Southwest Indian Ridge (SWIR) (United States)

    Chen, T.; Jin, Z.; Wang, Y.; Tao, C.


    Abyssal peridotites generate at mid-ocean ridges. Lherzolite and harzburgite are the main rock types of peridotites in the uppermost mantle. The lherzolite subtype, less depleted and less common in ophiolites, characterizes mantle diapirs and slow-spreading ridges. Along the Earth's mid-ocean ridges, abyssal peridotites undergo hydration reactions to become serpentinite minerals, especially in slow to ultraslow spreading mid-ocean ridges. Spinel is common in small quantities in peridotites, and its compositions have often been used as petrogenetic indicators [1]. The Southwest Indian Ridge (SWIR) is one of the two ultraslow spreading ridges in the world. The studied serpentinized peridotite sample was collected by the 21st Voyage of the Chinese oceanic research ship Dayang Yihao (aka Ocean No. 1) from a hydrothermal field (63.5°E, 28.0°S, and 3660 m deep) in SWIR. The studied spinels in serpentinized lherzolite have four zones with different compositions: relic, unaltered core is magmatic Al-spinels; micro- to nano- sized ferrichromite zoned particles; narrow and discontinuous magnetite rim; and chlorite aureoles. The values Cr# of the primary Al-spinels indicate the range of melting for abyssal peridotites from SWIR extends from ~4% to ~7% [2]. The alteration rims of ferrichromite have a chemical composition characterized by Fe enrichment and Cr# increase indicating chromite altered under greenschist-amphibolite facies. Magnetites formed in syn- and post- serpentinization. Chlorite (clinochlore) formed at the boundary and crack of spinel indicating it had undergone with low-temperature MgO- and SiO2-rich hydrothermal fluids [3]. It suggests that serpentinized lherzolite from SWIR had undergone poly-stage hydration reactions with a wide range of temperature. Acknowledgments: EMPA experiment was carried out by Xihao Zhu and Shu Zheng in The Second Institute of Oceanography and China University of Geosciences, respectively. The work was supported by NSFC

  7. Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure

    International Nuclear Information System (INIS)

    Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.


    Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 μm. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.

  8. The Sidi Mohamed peridotites (Edough Massif, NE Algeria ...

    Indian Academy of Sciences (India)

    We suggest that the Sidi Mohamed ultramafic body was derived directly from the upper mantle and tectonically ... The aim of this paper is to determine the nature of the peridotite .... REE were enriched using the method described by. Zuleger .... Table 1. Chemical composition of the peridotites from Sidi Mohamed outcrop.

  9. Thermal Conductive Heat Transfer and Partial Melting of Volatiles in Icy Moons, Asteroids, and Kuiper Belt Objects (Invited) (United States)

    Kargel, J. S.; Furfaro, R.


    Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of

  10. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers. (United States)

    Kim, In Ae; Rhee, Sang-Hoon


    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  11. Melting temperatures of MgO under high pressure determined by micro-texture observation (United States)

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.


    for the peridotitic partial melt so that it is gravitationally stable to form the ULVZs at the bottom of the lower mantle. Reference 1 A. Zerr and R. Boehler, Nature 371, 506 (1994). 2 D. Alfe, Phys. Rev. Lett. 94, 235701 (2005). 3 N. de Koker and L. Stixrude, Geophys. J. Int. 178, 162 (2009). 4 Funamori, and N. Sato, Earth Planet. Sci. Lett. 295, 435 (2010).

  12. Petrography and mineral chemistry of wehrlites in contact zone of gabbro intrusions and mantle peridotites of the Naein ophiolite

    Directory of Open Access Journals (Sweden)

    Farhad Ghaseminejad


    Full Text Available Introduction Geological background Ophiolites have played a major role in our understanding of Earth’s processes ranging from seafloor spreading, melt evolution and magma transport in oceanic spreading centers, and hydrothermal alteration and mineralization of oceanic crust to collision tectonics, mountain building processes, and orogeny. They provide the essential structural, petrological, geochemical, and geochronological evidence to document the evolutionary history of ancient continental margins and ocean basin. Ophiolites include a peridotitic mantle sequence, generally characterized by high-temperature plastic deformation and residual chemistry, and a comagmatic crustal sequence (gabbros, diabase dikes, and submarine basalts, weakly or not deformed. According to this interpretation, ophiolites were allochthonous with respect to their country rocks. They were assembled during a primary accretion stage at an oceanic spreading center, and later tectonically emplaced on a continental margin or island arc (Dilek, 2003. The indigenous dikes of pyroxenites and gabbros that were injected into a melting peridotite, or intrusive dikes of pyroxenite and gabbro that injected when the peridotite was fresh and well below its solidus, are discussed in different ophiolite papers. Pyroxenite formation and contact of gabbro and mantle peridotite are discussed in different articles (Dilek, 2003. When a gabbro intrude a fresh mantle peridotite could not significantly react with it, but if intrusion occurs during the serpentinization, the gabbro will change to rodingite. Geological setting The Naein ophiolitic melanges comprise the following rock units: mantle peridotites (harzburgite, lherzolite, dunite, with associated chromitite, gabbro, pyroxenite, sheeted and swarm dikes, massive basalts, pillow lava, plagiogranite, radiolarian chert, glaubotruncana limestone, rodingite, listvenite, and metamorphic rocks (foliated amphibolitic dike, amphibolite, skarn

  13. Evidence of Arc Magma Genesis in a Paleo-Mantle Wedge, the Higashi-Akaishi Peridotite, Japan (United States)

    Till, C. B.; Guild, M. R.; Grove, T. L.; Carlson, R. W.


    Located in the Sanbagawa subduction-related high-pressure metamorphic belt in SW Japan on the island of Shikoku, the Higashi-akaishi peridotite body is composed of dunite, lherzolite and garnet clinopyroxenite, interfingered in one locality with quartz-rich eclogite. Previous work indicates the P-T history of the peridotite includes rapid prograde metamorphism with peak temperatures of 700-810°C and pressures of 2.9-3.8 GPa [1] at ~88-89 Ma followed by rapid exhumation at >2.5 cm/yr [2,3]. Major and trace element and isotopic data from samples within the Higashi-akaishi peridotite presented here and in another recent study [4] provide a record of subduction zone melting processes in a paleo-mantle wedge. Ultramafic samples range from 40-52 wt.% SiO2, 1-11 wt.% Al2O3 and 21-45 wt.% MgO with olivine and clinopyroxene Mg#'s as high as 0.93. The quartz-rich eclogite contains 62 wt.% SiO2, 6 wt.% MgO and 13 wt.% Al2O3 with trace element concentrations that are enriched relative to the ultramafic samples. 87Sr/86Sr (.703237-.704288), 143Nd/144Nd (ɛNd=+2 to +6) and Pb isotopic compositions are within the range of previously studied Japanese arc rocks. We interpret the pyroxenites as shallowly crystallized cumulates with varying amounts of trapped hydrous melt and the harzburgites as residues of melting. The peak P-T conditions of these rocks are similar to the solidus conditions of H2O-saturated fertile mantle near the base of the mantle wedge [5,6]. The presence of garnet porphyroblasts that enclose primary euhedral chlorite together with the chemical evidence, suggest these samples are associated with mantle melting in the presence of H2O. Major element modeling suggests the quartz-rich eclogite composition can be reproduced through mixing melts of subducted sediment with wet peridotite melts in the mantle wedge. Thus the Higashi-aikashi rock suite provides an in-situ record of the beginnings of hydrous melting and the mechanisms of metasomatism in the mantle wedge

  14. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.


    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  15. Transition Metal Systematics of Opx-Enriched Harzburgites From the Cascades Arc With Implications for the Origin of Cratonic Peridotites (United States)

    Turner, S. J.


    process. Because the bulk partitioning of Zn in anhydrous peridotite melting is unity, low Zn contents are anomalous. The best explanation for these low values is that Zn partition coefficients decrease in hydrous environments. Many opx-enriched Archean cratonic peridotite xenoliths have anomalously low Zn contents, supporting the suggestion that such peridotites formed in arc environments.

  16. Geochemistry of abyssal peridotites from the super slow-spreading ...

    Indian Academy of Sciences (India)

    Serpentinites exhibit talc veins and major serpentine derived from ...... All trace element data used for this study are listed in table 5 ..... China for Distinguished Young Scholars (Grant. No. .... abyssal peridotites: A new perspective; Earth Planet.

  17. Petrogenesis and tectonic implications of gabbro and plagiogranite intrusions in mantle peridotites of the Myitkyina ophiolite, Myanmar (United States)

    Xu, Yang; Liu, Chuan-Zhou; Chen, Yi; Guo, Shun; Wang, Jian-Gang; Sein, Kyaing


    Centimeter-size intrusions of gabbros and plagiogranites occur in mantle peridotites of the Myitkyina ophiolite, Myanmar. The gabbros mainly consist of plagioclase and clinopyroxene, whereas orthopyroxene occasionally occurs. The plagiogranites are mainly composed of plagioclase, quartz and amphibole, with small amount of accessory minerals, such as zircon, apatite and rutile. Plagioclase in the gabbros varies from andesine to anorthite (An37-91), whereas plagioclase in the plagiogranites is less calcic (An1-40). Clinopyroxene in the gabbros is pervasively altered to hornblende. The gabbros contain 42.97-52.88 wt% SiO2, which show negative correlations with Al2O3, CaO and MgO, but positive correlations with Na2O, P2O5 and TiO2. Microtextural relations reveal the crystallization of clinopyroxene prior to plagioclase in the Myitkyina gabbros. This suggests that the gabbros were crystallized from hydrous melts, which is also supported by the occurrence of orthopyroxene and anorthitic plagioclase in some gabbros. The gabbros have slightly enriched Sr-Nd isotopes, with initial 87Sr/86Sr ratios of 0.703938-0.706609 and εNd(t) values of + 2.4-+7.2, and relatively variable Hf isotopes, with εHf(t) values of + 13.4-+24.9. A subduction component is required to explain the decoupled Nd-Hf isotopes of the gabbros. Binary mixing suggests that addition of ca 2% subducted sediments to a depleted mantle can account for the Nd-Hf decoupling. Therefore, both petrological and geochemical data of the gabbros support that the Myitkyina ophiolite was originated in a supra-subduction zone setting. The plagiogranites have compositions of tonalites and trondhjemites, containing 56.93-77.93 wt% SiO2, 1.27-10.79 wt% Na2O and 0.05-0.71 wt% K2O. They are slightly enriched in LREE over HREE and display positive anomalies in Eu, Zr, Hf but negative Nb anomalies. Very low TiO2 contents (0.03-0.2 wt%) of the plagiogranites suggest that they were not products of fractional crystallization of MORB

  18. Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area, NW Iran (United States)

    Hajialioghli, Robab; Moazzen, Mohssen


    The Piranshahr metaperidotites in the northwestern end of the Zagros orogen were emplaced following the closure of the Neotethys ocean. The ophiolitic rocks were emplaced onto the passive margin of the northern edge of the Arabian plate as a result of northeastward subduction and subsequent accretion of the continental fragments. The metaperidotites have compositions ranging from low-clinopyroxene lherzolite to harzburgite and dunite. They are mantle residues with distinct geochemical signatures of both mid-ocean ridge and supra subduction zone (SSZ) affinities. The abyssal peridotites are characterized by high Al2O3 and Cr2O3 contents and low Mg-number in pyroxenes. The Cr-number in the coexisting spinel is also low. The SSZ mantle peridotites are characterized by low Al2O3 contents in pyroxenes as well as low Al2O3 and high Cr-number in spinel. Mineral chemical data indicate that the MOR- and SSZ-type peridotites are the residues from ∼15-20% and ∼30-35% of mantle melting, respectively. Considering petrography, mineralogy and textural evidence, the petrological history of the Piranshahr metaperidotites can be interpreted in three stages: mantle stable stage, serpentinization and metamorphism. The temperature conditions in the mantle are estimated using the Ca-in-orthopyroxene thermometer as 1210 ± 26 °C. The rocks have experienced serpentinization. Based on the textural observations, olivine and pyroxene transformed into lizardite and/or chrysotile with pseudomorphic textures at temperatures below 300 °C during the initial stage of serpentinization. Subsequent orogenic metamorphism affected the rocks at temperatures lower than 600 °C under lower-amphibolite facies metamorphism.

  19. H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer (United States)

    Peslier, A. H.; Bizimis, M.


    Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s.

  20. Effect of Mantle Wedge Hybridization by Sediment Melt on Geochemistry of Arc Magma and Arc Mantle Source - Insights from Laboratory Experiments at High Pressures and Temperatures (United States)

    Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.


    Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also

  1. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling (United States)

    Alt, J.C.; Shanks, Wayne C.


    The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.

  2. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna


    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine


    Directory of Open Access Journals (Sweden)

    Němec L.


    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  4. Development of Bulk Bi2+xSr3-yCa yCu 2O8+delta Superconductors by Partial-Melting Route for Fault Current Limiters Application

    Directory of Open Access Journals (Sweden)

    Bojan A. Marinkovic


    Full Text Available The production of bulk Bi2+xSr3-yCa yCu 2O8+delta (Bi-2212 superconductors for fault current limiter application was developed via a partial-melting route. Aiming high Ic (critical current, which is the essential superconducting characteristic for application of this material in the construction of Fault Current Limiters (FCL, the produced blocks have predominance of Bi-2212 phase (83 wt%, which characterizes with high values of zero and onset transport critical temperature of 92K and 97.5K, respectively. A relatively low transition width, deltaT, from the superconducting to the normal state of 5.5K, revealed a good intergrain connectivity. Consequently, current measurements on the blocks of Bi-2212 show promising Ic values of 230A and 850A for direct and alternate current, respectively. It is expected that further increases in the Ic values will depend on the elimination of an observed amorphous phase and further reduction of amount and grain sizes of secondary phases, still present in the blocks obtained by the proposed partial-melting route. This may be achieved by a further optimization of the partial-melting processing parameters.

  5. Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite (United States)

    Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.


    The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  6. Petrology of Ortsog-Uul peridotite-gabbro massif in Western Mongolia (United States)

    Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Cherdantseva, M.


    The Ortsog-Uul mafic-ultramafic massif of Western Mongolia is located in a tectonic block with overturned bedding. The massif hosts two intrusions: a rhythmically-layered peridotite-gabbro association (Intrusion 1) and massive Bt-bearing amphibole-olivine gabbro (Intrusion 2). Intrusions 1 and 2 have different petrology features. Early Intrusion 1 (278±2.5Ma) is characterized by lower concentrations of alkalis, titanium and phosphorus than late Intrusion 2 (272±2Ma). The chondrite-normalized REE and primitive mantle-normalized rare elements patterns of Ortsog-Uul intrusions have similar curves of elements distribution. However, Intrusion 2 is characterized higher contents of REE and rare elements. High concentrations of incompatible elements are indicative of strong fractionation process. It has been suggested that Intrusions 1 and 2 derived from compositionally different parental melts. Model calculations (COMAGMAT-3.57) show that parental melts of two intrusions were close to high-Mg picrobasaltic magmas. The concentration of MgO in melt is 16.21 (Intrusion 1) and 16.17 (Intrusion 2). Isotopic data of Ortsog-Uul magmatic rocks exhibit different values of εNd (positive and negative) for Intrusion 1 and 2, respectively.

  7. Stagnation and Storage of Strongly Depleted Melts in Slow-Ultraslow Spreading Oceans: Evidence from the Ligurian Tethys (United States)

    Piccardo, Giovanni; Guarnieri, Luisa; Padovano, Matteo


    Our studies of Alpine-Apennine ophiolite massifs (i.e., Lanzo, Voltri, Ligurides, Corsica) show that the Jurassic Ligurian Tethys oceanic basin was a slow-ultraslow spreading basin, characterized by the exposures on the seafloor of mantle peridotites with extreme compositional variability. The large majority of these peridotites are made of depleted spinel harzburgites and plagioclase peridotites. The former are interpreted as reactive peridotites formed by the reactive percolation of under-saturated, strongly trace element depleted asthenospheric melts migrated by porous flow through the mantle lithosphere. The latter are considered as refertilized peridotites formed by peridotite impregnation by percolated silica-saturated, strongly trace element depleted melts. Strongly depleted melts were produced as low-degrees, single melt increments by near fractional melting of the passively upwelling asthenosphere during the rifting stage of the basin. They escaped single melt increment aggregation, migrated isolated through the mantle lithosphere by reactive porous or channeled flow before oceanic opening, and were transformed into silica-saturated derivative liquids that underwent entrapment and stagnation in the shallow mantle lithosphere forming plagioclase-enriched peridotites. Widespread small bodies of strongly depleted gabbro-norites testify for the local coalescence of these derivative liquids. These melts never reached the surface (i.e., the hidden magmatism), since lavas with their composition have never been found in the basin. Subsequently, aggregated MORB melts upwelled within replacive dunite channels (as evidenced by composition of magmatic clinopyroxenes in dunites), intruded at shallow levels as olivine gabbro bodies and extruded as basaltic lavas, to form the crustal rocks of the oceanic lithosphere (i.e., the oceanic magmatism). Km-scale bodies of MORB olivine gabbros were intruded into the plagioclase-enriched peridotites, which were formed in the

  8. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications (United States)

    Guilmette, C.; Indares, A.; Hébert, R.


    Rare kyanite-bearing anatectic paragneisses are found as boudins within sillimanite-bearing paragneisses of the core of the Namche Barwa Antiform, Tibet. In the present study, we document an occurrence from the NW side of the Yarlung Zangbo River. These rocks mainly consist of the assemblage garnet + K-feldspar + kyanite ± biotite + quartz + rutile ± plagioclase with kyanite locally pseudomorphed by sillimanite. The documented textures are consistent with the rocks having undergone biotite-dehydration melting in the kyanite stability field, under high-P granulite facies conditions, and having experienced melt extraction. However textures related to melt crystallization are ubiquitous both in polymineralic inclusions in garnet and in the matrix, suggesting that a melt fraction had remained in these rocks. Phase equilibria modelling was undertaken in the NCKFMASTHO system with THERMOCALC. P-T pseudosections built with the bulk compositions of one aluminous and one sub-aluminous paragneiss samples predict a biotite-kyanite-garnet-quartz-plagioclase-K-feldspar-liquid-rutile ± ilmenite field, in which biotite-dehydration melting occurs, located in the P-T range of ~ 800-875 °C and ~ 10-17 kbar. In addition, the topologies of these pseudosections are consistent with substantial melt loss during prograde metamorphism. A second set of P-T pseudosections with melt-reintegrated model bulk compositions were thus constructed to evaluate the effect of melt loss. The integration of textural information, precise mineral modes, mineral chemistry, and phase equilibria modelling allowed to constrain a P-T path where the rocks are buried to lower crustal depths at peak P-T conditions higher than 14 kbar and 825 °C, possibly in the order of 15-16 kbar and 850 °C, followed by decompression and cooling to P-T conditions of around 9 kbar and 810 °C, under which the remaining melt was solidified. The implications for granite production at the NBA and for Himalayan tectonic models

  9. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran

    Directory of Open Access Journals (Sweden)

    Nargess Shirdashtzadeh


    expense of Ca-free mineral of serpentine. Tremolite were produced after chrysotile, talc, and chlorite, wherever enough Ca2+ ions were released from the associated olivine and/or orthopyroxene by serpentinization. Discussion Petrographical and geochemical studies indicate a greenschist-facies stage (serpentinization and chloritization followed and overprinted by amphibolite-facies metamorphism. The regional metamorphism is verified by the formation of antigorite after lizardite and chrysotile, metamorphic olivine neoblasts after serpentines, chlorite after Cr-spinel, talc after olivine and orthopyroxene, and tremolite after pyroxene, talc, serpentine, and chlorite. The metamorphism imprints on harzburgite and dunite indicate that metamorphism has occurred after melt-rock reactions. Acknowledgment The authors appreciate Prof. Shoji Arai for providing geochemical facilities. References Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran. Journal of Asian Earth Science, 26(6: 683-693. Ghazi, J.M., Moazzen, M., Rahgoshay, M. and Shafaii Moghadam, H., 2010. Mineral chemical composition and geodynamic significance of peridotites from Nain ophiolite, Central Iran. Journal of Geodynamics, 49(5: 261-270. Shirdashtzadeh, N., Torabi, G. and Arai, S., 2010. Metamorphism and metasomatism in the Jurassic of Nain ophiolitic mélange, Central Iran. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 255(3: 255–275. Shirdashtzadeh, N., Torabi, G., Meisel, T., Arai, S., Bokhari, S.N.H., Samadi, R. and Gazel, E., 2014a. Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran: Implications for the Eastern Neo-Tethys evolution. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 273(1: 89–120. Shirdashtzadeh, N., Torabi, G. and Samadi, R., 2014b. Geochemistry of pillow lavas and their clinopyroxene: ophiolitic mélanges of Nain and Ashin (Northeast of Isfahan Province

  10. Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: Consequences for mantle source heterogeneity within the Cameroon Volcanic Line (United States)

    Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.


    Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.

  11. Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle (United States)

    Ionov, Dmitri A.; Chazot, Gilles; Chauvel, Catherine; Merlet, Claude; Bodinier, Jean-Louis


    Spinel peridotite xenoliths in alkali basalts at Tok, SE Siberian craton range from fertile lherzolites to harzburgites and wehrlites; olivine-rich (70-84%) rocks are dominant. REE patterns in the lherzolites range from nearly flat for fertile rocks (14-17% cpx) to LREE-enriched; the enrichments are positively correlated with modal olivine, consistent with high-permeability of olivine-rich rocks during melt percolation. Clinopyroxene in olivine-rich Tok peridotites typically has convex-upward trace element patterns (La/Nd PM 1); the LREE-enrichments are positively correlated with phosphorus abundances and are mainly hosted by accessory phosphates and P-rich cryptocrystalline materials. In addition to apatite, some Tok xenoliths contain whitlockite (an anhydrous, halogen-poor and Na-Mg-rich phosphate), which is common in meteorites and lunar rocks, but has not been reported from any terrestrial mantle samples. Some olivine-rich peridotites have generations of clinopyroxene with distinct abundances of Na, LREE, Sr and Zr. The mineralogical and trace element data indicate that the lithospheric mantle section represented by the xenoliths experienced a large-scale metasomatic event produced by upward migration of mafic silicate melts followed by percolation of low- T, alkali-rich melts and fluids. Chromatographic fractionation and fractional crystallisation of the melts close to the percolation front produced strong LREE-enrichments, which are most common in the uppermost mantle and are related to carbonate- and P 2O 5-rich derivatives of the initial melt. Reversal and gradual retreat of the percolation front during thermal relaxation to ambient geotherm ("retrograde" metasomatism) caused local migration and entrapment of small-volume residual fluids and precipitation of volatile-rich accessory minerals. A distinct metasomatic episode, which mainly produced "anhydrous" late-stage interstitial materials was concomitant with the alkali basaltic magmatism, which brought

  12. Evaluation of the performance of peridotite aggregates for radiation shielding concrete

    International Nuclear Information System (INIS)

    Wang, Jinjun; Li, Guofeng; Meng, Dechuan


    Highlights: • Using peridotite rich in crystal water as aggregates of radiation-shielding concrete. • Performance of peridotite concrete is simulated and compared with ordinary concrete. • Performance of concrete samples is tested. • Neutron shielding performance can be significantly enhanced by peridotite aggregates. - Abstract: Peridotite is a kind of material that is rich in crystal water. In this paper, peridotite is used as fine and coarse aggregates for radiation shielding concrete. The transmission data of different concrete thickness and different energy neutron are calculated using Monte-Carlo method. The neutron shielding performance of the peridotite concrete samples are tested using 241 Am-Be neutron source. The results show that the peridotite is an excellent neutron shielding material

  13. The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the characteristic PTt path of a cold mantle wedge garnet peridotite

    NARCIS (Netherlands)

    Gilio, Mattia; Clos, Frediano; van Roermund, Herman L M|info:eu-repo/dai/nl/068882432


    We present pseudosections of Cr-bearing garnet peridotite that together with new mineral–chemical data allow quantification of the early PT conditions of the original lithospheric mantle assemblage (M1) of the Friningen Garnet Peridotite (FGP) located in the central/middle belt of the Seve Nappe

  14. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar


    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is

  15. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel


    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  16. Dating exhumed peridotite with spinel (U-Th)/He chronometry (United States)

    Cooperdock, Emily H. G.; Stockli, Daniel F.


    The timing of cooling and exhumation of mantle peridotites in oceanic and continental settings has been challenging to determine using traditional geo- and thermochronometric techniques. Hence, the timing of the exhumation of mantle rocks to the Earth's surface at mid-ocean ridges, rifted and passive continental margins, and within continental volcanic and orogenic systems has remained largely elusive or only loosely constrained by relative age bracketing. Magmatic spinel [(Mg, Fe)(Al,Cr)2O4] is a ubiquitous primary mineral phase in mantle peridotites and is often the only primary mineral phase to survive surface weathering and serpentinization. This work explores spinel (U-Th)/He thermochronology as a novel tool to directly date the exhumation and cooling history of spinel-bearing mantle peridotite. Samples were chosen from a range of tectonic and petrologic settings, including a mid-ocean ridge abyssal peridotite (ODP Leg 209), an orogenic tectonic sliver of sub-continental mantle (Lherz massif, France), and a volcanic-rock hosted mantle xenolith (Green Knobs, NM). Spinel grains were selected based on grain size and morphology, screened for internal homogeneity using X-ray computed tomography, and air abraded to eliminate effects of alpha ejection/implantation. These case studies yield spinel He age results that are reproducible and generally in good agreement with independent age constraints. For ODP Leg 209, a spinel He age of 1.1 ± 0.3 Ma (2 SE) (n = 8) is consistent with independent U-Pb and magnetic anomaly ages for the exhumation of oceanic crust by detachment faulting along this segment of the slow-spreading ridge. Spinel from the Lherz massif yield He ages from 60-70 Ma (n = 3), which correspond well with independent thermochronometric constraints for cooling associated with Pyrenean collisional exhumation. Spinel from a mantle xenolith within a previously undated kimberlite diatreme at Green Knobs, New Mexico, generate a reproducible mean He age of 11

  17. Petrography and mineral chemistry of metamorphosed mantle peridotites of Nain Ophiolite (Central Iran)


    Nargess Shirdashtzadeh; Ghodrat Torabi; Ramin Samadi


    Introduction Study of the petrology of the ophiolites as the relics of ancient oceanic lithosphere, is a powerful tool to reconstruct Earth’s history. Mantle peridotites have mostly undergone alteration and serpentinization to some extent. Thus, the relics of metamorphic signatures from the upper mantle and crustal processes from most of the peridotites have been ruined. Several recent papers deal with the mantle peridotites of Nain Ophiolite (e.g. Ghazi et al., 2010). However, no scientif...

  18. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone


    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  19. Evolved Rocks in Ocean Islands Formed by Melting of Metasomatized Mantle (United States)

    Ashwal, L. D.; Torsvik, T. H.; Horvath, P.; Harris, C.; Webb, S. J.; Werner, S. C.; Corfu, F.


    Evolved rocks like trachyte occur as minor components of many plume-related basaltic ocean islands (e.g. Hawaii, Gran Canaria, Azores, Réunion), and are typically interpreted as products of extreme fractional crystallization from broadly basaltic magmas. Trachytes from Mauritius (Indian Ocean) suggest otherwise. Here, 6.8 Ma nepheline-bearing trachytes (SiO2 ~63%, Na2O + K2O ~12%) are enriched in all incompatible elements except Ba, Sr and Eu, which show prominent negative anomalies. Initial eNd values cluster at 4.03 ± 0.15 (n = 13), near the lower end of the range for Mauritian basalts (eNd = 3.70 - 5.75), but initial Sr is highly variable (ISr = 0.70408 - 0.71034) suggesting secondary deuteric alteration. Fractional crystallization models starting with a basaltic parent fail, because when plagioclase joins olivine in the crystallizing assemblage, residual liquids become depleted in Al2O3, produce no nepheline, and do not approach trachytic compositions. Mauritian basalts and trachytes do not fall near the ends of known miscibility gaps, eliminating liquid immiscibility processes. Partial melting of extant gabbroic bodies, either from the oceanic crust or from Réunion plume-related magmas should yield quartz-saturated melts different from the critically undersaturated Mauritian trachytes. A remaining possibility is that the trachytes represent direct, small-degree partial melts of fertile, perhaps metasomatized mantle. This is supported by the presence of trachytic glasses in many mantle xenoliths, and experimental results show that low-degree trachytic melts can be produced from mantle peridotites even under anhydrous conditions. If some feldspar is left behind as a residual phase, this would account for the negative Ba, Sr and Eu anomalies observed in Mauritian trachytes. Two trachyte samples that are less depleted in these elements contain xenocrysts of anorthoclase, Al-rich cpx and Cl-rich kaersutite that are out of equilibrium with host trachyte magmas

  20. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway

    NARCIS (Netherlands)

    Spengler, D.; Van Roermund, H.L.M.; Drury, M.R.; Ottolini, L.; Mason, P.R.D.; Davies, G.R.


    The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the

  1. Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments (United States)

    Murphy, J. Brendan; Shellnutt, J. Gregory; Collins, William J.


    Avalonian rocks in northern mainland Nova Scotia are characterized by voluminous 640-600 Ma calc-alkalic to tholeiitic mafic to felsic magmas produced in a volcanic arc. However, after the cessation of arc activity, repeated episodes of felsic magmatism between ca. 580 Ma and 350 Ma are dominated by A-type geochemical characteristics. Sm-Nd isotopic data, combined with zircon saturation temperature estimates, indicate that these magmas were formed by high temperature (800-1050 °C) melting of the same anhydrous crustal source. Regional tectonic considerations indicate that A-type felsic magmatism was produced (1) at 580 Ma in a San Andreas-type strike slip setting, (2) at 495 Ma as Avalonia rifted off Gondwana, (3) at 465 and 455 in an ensialic island arc environment and (4) at 360-350 Ma during post-collisional, intra-continental strike-slip activity as Avalonia was translated dextrally along the Laurentian margin. These results attest to the importance of crustal source, rather than tectonic setting, in the generation of these A-type magmas and are an example of how additional insights are provided by comparing the geochemical and isotopic characteristics of igneous suites of different ages within the same terrane. They also suggest that the shallow crustal rocks in northern mainland Nova Scotia were not significantly detached from their lower crustal source between ca. 620 Ma and 350 Ma, a time interval that includes the separation of Avalonia from Gondwana, its drift and accretion to Laurentia as well as post-accretionary strike-slip displacement.

  2. Growth and structural characterization of single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) obtained by the partial melting technique (United States)

    Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.


    In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.

  3. Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs (United States)

    Berger, J.; Burg, J.-P.


    Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F conditions to trigger gravity-driven delamination of the root and could lead to introduction of fertile arc garnet pyroxenites within the upper mantle. However, in Kohistan and at Amalaoulaou, the dense garnet-clinopyroxene residues are dispersed in the arc roots; they are intermingled with hornblendite and pyroxenite bodies. The small density contrast between garnet granulites and the harzburgitic mantle, and the low volumes of garnet

  4. Modification of an ancient subcontinental lithospheric mantle by continental subduction: Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China (United States)

    Chen, Yi; Su, Bin; Chu, Zhuyin


    Orogenic mantle-derived peridotites commonly originate from the subcontinental lithospheric mantle (SCLM) and thus provide a key target to investigate the modification of the SCLM by a subducting slab. The Maowu ultramafic rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt have formerly been debated as representing cumulates or mantle-derived peridotites. Detailed petrological and geochemical data presented in this study provide new constraints on the origin and formation of the peridotites involving melt depletion in the ancient SCLM and deep crustal metasomatism. The Maowu garnet dunites have refractory bulk compositions characterized by high Mg# (91.9-92.0) and Ni (2537-2892 ppm) values and low Al2O3 (0.26-0.76 wt.%), CaO (0.05-0.32 wt.%), TiO2 (China craton. Many garnet orthopyroxenite veins crosscutting the Maowu dunites preserve abundant metasomatic textures and show variable enrichment in incompatible elements. Mineral and whole-rock chemistry indicate that these veins represent metasomatic products between the wall dunites and silica-rich hydrous melts under UHP conditions. The veins show large variations in platinum-group element (PGE) signatures and Re-Os isotopes. The garnet-poor orthopyroxenite veins are characterized by low Al2O3 ( 6 wt.%) and S (99-306 ppm) contents and show melt-like PGE patterns and high 187Os/188Os ratios (up to 0.36910). These features, combined with the occurrence of interstitial sulfides in the garnet-rich orthopyroxenite veins, suggest that crust-derived sulfur-saturated silicate melts may have significantly modified the PGE signature and destroyed the Re-Os systematics of the SCLM. However, when the crust-derived silicate melts became sulfur-depleted, such melts would not significantly modify the PGE patterns, radiogenic Os-isotope compositions or the Re-depletion model ages of the SCLM. Consequently, deep crust-mantle interactions in continental subduction zones could induce high degrees of Os isotopic

  5. Serpentinization: Getting water into a low permeability peridotite (United States)

    Ulven, Ole Ivar


    Fluid consuming rock transformation processes occur in a variety of settings in the Earth's crust. One such process is serpentinization, which involves hydration of ultramafic rock to form serpentine. With peridotite being one of the dominating rocks in the oceanic crust, this process changes physical and chemical properties of the crust at a large scale, increases the amount of water that enters subduction zones, and might even affect plate tectonics te{jamtveit}. A significant number of papers have studied serpentinization in different settings, from reaction fronts progressing over hundreds of meters te{rudge} to the interface scale fracture initiation te{pluemper}. However, the process represents a complicated multi-physics problem which couples external stress, mechanical deformation, volume change, fracture formation, fluid transport, the chemical reaction, heat production and heat flow. Even though it has been argued that fracture formation caused by the volume expansion allows fluid infiltration into the peridotite te{rudge}, it remains unclear how sufficient water can enter the initially low permeability peridotite to pervasively serpentinize the rock at kilometre scale. In this work, we study serpentinization numerically utilizing a thermo-hydro-mechanical model extended with a fluid consuming chemical reaction that increases the rock volume, reduces its density and strength, changes the permeability of the rock, and potentially induces fracture formation. The two-way coupled hydromechanical model is based on a discrete element model (DEM) previously used to study a volume expanding process te{ulven_1,ulven_2} combined with a fluid transport model based on poroelasticity te{ulven_sun}, which is here extended to include fluid unsaturated conditions. Finally, a new model for reactive heat production and heat flow is introduced, to make this probably the first ever fully coupled chemo-thermo-hydromechanical model describing serpentinization. With this model

  6. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience


    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  7. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J; Green, T H [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S H [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience


    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  8. Latest Cretaceous "A2-type" granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere (United States)

    Karsli, Orhan; Aydin, Faruk; Uysal, Ibrahim; Dokuz, Abdurrahman; Kumral, Mustafa; Kandemir, Raif; Budakoglu, Murat; Ketenci, Murat


    An integrated study of comprehensive geochronological, geochemical, and Sr-Nd-Hf isotopic data was undertaken for the A-type Topcam pluton that intruded within the Sakarya Zone (NE Turkey) with the aims of elucidating its origin and tectonic significance and gaining new insights into the generation of aluminous A-type granites. New LA-ICP-MS zircon U-Pb crystallization ages of 72 and 73 Ma indicate emplacement in the Late Cretaceous time, just after extensive metaluminous I-type magmatism in the area. The pluton consists mainly of alkali feldspar, quartz, plagioclase, amphibole, and biotite with accessory minerals such as magnetite, apatite, and zircon. The outcrop is composed of granite, syenite, monzonite, and quartz monzonite and possesses a wide range of SiO2 content (57-70 wt%) with elevated Ga/Al ratios and low Mg# (mostly negative Eu (Eu/Eu* = 0.31 to 0.86) anomalies on the chondrite-normalized REE diagram. The rocks are enriched in some large ion lithophile elements (e.g., Rb, Th and Ba), and spidergrams show a relative depletion in Nb, Ti, and Sr. The granitic rocks of the pluton have identical 87Sr/86Sr(i) ratios ranging from 0.70518 to 0.70716, relatively low εNd (t) values varying from - 5.5 to - 0.4, and TDM ages (0.82-1.19 Ga). In situ zircon analyses show that the rocks have variable negative and positive εHf (t) values (- 5.5 to 5.9) and Hf two-stage model ages (742 to 1468 Ma), which are indicative of minor addition of juvenile material. Sr-Nd isotope modelling suggests mixing of 70-90% of lower crustal-derived melt with 10-30% of mantle-derived melt at lower crust depths. The heat source for partial melting is provided by upwelling of hot asthenosphere triggered by slab roll-back events. Geochemical and isotopic data reveal that metaluminous A2-type granites were derived from partial melting of the Paleozoic lower continental crust dominated by mafic rocks in amphibolitic composition, with minor input of subcontinental lithospheric mantle

  9. Magnetic properties of serpentinized peridotites from the Zedong ophiolite, Yarlung-Zangbo suture zone, SE Tibet (United States)

    Li, Z.; Zheng, J.; Moskowitz, B. M.; Xiong, Q.; Liu, Q.


    Serpentinized mantle peridotites are widely supposed to be significant sources of the magnetic, gravity and seismic anomalies in mid-oceanic ridges, forearcs and suture zones. However, the relationship between the magnetic properties of variably serpentinized peridotites and the serpentinization process is still under debate. Ophiolite outcrops commonly comprise peridotites in different stages of serpentinization and these ophiolitic peridotites are ideal to investigate the magnetic signatures of suture zones. The Zedong ophiolite locates in the eastern part of the Yarlung-Zangbo suture zone, SE Tibet (China), and the peridotite massif represents the remnants of the Neo-Tethyan lithospheric mantle. The harzburgite and lherzolite samples show densities between 3.316 and 2.593 g cm-3, and vary from the freshest to >90% serpentinized peridotites. The magnetic susceptibility curves from room temperature to 700ºC mainly show the Curie temperatures of 585ºC for pure magnetite. The low-temperature (20-300 K) demagnetization curves show the Verwey transitions at 115-125 K, suggesting that magnetite is also the dominant remanence-carrying phase. The hysteresis data of the peridotites fall in the region of pseudo-single-domain (PSD) and follow the theoretical trends for mixtures of single domain (SD) and multidomain (MD) magnetite. The first-order reversal curve (FORC) diagrams suggest that the magnetite is dominantly interacting SD + PSD particles for S 40% serpentinized samples. The susceptibility and saturation magnetization of the Zedong peridotites range from 0.9 to 30.8 × 10‒3 (SI) and 14.1 to 1318 × 10‒3 Am2 kg‒1, respectively, and both show consistent trends with increasing degrees of serpentinization. The S serpentinization of ophiolitic peridotites, whereas the S > 40% peridotites have higher susceptibilities of 0.02-0.03 (SI) and fall in the region of abyssal peridotites. Our results suggest that the Zedong ophiolitic peridotites probably experienced a

  10. Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California (United States)

    Liakhovitch, V.; Quick, J.E.; Gregory, R.T.


    The Trinity peridotite represents a rare opportunity to examine a relatively fertile plagioclase peridotite that was exhumed and later subjected to intrusive events in a seafloor environment, followed by its emplacement and incorporation into a continent. Over 250 stable isotopic determinations on whole rocks and minerals elucidate the hydrothermal evolution of the Trinity complex. All three serpentine polymorphs are present in the Trinity peridotite; these separate on the basis of their ??D values: antigorite, -46 serpentinization, or overprinting of earlier low-temperature seafloor serpentinization. Regionally, contours of ??D values exhibit bull's-eye patterns associated with the gabbroic plutons, with ??D maxima coinciding with the blackwall alteration at the margins on the plutons. In contrast to the hydrogen isotope behavior, oxygen isotope values of the three polymorphs are indistinguishable, spanning the range 5.3 history: (1) lithospheric emplacement and cooling of the peridotite in an oceanic environment ??? 472 Ma; (2) intrusion of gabbroic plutons into cold peridotite in an arc environment between 435 and 404 Ma; and finally (3) intrusion of felsic plutons between 171 and 127 Ma, long after the peridotite was incorporated into the continental crust. Copyright ?? 2005 by V. H. Winston & Son, Inc. All rights reserved.

  11. CO2 injection into fractured peridotites: a reactive percolation experiment (United States)

    Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.


    Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with

  12. Melting in super-earths. (United States)

    Stixrude, Lars


    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  13. Features of melting of indium monohalides

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V S; Smirniv, V A [AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela


    The character of InCl, InBr and InI melting is investigated by the methods of DTA, calorimetry, conductometry and chemical analysis. Partial decomposition of monohalogenides during melting according to the reactions of disproportionation is shown. The presence of disproportionation products (In/sup 0/ and In/sup 3 +/) is manifested in the properties of solid monohalogenides, prepared by the crystallization from melt, in their photosensitivity and electroconductivity.

  14. Tin in granitic melts: The role of melting temperature and protolith composition (United States)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier


    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  15. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite (United States)

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.


    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  16. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: Evidence from mantle xenoliths from French Polynesia (United States)

    Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J. M.; Barczus, H.


    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 (2

  17. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: A petrological and microstructural study of mantle xenoliths from French Polynesia (United States)

    Tommasi, A.; Godard, M.


    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2

  18. The Universal Cpx Jd-Di barometer for mantle peridotite eclogite and pyroxenites and it using for the mantle petrology (United States)

    Ashchepkov, Igor


    The Jd-Di exchange in clinopyroxenes used for the calibration of pyroxene barometer (Ashchepkov, 2000;2002; Ashchepkov et al 2010;2011;2012) was transformed to make one universal equation for mantle peridotite eclogites and pyroxenites. The original barometer (Ashchepkov, 2002) calibrated on pressures produced by Opx barometry (McGregor , 1974) was transformed (Ashchepkov et al ., 2004; 2010; 2011) to satisfy the increasing data bases for the mantle xenoliths and experimental values 530 in peridotitic and 650 in elcogitic systems . The obtained difference Pd =Pcpx- Pexp were studied for the dependence on each component and their combination . Instead of the common activities we used the temperature-dependent empirical equations. The three separate equations for the common peridotites, pyroxenites and eclogites (Ashchepkov et al., 2010) were checked and complex To and Al-Na-Fe dependent universal coefficients were received. The KD is determined as follows: KD=Na/AlCr*Mg/Ca The logarithmic dependence between P and KD was transformed to a linear one. Final pressure equations are: AlCr=(Al-0.01) *((T-600)/700)**0.75+Cr*(ToK-100)/1000+(4*Ti-0.0125)/ (T0-801)*650 +0.55*((Fe-0.23) *(T0-900)/10000-K) P=0.26*(5+12*(Al+0.30*Na)KD* ToK**0.75 /(1+Fe+ Fe*(ToK-600)/1000)-ln(1273/ ToK))*40*(7*Na-Al-15*Ti+10*Cr+Mg/4)+7.5*Si-20*( Al*Na*Mg/Ca/(Al-2*Ti+Na-2*Fe/(Fe+Mg))+50*(Na+0.1*Al-2*Ti+0.05*Mg-0.22*Ca-0.7*Na)/Ca). Obtained equation in combination with the (Nimis,Taylor, 2000) thermometer allow to reconstruct position of the magma feeder systems of the alkali basaltic magma withing the mantle diapirs in modern platforms like in Vitim plateau (Ashchepkov et al., 2011) and now was applicated to reconstruct the deep seated magma conduits beneath the mountain collision systems, island arcs ocean plateaus etc. This equation allows to receive the positions of the major groups of eclogites mantle sections and to find out the regularities of their behavior. The Fe rich eclogites commonly

  19. Reply to `Comment on "The beginnings of hydrous mantle wedge melting" by Till et al.' by Green, Rosenthal and Kovacs (United States)

    Till, Christy B.; Grove, Timothy L.; Withers, Anthony C.


    The comment of Green et al. debates the interpretation of the temperature of the H2O-saturated peridotite solidus and presence of silicate melt in the experiments of Till et al. (Contrib Mineral Petrol 163:669-688, 2012) at <1,000 °C. The criticisms presented in their comment do not invalidate any of the most compelling observations of Till et al. (Contrib Mineral Petrol 163:669-688, 2012) as discussed in the following response, including the changing minor element and Mg# composition of the solid phases with increasing temperature in our experiments with 14.5 wt% H2O at 3.2 GPa, as well as the results of our chlorite peridotite melting experiments with 0.7 wt% H2O. The point remains that Till et al. (Contrib Mineral Petrol 163:669-688, 2012) present data that call into question the H2O-saturated peridotite solidus temperature preferred by Green (Tectonophysics 13(1-4):47-71, 1972; Earth Planet Sci Lett 19(1):37-53, 1973; Can Miner 14:255-268, 1976); Millhollen et al. (J Geol 82(5):575-587, 1974); Mengel and Green (Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions, Geological Society of Australia Special Publication, Blackwell, pp 571-581, 1989); Wallace and Green (Mineral Petrol 44:1-19, 1991) and Green et al. (Nature 467(7314):448-451, 2010).

  20. Geochronological Constraints on the Exhumation and Emplacement of Subcontinental Lithospheric Mantle Peridotites in the Westernmost Mediterranean (United States)

    Garrido, Carlos J.; Hidas, Károly; Marchesi, Claudio; Varas-Reus, María Isabel; Booth-Rea, Guillermo


    Exhumation of subcontinental mantle peridotite in the Western Mediterranean has been attributed to different tectonic processes including pure extension, transpression, or alternating contractive and extensional processes related with continental subduction followed by extension, before final their contractive intracrustal emplacement. Any model trying to explain the exhumation and emplacement of subcontinental lithospheric mantle peridotites in the westernmost Mediterranean should take into account the available geochronological constraints, as well as the petrological and geochemical processes that lead to internal tectono-magmatic zoning so characteristic of the Betic and Rif orogenic peridotites. Different studies have suggested a Hercynian, Cenozoic-Mesozoic or an Alpine age for the late tectono-magmatic evolution and intra-crustal emplacement of Betic-Rif peridotites. The pervasive presence of Mesozoic U-Pb zircon ages in Ronda UHP and HP garnet pyroxenites does not support a Hercynian age for the intracrustal emplacement of the peridotite. A hyper-extended margin setting for is in good agreement with the Jurassic extensional event that pervasively affected ALKAPECA terrains (i.e. the Alboran, Kabylides, Peloritani, and Calabria domains) in the western Mediterranean due to the opening of the Piemonte-Ligurian Ocean. However, a Jurassic age and a passive margin tectonic setting do not account, among other observations, for the late Miocene thermochronological ages recorded in zircons rims (U-Pb) and garnets (Lu-Hf) in garnet pyroxenites from the Betic-Rif peridotites, the pervasive Miocene resetting of U-Pb zircon and monazite ages in the overlying Jubrique crustal section, the supra-subduction radiogenic signature of late pyroxenite intrusive dikes in the Ronda peridotite, and the arc tholeiitic affinity of late mantle-derived, gabbroic dykes intruding in the Ronda and Ojen plagioclase lherzolites. These data are more consistent with a supra

  1. The geological record of base metal sulfides in the cratonic mantle: A microscale 187Os/188Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada) (United States)

    Bragagni, A.; Luguet, A.; Fonseca, R. O. C.; Pearson, D. G.; Lorand, J.-P.; Nowell, G. M.; Kjarsgaard, B. A.


    We report detailed petrographic investigations along with 187Os/188Os data in Base Metal Sulfide (BMS) on four cratonic mantle xenoliths from Somerset Island (Rae Craton, Canada). The results shed light on the processes affecting the Re-Os systematics and provide time constraints on the formation and evolution of the cratonic lithospheric mantle beneath the Rae craton. When devoid of alteration, BMS grains mainly consist of pentlandite + pyrrhotite ± chalcopyrite. The relatively high BMS modal abundance of the four investigated xenoliths cannot be reconciled with the residual nature of these peridotites, but requires addition of metasomatic BMS. This is especially evident in the two peridotites with the highest bulk Pd/Ir and Pd/Pt. Metasomatic BMS likely formed during melt/fluid percolation in the Sub Continental Lithospheric Mantle (SCLM) as well as during infiltration of the host kimberlite magma, when djerfisherite crystallized around older Fe-Ni-sulfides. On the whole-rock scale, kimberlite metasomatism is visible in a subset of bulk xenoliths, which defines a Re-Os errorchron that dates the host magma emplacement. The 187Os/188Os measured in the twenty analysed BMS grains vary from 0.1084 to >0.17 and it shows no systematic variation depending on the sulfide mineralogical assemblage. The largest range in 187Os/188Os is observed in BMS grains from the two xenoliths with the highest Pd/Ir, Pd/Pt, and sulfide modal abundance. The whole-rock TRD ages of these two samples underestimate the melting age obtained from BMS, demonstrating that bulk Re-Os model ages from peridotites with clear evidence of metasomatism should be treated with caution. The TRD ages determined in BMS grains are clustered around 2.8-2.7, ∼2.2 and ∼1.9 Ga. The 2.8-2.7 Ga TRD ages document the main SCLM building event in the Rae craton, which is likely related to the formation of the local greenstone belts in a continental rift setting. The Paleoproterozoic TRD ages can be explained by

  2. High porosity harzburgite and dunite channels for the transport of compositionally heterogeneous melts in the mantle: II. Geochemical consequences (United States)

    Liang, Y.; Schiemenz, A.; Xia, Y.; Parmentier, E.


    In a companion numerical study [1], we explored the spatial distribution of high porosity harzburgite and dunite channels produced by reactive dissolution of orthopyroxene (opx) in an upwelling mantle column and identified a number of new features. In this study, we examine the geochemical consequences of channelized melt flow under the settings outlined in [1] with special attention to the transport of compositionally heterogeneous melts and their interactions with the surrounding peridotite matrix during melt migration in the mantle. Time-dependent transport equations for a trace element in the interstitial melt and solids that include advection, dispersion, and melt-rock reaction were solved in a 2-D upwelling column using the high-order numerical methods outlined in [1]. The melt and solid velocities were taken from the steady state or quasi-steady state solutions of [1]. In terms of trace element fractionation, the simulation domain can be divided into 4 distinct regions: (a) high porosity harzburgite channel, overlain by; (b) high porosity dunite channel; (c) low porosity compacting boundary layer surrounding the melt channels; and (d) inter-channel regions outside (c). In the limit of local chemical equilibrium, melting in region (d) is equivalent to batch melting, whereas melting and melt extraction in (c) is more close to fractional melting with the melt suction rate first increase from the bottom of the melting column to a maximum near the bottom of the dunite channel and then decrease upward in the compacting boundary layer. The melt composition in the high porosity harzburgite channel is similar to that produced by high-degree batch melting (up to opx exhaustion), whereas the melt composition in the dunite is a weighted average of the ultra-depleted melt from the harzburgite channel below, the expelled melt from the compacting boundary layer, and melt produced by opx dissolution along the sidewalls of the dunite channel. Compaction within the dunite

  3. Origin of garnet and clinopyroxene in Kaapvaal low-T peridotite xenoliths

    NARCIS (Netherlands)

    Simon, N.S.C.; Irvine, G.J.; Davies, G.R.; Pearson, D.G.; Carlson, R.W.


    A detailed petrographic, major and trace element and isotope (Re-Os) study is presented on 18 xenoliths from Northern Lesotho kimberlites. The samples represent typical coarse, low-temperature garnet and spinel peridotites and span a P-T range from ∼60 to 150 km depth. With the exception of one

  4. The force of crystallization and fracture propagation during in-situ carbonation of peridotite

    NARCIS (Netherlands)

    van Noort, Reinier; Wolterbeek, Timotheus K.T.; Drury, Martyn R.; Kandianis, Michael T.; Spiers, Christopher J.


    Subsurface mineralization of CO2 by injection into (hydro-)fractured peridotites has been proposed as a carbon sequestration method. It is envisaged that the expansion in solid volume associated with the mineralization reaction leads to a build-up of stress, resulting in the opening of further

  5. Tracing alteration of mantle peridotite in the Samail ophiolite using Mg isotopes (United States)

    de Obeso, J. C.; Kelemen, P. B.; Higgins, J. A.


    Magnesium is one of the main constituents of mantle peridotite ( 22.8 wt%), which has a homogeneous Mg isotopic composition (d26Mg = -0.25 ± 0.04 ‰ (2 sd) DSM3, Teng et al 2010 GCA). Mg isotopes are used as tracers of continental and oceanic weathering as they exhibit variable degrees of fractionation during alteration depending on the lithology. Here we report some of the first Mg isotopic compositions of the mantle section of the Samail ophiolite in Oman and its alteration products. The mantle section of the ophiolite is composed mainly of depleted harzburgites and dunites with mantle-like d26Mg (-0.25, -0.21 ‰). Mantle peridotite is far from equilibrium in near surface conditions leading to rapid, extensive serpentinization, carbonation and oxidation, as well as other geochemical changes. Our analyzed samples encompass most of the alteration of peridotite products observed in Oman including listvenites (completely carbonated peridotite) near the basal thrust of the ophiolite, massive magnesite veins within peridotite outcrops, and heavily altered harzburgites. Magnesite listvenites have d26Mg slightly below mantle values (-0.33, -0.33‰) while dolomite listvenites are significantly lighter (-1.46, -0.89‰). This suggests that heavy Mg isotopes were removed from the listvenites during ophiolite emplacement. Heavily altered peridotite from Wadi Fins exhibit alteration halos with drastic changes in composition. The most oxidized areas are enriched in Fe and depleted in Mg compared to the cores of the samples. These variations in Mg concentrations are complemented by a shift to heavy Mg isotopic compositions (0.74, 0.86‰), among the heaviest d26Mg values that have been reported in altered peridotite. Potential sinks for light isotopes removed from such alteration zones are massive magnesite veins with very light compositions (-3.39, -3.14‰). The fractionation of Mg isotopes observed in the mantle section of the ophiolite spans more than 50% of the known

  6. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1 (United States)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.


    Hole BT1B sampled 3 layers of carbonated peridotite (listvenite, 0-80, 100-180, 185-197 m) separated by 2 layers of carbonate-bearing serpentinite (80-100, 180-185 m), underlain by 100 m metasediment and metabasalt. Listvenites (magnesite and/or dolomite + quartz + Fe-oxyhydroxides + chromian spinel ± fuchsite rocks) replacing mantle peridotite at and near the base of the Samail ophiolite (Stanger 85, Wilde ea 02, Nasir ea 07, Falk & Kelemen 15: FK15) reveal processes of carbon transfer into the mantle wedge (Kelemen & Manning 15) and suggest methods for CO2 capture and storage (Kelemen ea 11). Near BT1, 10 to 200 m thick tabular listvenites interlayered with partly serpentinized harzburgite have contacts parallel to the basal thrust. Imprecise Rb/Sr and 40Ar/39Ar ages indicate listvenite formed during obduction (FK15). Listvenite-peridotite contacts are gradational over 1-2 m. The listvenite matrix is microcrystalline quartz + magnesite. Quartz recrystallized from opal as in listvenites worldwide (Akbulut ea 06, Boschi ea 09, Jurkovic ea 12, Aftabi & Zarrinkoub 13, Posukhova ea 13, Ulrich ea 14) consistent with 80-120°C from clumped isotopes and phase equilibria (FK15). Thus listvenite formed - and deformed ductilely - at low T. Ubiquitous carbonate-rich veins locally comprise >10% of core sections; many have antitaxial textures consistent with expansion due to crystallization pressure. Carbonate-rich veins cut serpentinite and listvenite; veins formed a mesh, followed by replacement of mesh cores. Despite variability in and around veins, average Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al in listvenite (75 whole rocks, 7712 XRF scanner points) are indistinguishable from average Samail peridotite. CaO (average 5 wt%, range 0-40) and strongly correlated Sr were added to peridotite, most likely from subducting sediment. Rare core with >10 vol% dolomite has higher Fe/Mg than peridotite, but the same Mg/Si. Thus Mg, Si, Al and Cr, plus Fe in most rocks, were largely

  7. Negative CO2 emissions via subsurface mineral carbonation in fractured peridotite (United States)

    Kelemen, P. B.; Matter, J.


    Uptake of CO2 from surface water via mineral carbonation in peridotite can be engineered to achieve negative CO2 emissions. Reaction with peridotite, e.g., CO2 + olivine (A), serpentine (B) and brucite (C), forms inert, non-toxic, solid carbonates such as magnesite. Experimental studies show that A can be 80% complete in a few hours with 30 micron powders and elevated P(CO2) [1,2,3]. B is slower, but in natural systems the rate of B+C is significant [4]. Methods for capture of dilute CO2 via mineral carbonation [4,5,6,7] are not well known, though CO2 storage via mineral carbonation has been discussed for decades [8,9]. Where crushed peridotite is available, as in mine tailings, increased air or water flow could enhance CO2 uptake at a reasonable cost [4,5]. Here we focus on enhancing subsurface CO2 uptake from surface water flowing in fractured peridotite, in systems driven by thermal convection such as geothermal power plants. Return of depleted water to the surface would draw down CO2 from the air [6,7]. CO2 uptake from water, rate limited by flow in input and output wells, could exceed 1000 tons CO2/yr [7]. If well costs minus power sales were 0.1M to 1M and each system lasts 10 years this costs oil industry. Uptake of 1 Gt CO2/yr at 1000 t/well/yr requires 1M wells, comparable to the number of producing oil and gas wells in the USA. Subsurface CO2 uptake could first be applied in coastal, sub-seafloor peridotite with onshore drilling. Sub-seafloor peridotite is extensive off Oman, New Caledonia and Papua New Guinea, with smaller amounts off Spain, Morocco, USA, etc. This would be a regional contribution, used in parallel with other methods elsewhere. To achieve larger scale is conceivable. There is a giant mass of seafloor peridotite along slow-spreading mid-ocean ridges. Could robotic drills enhance CO2 uptake at a reasonable cost, while fabric chimneys transport CO2-depleted water to the sea surface? Does anyone know James Cameron's phone number? [1] O

  8. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.


    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  9. Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite massif, SW Tibet (China) (United States)

    Xiong, Fahui; Yang, Jingsui; Xu, Xiangzhen; Kapsiotis, Argyrios; Hao, Xiaolin; Liu, Zhao


    The Purang harzburgite massif in SW Tibet (China) hosts abundant chrome ore deposits. Ores consist of 20 to >95% modal chromian spinel (Cr-spinel) with mylonitic fabric in imbricate shaped pods. The composition of Cr-spinel in these ores ranges from Al-rich [Cr#Sp or Cr/(Cr + Al) × 100 = 47.60-57.56] to Cr-rich (Cr#Sp: 62.55-79.57). Bulk platinum-group element (PGE) contents of chromitites are also highly variable ranging from 17.5 ppb to ∼2.5 ppm. Both metallurgical and refractory chromitites show a general enrichment in the IPGE (Os, Ir and Ru) with respect to the PPGE (Rh, Pt and Pd), resulting mostly in right-sloping primitive mantle (PM)-normalized PGE profiles. The platinum-group mineral (PGM) assemblages of both chromitite types are dominated by heterogeneously distributed, euhedral Os-bearing laurite inclusions in Cr-spinel. The Purang chromitites have quite inhomogeneous 187Os/188Os ratios (0.12289-0.13194) that are within the range of those reported for mantle-hosted chromitites from other peridotite massifs. Geochemical calculations demonstrate that the parental melts of high-Cr chromitites were boninitic, whereas those of high-Al chromitites had an arc-type tholeiitic affinity. Chromite crystallization was most likely stimulated by changes in magma compositions due to melt-peridotite interaction, leading to the establishment of a heterogeneous physicochemical environment during the early crystallization of the PGM. The highly variable PGE contents, inhomogeneous Os-isotopic compositions and varying Cr#Sp ratios of these chromitites imply a polygenetic origin for them from spatially distinct melt inputs. The generally low γOs values (different sections of a heterogeneously depleted mantle source region. These melts were most likely produced in the mantle wedge above a downgoing lithospheric slab.

  10. Heterogeneous hydrogen distribution in orthopyroxene from veined mantle peridotite (San Carlos, Arizona): Impact of melt-rock interactions (United States)

    Denis, Carole M. M.; Demouchy, Sylvie; Alard, Olivier


    Experimental studies have shown that hydrogen embedded as a trace element in mantle mineral structures affects the physical properties of mantle minerals and rocks. Nevertheless, hydrogen concentrations in mantle minerals are much lower than predicted by hydrogen solubilities obtained experimentally at high pressure and temperature. Here, we report textural analyses and major and trace element concentrations (including hydrogen) in upper mantle minerals from a spinel-bearing composite xenolith (dunite and pyroxenite) transported by silica-undersaturated mafic alkaline lavas from the San Carlos volcanic field (Arizona, USA). Our results suggest that the composite xenolith results from the percolation-reaction of a basaltic liquid within dunite channels, and is equilibrated with respect to trace elements. Equilibrium temperatures range between 1011 and 1023 °C. Hydrogen concentrations (expressed in ppm H2O by weight) obtained from unpolarized and polarized Fourier transform infrared spectroscopy are low, with average values water stored in the Earth's upper mantle.

  11. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.


    slab (∼7–9 km below the slab top) cause flux melting of the subducted oceanic crust, producing hydrous slab melts that migrate into the overlying mantle, where they react with peridotite to induce further melting.

  12. The first find of spinel peridotite in the Southern Kazakhstan: Structure, composition, and parameters of high-pressure metamorphism (United States)

    Pilitsyna, A. V.; Tretyakov, A. A.; Alifirova, T. A.; Degtyarev, K. E.; Kovalchuk, E. V.


    Spinel peridotite, metamorphosed in high-pressure conditions, was first described within the Western part of the Central Asian Orogenic Belt. The spinel peridotite has the characteristics of Mg-Cr ultramafites indicating the mantle origin of its protolith. The preliminary estimation of the metamorphism peak for the model system MgO-Al2O3—SiO2-Cr2O3 (MASCr) is 10-19 kbar at 680-800°C.

  13. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite (United States)

    Ionov, Dmitri A.; Doucet, Luc S.; Xu, Yigang; Golovin, Alexander V.; Oleinikov, Oleg B.


    The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 °C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (≤0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and

  14. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.


    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  15. The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the characteristic PTt path of a cold mantle wedge garnet peridotite (United States)

    Gilio, Mattia; Clos, Frediano; van Roermund, Herman L. M.


    We present pseudosections of Cr-bearing garnet peridotite that together with new mineral-chemical data allow quantification of the early PT conditions of the original lithospheric mantle assemblage (M1) of the Friningen Garnet Peridotite (FGP) located in the central/middle belt of the Seve Nappe Complex in central Sweden. Results indicate that the early, coarse grained, olivine + orthopyroxene + clinopyroxene + "high Cr" garnet assemblage (M1a) was formed at 1100 ± 100 °C and 5.0 ± 0.5 GPa. These metamorphic conditions were followed by an inferred late Proterozoic exhumation event down to 850-900 °C and 1.5 GPa (M1b). The latter PT estimate is based on the breakdown of high-Cr M1a garnet (Cr# = 0.065) + olivine into an orthopyroxene + clinopyroxene + spinel (Cr# = 0.15-0.25) ± pargasite kelyphite (M1b) and the exsolution of garnet from Al-rich orthopyroxene and clinopyroxene. The M1b kelyphite is overprinted by an early-Caledonian UHPM mineral assemblage (M2; T = 800 °C and P = 3.0 GPa), equivalent to the earlier discovered UHP assemblage within an eclogitic dyke that cross-cuts FGP. In the garnet peridotite M2 is displayed by low-Cr garnet (Cr# = 0.030) growing together with spinel (Cr# = 0.35-0.45), both these minerals form part of the olivine + orthopyroxene + clinopyroxene + garnet + spinel + pargasite M2 assemblage. The formation of plagioclase + diopside symplectites after omphacite and breakdown of kyanite to sapphirine + albite in internal eclogite and the breakdown of M2 olivine + garnet to amphibole + orthopyroxene + spinel assemblages (M3) in garnet peridotite indicate post-UHP isothermal decompression down to 750-800 °C and 0.8-1.0 GPa (= M3). Multiphase solid-and fluid inclusion assemblages composed of Sr-bearing magnesite, dolomite or carbon decorate linear defect structures within M1a-b minerals and/or form subordinate local assemblages together with M2 minerals. The latter are interpreted as evidence for infiltration of early-Caledonian COH

  16. Oceanic mantle rocks reveal evidence for an ancient, 1.2-1.3 Ga global melting event (United States)

    Dijkstra, A. H.; Sergeev, D.; McTaminey, L.; Dale, C. W.; Meisel, T. C.


    It is now increasingly being recognized that many oceanic peridotites are refertilized harzburgites, and that the refertilization often masks an extremely refractory character of the original mantle rock 'protolith'. Oceanic peridotites are, when the effects of melt refertilization are undone, often too refractory to be simple mantle melting residues after the extraction of mid-ocean ridge basalts at a spreading center. Rhenium-osmium isotope analysis is a powerful method to look through the effects of refertilization and to obtain constraints on the age of the melting that produced the refractory mantle protolith. Rhenium-depletion model ages of such anomalously refractory oceanic mantle rocks - found as abyssal peridotites or as mantle xenoliths on ocean islands - are typically >1 Ga, i.e., much older than the ridge system at which they were emplaced. In my contribution I will show results from two case studies of refertilized anciently depleted mantle rocks (Macquarie Island 'abyssal' peridotites and Lanzarote mantle xenoliths). Interestingly, very refractory oceanic mantle rocks from sites all around the world show recurring evidence for a Mesoproterozoic (~1.2-1.3 Ga) melting event [1]. Therefore, oceanic mantle rocks seem to preserve evidence for ancient melting events of global significance. Alternatively, such mantle rocks may be samples of rafts of ancient continental lithospheric mantle. Laser-ablation osmium isotope 'dating' of large populations of individual osmium-bearing alloys from mantle rocks is the key to better constrain the nature and significance of these ancient depletion events. Osmium-bearing alloys form when mantle rocks are melted to high-degrees. We have now extracted over >250 detrital osmium alloys from placer gold occurrences in the river Rhine. These alloys are derived from outcrops of ophiolitic mantle rocks in the Alps, which include blocks of mantle rocks emplaced within the Tethys Ocean, and ultramafic lenses of unknown

  17. Compositional diversity in peridotites as result of a multi-process history: The Pacific-derived Santa Elena ophiolite, northwest Costa Rica (United States)

    Escuder-Viruete, Javier; Baumgartner, Peter O.; Castillo-Carrión, Mercedes


    The Santa Elena ophiolite (SEO) is an ultramafic nappe of more than 270 km2 overlying a tectonic serpentinite-matrix mélange in northwest Costa Rica. It is mainly composed of Cpx-rich and Cpx-poor harzburgites (~ 2.5 km-thick), with minor lherzolite, dunite and chromitite, as well as intrusive mafic sills and subvertical dikes, which coalesce into an upper Isla Negritos gabbroic sill complex. Minerals and whole-rock features of the Cpx-rich and Cpx-poor harzburgites share features of the abyssal and supra-subduction zone (SSZ) peridotites, respectively. To explain these characteristics two-stages of melting and refertilization processes are required. By means of trace element modeling, the composition of Cpx-rich harzburgites may be reproduced by up to ~ 5-10% melting of a primitive mantle source, and the composition of Cpx-poor harzburgites and dunites by ~ 15-18% melting of an already depleted mantle. Therefore, the Cpx-rich harzburgites can be interpreted as product of first-stage melting and low-degrees of melt-rock interaction in a mid-ocean ridge environment, and the Cpx-poor harzburgites and dunites as the product of second-stage melting and refertilization in a SSZ setting. The mafic sills and the Isla Negrito gabbros are genetically related and can be explained as crystallization from the liquids that were extracted from the lower SSZ mantle levels and emplaced at shallow conditions. The Murciélagos Island basalts are not directly related to the ultramafic and mafic rocks of the SEO. Their E-MORB-like composition is similar to most of the CLIP mafic lavas and suggests a common Caribbean plume-related source. The SEO represents a fragment of Pacific-derived, SSZ oceanic lithosphere emplaced onto the southern North America margin during the late Cretaceous. Because of the predominance of rollback-induced extension during its history, only a limited amount of crustal rocks were formed and preserved in the SEO.

  18. Depth and degree of melting of komatiites (United States)

    Herzberg, Claude


    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  19. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury


    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  20. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden (United States)

    Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.


    Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress

  1. On-line redox sensors in industrial glass melting tanks

    NARCIS (Netherlands)

    Laimböck, P.R.; Beerkens, R.G.C.; Schaaf, van der J.; Kieffer, J.


    The oxidation state or partial oxygen pressure (pO2) of the glass melt influences many glass melt and glass product properties such as fining and foaming behavior, radiant heat transfer, forming characteristics via (a color-dependent) cooling rate, and the glass color of the final product. For these

  2. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing (United States)

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.


    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  3. Model of interfacial melting

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Zuckermann, Martin J.


    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  4. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang


    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  5. Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes (United States)

    Sanfilippo, Alessio; Tribuzio, Riccardo; Ottolini, Luisa; Hamada, Morihisa


    Replacive mantle dunites are considered to be shallow pathways for extraction of mantle melts from their source region. Dunites offer a unique possibility to unravel the compositional variability of the melts produced in the upper mantle, before mixing and crystal fractionation modify their original signature. This study includes a quantification of H2O, Li and trace elements (Ni, Mn, Co, Sc, V, Ti, Zr, Y and HREE) in olivine from large replacive dunite bodies (>20 m) within a mantle section exposed in the Western Italian Alps (Lanzo South ophiolite). On the basis of olivine, clinopyroxene and spinel compositions, these dunites were previously interpreted to be formed by melts with a MORB signature. Variations in Ni, Mn, Co and Ca contents in olivine from different dunite bodies suggested formation by different melt batches. The variable H2O and Li contents of these olivines agree with this idea. Compared to olivine from residual peridotites and olivine phenocrysts in MORB (both having H2O 1 ppm), the Lanzo South dunite olivine has high H2O (18-40 ppm) and low Li (0.35-0.83 ppm) contents. Geochemical modelling suggests that the dunite-forming melts were produced by low melting degrees of a mixed garnet-pyroxenite-peridotite mantle source, with a contribution of a garnet pyroxenite component variable from 20 to 80%. The Lanzo dunites experienced migration of melts geochemically enriched and mainly produced in the lowermost part of the melting region. Extraction of enriched melts through dunite channels are probably characteristic of cold thermal regimes, where low temperatures and a thick mantle lithosphere inhibit mixing with melts produced at shallower depths.

  6. Melt Origin Across a Rifted Continental Margin: A Case for Subduction-related Metasomatic Agents in the Lithospheric Source of Alkaline Basalt, Northwest Ross Sea, Antarctica (United States)

    Panter, K. S.; Castillo, P.; Krans, S. R.; Deering, C. D.; McIntosh, W. C.; Valley, J. W.; Kitajima, K.; Kyle, P. R.; Hart, S. R.; Blusztajn, J.


    Alkaline magmatism within the West Antarctic rift system in the NW Ross Sea (NWRS) includes a chain of shield volcanoes extending 260 km along the coast, numerous seamounts located on the continental shelf and hundreds more within the oceanic Adare Basin. Dating and geochemistry confirm that the seamounts are Pliocene‒Pleistocene in age and petrogenetically akin to the mostly Miocene volcanism on the continent as well as to a much broader region of alkaline volcanism that altogether encompasses areas of West Antarctica, Zealandia and Australia. All of these regions were contiguous prior to Gondwana breakup at 100 Ma, suggesting that the magmatism is interrelated. Mafic alkaline magmas (> 6 wt.% MgO) erupted across the transition from continent to ocean in the NWRS show a remarkable systematic increase in Si-undersaturation, P2O5, Sr, Zr, Nb and light rare earth element (LREE) concentrations, LREE/HREE and Nb/Y ratios. Radiogenic isotopes also vary with Nd and Pb ratios increasing and Sr ratios decreasing ocean-ward. The variations are not explained by crustal contamination or by changes in degree of mantle partial melting but are likely a function of the thickness and age of mantle lithosphere. The isotopic signature of the most Si-undersaturated and incompatible element enriched basalts best represent the composition of the sub-lithospheric source with low 87Sr/86Sr (≤ 0.7030) and δ18Oolivine (≤ 5.0 ‰), high 143Nd/144Nd ( 0.5130) and 206Pb/204Pb (≥ 20) ratios. The isotopic `endmember' is derived from recycled material and was transferred to the lithospheric mantle by small degree melts to form amphibole-rich metasomes. Later melting of the metasomes produced silica-undersaturated liquids that reacted with the surrounding peridotite. This reaction occurred to a greater extent as the melt traversed through thicker and older lithosphere continent-ward. Ancient or more recent ( 550‒100 Ma) subduction along the margin of Gondwana supplied the recycled

  7. Listvenite formation from peridotite: Insights from Oman Drilling Project hole BT1B and preliminary reaction path model approach. (United States)

    de Obeso, J. C.; Kelemen, P. B.; Manning, C. E.; Michibayashi, K.; Harris, M.


    Oman Drilling Project hole BT1B drilled 300 meters through the basal thrust of the Samail ophiolite. The first 200 meters of this hole are dominated by listvenites (completely carbonated peridotites) and serpentinites. Below 200 meters the hole is mainly composed of metasediments and metavolcanics. This core provides a unique record of interaction between (a) mantle peridotite in the leading edge of the mantle wedge and (b) hydrous, CO2 rich fluids derived from subducting lithologies similar to those in the metamorphic sole. We used EQ3/6 to simulate a reaction path in which hydrous fluid in equilibrium with qtz + calcite + feldspar + chlorite or smectite reacts with initially fresh peridotite at 100°C (the estimated temperature of alteration, Falk & Kelemen GCA 2015) and 5 kb. Water was first equilibrated with minerals observed during core description in the metamorphic sole at 100°C and 5kb. This fluid is then reacted with olivine enstatite and diopside (Mg#90) approximating the average composition of residual mantle peridotite (harzburgite) in Oman. Secondary minerals resulting from complete reaction are then reacted again with the initial fluid in an iterative process, up to water/rock > 1000. Water/rock close to 1 results in complete serpentinization of the peridotite, with chrysotile, brucite and magnetite as the only minerals. Water/rock >10 produces carbonates, chlorite and talc. Further increasing water/rock to > 100 produces assemblages dominated by carbonates and quartz with minor muscovite, similar to listvenites of hole BT1B that contain qtz + carbonates + Fe-oxyhydroxides + relict spinel ± chromian muscovite and fuchsite. The results of this preliminary model are consistent with the complex veining history of core from BT1B, with carbonate/iron oxide veins in both listvenites and serpentinites interpreted to be the earliest record of peridotite carbonation after initial serpentinization.

  8. Two Contrasting Fabric Patterns of Olivine Observed in Garnet and Spinel Peridotite from a Mantle-derived Ultramafic Mass Enclosed in Felsic Granulite, the Moldanubian Zone, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kamei, A.; Obata, M.; Michibayashi, K.; Hirajima, T.; Svojtka, Martin


    Roč. 51, 1/2 (2010), s. 101-123 ISSN 0022-3530 Institutional research plan: CEZ:AV0Z30130516 Keywords : garnet peridotite * spinel peridotite * olivine fabrics * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.842, year: 2010

  9. A conceptual model for the asthenosphere: redox melting in the C-O-H-bearing mantle vs. geophysical observations (United States)

    Gaillard, Fabrice; Tarits, Pascal; Massuyeau, Malcolm; David, Sifre; Leila, Hashim; Emmanuel, Gardes


    The asthenosphere has classically been considered as a convective layer, with its viscosity decreased by the presence of 100's ppm water in olivine, and being overtopped by a rigid and dry lithosphere. It, however, needs a new conceptual definition as the presence of water seems not able to affect the rheology of olivine; furthermore, properties such as electrical conductivity and seismic wave's velocity are not sensibly affected by water content in olivine, leaving the geophysical features of the asthenosphere unexplained. An asthenosphere impregnated by low melt fractions is consistent with constraints on melting behavior of C-O-H-bearing peridotites and may also better explain electrical conductivity and seismic features. The challenge is therefore to confront and reconcile the complexity of mantle melting in the C-O-H system with geophysical observations. This work reviews and discusses several key properties of the asthenosphere and relates their vertical and lateral heterogeneities to geodynamic processes. The first discussion is about the top of the Lithosphere-Asthenosphere boundary in the oceanic mantle. The discontinuity identified by seismic and electrical surveys is located at an average depth of 65km and is weakly influenced by the age, and therefore, the temperature of the lithosphere. This puzzling observation is shown here to be in perfect line the onset of peridotite melting in presence of both H2O and CO2. Mantle melting is therefore expected at 65 km depth, where the melt is essentially carbonatitic, inducing weakening and imposing transition in the regime of thermal transfer. Deeper, the melt evolve to silica-richer compositions. Twenty years of petrological investigations on processes that control mantle redox state unanimously concur on an increasingly reduced mantle with increasing depth. The conventional wisdom defines garnet as being increasingly abundant and increasingly able to concentrate ferric iron with increasing depth. Such oxygen

  10. Melt inclusions: Chapter 6 (United States)

    ,; Lowenstern, J. B.


    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  11. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes. (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.


    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  12. Further Sr and Nd isotopic results from peridotites of the Ronda Ultramafic Complex

    International Nuclear Information System (INIS)

    Reisberg, L.; Zindler, A.


    Clinopyroxenes derived from peridotites of the spinel and garnet facies of the Ronda Ultramafic Complex yield Sr and Nd isotopic ratios which extend the range of compositions found in the massif to values as depleted as 0.70205 for Sr and 0.51363 for Nd. Large-amplitude, short-wavelength isotopic variations are found to be uniquitous throughout the massif. In the garnet facies, some of these variations are shown to be produced by the tectonic disaggregation of mafic layers in an isotopically depleted peridotite matrix. Ages obtained from garnet-clinopyroxene Sm-Nd isochrons (about 22 m.y.) agree with previous determinations of the time of crustal emplacement. In the plagioclase facies, where the Sr and Nd isotopic compositions have been very strongly affected by recent cryptic metasomatism, detailed study of one sample reveals that intermineral Nd isotopic equilibrium exists between clinopyroxene, orthopyroxene, and plagioclase. This indicates that the metasomatism occurred at high temperatures, and thus probably within the mantle. A rough correlation between 143 Nd/ 144 Nd and 147 Sm/ 144 N, with an apparent 'age' of 1.3 b.y. and an initial ε Nd (0) value of +6.0, is observed among clinopyroxenes derived from river sediments from throughout the massif. This age is interpreted as the time that the massif left the convecting mantle and became incorporated into the sub-continental lithosphere. (orig.)

  13. The Force of Crystallization and Fracture Propagation during In-Situ Carbonation of Peridotite

    Directory of Open Access Journals (Sweden)

    Reinier van Noort


    Full Text Available Subsurface mineralization of CO2 by injection into (hydro-fractured peridotites has been proposed as a carbon sequestration method. It is envisaged that the expansion in solid volume associated with the mineralization reaction leads to a build-up of stress, resulting in the opening of further fractures. We performed CO2-mineralization experiments on simulated fractures in peridotite materials under confined, hydrothermal conditions, to directly measure the induced stresses. Only one of these experiments resulted in the development of a stress, which was less than 5% of the theoretical maximum. We also performed one method control test in which we measured stress development during the hydration of MgO. Based on microstructural observations, as well as XRD and TGA measurements, we infer that, due to pore clogging and grain boundary healing at growing mineral interfaces, the transport of CO2, water and solutes into these sites inhibited reaction-related stress development. When grain boundary healing was impeded by the precipitation of silica, a small stress did develop. This implies that when applied to in-situ CO2-storage, the mineralization reaction will be limited by transport through clogged fractures, and proceed at a rate that is likely too slow for the process to accommodate the volumes of CO2 expected for sequestration.

  14. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.


    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  15. Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes (United States)

    Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.


    Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si

  16. Carbon isotope fractionation during diamond growth in depleted peridotite: Counterintuitive insights from modelling water-maximum CHO fluids as multi-component systems (United States)

    Stachel, T.; Chacko, T.; Luth, R. W.


    relatively reduced and had methane as the dominant carbon species (XCO2 = 0.1-0.5). Application of our model to a recently published set of in-situ carbon isotope analyses for peridotitic diamonds from Marange, Zimbabwe (Smit et al., 2016), which contain CH4 fluid inclusions, allows us to perfectly match the observed co-variations in δ13 C, δ15 N and N content and at the same time explain the previously counter-intuitive observation of progressive 13C enrichment in diamonds that appear to have grown from a fluid with methane as the dominant carbon species. Similarly, the almost complete absence in the published record of progressive 13C depletion trends within diamonds likely reflects ubiquitous precipitation from CH4- and CO2-bearing water-rich fluids, rather than diamond formation exclusively by carbonate-bearing and CH4-free oxidized fluids or melts.

  17. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides (United States)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.


    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  18. Olivine CPO in non-deformed peridotite due to topotactic replacement of antigorite (United States)

    Nagaya, Takayoshi; Wallis, Simon; Kobayashi, Hiroaki; Michibayashi, Katsuyoshi; Mizukami, Tomoyuki; Seto, Yusuke; Miyake, Akira; Matsumoto, Megumi


    Olivine crystallographic preferred orientation (CPO) is thought to be the main cause of seismic anisotropy in the mantle, and its formation is generally considered to be the result of plastic deformation of mantle by dislocation creep. Olivine CPO has been reproduced in laboratory deformation experiments and considerable success has been achieved in understanding the deformation conditions (e.g. stress, temperature and water content) under which different olivine CPO patterns develop. This opens the possibility of mapping conditions in the mantle using seismic anisotropy and has been the subject of considerable study. Here we report an alternative mechanism for olivine CPO without the need for deformation. This process may be important in understanding the seismic properties of mantle in convergent margins. Metamorphic studies show peridotite in the Happo area, central Japan, formed by the dehydration of antigorite-schist related to contact metamorphism around a granite intrusion. Both field and microstructural observations suggest the olivine has not undergone strong plastic deformation. This was confirmed by TEM work that shows the olivine has very low dislocation densities and lacks low angle tilt boundaries. Such tilt boundaries are general stable even after annealing. These features show that peridotite in the Happo area formed in the absence of solid-state deformation. The olivine of the Happo peridotite formed dominantly by the dehydration breakdown of antigorite schist. We propose that the olivine CPO formed as a result of topotactic replacement of antigorite by the newly formed olivine. EBSD measurements in samples where both antigorite and new olivine are present and in contact show a very close crystallographic relationship between the two minerals: the a-axes are parallel, and the b- and c-axes are perpendicular. We conclude the strong olivine CPO in the Happo area was inherited from the original CPO of the antigorite. Such a process is likely to also

  19. Metasomatic processes in the orthogneiss-hosted Archaean peridotites of the Fiskefjord region, SW Greenland (United States)

    Szilas, K.; Cruz, M. F.; Grove, M.; Morishita, T.; Pearson, D. G.


    Field observations and preliminary geochemical data are presented for large (>500x1000m) peridotite enclaves from the Fiskefjord region of SW Greenland. These ultramafic complexes are dominated by dunite, amphibole-harzburgite, lesser amounts of norite and horizons of stratiform chromitite and are therefore interpreted as cumulate rocks[1]. The ultramafic enclaves are hosted by intrusive tonalitic orthogneiss, which provide U-Pb zircon minimum age constraints of ca. 2980 Ma, whereas preliminary Re-Os isotope data on the dunite and chromitite yield TRD ages of ca. 3300 Ma[2]. Dunite has highly forsteritic olivine compositions with Mg# mostly around 92 to 93, which is uncorrelated with the bulk-rock mg# or modal chromite contents. This indicates that the primary olivine records equilibration with a highly magnesian parental magma, which may have been responsible for the strong depletion of the SCLM in this region. Amphibole and phlogopite is mostly associated with granitoid sheets or infiltrating veins in the dunite and appear to replace chromite. Argon dating (40Ar/39Ar) of the phlogopite yields ages ranging from ca. 3400 Ma to ca. 1750 Ma, with most ages clustering around 3000 Ma. This is consistent with formation of the phlogopite and amphibole by metasomatic processes involving reaction between granitoid-derived siliceous fluids and the ultramafic rocks. The older 40Ar/39Ar age plateaus most plausibly represent excess Ar, potentially inherited from the nearby Itsaq Gneiss Complex (3900 to 3600 Ga) based on its proximity. The youngest 40Ar/39Ar age plateaus on the other hand may potentially signify the closure-age for this system, which could have important implications for determining the exhumation history of the North Atlantic craton. References [1] Szilas, K., Kelemen, P. B., & Bernstein, S. (2015). Peridotite enclaves hosted by Mesoarchaean TTG-suite orthogneisses in the Fiskefjord region of southern West Greenland. GeoResJ, 7, 22-34. [2] Szilas, K., van

  20. Cooling Rates of Mantle Peridotites Estimated from Lithophile Trace Element Diffusion in Orthopyroxene (United States)

    von der Handt, A.; Hellebrand, E.; Snow, J. E.


    Cooling rates of ocean floor mantle rocks from mid-ocean ridges can potentially provide important information about ridge dynamics, emplacement mechanisms and mantle uplift. There are a growing number of geospeedometric methods to retrieve such cooling rates in various settings. However, few exist for typical four- phase mantle peridotites and they only cover temperatures below 800° C. The down-temperature lithophile trace element exchange between clinopyroxene (cpx) and orthopyroxene (opx) can provide such a high- temperature spinel peridotite geospeedometer. Orthopyroxenes studied by SIMS from two fresh Gakkel Ridge peridotites are zoned in all trace elements while clinopyroxenes are homogeneous. This allows the calculation of equilibrium temperatures [1]. Several profiles in opx cover a range of 1250° C (opx core) to 800° C (opx rim) and are in agreement with straightforward diffusion and closure temperature models. The systematics of REE diffusion in opx deviate from the results of a recent experimental study [2]. The data allow us to estimate diffusion systematics of 16 elements (REE and TE) and their cation distributions in orthopyroxene. The data set is internally coherent as all elements were subjected to the same extrinsic parameters. 1. Decreasing ionic radius increases REE diffusion in opx (as it does in cpx). 2. M2-site diffusion is controlled more by ionic radius than by cationic charge. 3. M1-site diffusion is controlled by both ionic radius and cationic charge. 4. M1-site diffusion is generally slower than M2-site diffusion for isovalent cations, most likely because of higher M1- site energies compared to M2-site. The advantages of this geospeedometer should be its relatively good precision, use of standard analytical methods and its coverage of the important range between solidus temperatures and 800° C. In combination with other geospeedometers it will be possible to retrieve the continuous cooling history of a mantle rock from its solidus down

  1. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.


    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  2. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K


    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  3. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges (United States)

    Yogodzinski, G. M.; Lees, J. M.; Churikova, T. G.; Dorendorf, F.; Wöerner, G.; Volynets, O. N.


    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed `adakites', are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

  4. Late Palaeozoic to Triassic formations unconformably deposited over the Ronda peridotites (Betic Cordilleras): Evidence for their Variscan time of crustal emplacement

    Energy Technology Data Exchange (ETDEWEB)

    Sanz de Galdeano, C.; Ruiz Cruz, M.D.


    The age of the emplacement of the Ronda Peridotites has been widely debated during recent decades, and ages ranging from the Palaeozoic to the early Miocene have been proposed, although most of the current interpretations suggest an Oligocene-Miocene age. In this article, we describe two meta-sedimentary formations (the lower one formed by detrital sediments and the upper one by marbles) that were unconformably deposited over the Ronda peridotites and now record low-grade metamorphism. The detrital formation contains layers of acidic rocks with an age of 269±9 Ma and the overlying marbles are assumed to be Triassic. The existence of these unconformable formations over the peridotites is crucial for the dating of the exhumation of the latter. The presence of peridotite clasts in the detrital formation indicates that peridotites were exposed during the Permian and other data suggest that peridotites were exhumed during the late Carboniferous. During the Alpine cycle, the peridotites operated as an element situated at the bottom of the tectonically higher Alpujarride/Sebtide unit (the Jubrique unit) and forming part of it, then being incorporated to the Alpine thrusts of this unit. (Author)

  5. Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions (United States)

    Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang


    (e.g., high Al2O3 content and Al2O3/SiO2) and conjoint enrichment in light rare earth elements and high field strength elements, however, suggest melt-rock interactions before serpentinization. Combined with their geochemical affinity to "subducted serpentinites", we conclude that their protoliths (refractory mantle wedge peridotite) experienced melt-rock interactions and then were incorporated into the subduction channel before serpentinization. Studies on these two types of serpentinites indicate that serpentinites from the orogenic belt are most likely characterized by multi-source, multi-stage and multi-genesis, further providing important constraints on subduction channel processes.

  6. The production of iron oxide during peridotite serpentinization: Influence of pyroxene

    Directory of Open Access Journals (Sweden)

    Ruifang Huang


    Full Text Available Serpentinization produces molecular hydrogen (H2 that can support communities of microorganisms in hydrothermal fields; H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron, and consequently iron oxide (magnetite or hematite forms. However, the mechanisms that control H2 and iron oxide formation are poorly constrained. In this study, we performed serpentinization experiments at 311 °C and 3.0 kbar on olivine (with <5% pyroxene, orthopyroxene, and peridotite. The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution. Olivine-derived serpentine had a significantly lower FeO content (6.57 ± 1.30 wt.% than primary olivine (9.86 wt.%, whereas orthopyroxene-derived serpentine had a comparable FeO content (6.26 ± 0.58 wt.% to that of primary orthopyroxene (6.24 wt.%. In experiments on peridotite, olivine was replaced by serpentine and iron oxide. However, pyroxene transformed solely to serpentine. After 20 days, olivine-derived serpentine had a FeO content of 8.18 ± 1.56 wt.%, which was significantly higher than that of serpentine produced in olivine-only experiments. By contrast, serpentine after orthopyroxene had a slightly higher FeO content (6.53 ± 1.01 wt.% than primary orthopyroxene. Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral. After 120 days, the FeO content of olivine-derived serpentine decreased significantly (5.71 ± 0.35 wt.%, whereas the FeO content of orthopyroxene-derived serpentine increased (6.85 ± 0.63 wt.% over the same period. This suggests that iron oxide preferentially formed after olivine serpentinization. Pyroxene in peridotite gained some Fe from olivine during the serpentinization process, which may have led to a decrease in iron oxide production. The correlation between FeO content and SiO2 or Al2O3 content in olivine- and

  7. Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density

    DEFF Research Database (Denmark)

    Schutt, Derek; Lesher, Charles


    and clinopyroxene enrichment possibly as a consequence of melt infiltration. More than half of the mineral mode variance among Kaapvaal Craton xenoliths can be accounted for by opx enrichment. Melt depletion effects can account for as much as 30% of the variance, while less than 20% of the variance is associated...

  8. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  9. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.


    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  10. The density, compressibility and seismic velocity of hydrous melts at crustal and upper mantle conditions (United States)

    Ueki, K.; Iwamori, H.


    Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.

  11. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Sudeep Verma


    Feb 5, 2018 ... the effect of centrifugal and coriolis forces were included in the momentum equations [4]. The PANS technique is highly sensitive to the type of discretization scheme used and may induce spurious oscillations in the solution, which can be easily confused with more resolved fluctuations. Hence the equations ...

  12. Partial melting of metavolcanics in amphibolite facies regional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Department of Geology and Geography, University of Massachusetts,. Amherst), pp 275. Hollocher K 1991 Prograde amphibole dehydration reac- tions during high grade regional metamorphism, Central. Massachusetts, U.S.A.; Am. Mineral.

  13. Melting of gold microclusters

    International Nuclear Information System (INIS)

    Garzon, I.L.; Jellinek, J.


    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  14. Partial processing

    International Nuclear Information System (INIS)


    This discussion paper considers the possibility of applying to the recycle of plutonium in thermal reactors a particular method of partial processing based on the PUREX process but named CIVEX to emphasise the differences. The CIVEX process is based primarily on the retention of short-lived fission products. The paper suggests: (1) the recycle of fission products with uranium and plutonium in thermal reactor fuel would be technically feasible; (2) it would, however, take ten years or more to develop the CIVEX process to the point where it could be launched on a commercial scale; (3) since the majority of spent fuel to be reprocessed this century will have been in storage for ten years or more, the recycling of short-lived fission products with the U-Pu would not provide an effective means of making refabrication fuel ''inaccessible'' because the radioactivity associated with the fission products would have decayed. There would therefore be no advantage in partial processing

  15. Partial gigantism

    Directory of Open Access Journals (Sweden)

    М.М. Karimova


    Full Text Available A girl with partial gigantism (the increased I and II fingers of the left foot is being examined. This condition is a rare and unresolved problem, as the definite reason of its development is not determined. Wait-and-see strategy is recommended, as well as correcting operations after closing of growth zones, and forming of data pool for generalization and development of schemes of drug and radial therapeutic methods.

  16. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.


    Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting...... a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond...

  17. Mantle-derived trace element variability in olivines and their melt inclusions (United States)

    Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura


    inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.

  18. Theoretical study of melting curves on Ta, Mo, and W at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Xi Feng [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang (China)], E-mail:; Cai Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang (China)


    The melting curves of tantalum (Ta), molybdenum (Mo), and tungsten (W) are calculated using a dislocation-mediated melting model. The calculated melting curves are in good agreement with shock-wave data, and partially in agreement with wire explosion and piston-cylinder data, but show large discrepancies with diamond-anvil cell (DAC) data. We propose that the melting mechanism caused by shock-wave and laser-heated DAC techniques are probably different, and that a systematic difference exists in the two melting processes.

  19. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.


    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  20. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction (United States)

    Alt, J.C.; Shanks, Wayne C.


    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  1. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani


    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  2. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.


    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  3. Thermodynamics of Oligonucleotide Duplex Melting (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.


    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  4. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.


    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  5. Transient fuel melting

    International Nuclear Information System (INIS)

    Roche, L.; Schmitz, F.


    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  6. Oxo-amphiboles in mantle xenoliths: evidence for H2O-rich melt interacting with the lithospheric mantle of Harrow Peaks (Northern Victoria Land, Antarctica) (United States)

    Gentili, S.; Bonadiman, C.; Biagioni, C.; Comodi, P.; Coltorti, M.; Zucchini, A.; Ottolini, L.


    -forming reaction is a relatively recent process with the new phases far from having reached a potential equilibrium with the peridotite matrix; ii) amphibole seems to be formed by the precipitation of migrating H2O-rich melts with a negligible contribution of the peridotite system.

  7. Browse Title Index

    African Journals Online (AJOL)

    Items 1 - 50 of 1255 ... ... Response For A Bifacial Silicon Solar Cell Under A Constant Magnetic Field .... Partial melting mechanism and mantle peridotite chemical ... A mathematical model for excess work load allowance in Nigeria Universities.

  8. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr


    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  9. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin


    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  10. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir? (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François


    determined by Raman spectroscopy and microthermometry (0.1-1.1 GPa). The CO2/silicate melt mass ratios in the metasomatic agent that percolated through the lithospheric mantle below the Pannonian Basin are estimated to be between 9.0 and 25.4 wt.%, values consistent with metasomatism either by (1) silicate melts already supersaturated in CO2 before reaching lithospheric depths or (2) carbonatite melts that interacted with mantle peridotite to generate carbonated silicic melts. Taking the geodynamical context of the Pannonian Basin and our calculations of the CO2/silicate melt mass ratios in the metasomatic agent into account, we suggest that slab-derived melts initially containing up to 25 wt.% of CO2 migrated into the lithospheric mantle and exsolved CO2-rich fluid that became trapped in secondary fluid inclusions upon fracturing of the peridotite mineral matrix. We propose a first-order estimate of 2000 ppm as the minimal bulk CO2 concentration in the lithospheric mantle below the Pannonian Basin. This transient carbon reservoir is believed to be degassed through the Pannonian Basin due to volcanism and tectonic events, mostly focused along the lithospheric-scale regional Mid-Hungarian shear Zone.

  11. Deformation mechanisms and melt nano-structures in experimentally deformed olivine-orthopyroxene rocks with low melt fractions

    NARCIS (Netherlands)

    Kloe, P.A. de


    The major part of the Earth’s upper mantle is thought to be solid, with some regions in the mantle where the rocks contain a small melt fraction These partially molten rocks are associated with important geological processes such as magma production beneath mid-oceanic ridges and may also play an

  12. Petrology and Rock Magnetism of the peridotites of Pindos Ophiolite (Greece), insights into the serpentinization process (United States)

    Bonnemains, D.; Carlut, J. H.; Mevel, C.; Andreani, M.; Escartin, J.; Debret, B.


    We present a petrological and magnetic study of a suite of serpentinized peridotites from the Pindos ophiolite spanning a wide range in the degree of serpentinization (from ~10 to 100%). The Pindos ophiolite, in Northern Greece, is a portion of Late Triassic oceanic lithosphere obducted during the convergence of the Apulian and Pelagonian micro-continents. This ophiolite is interpreted mainly as the result of a supra-subduction zone spreading process but its complete history remains largely unknown. Therefore, it is not clear when the ultramafic section was exposed to fluid circulation that resulted in its serpentinization. Element partitioning during serpentinization reactions is dependent on parameters such as temperature and water-rock ratio. In particular, they affect the behavior of the iron released by olivine, which can be taken up either by magnetite, serpentine and/or brucite. Analyses of the reaction products are therefore a key to constrain the conditions during the main stage of the alteration. Our study was designed to gain insight on the conditions prevailing during hydration. Our results indicate that even fully serpentinized samples have a very low magnetization and magnetite content. Moreover, microprobe and μXanes results show that serpentine is the main host of iron in the divalent but also trivalent form. These results are compared with a set of data from serpentinized ultramafics sampled from the ocean floors, as well as from various other ophiolites. We suggest that serpentinization at Pindos occurred at relatively low-temperature (less than 200 °C), therefore not at a ridge environment. In addition, we stress that the presence of trivalent iron in serpentine indicates that serpentinization may remain a producer of hydrogen even when very little magnetite is formed.

  13. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature (United States)

    Mistler, G. W.; Ishikawa, M.; Li, B.


    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  14. Gravimetric structure for the abyssal mantle massif of Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean, and its relation to active uplift

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents gravimetric and morphologic analyses based on the satellite-derived data set of EGM2008 and TOPEX for the area of the oceanic mantle massif of the Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean. The free-air anomaly indicates that the present plate boundary is not situated along the longitudinal graben which cuts peridotite ridge, but about 20 km to the north of it. The high Bouguer anomaly of the peridotite ridge suggests that it is constituted mainly by unserpentinised ultramafic rocks. The absence of isostatic compensation and low-degree serpentinisation of the ultramafic rocks indicate that the peridotite ridge is sustained mainly by active tectonic uplift. The unparallel relation between the transform fault and the relative plate motion generates near north-south compression and the consequent tectonic uplift. In this sense, the peridotite massif is a pressure ridge due to the strike-slip displacement of the Saint Paul Transform Fault.

  15. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids (United States)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.


    assumed to ideally mix allowing for interpolation between end-member compositions. Results show the chondrite critical isentrope intersecting its liquidus at the core-mantle boundary with a potential temperature (TP) of 2400 K, whereas the peridotite critical isentrope has a TP of 2800 K and first crystallizes at 85 GPa. An identical calculation fails to recover the Hd isentrope (Hd = Di+0.5Fa-0.5Fo). This failure is likely due to the very different partial molar volumes of FeO in Hd and Fa, which have average Fe2+ coordination states of ~4.5 and ~6, respectively [5]. Consequently the simple ideal model is likely to only support mixing among like-coordinated Fe2+ liquids. We hope to further investigate this hypothesis for linear-mixing by constraining the EOS of An-Hd (50:50), and An-Di-Hd (33:33:33) melts using pre-heated shock wave techniques. [1] Ghiorso & Kress (2004) AJS 304, 679-751.[2] Ai & Lange(2008) JGR 113,B04203.[3] Fiquet et al. (2010) Science 329, 1516-1518.[4]Andrault et al. (2011) EPSL 304, 251-259.[5]Lange et al. (2012) Goldschmidt meeting, abstract.

  16. Melt processing of Yb-123 tapes

    International Nuclear Information System (INIS)

    Athur, S. P.; Balachandran, U.; Salama, K.


    The innovation of a simple, scalable process for manufacturing long-length conductors of HTS is essential to potential commercial applications such as power cables, magnets, and transformers. In this paper the authors demonstrate that melt processing of Yb-123 tapes made by the PIT route is an alternative to the coated conductor and Bi-2223 PIT tape fabrication techniques. Ag-clad Yb-123 tapes were fabricated by groove rolling and subsequently, melt processed in different oxygen partial pressures in a zone-melting furnace with a gradient of 140 C/cm. The transition temperatures measured were found to be around 81 K undermost processing conditions. EPMA of the tapes processed under different conditions show the 123 phase to be Ba deficient and Cu and Yb rich. Critical current was measured at various temperatures from 77 K to 4.2 K. The J c increased with decrease in pO 2 . The highest I c obtained was 52 A at 4.2 K

  17. Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation (United States)

    Rouméjon, Stéphane; Cannat, Mathilde


    At slow spreading ridges, axial detachment faults exhume mantle-derived peridotites and hydrothermal alteration causes serpentinization in a domain extending more than 1 km next to the fault. At the microscopic scale, serpentinization progresses from a microfracture network toward the center of olivine relicts and forms a mesh texture. We present a petrographic study (SEM, EBSD, and Raman) of the serpentine mesh texture in a set of 278 abyssal serpentinized peridotites from the Mid-Atlantic and Southwest Indian Ridges. We show that serpentinization initiated along two intersecting sets of microfractures that have consistent orientations at the sample scale, and in at least one studied location, at the 100 m scale. We propose that these microfractures formed in fresh peridotites due to combined thermal and tectonic stresses and subsequently served as channels for serpentinizing fluids. Additional reaction-induced cracks developed for serpentinization extents <20%. The resulting microfracture network has a typical spacing of ˜60 µm but most serpentinization occurs next to a subset of these microfractures that define mesh cells 100-400 µm in size. Apparent mesh rim thickness is on average 33 ± 19 µm corresponding to serpentinization extents of 70-80%. Published laboratory experiments suggest that mesh rims formation could be completed in a few years (i.e., quasi instantaneous at the plate tectonic timescale). The depth and extent of the serpentinization domain in the detachment fault's footwall are probably variable in time and space and as a result we expect that the serpentine mesh texture at slow spreading ridges forms at variable rates with a spatially heterogeneous distribution.

  18. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.


    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  19. Accessory priderite and burbankite in multiphase solid inclusions in the orogenic garnet peridotite from the Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Naemura, K.; Shimizu, I.; Svojtka, Martin; Hirajima, T.


    Roč. 110, č. 1 (2015), s. 20-28 ISSN 1345-6296 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100131203 Program:Program interní podpory projektů mezinárodní spolupráce AV ČR Institutional support: RVO:67985831 Keywords : garnet peridotite * Variscan orogeny * multiphase solid inclusion * priderite * burbankite Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.648, year: 2015

  20. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting (United States)

    Tirone, Massimiliano


    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  1. Logistics Reduction: Heat Melt Compactor (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  2. Melting in trivalent metal chlorides

    International Nuclear Information System (INIS)

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.


    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  3. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.


    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  4. Deep Crustal Melting and the Survival of Continental Crust (United States)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.


    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.

  5. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi


    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  6. The temperature of primary melts and mantle sources of komatiites, OIBs, MORBs and LIPs (United States)

    Sobolev, Alexander


    There is general agreement that the convecting mantle, although mostly peridotitic in composition, is compositionally and thermally heterogeneous on different spatial scales. The amount, sizes, temperatures and compositions of these heterogeneities significantly affect mantle dynamics because they may diverge greatly from dominant peridotites in their density and fusibility. Differences in potential temperature and composition of mantle domains affect magma production and cannot be easily distinguished from each other. This has led to radically different interpretations of the melting anomalies that produce ocean-island basalts, large igneous provinces and komatiites: most scientists believe that they originate as hot, deep-sourced mantle plumes; but a small though influential group (e.g. Anderson 2005, Foulger, 2010) propose that they derive from high proportions of easily fusible recycled or delaminated crust, or in the case of komatiites contain large amount of H2O (e.g. Grove & Parman, 2004). The way to resolve this ambiguity is an independent estimation of temperature and composition of mantle sources of various types of magma. In this paper I report application of newly developed olivine-spinel-melt geothermometers based on partition of Al, Cr, Sc and Y for different primitive lavas from mid-ocean ridges, ocean-island basalts, large igneous provinces and komatiites. The results suggest significant variations of crystallization temperature for the same Fo of high magnesium olivines of different types of mantle-derived magmas: from the lowest (down to 1220 degree C) for MORB to the highest (up to over 1500 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and confirm the relatively low temperature of the mantle source of MORB and higher temperatures in the mantle plumes that produce the OIB of Iceland, Hawaii, Gorgona, Archean komatiites and several LIPs (e.g Siberian and NAMP). The

  7. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.


    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  8. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.


    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  9. Partial structures in molten AgBr

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroki [Department of Condensed Matter Chemistry and Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)], E-mail:; Tahara, Shuta [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Science, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)


    The structure of molten AgBr has been studied by means of neutron and X-ray diffractions with the aid of structural modeling. It is confirmed that the Ag-Ag correlation has a small but well-defined first peak in the partial pair distribution function whose tail penetrates into the Ag-Br nearest neighbor distribution. This feature on the Ag-Ag correlation is intermediate between that of molten AgCl (non-superionic melt) and that of molten AgI (superionic melt). The analysis of Br-Ag-Br bond angle reveals that molten AgBr preserves a rocksalt type local ordering in the solid phase, suggesting that molten AgBr is clarified as non-superionic melt like molten AgCl.

  10. Modeling the impact of melt on seismic properties during mountain building (United States)

    Lee, Amicia L.; Walker, Andrew M.; Lloyd, Geoffrey E.; Torvela, Taija


    Initiation of partial melting in the mid/lower crust causes a decrease in P wave and S wave velocities; recent studies imply that the relationship between these velocities and melt is not simple. We have developed a modeling approach to assess the combined impact of various melt and solid phase properties on seismic velocities and anisotropy. The modeling is based on crystallographic preferred orientation (CPO) data measured from migmatite samples, allowing quantification of the variation of seismic velocities with varying melt volumes, shapes, orientations, and matrix anisotropy. The results show nonlinear behavior of seismic properties as a result of the interaction of all of these physical properties, which in turn depend on lithology, stress regime, strain rate, preexisting rock fabrics, and pressure-temperature conditions. This nonlinear behavior is evident when applied to a suite of samples from a traverse across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. Critically, changes in solid phase composition and CPO, and melt shape and orientation with respect to the wave propagation direction can result in huge variations in the same seismic property even if the melt fraction remains the same. A comparison with surface wave interpretations from tectonically active regions highlights the issues in current models used to predict melt percentages or partially molten regions. Interpretation of seismic data to infer melt percentages or extent of melting should, therefore, always be underpinned by robust modeling of the underlying geological parameters combined with examination of multiple seismic properties in order to reduce uncertainty of the interpretation.

  11. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc


    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  12. Textures in spinel peridotite mantle xenoliths using micro-CT scanning: Examples from Canary Islands and France (United States)

    Bhanot, K. K.; Downes, H.; Petrone, C. M.; Humphreys-Williams, E.


    Spinel pyroxene-clusters, which are intergrowths of spinel, orthopyroxene and clinopyroxene in mantle xenoliths, have been investigated through the use of micro-CT (μ-CT) in this study. Samples have been studied from two different tectonic settings: (1) the northern Massif Central, France, an uplifted and rifted plateau on continental lithosphere and (2) Lanzarote in the Canary Islands, an intraplate volcanic island on old oceanic lithosphere. μ-CT analysis of samples from both locations has revealed a range of spinel textures from small Lanzarote are regions that have experienced significant lithospheric thinning. This process provides a mechanism where the sub-solidus reaction of olivine + garnet = orthopyroxene + clinopyroxene + spinel is satisfied by providing a pathway from garnet peridotite to spinel peridotite. We predict that such textures would only occur in the mantle beneath regions that show evidence of thinning of the lithospheric mantle. Metasomatic reactions are seen around spinel-pyroxene clusters in some Lanzarote xenoliths, so metasomatism post-dated cluster formation.

  13. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.


    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined


    African Journals Online (AJOL)


    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  15. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia

    Directory of Open Access Journals (Sweden)

    O. Kiseleva


    Full Text Available The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan (SEPES ophiolites. Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites. The chromitites are classified into type I and type II based on their Cr#. Type I (Cr# = 59–85 occurs in both northern and southern branches, whereas type II (Cr# = 76–90 occurs only in the northern branch. PGE contents range from ∑PGE 88–1189 ppb, Pt/Ir 0.04–0.42 to ∑PGE 250–1700 ppb, Pt/Ir 0.03–0.25 for type I chromitites of the northern and southern branches respectively. The type II chromitites of the northern branch have ∑PGE contents higher than that of type I (468–8617 ppb, Pt/Ir 0.1–0.33. Parental melt compositions, in equilibrium with podiform chromitites, are in the range of boninitic melts and vary in Al2O3, TiO2 and FeO/MgO contents from those of type I and type II chromitites. Calculated melt compositions for type I chromitites are (Al2O3melt = 10.6–13.5 wt.%, (TiO2melt = 0.01–0.44 wt.%, (Fe/Mgmelt = 0.42–1.81; those for type II chromitites are: (Al2O3melt = 7.8–10.5 wt.%, (TiO2melt = 0.01–0.25 wt.%, (Fe/Mgmelt = 0.5–2.4. Chromitites are further divided into Os-Ir-Ru (I and Pt-Pd (II based on their PGE patterns. The type I chromitites show only the Os-Ir-Ru pattern whereas type II shows both Os-Ir-Ru and Pt-Pd patterns. PGE mineralization in type I chromitites is represented by the Os-Ir-Ru system, whereas in type II it is represented by the Os-Ir-Ru-Rh-Pt system. These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction. However, the chromitites and PGE mineralization of the southern


    International Nuclear Information System (INIS)



    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  17. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden

    NARCIS (Netherlands)

    Clos, F.; Gilio, M.; van Roermund, H.L.M.

    Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP

  18. Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle: Evidence from major elements, trace elements, and Sr-Nd-Os isotopes in a Saxothuringian garnet peridotite

    Czech Academy of Sciences Publication Activity Database

    Medaris Jr., L. G.; Ackerman, Lukáš; Jelínek, E.; Michels, Z. D.; Erban, V.; Kotková, J.


    Roč. 226, SI (2015), s. 81-97 ISSN 0024-4937 Institutional support: RVO:67985831 Keywords : garnet peridotite * Variscan * Bohemian Massif * Sr-Nd-Os isotopes * depletion cryptic metasomatism and refertilization * P-T conditions Subject RIV: DD - Geochemistry Impact factor: 3.723, year: 2015

  19. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.


    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  20. The semi-brittle to ductile transition in peridotite on oceanic faults: mechanisms and P-T condition (United States)

    Prigent, C.; Warren, J. M.; Kohli, A. H.; Teyssier, C. P.


    Experimental and geological-petrological studies suggest that the transition from brittle faulting to ductile flow of olivine, i.e. from seismic to aseismic behavior of mantle rocks (peridotites), occurs close to 600°C. However, recent seismological studies on oceanic transform faults (TFs) and ridges have documented earthquakes to temperatures (T) up to 700-800°C. In this study, we carried out a petrological, microstructural and geochemical analysis of natural samples of peridotites dredged at 3 different oceanic TFs of the Southwest Indian Ridge: Shaka, Prince Edward and Atlantis II. We selected samples displaying variable amounts of ductile deformation (from porphyroclastic tectonites to ultramylonites) prior to serpentinization in order to characterize their relatively high-T mechanical behavior. We find that the most deformed samples record cycles of ductile and brittle deformation. Peridotite ductile flow is characterized by drastic grain size reduction and the development of (ultra)mylonitic shear zones. In these zones, a switch in olivine deformation mechanism from dislocation creep to grain-size sensitive creep is associated with dissolution/precipitation processes. Brittle deformation of these samples is evidenced by the presence of (at least centimetric) transgranular and intragranular fractures that fragment coarser grained minerals. Both kinds of fractures are filled with the same phase assemblage as in the ultramylonitic bands: olivine + amphibole ± orthopyroxene ± Al-phase (plagioclase and/or spinel) ± sulfides. The presence of amphibole indicates that this semi-brittle deformation was assisted by hydrous fluids and its composition (e.g. high concentration of chlorine) suggests that the fluids have most likely a hydrothermal origin. We interpret these fractures to have formed under fluid-assisted conditions, recording paleo-seismic activity that alternated with periods of relatively slow interseismic ductile flow. The presence of Mg

  1. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule (United States)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.


    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  2. Water-Rock Interactions in the Peridotite Aquifer of the Oman-UAE Ophiolite: Strontium Isotopic Ratio and Geochemical Evolution of Groundwater (United States)

    Bompard, Nicolas; Matter, Juerg; Teagle, Damon


    The peridotite aquifer in Wadi Tayin, Sultanate of Oman, is a perfect example of natural carbonation of ultramafic rocks. In situ mineral carbonation is considered the most safest and permanent option of CO2 Capture and Sequestration (CCS). However, the process itself is yet to be characterised and a better understanding of the mechanisms involved in natural mineral carbonation is needed before geo-engineering it. We used the 87Sr/86Sr system to follow the water-rock interactions along the groundwater flowpath in the peridotite aquifer and to determine the sources of divalent cations (Mg2+, Ca2+) required for mineral carbonation. The Sr-isotope data of groundwater show that the aquifer rocks are the main source for divalent cations (Mg2+, Ca2+ and Sr2+) and secondary carbonates are their main sink. The groundwater 87Sr/86Sr ratio evolves with its pH: from 87Sr/86Sr = 0.7087 (n=3) to 0.7082 (n=8) between pH 7 and 8, and from 0.7086 (n=6) at pH 9 to 0.07075 (n=9) at pH 11. This evolution seems to support a two-step model for the water-rock interactions in the peridotite aquifer. From pH 7 to 8, secondary Ca-carbonate precipitation buffers the pH rise resulting from peridotite serpentinisation. From pH 9 to 11, peridotite serpentinisation drives the pH to alkaline condition. The change from a Mg-rich to a Ca-rich groundwater at pH 9 seems to confirm the two-step model.

  3. Nitrogen Control in VIM Melts (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  4. Theoretical melting curve of caesium

    International Nuclear Information System (INIS)

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia


    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  5. Melting curves of gammairradiated DNA

    International Nuclear Information System (INIS)

    Hofer, H.; Altmann, H.; Kehrer, M.


    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  6. Pressure melting and ice skating (United States)

    Colbeck, S. C.


    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  7. Layered graphene-mica substrates induce melting of DNA origami (United States)

    Green, Nathaniel S.; Pham, Phi H. Q.; Crow, Daniel T.; Burke, Peter J.; Norton, Michael L.


    Monolayer graphene supported on mica substrates induce melting of cross-shaped DNA origami. This behavior can be contrasted with the case of origami on graphene on graphite, where an expansion or partially re-organized structure is observed. On mica, only well-formed structures are observed. Comparison of the morphological differences observed for these probes after adsorption on these substrates provides insights into the sensitivity of DNA based nanostructures to the properties of the graphene monolayer, as modified by its substrate.

  8. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera (United States)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.


    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  9. Deep and persistent melt layer in the Archaean mantle (United States)

    Andrault, Denis; Pesce, Giacomo; Manthilake, Geeth; Monteux, Julien; Bolfan-Casanova, Nathalie; Chantel, Julien; Novella, Davide; Guignot, Nicolas; King, Andrew; Itié, Jean-Paul; Hennet, Louis


    The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth's surface. The origin of this transition could be a change in the dynamic regime of the Earth's interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200-250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200-300 K hotter than today, significant melting is expected at depths from 100-150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.

  10. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.


    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  11. Glacial melting in Himalaya

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal


    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  12. An experimental study of pressure shadows in partially molten rocks (United States)

    Qi, Chao; Zhao, Yong-Hong; Kohlstedt, David L.


    As a two-phase, solid-melt material flows around rigid particles, melt-depleted and melt-enriched regions (i.e., pressure shadows) develop due to the coupled fluxes of melt and solid driven by pressure gradients around the particles. To study this compaction-decompaction process, samples composed of fine-grained San Carlos olivine plus mid-ocean ridge basalt containing dispersed sub-millimeter-sized, single crystal beads of olivine were deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa. Indicated by melt distribution maps obtained from reflected-light optical and backscattered electron microscopy, melt-enriched and melt-depleted regions around the beads became observable at a local shear strain of γ≈1 in samples with an initially homogeneously distributed melt fraction of ϕ≈0.05. The melt-enriched regions (ϕbarhigh≈0.06 to 0.10) and the melt-depleted regions (ϕbarlow≈0.02 to 0.04), extending as far as one radius of the bead, were symmetrically distributed around the bead. The flow field of the olivine matrix determined from crystallographic preferred orientations agrees with theoretical predictions based on two-phase flow analysis. These experiments are the first to produce pressure shadows in partially molten rocks. One implication of this study is that it will be possible to constrain the ratio of bulk to shear viscosity, which is inferred from the distribution of melt using a combination of experimental observations and numerical simulations.

  13. Origin of the Luobusa diamond-bearing peridotites from the sub-arc mantle (United States)

    Liu, Chuanzhou; Zhang, Chang; Wu, Fuyuang; Chung, Sunlin


    Ophiolites are the remnants of ancient oceanic lithosphere that were emplaced onto continental margins. Ophiolites along the E-W trending Yarlung-Tsangpo Suture (YTS), which separates the Indian plate from the Eurasian plate, have been regarded as relics of the Neo-Tethys Ocean. The Luobusa ophiolite outcrops at the eastern YTS and mainly consists of harzburgites and dunites that have been intruded by gabbroic/diabase dykes at ca 130 Ma (Zhang et al., 2015). Basaltic lavas are rarely outcropped, and volumetrically minor (C., Liu, C. Z., Wu, F. Y., Zhang, L. L. & Ji, W. Q. Geochemistry and geochronology of maifc rocks from the Luobusa ophiolite, South Tibet. Lithos, 10.1016/j.lithos.2015.1006.1031 (2015). Zhou, M. F., Robinson, P. T., Malpas, J. & Li, Z. J. Podiform chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. J. Petrol. 37, 3-21 (1996).

  14. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.


    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from

  15. Methods for Melting Temperature Calculation (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  16. Experience melting through the Earth's lower mantle via LH-DAC experiments on MgO-SiO2 and CaO-MgO-SiO2 systems (United States)

    Baron, Marzena A.; Lord, Oliver T.; Walter, Michael J.; Trønnes, Reidar G.


    The large low shear-wave velocity provinces (LLSVPs) and ultra-low velocity zones (ULVZs) of the lowermost mantle [1] are likely characterized by distinct chemical compositions, combined with temperature anomalies. The heterogeneities may have originated by fractional crystallization of the magma ocean during the earliest history of the Earth [2,3] and/or the continued accretion at the CMB of subducted basaltic oceanic crust [4,5]. These structures and their properties control the distribution and magnitude of the heat flow at the CMB and therefore the convective dynamics and evolution of the whole Earth. To determine the properties of these structures and thus interpret the seismic results, a good understanding of the melting phase relations of relevant basaltic and peridotitic compositions are required throughout the mantle pressure range. The melting phase relations of lower mantle materials are only crudely known. Recent experiments on various natural peridotitic and basaltic compositions [6-8] have given wide ranges of solidus and liquidus temperatures at lower mantle pressures. The melting relations for MgO, MgSiO3 and compositions along the MgO-SiO2 join from ab initio theory [e.g. 9,10] is broadly consistent with a thermodynamic model for eutectic melt compositions through the lower mantle based on melting experiments in the MgO-SiO2 system at 16-26 GPa [3]. We have performed a systematic study of the melting phase relations of analogues for peridotitic mantle and subducted basaltic crust in simple binary and ternary systems that capture the major mineralogy of Earth's lower mantle, using the laser-heated diamond anvil cell (LH-DAC) technique at 25-100 GPa. We determined the eutectic melting temperatures involving the following liquidus mineral assemblages: 1. bridgmanite (bm) + periclase (pc) and bm + silica in the system MgO-SiO2 (MS), corresponding to model peridotite and basalt compositions 2. bm + pc + Ca-perovskite (cpv) and bm + silica + cpv in the

  17. Melting of superheated molecular crystals (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad


    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  18. Improved capacitive melting curve measurements

    International Nuclear Information System (INIS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi


    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  19. Automatic Control of Silicon Melt Level (United States)

    Duncan, C. S.; Stickel, W. B.


    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  20. New constraints on the evolution of the Gibraltar Arc from palaeomagnetic data of the Ceuta and Beni Bousera peridotites (Rif, northern Africa) (United States)

    Berndt, Thomas; Ruiz-Martínez, Vicente Carlos; Chalouan, Ahmed


    The Betic Cordillera and the Moroccan Rif together form one of the smallest and tightest orogenic arcs on Earth and almost completely close the Mediterranean to the west. For the explanation of the geodynamic evolution of the mountain belt, palaeomagnetic data that generally found clockwise block rotations in the Iberian and anticlockwise rotations in the Moroccan part of the mountain belt, have played a key role in recent works. This palaeomagnetic study has found new constraints on the rotations and timing of the peridotitic bodies outcropping in the key position at the westernmost margin of the mountain belt, in Ceuta and Beni Bousera (Rif, northern Africa). Detailed thermal demagnetization of 115 individually oriented samples from 14 sites was combined with rock magnetic and scanning electron microscopic experiments to analyze the magnetic mineralogy responsible for the remanences and the mechanisms and relative times of their acquisition. In Ceuta, up to three magnetic components, and in Beni Bousera, up to two magnetic components have been found, that are all to be interpreted as chemical remanent magnetizations (CRM). The data suggests the following succession of geodynamic events affecting the peridotites until recent times: (1) after their exhumation and subsequent cooling about 20 Ma ago, they recorded a characteristic remanent magnetization of both normal and reversed polarities, carried by (pseudo-)single-domain magnetite grains; (2) after their dismembering, the Ceuta peridotites were tilted southward by 22-34° about a horizontal or tilted axis (up to plunge 50°) with an azimuth of 72-145° and the Beni Bousera peridotites were rotated anticlockwise by 72.3 ± 12.1° about a vertical axis and (3) both recorded another magnetic signal of normal polarity only, carried by multi-domain magnetite grains; and finally (4) the Ceuta peridotites rotated anticlockwise by 19.7 ± 5.9° about a vertical axis. This study provides the first palaeomagnetic data for

  1. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33,34S-stable isotope systematics (United States)

    Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas


    In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no

  2. Experimental test of the viscous anisotropy hypothesis for partially molten rocks. (United States)

    Qi, Chao; Kohlstedt, David L; Katz, Richard F; Takei, Yasuko


    Chemical differentiation of rocky planets occurs by melt segregation away from the region of melting. The mechanics of this process, however, are complex and incompletely understood. In partially molten rocks undergoing shear deformation, melt pockets between grains align coherently in the stress field; it has been hypothesized that this anisotropy in microstructure creates an anisotropy in the viscosity of the aggregate. With the inclusion of anisotropic viscosity, continuum, two-phase-flow models reproduce the emergence and angle of melt-enriched bands that form in laboratory experiments. In the same theoretical context, these models also predict sample-scale melt migration due to a gradient in shear stress. Under torsional deformation, melt is expected to segregate radially inward. Here we present torsional deformation experiments on partially molten rocks that test this prediction. Microstructural analyses of the distribution of melt and solid reveal a radial gradient in melt fraction, with more melt toward the center of the cylinder. The extent of this radial melt segregation grows with progressive strain, consistent with theory. The agreement between theoretical prediction and experimental observation provides a validation of this theory.

  3. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.


    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  4. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland (United States)

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.


    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of

  5. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.


    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  6. Clinopyroxenite dikes crosscutting banded peridotites just above the metamorphic sole in the Oman ophiolite: early cumulates from the primary V3 lava (United States)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro


    Oman ophiolite is one of the well-known ophiolites for excellent exposures not only of the mantle section but also of the crustal section including effusive rocks and the underlying metamorphic rocks. In the Oman ophiolite, three types of effusive rocks (V1, V2 and V3 from the lower sequences) are recognized: i.e., V1, MORB-like magma, V2, island-arc type lava, and V3, intra-plate lava (Godard et al., 2003 and references there in). V1 and V2 lavas are dominant (> 95 %) as effusive rocks and have been observed in almost all the blocks of northern part of the Oman ophiolite (Godard et al., 2003), but V3 lava has been reported only from Salahi area (Alabaster et al., 1982). It is clear that there was a time gap of lava eruption between V1-2 and V3 based on the presence of pelagic sediments in between (Godard et al., 2003). In addition, V3 lavas are fed by a series of doleritic dikes crosscutting V2 lava (Alley unit) (Alabaster et al., 1982). We found clinopyroxenite (CPXITE) dikes crosscutting deformation structure of basal peridotites just above the metamorphic sole in Wadi Ash Shiyah. The sole metamorphic rock is garnet amphibolite, which overlies the banded and deformed harzburgite and dunite. The CPXITE is composed of coarse clinopyroxene (CPX) with minor amount of chlorite, garnet (hydrous/anhydrous grossular-andradite) with inclusions of titanite, and serpentine formed at a later low-temperature stage. The width of the CPXITE dikes is 2-5 cm (10 cm at maximum) and the dikes contain small blocks of wall harzburgite. Almost all the silicates are serpentinized in the harzburgite blocks except for some CPX. The Mg# (= Mg/(Mg + Fe) atomic ratio) of the CPX is almost constant (= 0.94-0.95) in the serpentinite blocks but varies within the dikes, highest at the contact with the block (0.94) and decreasing with the distance from the contact to 0.81 (0.85 on average). The contents of Al2O3, Cr2O3, and TiO2 in the CPX of the dikes are 0.5-2.0, 0.2-0.6, and 0

  7. Partial tooth gear bearings (United States)

    Vranish, John M. (Inventor)


    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  8. Essays on partial retirement

    NARCIS (Netherlands)

    Kantarci, T.


    The five essays in this dissertation address a range of topics in the micro-economic literature on partial retirement. The focus is on the labor market behavior of older age groups. The essays examine the economic and non-economic determinants of partial retirement behavior, the effect of partial

  9. Highly siderophile element geochemistry of peridotites and pyroxenites from Horní Bory, Bohemian Massif: Implications for HSE behaviour in subduction-related upper mantle

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Pitcher, L.; Strnad, L.; Puchtel, I. S.; Jelínek, E.; Walker, R. J.; Rohovec, Jan


    Roč. 100, č. 1 (2013), s. 158-175 ISSN 0016-7037 R&D Projects: GA AV ČR KJB300130902 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : alloy * high pressure * high temperature * igneous geochemistry * isotopic composition * mass balance * nappe * osmium isotope * peridotite * petrography * platinum group element * precipitation (chemistry) * pyroxenite * siderophile element * subduction * sulfide * upper mantle Subject RIV: DD - Geochemistry Impact factor: 4.250, year: 2013

  10. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.


    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  11. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas


    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  12. Eutectic melting temperature of the lowermost Earth's mantle (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.


    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  13. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction. (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M


    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  14. Recurrent Partial Words

    Directory of Open Access Journals (Sweden)

    Francine Blanchet-Sadri


    Full Text Available Partial words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible with all letters; partial words without holes are said to be full words (or simply words. Given an infinite partial word w, the number of distinct full words over the alphabet that are compatible with factors of w of length n, called subwords of w, refers to a measure of complexity of infinite partial words so-called subword complexity. This measure is of particular interest because we can construct partial words with subword complexities not achievable by full words. In this paper, we consider the notion of recurrence over infinite partial words, that is, we study whether all of the finite subwords of a given infinite partial word appear infinitely often, and we establish connections between subword complexity and recurrence in this more general framework.

  15. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho


    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  16. The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate deformation cycles during exhumation (United States)

    Matysiak, Agnes K.; Trepmann, Claudia A.


    Mylonitic peridotites from the Finero complex are investigated to detect characteristic olivine microfabrics that can resolve separate deformation cycles at different metamorphic conditions. The heterogeneous olivine microstructures are characterized by deformed porphyroclasts surrounded by varying amounts of recrystallized grains. A well-developed but only locally preserved foam structure is present in recrystallized grain aggregates. This indicates an early stage of dynamic recrystallization and subsequent recovery and recrystallization at quasi-static stress conditions, where the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration. Ultramylonites record a renewed stage of localized deformation and recrystallization by a second generation of recrystallized grains that do not show a foam structure. This second generation of recrystallized grains as well as sutured grain and kink band boundaries of porphyroclasts indicate that these microstructures developed during a stage of localized deformation after development of the foam structure. The heterogeneity of the microfabrics is interpreted to represent several (at least two) cycles of localized deformation separated by a marked hiatus with quasi-static recrystallization and recovery and eventually grain growth. The second deformation cycle did not only result in reactivation of preexisting shear zones but instead also locally affected the host rock that was not deformed in the first stage. Such stress cycles can result from sudden increases in differential stress imposed by seismic events, i.e., high stress-loading rates, during exhumation of the Finero complex.

  17. On high-pressure melting of tantalum (United States)

    Luo, Sheng-Nian; Swift, Damian C.


    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  18. South-Tibetan partially molten batholiths: geophysical characterization and petrological assessment of their origin (United States)

    Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.


    Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (features of the geodynamic evolution. Their transience excludes both long-distance and long-lasting channel flow transport in Tibet.

  19. On melting of boron phosphide under pressure


    Solozhenko, Vladimir; Mukhanov, V. A.


    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  20. Metasomatic Reaction Zones as Monitors of Trace Element Transfer at the Slab-Mantle Interface: the Case of the Hochwart Peridotite (Ulten Zone, Italy) (United States)

    Marocchi, M.; Hermann, J.; Bargossi, G. M.; Mair, V.; Morten, L.


    Ultramafic blocks belonging to the Hochwart peridotite outcrop (Ulten Zone, Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of Si-rich hydrous fluids which occurred at the gneiss- peridotite interface. The age of the high pressure metamorphism for the Hochwart complex has been constrained at 330 Ma (Tumiati et al., 2003, EPSL, 210, 509-526). The country rocks are stromatic gneisses consisting mainly of quartz, K-feldspar, garnet, kyanite, biotite and muscovite. The ultramafic body consists of strongly serpentinized metaperidotites which are exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet gneiss country rocks. The composition of the metasomatic zones has been investigated in detail and records an order of metasomatic zoning formed by phlogopite-rich to tremolite-anthophyllite-rich rocks going from the host gneiss towards the peridotite. In some cases, the ultramafics fade into the gneisses developing serpentine and talc which has replaced, presumably at lower temperatures, the serpentine matrix and occurs in association with chlorite. Phlogopite aggregates (phlogopitite) with accessory minerals (quartz + zircon + apatite) and metabasic pods (phlogopite and hornblende) also occur. Black tourmaline (schorl-dravite solid solution) has been found for the first time in the contact near the phlogopite zone, suggesting an external addition of elements (boron and fluorine) to the system at high temperature. The formation of the metasomatic zones composed exclusively of hydrous phases must have involved extensive H2O-metasomatism as already documented for the Ulten peridotites. The source for these fluids can be a system of trondhjemitic-pegmatitic dikes cutting the peridotite that would have channelled aqueous fluids into the ultramafic rocks. Whole-rock geochemistry and trace element (LA ICP-MS) composition of hydrous

  1. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz


    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  2. Partial coalescence as a tool to control sensory perception of emulsions

    NARCIS (Netherlands)

    Benjamins, J.; Vingerhoeds, M.H.; Zoet, F.D.; Hoog, de E.H.A.; Aken, van G.A.


    This study evaluates the role of partial coalescence of whey protein-stabilized emulsions on sensory perception. The selection of fats was restricted to vegetable fats that are essentially melted at oral temperatures. The sensitivity to partial coalescence was controlled by a variation in the fat

  3. Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting

    International Nuclear Information System (INIS)

    Hu, X.G.; Zhu, Q.; Lu, H.X.; Zhang, F.; Li, D.Q.; Midson, S.P.


    The aim of this paper is to characterize both microstructural evolution and thixoformability during partial melting of semi-solid 319s alloy. The thixoformability criteria of 319s was initially investigated by thermodynamic analysis. In-situ observation of partial re-melting was performed by a Confocal Laser Scanning Microscope to determine the effect of heating rate on melting characteristics. Meanwhile, the microstructural evolution of 319s alloy at extremely low heating rate was also investigated in order to understand the mechanism of re-melting process. The studies demonstrated that 319s alloy is suitable for thixocasting because of the controllable liquid fraction in the operating window of 15 °C. The process window was effected by both temperature and heating time. The primary particles evolution in 319s alloy can be divided into four stages, and the coarsening rate during isothermal test is 227 μm 3 /s. The effective method to obtain desirable microstructure is to manage the time in the semi-solid state by controlling heating rate and soaking time. - Highlights: • The thixoformability of 319s is discussed by using SPSC and thermodynamic analysis. • The re-melting processes at different heating rate are in-situ observed. • We identified the four stages of microstructural evolution during re-melting. • The coarsening rate K for 319s during isothermal test is identified. • The variation tendency of Si particle size with increasing time is reported

  4. Supercoil Formation During DNA Melting (United States)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan


    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  5. Nickel and helium evidence for melt above the core-mantle boundary. (United States)

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis


    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  6. Redox Interactions between Iron and Carbon in Planetary Mantles: Implications for Degassing and Melting Processes (United States)

    Martin, A.; Righter, K.


    Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.

  7. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Czech Academy of Sciences Publication Activity Database

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír


    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014

  8. Deep crustal melt plumbing of Bárðarbunga volcano, Iceland (United States)

    Hudson, T. S.; White, R. S.; Greenfield, T.; Ágústsdóttir, T.; Brisbourne, A.; Green, R. G.


    Understanding magmatic plumbing within the Earth's crust is important for understanding volcanic systems and improving eruption forecasting. We discuss magma plumbing under Bárðarbunga volcano, Iceland, over a 4 year period encompassing the largest Icelandic eruption in 230 years. Microseismicity extends through the usually ductile region of the Earth's crust, from 7 to 22 km depth in a subvertical column. Moment tensor solutions for an example earthquake exhibits opening tensile crack behavior. This is consistent with the deep (>7 km) seismicity being caused by the movement of melt in the normally aseismic crust. The seismically inferred melt path from the mantle source is offset laterally from the center of the Bárðarbunga caldera by 12 km, rather than lying directly beneath it. It is likely that an aseismic melt feed also exists directly beneath the caldera and is aseismic due to elevated temperatures and pervasive partial melt under the caldera.

  9. Holographic measurement of distortion during laser melting: Additive distortion from overlapping pulses (United States)

    Haglund, Peter; Frostevarg, Jan; Powell, John; Eriksson, Ingemar; Kaplan, Alexander F. H.


    Laser - material interactions such as welding, heat treatment and thermal bending generate thermal gradients which give rise to thermal stresses and strains which often result in a permanent distortion of the heated object. This paper investigates the thermal distortion response which results from pulsed laser surface melting of a stainless steel sheet. Pulsed holography has been used to accurately monitor, in real time, the out-of-plane distortion of stainless steel samples melted on one face by with both single and multiple laser pulses. It has been shown that surface melting by additional laser pulses increases the out of plane distortion of the sample without significantly increasing the melt depth. The distortion differences between the primary pulse and subsequent pulses has also been analysed for fully and partially overlapping laser pulses.

  10. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting (United States)

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.


    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  11. Lithosphere erosion and continental breakup : Interaction of extension, plume upwelling and melting

    NARCIS (Netherlands)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart


    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by

  12. Major, Trace, and Volatile (CO2, H2O, S, F, and Cl) Elements from 1000+ Hawaiian Olivine-hosted Melt Inclusions Reveal the Dynamics of Crustal Recycling (United States)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.


    Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the

  13. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.


    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  14. New calibration of Ji - Di clinopyroxene barometer for Eclogites, pyroxenites and peridotites and eclogite - pyroxenite mantle geotherms. (United States)

    Ashchepkov, Igor; Vishnyakova, Elena


    Checking the universe clinopyroxene JD-Di barometer on the experimental system showed that it better to use the separate schemes for the eclogite and peridotite systems. The clinopyroxene barometer based on the internal exchange of Jd-Di components for the Al. It allow using the temperature calculated with the (Krogh, 1988) method for the The barometer was calibrated on the 200 experimental runs for the eclogitic system (Yaxley,Brey,2004; Spandler ea, 2008; Konzett ea, 2008; Hanrahan ea, 2009 and references there in). It reproduces the pressure range to 120 kbar with the r= 0.91 (S=8) for 180 experimental runs. P(Ash2010 Ecl)=0.32 (1-0.215*Na/Al+0.012*Fe/Na)*Kd^3/4*ToK/(1+Fe)*(1+5*Fe)- 35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /200-1.5 P1=(0.00004*P^3-0.0091*P^2+1.3936*P)*1.05 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al+Cr+4*Ti-K-(Fe-0.21)*0.75 The tests on the natural associations form the eclogitic xenoliths with and without the diamonds and omphacite diamond inclusions (Taylor ea, 2006; Shatsky ea, 2008; Jacob ea, 2009) have shown very good agreement with the position of the Graphite -Diamond (Kennedy, Kennedy, 1977) boundary and to the conductive geotherms which are close to 34-36mvm-2 geotherms while for the South Africa they are more close to 40mvm-2 geotherms. For the zonal omphacites it produces the range of the nearly equal pressures or more rarely advective paths. The levels of the maximum enrichments in eclogites which are close to 50-60 kabr beneath 360ma Siberian kimberlites coincides with the levels of heating according to the monomineral and polymineral thermobarometry. South Africa eclogite geotherms often split into 2-3 branches: subductional (35) conductive (40) for Paleozoic-Mesozoic mantle lithosphere and the hottest advective close o 45 mv/m-2. For the pyroxenite compositions the barometer was rearranged to by the adding the temperature influence on Al , Ta, Fe exactly in KD as following: P(Ash2010 Per-Pxt)=0

  15. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi


    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  16. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics (United States)

    Westerlund, K. J.; Shirey, S. B.; Richardson, S. H.; Carlson, R. W.; Gurney, J. J.; Harris, J. W.


    An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re-Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C-O-H-S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.

  17. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew


    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  18. Successful removable partial dentures. (United States)

    Lynch, Christopher D


    Removable partial dentures (RPDs) remain a mainstay of prosthodontic care for partially dentate patients. Appropriately designed, they can restore masticatory efficiency, improve aesthetics and speech, and help secure overall oral health. However, challenges remain in providing such treatments, including maintaining adequate plaque control, achieving adequate retention, and facilitating patient tolerance. The aim of this paper is to review the successful provision of RPDs. Removable partial dentures are a successful form of treatment for replacing missing teeth, and can be successfully provided with appropriate design and fabrication concepts in mind.

  19. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V


    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  20. The effects of buoyancy on shear-induced melt bands in a compacting porous medium (United States)

    Butler, S. L.


    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  1. Local atomic structure inheritance in Ag50Sn50 melt

    International Nuclear Information System (INIS)

    Bai, Yanwen; Bian, Xiufang; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying


    Local structure inheritance signatures were observed during the alloying process of the Ag 50 Sn 50 melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N m around Ag atom is similar in the alloy and in pure Ag melts (N m  ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag 50 Sn 50 is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons

  2. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    International Nuclear Information System (INIS)

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.


    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  3. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.


    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  4. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk


    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  5. Partial knee replacement - slideshow (United States)

    ... page: // Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  6. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste, E-mail:; Roland, Christopher, E-mail: [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)


    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′){sub 2} sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.

  7. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse

    International Nuclear Information System (INIS)

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste; Roland, Christopher


    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′) 2 sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.

  8. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V


    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  9. Multiscale Models of Melting Arctic Sea Ice (United States)


    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  10. Melt extraction during heating and cooling of felsic crystal mushes in shallow volcanic systems: An experimental study (United States)

    Pistone, M.; Baumgartner, L. P.; Sisson, T. W.; Bloch, E. M.


    The dynamics and kinetics of melt extraction in near-solidus, rheologically stalled, felsic crystal mushes (> 50 vol.% crystals) are essential to feeding many volcanic eruptions. At shallow depths (volatile-saturated and may be thermally stable for long time periods (104-107 years). In absence of deformation, residual melt can segregate from the mush's crystalline framework stimulated by: 1) gas injecting from hot mafic magmas into felsic mushes (heating / partial melting scenario), and 2) gas exsolving from the crystallizing mush (cooling / crystallizing scenario). The conditions and efficiency of melt extraction from a mush in the two scenarios are not well understood. Thus, we conducted high-temperature (700 to 850 °C) and -pressure (1.1 kbar) cold seal experiments (8-day duration) on synthetic felsic mushes, composed of water-saturated (4.2 wt.%) rhyodacite melt bearing different proportions of added quartz crystals (60, 70, and 80 vol%; 68 mm average particle size). High-spatial resolution X-ray tomography of run products show: 1) in the heating scenario (> 750 °C) melt has not segregated due to coalescence of vesicles (≤ 23 vol%) and large melt connectivity (> 7 vol% glass) / low pressure gradient for melt movement up to 80 vol% crystals; 2) in the cooling scenario (≤ 750 °C) vesicle (< 11 vol%) coalescence is limited or absent and limited amount of melt (3 to 11 vol%) segregated from sample center to its outer periphery (30 to 100 mm melt-rich lenses), testifying to the efficiency of melt extraction dictated by increasing crystallinity. These results suggest that silicic melt hosted within a crystal-rich mush can accumulate rapidly due to the buildup of modest gas pressures during crystallization at temperatures near the solidus.

  11. Calculation of melting points of oxides

    International Nuclear Information System (INIS)

    Bobkova, O.S.; Voskobojnikov, V.G.; Kozin, A.I.


    The correlation between the melting point and thermodynamic parameters characterizing the strength of oxides and compounds is given. Such thermodynamic paramters include the energy and antropy of atomization

  12. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.


    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  13. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges (United States)

    Langmuir, Charles H.; Klein, Emily M.; Plank, Terry

    distribution of enriched components from hot spots in the two ocean basins. In the Atlantic, the hot spot influence is in discrete areas, and produces clear depth and chemical anomalies. Ridge segments far from hot spots do not contain enriched basalts. Melting processes associated with slow-spreading ridges vary substantially over short distances along strike and lead to the local trends discussed above, irrespective of hot spot influence. In the Pacific, enriched components appear to have been more thoroughly mixed into the mantle, leading to ubiquitous small scale heterogeneities. Melting processes do not vary appreciably along strike, so local chemical variations are dominated by the relative contribution of enriched component on short time and length scales. Thus the extent of mixing and distribution of enriched components influences strongly the contrasting local major element trends. Despite the difference in the distribution of enriched components, the mean compositions of each data set are equivalent. This suggests that the hot spot influence is similar in the two ocean basins, but its distribution in the upper mantle is different. These contrasting relationships between hot spots and ridges may result from differences in both spreading rate and tectonic history. Unrecognized hot spots may play an important role in diverse aspects of EPR volcanism, and in the chemical systematics of the erupted basalts. The observations and successful models have consequences for melt formation and segregation. (1) The melting process must be closer to fractional melting than equilibrium melting. This result is in accord with inferences from abyssal peridotites [Johnson et al., 1990]. (2) Small melt fractions generated over a range of pressures must be extracted rapidly and efficiently from high pressures within the mantle without experiencing low pressure equilibration during ascent. This requires movement in large channels, and possibly more efficient extraction mechanisms than

  14. Controls on rheology of peridotite at a palaeosubduction interface: a transect across the base of the Oman-UAE ophiolite (United States)

    Ambrose, T. K.; Wallis, D.; Hansen, L. N.; Waters, D. J.; Searle, M. P.


    Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. Such studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of of minor phases in strain localisation at plate boundaries remains to be tested by direct observation. To test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected across the base of the Oman-UAE ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily pyroxene), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength, suggesting that the fraction of strain accommodated by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate that viscosity and strain rate respectively decrease and increase by approximately an order of magnitude towards the base of the ophiolite. Our data indicate that this rheological weakening was primarily the result of more abundant secondary phases near the base of the ophiolite. Our interpretations are consistent with those of

  15. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    International Nuclear Information System (INIS)

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang


    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  16. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts (United States)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.


    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  17. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír


    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  18. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug


    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  19. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír


    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  20. High-pressure melting curve of KCl: Evidence against lattice-instability theories of melting

    International Nuclear Information System (INIS)

    Ross, M.; Wolf, G.


    We show that the large curvature in the T-P melting curve of KCl is the result of a reordering of the liquid to a more densely packed arrangement. As a result theories of melting, such as the instability model, which do not take into account the structure of the liquid fail to predict the correct pressure dependence of the melting curve

  1. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments (United States)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.


    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  2. Partial differential equations

    CERN Document Server

    Evans, Lawrence C


    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  3. Recent Changes in the Arctic Melt Season (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff


    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  4. Niobium interaction with chloride-carbonate melts

    International Nuclear Information System (INIS)

    Kuznetsov, S.A.; Kuznetsova, S.V.


    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  5. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.


    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  6. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils


    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  7. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.


    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  8. Optimization of partial search

    International Nuclear Information System (INIS)

    Korepin, Vladimir E


    A quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster; this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by the number of queries to the oracle. The author suggests a new version of the Grover-Radhakrishnan algorithm which uses a minimal number of such queries. The algorithm can run on the same hardware that is used for the usual Grover algorithm. (letter to the editor)

  9. Reactive transport in a partially molten system with binary solid solution (United States)

    Jordan, J.; Hesse, M. A.


    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the

  10. Shape evolution of a melting nonspherical particle (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron


    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  11. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)


    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  12. Melting Can Hinder Impact-Induced Adhesion (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.


    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  13. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.


    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  14. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato


    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  15. Melting of size-selected gallium clusters with 60-183 atoms. (United States)

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F


    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  16. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.


    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  17. Endmembers of Ice Shelf Melt (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.


    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  18. Auxiliary partial liver transplantation

    NARCIS (Netherlands)

    C.B. Reuvers (Cornelis Bastiaan)


    textabstractIn this thesis studies on auxiliary partial liver transplantation in the dog and the pig are reported. The motive to perform this study was the fact that patients with acute hepatic failure or end-stage chronic liver disease are often considered to form too great a risk for successful

  19. Partial Remission Definition

    DEFF Research Database (Denmark)

    Andersen, Marie Louise Max; Hougaard, Philip; Pörksen, Sven


    OBJECTIVE: To validate the partial remission (PR) definition based on insulin dose-adjusted HbA1c (IDAA1c). SUBJECTS AND METHODS: The IDAA1c was developed using data in 251 children from the European Hvidoere cohort. For validation, 129 children from a Danish cohort were followed from the onset...

  20. Fundamental partial compositeness

    DEFF Research Database (Denmark)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea


    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Unde...

  1. Partially ordered models

    NARCIS (Netherlands)

    Fernandez, R.; Deveaux, V.


    We provide a formal definition and study the basic properties of partially ordered chains (POC). These systems were proposed to model textures in image processing and to represent independence relations between random variables in statistics (in the later case they are known as Bayesian networks).

  2. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma


    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  3. Honesty in partial logic

    NARCIS (Netherlands)

    W. van der Hoek (Wiebe); J.O.M. Jaspars; E. Thijsse


    textabstractWe propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the

  4. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek


    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  5. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)


    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  6. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook


    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  7. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  8. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  9. Depletion, cryptic metasomatism, and modal metasomatism of central European lithospheric mantle: evidence from elemental and Li isotope compositions of spinel peridotite xenoliths, Kozákov volcano, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Medaris Jr., L. G.; Ackerman, Lukáš; Jelínek, E.; Magna, T.


    Roč. 104, č. 8 (2015), s. 1925-1956 ISSN 1437-3254 Institutional support: RVO:67985831 Keywords : Central European lithospheric mantle * geochemistry * geothermometry * Li isotopes * spinel peridotite xenoliths Subject RIV: DD - Geochemistry Impact factor: 2.133, year: 2015

  10. Metamorphic P-T path and zircon U-Pb dating of HP mafic granulites in the Yushugou granulite-peridotite complex, Chinese South Tianshan, NW China (United States)

    Zhang, Lu; Zhang, Lifei; Xia, Bin; Lü, Zeng


    Co-existing granulite and peridotite may represent relics of the paleo-suture zone and provides an optimal opportunity for better understanding of orogeny between two blocks. In this study, we carried out petrological and U-Pb zircon dating investigation on the HP mafic granulites associated with peridotite complex at Yushugou in Chinese South Tianshan. The studied samples include garnet-bearing high-pressure mafic granulites which can be subdivided into two types: Type I orthopyroxene-free and Type II orthopyroxene-bearing granulites and amphibolite. Type I granulite (Y21-2) has a mineral assemblage of garnet (33 vol.%), clinopyroxene (32 vol.%) and plagioclase (30 vol.%); and Type II granulite (Y18-8) has a mineral assemblage of garnet (22 vol.%), clinopyroxene (10 vol.%), orthopyroxene (14 vol.%), plagioclase (45 vol.%) and quartz. Garnet in both granulites exhibits core-rim structure characterized by increasing grossular and decreasing pyrope from core to rim. Petrographic observations and phase equilibrium modeling using THERMOCALC in the NCFMASHTO system for the mafic granulites (Y21-2 and Y18-8) show three stages of metamorphism: Stage I (granulite facies) was recognized by the large porphyroblastic garnet core, with P-T conditions of 9.8-10.4 Kbar and 860-900 °C (Y21-2) and 9.9-10.6 Kbar and 875-890 °C (Y18-8), respectively; Stage II (HP granulite facies) has peak P-T conditions of 12.1 Kbar at 755 °C (Y21-2) and 13.8 Kbar at 815 °C (Y18-8) using mineral assemblages combining with garnet rim compositions with maximum grossular and minimum pyrope contents; Stage III (amphibolite facies) was characterized by the development of calcic amphibole in granulites with temperature of 446-563 °C. Therefore, an anticlockwise P-T path characterized by simultaneous temperature-decreasing and pressure-increasing was inferred for the Yushugou HP mafic granulite. Studies of zircon morphology and inclusions, combined with zircon U-Pb dating and REE geochemistry

  11. Melt-processed LRE-Ba-Cu-O superconductors and prospects for their applications

    International Nuclear Information System (INIS)

    Yoo, S.I.; Fujimoto, H.; Sakai, N.; Murakami, M.


    We have recently found that control of the oxygen partial pressure (PO 2 ) during melt processing, named the oxygen-controlled melt-growth (OCMG) process, is critical for obtaining a high superconducting transition temperature (T c ) in the light rare earth (LRE)-Ba-Cu-O (LREBCO) superconductors particularly for Nd, Sm and Eu. Further, compared to a good melt-processed Y-Ba-Cu-O (YBCO) bulk superconductor, LREBCO bulks exhibit larger critical current density (J c ) in high magnetic field and a much improved irreversibility field (H irr ) at 77 K, implying that more effective flux pinning can be realized in a commercially feasible way. In this paper, properties and characteristic flux pinning of OCMG-processed LREBCO (LRE: Nd,Sm,Eu) superconductors are described on the basis of our study during the last several years. We also present the prospects for bulk-type applications, such as the magnetic bearings, flywheels and magnetically levitated (MAGLEV) trains. (orig.)

  12. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim


    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  13. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S


    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  14. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  15. Technological properties and structure of titanate melts

    International Nuclear Information System (INIS)

    Morozov, A.A.


    Power substantiation of existence of tough stream of complex anion ([TiO 6 ] 8- ) as a prevalent unit in titanate melts is given on the base of up-to-date knowledge about structure of metallurgical slags and results of investigations of thermophysical properties of these melts. It is shown that high crystallization ability of titanate melts at technological temperatures is determined by heterogeneity of liquid state - by presence up to 30 % of dispersed particles of solid phase solutions in matrix liquid [ru

  16. Bayesian estimation of core-melt probability

    International Nuclear Information System (INIS)

    Lewis, H.W.


    A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease

  17. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng


    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  18. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.


    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  19. Basalt generation at the Apollo 12 site. Part 2: Source heterogeneity, multiple melts, and crustal contamination (United States)

    Neal, Clive R.; Hacker, Matthew D.; Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.


    The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modeling, and proportions of fractionating phases were determined using the MAGFOX prograqm of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts-produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an 'r' value of 0.3). (2) Ilmenite basalts-produced by variable degrees of partial melting (4-8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts-produced by variable degrees of partial melting (5-10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and

  20. Photogenic partial seizures. (United States)

    Hennessy, M J; Binnie, C D


    To establish the incidence and symptoms of partial seizures in a cohort of patients investigated on account of known sensitivity to intermittent photic stimulation and/or precipitation of seizures by environmental visual stimuli such as television (TV) screens or computer monitors. We report 43 consecutive patients with epilepsy, who had exhibited a significant EEG photoparoxysmal response or who had seizures precipitated by environmental visual stimuli and underwent detailed assessment of their photosensitivity in the EEG laboratory, during which all were questioned concerning their ictal symptoms. All patients were considered on clinical grounds to have an idiopathic epilepsy syndrome. Twenty-eight (65%) patients reported visually precipitated attacks occurring initially with maintained consciousness, in some instances evolving to a period of confusion or to a secondarily generalized seizure. Visual symptoms were most commonly reported and included positive symptoms such as coloured circles or spots, but also blindness and subjective symptoms such as "eyes going funny." Other symptoms described included nonspecific cephalic sensations, deja-vu, auditory hallucinations, nausea, and vomiting. No patient reported any clear spontaneous partial seizures, and there were no grounds for supposing that any had partial epilepsy excepting the ictal phenomenology of some or all of the visually induced attacks. These findings provide clinical support for the physiological studies that indicate that the trigger mechanism for human photosensitivity involves binocularly innervated cells located in the visual cortex. Thus the visual cortex is the seat of the primary epileptogenic process, and the photically triggered discharges and seizures may be regarded as partial with secondary generalization.

  1. Arthroscopic partial medial meniscectomy

    Directory of Open Access Journals (Sweden)

    Dašić Žarko


    Full Text Available Background/Aim. Meniscal injuries are common in professional or recreational sports as well as in daily activities. If meniscal lesions lead to physical impairment they usually require surgical treatment. Arthroscopic treatment of meniscal injuries is one of the most often performed orthopedic operative procedures. Methods. The study analyzed the results of arthroscopic partial medial meniscectomy in 213 patients in a 24-month period, from 2006, to 2008. Results. In our series of arthroscopically treated medial meniscus tears we noted 78 (36.62% vertical complete bucket handle lesions, 19 (8.92% vertical incomplete lesions, 18 (8.45% longitudinal tears, 35 (16.43% oblique tears, 18 (8.45% complex degenerative lesions, 17 (7.98% radial lesions and 28 (13.14% horisontal lesions. Mean preoperative International Knee Documentation Committee (IKDC score was 49.81%, 1 month after the arthroscopic partial medial meniscectomy the mean IKDC score was 84.08%, and 6 months after mean IKDC score was 90.36%. Six months after the procedure 197 (92.49% of patients had good or excellent subjective postoperative clinical outcomes, while 14 (6.57% patients subjectively did not notice a significant improvement after the intervention, and 2 (0.93% patients had no subjective improvement after the partial medial meniscectomy at all. Conclusion. Arthroscopic partial medial meniscetomy is minimally invasive diagnostic and therapeutic procedure and in well selected cases is a method of choice for treatment of medial meniscus injuries when repair techniques are not a viable option. It has small rate of complications, low morbidity and fast rehabilitation.

  2. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars


    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  3. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain (United States)

    López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.


    The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.

  4. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR (United States)

    Istomina, Larysa; Heygster, Georg


    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  5. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)


    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  6. Extraction of scandium by organic substance melts

    International Nuclear Information System (INIS)

    Gladyshev, V.P.; Lobanov, F.I.; Zebreva, A.I.; Andreeva, N.N.; Manuilova, O.A.; Il'yukevich, Yu.A.


    Regularities of scandium extraction by the melts of octadecanicoic acid, n-carbonic acids of C 17 -C 20 commerical fraction and mixtures of tributylphosphate (TBP) with paraffin at (70+-1) deg C have been studied. The optimum conditions for scandium extraction in the melt of organic substances are determined. A scheme of the extraction by the melts of higher carbonic acids at ninitial metal concentrations of 10 -5 to 10 -3 mol/l has been suggested. The scandium compound has been isolated in solid form, its composition having been determined. The main advantages of extraction by melts are as follows: a possibility to attain high distribution coefficients, distinct separation of phases after extraction, the absence of emulsions, elimination of employing inflammable and toxic solvents, a possibility of rapid X-ray fluorescence determinatinon of scandium directly in solid extract

  7. Vertical melting of a stack of membranes (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.


    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  8. Selective Laser Ablation and Melting, Phase I (United States)

    National Aeronautics and Space Administration — In this project Advratech will develop a new additive manufacturing (AM) process called Selective Laser Ablation and Melting (SLAM). The key innovation in this...

  9. Preserved Flora and Organics in Impact Melt Breccias (United States)

    Schultz, P. H.; Harris, R. Scott; Clemett, S. J.; Thomas-Keprta, K. L.; Zarate, M.


    At least seven glass-bearing strata of varying ages occur at different horizons in the Pampean sediments of Argentina dating back to the Miocene. In a strict sense, these impact glasses are melt-matrix breccias composed of partially digested minerals clasts and basement fragments indicative of crater excavation. Ar-40/Ar-39 dating yield ages (+/- 2 sigma) of 6 +/- 2 Ka, 114 +/- 26 Ka, 230 +/- 30 Ka, 445 +/- 21 Ka, 3.27 +/- 0.08 Ma (near Mar del Plata = MdP), 5.28 +/- 0.04 Ma, and 9.21 +/- 0.08 Ma (near Chasico = CH) Where found in place (not reworked), these ages are consistent with the local stratigraphy and faunal assemblages. A striking property of some of these impact glasses is the encapsulation of preserved fragments of floral (and even soft-tissue faunal remains). Here we identify retained organics and describe a likely process of encapsulation and preservation.

  10. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith


    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  11. Low melting high lithia glass compositions and methods (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.


    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  12. Basal melting driven by turbulent thermal convection (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico


    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  13. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole


    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  14. Shock induced melting of lead (experimental study)

    International Nuclear Information System (INIS)

    Mabire, Catherine; Hereil, Pierre L.


    To investigate melting on release of lead, two shock compression measurements have been carried out at 51 GPa. In the first one, a pyrometric measurement has been performed at the Pb/LiF interface. In the second one, the Pb/LiF interface velocity has been recorded using VISAR measurement technique. VISAR and radiance profile are in good agreement and seem to show melting on release of lead

  15. Vacancies in quantal Wigner crystals near melting

    International Nuclear Information System (INIS)

    Barraza, N.; Colletti, L.; Tosi, M.P.


    We estimate the formation energy of lattice vacancies in quantal Wigner crystals of charged particles near their melting point at zero temperature, in terms of the crystalline Lindemann parameter and of the static dielectric function of the fluid phase near freezing. For both 3D and 2D crystals of electrons our results suggest the presence of vacancies in the ground state at the melting density. (author)

  16. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik


    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...

  17. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik


    Surface layers of tantalum metal were electrodeposited on steel from K 2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO 3 melts carbonate ions seems to be reduced to carbon ...

  18. The melting and solidification of nanowires

    International Nuclear Information System (INIS)

    Florio, B. J.; Myers, T. G.


    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  19. The melting and solidification of nanowires (United States)

    Florio, B. J.; Myers, T. G.


    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  20. The melting and solidification of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Florio, B. J., E-mail: [University of Limerick, Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics (Ireland); Myers, T. G., E-mail: [Centre de Recerca Matemàtica (Spain)


    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  1. On melting criteria for complex plasma

    International Nuclear Information System (INIS)

    Klumov, Boris A


    The present paper considers melting criteria for a plasma crystal discovered in dust plasma in 1994. Separate discussions are devoted to three-dimensional (3D) and two-dimensional (2D) systems. In the 3D case, melting criteria are derived based on the properties of local order in a system of microparticles. The order parameters are constructed from the cumulative distributions of the microparticle probability distributions as functions of various rotational invariants. The melting criteria proposed are constructed using static information on microparticle positions: a few snapshots of the system that allow for the determination of particle coordinates are enough to determine the phase state of the system. It is shown that criteria obtained in this way describe well the melting and premelting of 3D complex plasmas. In 2D systems, a system of microparticles interacting via a screened Coulomb (i.e., Debye-Hueckel or Yukawa) potential is considered as an example, using molecular dynamics simulations. A number of new order parameters characterizing the melting of 2D complex plasmas are proposed. The order parameters and melting criteria proposed for 2D and 3D complex plasmas can be applied to other systems as well. (methodological notes)

  2. A close-form solution to predict the total melting time of an ablating slab in contact with a plasma

    International Nuclear Information System (INIS)

    Yeh, F.-B.


    An exact melt-through time is derived for a one-dimensional heated slab in contact with a plasma when the melted material is immediately removed. The plasma is composed of a collisionless presheath and sheath on a slab, which partially reflects and secondarily emits ions and electrons. The energy transport from plasma to the surface accounting for the presheath and sheath is determined from the kinetic analysis. This work proposes a semi-analytical model to calculate the total melting time of a slab based on a direct integration of the unsteady heat conduction equation, and provides quantitative results applicable to control the total melting time of the slab. The total melting time as a function of plasma parameters and thermophysical properties of the slab are obtained. The predicted energy transmission factor as a function of dimensionless wall potential agrees well with the experimental data. The effects of reflectivities of the ions and electrons on the wall, electron-to-ion source temperature ratio at the presheath edge, charge number, ion-to-electron mass ratio, ionization energy, plasma flow work-to-heat conduction ratios, Stefan number, melting temperature, Biot number and bias voltage on the total melting time of the slab are quantitatively provided in this work


    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.


    , a significant amount of glassy material interspersed among the gas bubbles will be excluded, thus underestimating the melt rate. Likewise, if they are drawn too high, many large voids will be counted as glass, thus overestimating the melt rate. As will be shown later in this report, there is also no guarantee that a given distribution of glass and gas bubbles along a particular sectioned plane will always be representative of the entire sample volume. Poor reproducibility seen in some LMR data may be related to these difficulties of the visual method. In addition, further improvement of the existing melt rate model requires that the overall impact of feed chemistry on melt rate be reflected on measured data at a greater quantitative resolution on a more consistent basis than the visual method can provide. An alternate method being pursued is X-ray computed tomography (CT). It involves X-ray scanning of glass samples, performing CT on the 2-D X-ray images to build 3-D volumetric data, and adaptive segmentation analysis of CT results to not only identify but quantify the distinct regions within each sample based on material density and morphologies. The main advantage of this new method is that it can determine the relative local density of the material remaining in the beaker after the heat treatment regardless of its morphological conditions by selectively excluding all the voids greater than a given volumetric pixel (voxel) size, thus eliminating much of the subjectivity involved in the visual method. As a result, the melt rate data obtained from CT scan will give quantitative descriptions not only on the fully-melted glass, but partially-melted and unmelted feed materials. Therefore, the CT data are presumed to be more reflective of the actual melt rate trends in continuously-fed melters than the visual data. In order to test the applicability of X-ray CT scan to the HLW glass melt rate study, several new series of HLW simulant/frit mixtures were melted in the

  4. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo


    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  5. Infinite partial summations

    International Nuclear Information System (INIS)

    Sprung, D.W.L.


    This paper is a brief review of those aspects of the effective interaction problem that can be grouped under the heading of infinite partial summations of the perturbation series. After a brief mention of the classic examples of infinite summations, the author turns to the effective interaction problem for two extra core particles. Their direct interaction is summed to produce the G matrix, while their indirect interaction through the core is summed in a variety of ways under the heading of core polarization. (orig./WL) [de

  6. On universal partial words


    Chen, Herman Z. Q.; Kitaev, Sergey; Mütze, Torsten; Sun, Brian Y.


    A universal word for a finite alphabet $A$ and some integer $n\\geq 1$ is a word over $A$ such that every word in $A^n$ appears exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for any $A$ and $n$. In this work we initiate the systematic study of universal partial words. These are words that in addition to the letters from $A$ may contain an arbitrary number of occurrences of a special `joker' symbol $\\Diamond\

  7. Partial differential equations

    CERN Document Server

    Agranovich, M S


    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  8. Partial differential equations

    CERN Document Server

    Levine, Harold


    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  9. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E


    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  10. Elliptic partial differential equations

    CERN Document Server

    Han, Qing


    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  11. Generalized Partial Volume

    DEFF Research Database (Denmark)

    Darkner, Sune; Sporring, Jon


    Mutual Information (MI) and normalized mutual information (NMI) are popular choices as similarity measure for multimodal image registration. Presently, one of two approaches is often used for estimating these measures: The Parzen Window (PW) and the Generalized Partial Volume (GPV). Their theoret...... of view as well as w.r.t. computational complexity. Finally, we present algorithms for both approaches for NMI which is comparable in speed to Sum of Squared Differences (SSD), and we illustrate the differences between PW and GPV on a number of registration examples....

  12. Influence of additive laser manufacturing parameters on surface using density of partially melted particles (United States)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves


    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  13. Formation and partial melting of two types of spin-cluster glass behavior in vanadate spinel

    International Nuclear Information System (INIS)

    Huang Yuanjie; Pi Li; Tan Shun; Zhang Yuheng; Yang Zhaorong


    We report the doping effect on the various properties of spinels Co 1-x Zn x V 2 O 4 (0 ≤ x ≤ 0.2). For the parent compounds, the rise in magnetization, the valley in thermal conductance, the transition from the ferromagnetic arrangement to non-collinear alignment indicated by the specific heat for the V sublattice, especially the frequency dependence of AC susceptibility around T 1 = 59 K, verify the occurrence of the transition at T 1 besides the ferrimagnetic transition at T C . The ferrimagnetic transition at T C induces the spin-cluster glass behavior and the transition at T 1 yields the new spin-cluster glass (NSCG) behavior. As the Zn 2+ -doped content increases, the above phenomena are gradually weakening to vanishing, but the glassy behavior at T C still exists for all samples. Through the fourth-order perturbation theory, we discuss the reasons for the gradual vanishing of the transition at T 1 . (paper)

  14. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma


    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  15. Uranium and thorium concentration process during partial fusion and crystallization of granitic magma

    International Nuclear Information System (INIS)

    Cuney, M.


    Two major processes, frequently difficult to distinguish, lead to uranium and thorium enrichment in igneous rocks and more particularly in granitoids; these are partial melting and fractional crystallization. Mont-Laurier uranothoriferous pegmatoids, Bancroft and Roessing deposits are examples of radioelement concentrations resulting mostly of low grade of melting on essentially metasedimentary formations deposited on a continental margin or intracratonic. Fractional crystallization follows generally partial melting even in migmatitic areas. Conditions prevailing during magma crystallization and in particular oxygen fugacity led either to the formation of uranium preconcentrations in granitoids, or to its partition in the fluid phase expelled from the magma. No important economic uranium deposit appears to be mostly related to fractional crystallization of large plutonic bodies

  16. Metamorphic reprocessing of a serpentinized carbonate-bearing peridotite after detachment from the mantle wedge: A P-T path constrained from textures and phase diagrams in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O (United States)

    Mposkos, E.; Baziotis, I.; Proyer, A.


    In the central Rhodope mountains of Greece a carbonate-bearing metaperidotite lens ˜ 200 × 500 m in size crops out as part of the high- to ultrahigh-pressure metamorphic Upper Sidironero Complex ˜ 500 m SE of the Gorgona Village, north of Xanthi town. It is composed primarily of coarse grained (3-20 mm in size) olivine and orthopyroxene, medium grained clinohumite and medium to fine grained tremolite, chlorite, dolomite, magnesite, talc, antigorite and various spinel phases. Whole-rock chemistry, mineral textures and compositions, and phase diagram calculations show that the metaperidotite was subjected to a prograde HP metamorphism, isofacial with the surrounding migmatitic gneisses, metapelites and amphibolites. The prograde character of metamorphism is demonstrated by inclusions of talc, antigorite, chlorite, dolomite, magnesite and Ti-clinohumite in ferrit-chromite, olivine, and orthopyroxene, as well as of olivine in orthopyroxene, and by the typical change in composition of zoned spinel minerals from ferrit-chromite in the core to chromian spinel at the rim. The prograde path is characterized by successive growth of amphibole, Ti-clinohumite, olivine and orthopyroxene, followed by the breakdown of Ti-clinohumite to olivine + Mg-ilmenite and of chlorite to olivine + spinel, probably during exhumation. The construction of a partial petrogenetic P- T grid in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O (CMASCH) for Ca-poor ultramafic bulk compositions has proven highly useful for the reconstruction of the metamorphic evolution and a P- T path, indicating that the use of univariant reactions in mixed volatile systems is highly warranted. The P- T path is clearly constrained to pressures below 1.5-1.7 GPa by the absence of clinopyroxene. These pressures are slightly lower than those recorded in the closely associated Jurassic eclogites and much lower than those recorded in the diamond-bearing gneisses 5 km to the south in the same tectonic unit. The carbonate

  17. Unilateral removable partial dentures. (United States)

    Goodall, W A; Greer, A C; Martin, N


    Removable partial dentures (RPDs) are widely used to replace missing teeth in order to restore both function and aesthetics for the partially dentate patient. Conventional RPD design is frequently bilateral and consists of a major connector that bridges both sides of the arch. Some patients cannot and will not tolerate such an extensive appliance. For these patients, bridgework may not be a predictable option and it is not always possible to provide implant-retained restorations. This article presents unilateral RPDs as a potential treatment modality for such patients and explores indications and contraindications for their use, including factors relating to patient history, clinical presentation and patient wishes. Through case examples, design, material and fabrication considerations will be discussed. While their use is not widespread, there are a number of patients who benefit from the provision of unilateral RPDs. They are a useful treatment to have in the clinician's armamentarium, but a highly-skilled dental team and a specific patient presentation is required in order for them to be a reasonable and predictable prosthetic option.

  18. Consequences of Melt-Preferred Orientation for Magmatic Segregation in Deforming Mantle Rock (United States)

    Katz, R. F.; Taylor-West, J.; Allwright, J.; Takei, Y.; Qi, C.; Kohlstedt, D. L.


    In partially molten regions of the mantle, deviatoric stresses cause large-scale deformation and mantle flow. The same stresses also lead to preferential wetting of coherently oriented grain boundaries [DK97, T10]. This alignment is called melt-preferred orientation (MPO). Because of the contrast between the physical properties of melt and solid grains, MPO has the potential to introduce anisotropy into the mechanical and transport properties of the liquid/solid aggregate. Here we consider the possible consequences for (and of) anisotropic viscosity and permeability of the partially molten aggregate. The consequences are evaluated in the context of laboratory experiments on partially molten rocks. The controlled experiments involve deformation of an initially uniform mixture of solid olivine and liquid basalt [KZK10]. The resultant patterns of melt segregation include two robust features: (i) melt segregation into bands with high melt fraction oriented at a low angle to the shear plane; and (ii) melt segregation associated with an imposed gradient in shear stress, in experiments where this is present. Although there are other reproducible features of experiments, these are the most robust and provide a challenge to models. A theoretical model for the effect of MPO on mantle viscosity under diffusion creep is available [TH09] and makes predictions that are consistent with laboratory experiments [TK13,KT13,QKKT14,AK14]. We review the mechanics of this model and the predictions for flow in torsional and pipe Poiseuille flow, showing a quantitative comparison with experimental results. Furthermore, it is logical to expect MPO to lead to anisotropy of permeability, and we present a general model of tensorial permeability. We demonstrate the consequences of this anisotropy for simple shear deformation of a partially molten rock. REFERENCES: DK97 = Daines & Kohlstedt (1997), JGR, 10.1029/97JB00393. T10 = Takei (2010), JGR, 10.1029/2009JB006568. KZK10 = King, Zimmerman

  19. Tutorial on Online Partial Evaluation

    Directory of Open Access Journals (Sweden)

    William R. Cook


    Full Text Available This paper is a short tutorial introduction to online partial evaluation. We show how to write a simple online partial evaluator for a simple, pure, first-order, functional programming language. In particular, we show that the partial evaluator can be derived as a variation on a compositionally defined interpreter. We demonstrate the use of the resulting partial evaluator for program optimization in the context of model-driven development.

  20. Eclogite-associated potassic silicate melts and chloride-rich fluids in the mantle: a possible connection (United States)

    Safonov, O.; Butvina, V.


    Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high

  1. Type-Directed Partial Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier


    Type-directed partial evaluation uses a normalization function to achieve partial evaluation. These lecture notes review its background, foundations, practice, and applications. Of specific interest is the modular technique of offline and online type-directed partial evaluation in Standard ML...

  2. Type-Directed Partial Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier


    Type-directed partial evaluation uses a normalization function to achieve partial evaluation. These lecture notes review its background, foundations, practice, and applications. Of specific interest is the modular technique of offline and online type-directed partial evaluation in Standard ML of ...

  3. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    International Nuclear Information System (INIS)

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang


    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials

  4. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al. (United States)

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang


    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  5. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam


    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  6. Olivine/melt transition metal partitioning, melt composition, and melt structure—Melt polymerization and Qn-speciation in alkaline earth silicate systems (United States)

    Mysen, Bjorn O.


    The two most abundant network-modifying cations in magmatic liquids are Ca 2+ and Mg 2+. To evaluate the influence of melt structure on exchange of Ca 2+ and Mg 2+ with other geochemically important divalent cations ( m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg 2SiO 4-CaMgSi 2O 6-SiO 2 with ⩽1 wt% m-cations (Mn 2+, Co 2+, and Ni 2+) substituting for Ca 2+ and Mg 2+. The bulk melt NBO/Si-range ( NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca 2+, Ca 2+- NBO) is linearly related to NBO/Si, whereas fraction of Mg 2+- NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD( m-Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mg olivine ⇌ molivine + Mg melt, is linear. KD( m-Mg) decreases as an exponential function of increasing ionic potential, Z/ r2 ( Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, Δ H, decreases linearly with increasing Z/ r2 [Δ H = 261(9)-81(3)· Z/ r2 (Å -2)]. From existing information on (Ca,Mg)O-SiO 2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂ KD( m-Mg) /∂( Z/ r2) and ∂(Δ H)/∂( Z/ r2) is because increasing Z/ r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also

  7. Melt electrospinning of biodegradable polyurethane scaffolds (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.


    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  8. Viscosity characteristics of selected volcanic rock melts (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd


    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  9. Applied partial differential equations

    CERN Document Server

    Logan, J David


    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  10. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R


    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  11. Fundamental partial compositeness

    CERN Document Server

    Sannino, Francesco


    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  12. Fundamental partial compositeness

    International Nuclear Information System (INIS)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena


    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2)_R-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  13. Partial oxidation process

    International Nuclear Information System (INIS)

    Najjar, M.S.


    A process is described for the production of gaseous mixtures comprising H/sub 2/+CO by the partial oxidation of a fuel feedstock comprising a heavy liquid hydrocarbonaceous fuel having a nickel, iron, and vanadium-containing ash or petroleum coke having a nickel, iron, and vanadium-containing ash, or mixtures thereof. The feedstock includes a minimum of 0.5 wt. % of sulfur and the ash includes a minimum of 5.0 wt. % vanadium, a minimum of 0.5 ppm nickel, and a minimum of 0.5 ppm iron. The process comprises: (1) mixing together a copper-containing additive with the fuel feedstock; wherein the weight ratio of copper-containing additive to ash in the fuel feedstock is in the range of about 1.0-10.0, and there is at least 10 parts by weight of copper for each part by weight of vanadium; (2) reacting the mixture from (1) at a temperature in the range of 2200 0 F to 2900 0 F and a pressure in the range of about 5 to 250 atmospheres in a free-flow refactory lined partial oxidation reaction zone with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO and entrained molten slag; and where in the reaction zone and the copper-containing additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a liquid phase washing agent that collects and transports at least a portion of the vanadium-containing oxide laths and spinels and other ash components and refractory out of the reaction zone; and (3) separating nongaseous materials from the hot raw effluent gas stream

  14. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle (United States)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling


    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in

  15. Mechanical properties of partially meltable superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.


    Partial melting has been suggested as a method for the processing of the high temperatures superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/ to improve the current carrying capacity in this material. The authors have investigated the possibility of using this method for the improvement of bulk mechanical properties in addition to those related to superconductivity. Four parameters, namely, oxygen annealing temperature, melting temperature, melting time and cooling rate are identified and studied. Each parameter is varied individually and its effects on microstructure and mechanical and superconducting properties are examined. The results indicate that the properties of superconducting YBa/sub 2/Cu/sub 3/O/sub 7-x/ can be improved significantly using the proper melting temperature, melting time, cooling rate and oxygen annealing temperature

  16. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif) (United States)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard


    partial Hf isotope homogenization in the melt, and melt infiltration from an external source. New zircon was most likely formed by a peritectic reaction with melt above the wet solidus (peritectic zircon). Conversely, the amphibolite-facies host gneisses lack indications of significant melt production. Pre-metamorphic zircons experienced mainly solid-state recrystallization and variable Pb loss with only minor new zircon formation. However, subtle changes in cathodoluminescence pattern, in the Hf and O isotopes, and in the Lu/Hf, Yb/Hf ratios of zircons suggest that small volumes of melt were locally present. In difference to granulites, melt was internally produced. The detection of low degree melts (inferred from zircon geochemistry) is extremely important for the rheology because these amphibolite-facies rocks could act as large scale ductile shear zones. The new zircon data support a different P-T path for closely spaced amphibolite- and granulite-facies rocks.

  17. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.


    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  18. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...... or more different polymers in addition to additives, fillers or solvents in order to modify the properties of the final product. Usually, it is also desired to improve the processability. For example the supplement of a high molecular weight component improves the stability in elongational flows....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts...


    Harris, F.A.


    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  20. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  1. Selective Laser Melting of Pure Copper (United States)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki


    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  2. Prereduction and melting of domestic titaniferous materials (United States)

    Nafziger, R. H.; Jordan, R. R.


    Two domestic ilmenites and one titaniferous magnetite were prereduced by the United States Department of the Interior, Bureau of Mines, in a batch rotary kiln with coal char to assess the feasibility of this technique in improving melting operations and subsequent electric furnace processing. All three prereduced titaniferous materials were melted satisfactorily in an electric arc furnace to produce iron as a metal suitable for further refining to steel; metallizations ranging from 63 to 83 pct of the iron oxides were achieved. The ilmenites yielded titanium enriched slags that were amenable to further processing by conventional methods. Prereduction decreased electrode consumption during furnace operation and also conserved expensive electrical energy that otherwise must be used to reduce and melt totally the entire titaniferous materials charge.

  3. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.


    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  4. Mathematical model of melt flow channel granulator

    Directory of Open Access Journals (Sweden)

    A. A. Kiselev


    Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.

  5. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.


    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  6. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G


    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  7. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf


    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  8. Electrochemistry of uranium in sodium chloroaluminate melts

    International Nuclear Information System (INIS)

    D'olieslager, W.; Meuris, F.; Heerman, L.


    The electrochemical behaviour of uranium was studied in basic, NaCl-saturated NaAlCl 4 melts at 175 deg C. Solutions of UO 3 exhibit two oxidation/reduction waves (cyclic voltammetry). Analysis of the peak currents (cyclic voltammetry), the limiting currents (pulse polarography) and the non-linear log i-t curves (anodic controlled potential coulometry) leads to the conclusion that uranium(IV) in the basic chloroaluminate melt exists as two different species in slow equilibrium with one another, of which only one species can be oxidized to U(VI). (author) 16 refs.; 7 figs.; 3 tabs

  9. Dynamic fragmentation of laser shock-melted tin: experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Resseguier, T. [CNRS ENSMA, Lab Combust and Deton, F-86961 Futuroscope (France); Signor, L.; Dragon, A. [CNRS ENSMA, Mecan and Phys Mat Lab, F-86961 Futuroscope (France); Signor, L.; Roy, G. [CEA Valduc, 21 - Is-sur-Tille (France)


    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the 'micro-spall' process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the un-spalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydro-code including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal. (authors)

  10. Evaluating the Sensitivity of Glacial Isostatic Adjustment to a Hydrous Melt at 410 km Depth (United States)

    Hill, A. M.; Milne, G. A.; Ranalli, G.


    We present a sensitivity analysis aimed at testing whether observables related to GIA can support or refute the existence of a low viscosity partial melt layer located above the mantle transition zone, as required by the so-called "Transition Zone Water Filter" model (Bercovici and Karato 2003). In total, 400 model runs were performed sampling a range of melt layer thicknesses (1, 10 & 20 km) and viscosities (1015 - 1019 Pas) as well as plausible viscosity values in the upper and lower mantle. Comparing model output of postglacial decay times and j2, 18 of the considered viscosity models were found to be compatible with all of the observational constraints. Amongst these, only three `background' upper and lower mantle viscosities are permitted regardless of the properties of the melt layer: an upper mantle value of 3×1020 Pas and lower mantle values of 1022, 3×1022 and 5×1022 Pas. Concerning the properties of the melt layer itself, a thin (1 km) layer may have any of the investigated viscosities (1015 to 1019 Pas). For thicker melt layers, the viscosity must be ≥1018 Pas (20 km) or ≥1017 Pas (10 km). Our results indicate clear parameter trade-offs between the properties of the melt layer and the background viscosity structure. Given that the observations permit several values of lower mantle viscosity, we conclude that tightening constraints on this parameter would be valuable for future investigation of the type presented here. Furthermore, while decay times from both locations considered in this investigation (Ångerman River, Sweden; Richmond Gulf, Canada) offer meaningful constraints on viscosity structure, the value for Richmond Gulf is significantly more uncertain and so increasing its precision would likely result in improved viscosity constraints.

  11. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo


    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  12. Experts' understanding of partial derivatives using the Partial Derivative Machine


    Roundy, David; Dorko, Allison; Dray, Tevian; Manogue, Corinne A.; Weber, Eric


    Partial derivatives are used in a variety of different ways within physics. Most notably, thermodynamics uses partial derivatives in ways that students often find confusing. As part of a collaboration with mathematics faculty, we are at the beginning of a study of the teaching of partial derivatives, a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. As a part of this project, we have performed a pilot study of expert understanding...

  13. Domain structure and texture in fine grained symplectite from garnet breakdown in peridotite xenoliths (Zinst, Bavaria, Bohemian Massif) (United States)

    Habler, G.; Špaček, P.; Abart, R.


    Lherzolite xenoliths entrained in Oligocene basanite at the locality of Zinst (Bavaria, western Bohemian Massif) contain rare fine-grained symplectites forming about 5 millimeter sized patches comprising several microstructurally and chemically distinct concentric zones. The symplectites reflect a complex reaction history of lherzolite during decompression and interaction with melt. Here we focus on ultra-fine grained symplectite with an integrated bulk composition expressed in terms of garnet end-member component percentages as Prp(69-71)Alm(11-13)Grs(2.5-5)And(7.5-10)Uvr(4). According to the composition and the microstructural occurrence in lherzolite the ultra-fine grained symplectite is interpreted as a product of isochemical garnet breakdown, although the precursor phase is not preserved. Under cross polarized light patches with similar extinction show a domain microstructure in symplectite. BSE images reveal an intimate intergrowth of orthopyroxene, spinel and plagioclase. All phases have a shape preferred orientation within distinct domains, whereas discontinuous SPO changes occur at microstructural domain boundaries. Three types of symplectite were microstructurally discerned: The most pristine type A occurs in a 10-30 micrometers wide zone along the symplectite margin. Spinel forms several tens of nanometers wide rods or lamellae within Opx, whereas Pl and Opx represent the symplectite matrix. All phases show a strong SPO with the maximum elongation perpendicular to the symplectite boundary. At edges of this interface, the SPO of the symplectite phases changes accordingly. Discontinuities in SPO may coincide with changes in crystallographic orientation. EBSD data showed that symplectite phases have strict crystallographic orientation relations with Opx(100)//Spl(111) and Opx(010)//Spl(110). Whereas the initial lattice orientation is controlled by adjacent phases at the symplectite boundary, the crystallographic orientation within symplectite domains

  14. Petro-structural, geochemical and carbon and oxygen isotopic study on carbonates crosscuting the Oman Ophiolite peridotites: evidence of polygenic CO2 trapping (United States)

    Noël, J.; Godard, M.; Martinez, I.; Oliot, E.; Williams, M. J.; Rodriguez, O.; Chaduteau, C.; Gouze, P.


    Carbon trapping in ophiolitic peridotites contributes to the global carbon cycle between solid Earth and its outer envelopes (through subduction and/or modern alteration). To investigate this process, we performed petro-structural (microtomography, EBSD, EPMA) and geochemical studies (LA-ICP-MS, carbon and oxygen isotopes on bulk and minerals using SHRIMP) of harzburgites cored in the Oman Ophiolite. Studied harzburgites are highly serpentinized (> 90 %) and crosscut by 3 generations of carbonates (> 20 Vol%) with compositions from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates are fine penetrative veinlets and mesh core after olivine. They have low REE (e.g., Yb = 0.08-0.23 x CI-chondrite) and negative Ce anomalies. They have δ13CPDB = -15.2 to 1.10‰ and δ18OSMOW = 17.5 to 33.7‰, suggesting precipitation temperatures up to 110°C. Type 2 carbonates are pluri-mm veins bounded by cm-thick serpentinized vein selvages, oriented dominantly parallel to mantle foliation. Dynamic recrystallization is observed, indicating polygenetic formation: well crystallized calcite with REE abundances similar to Type 1 carbonates are locally replaced by small dolomite and calcite grains with higher REE (e.g., Yb = 0.35-1.0 x CI-chondrite) and positive Gd anomaly. Type 2 carbonates have δ13CPDB = -12.6 to -4.1‰ and δ18OSMOW = 25.0 to 32.7‰, suggesting precipitation temperatures from 10 to 60°C. Type 3 carbonates are late pluri-mm to cm veins reactivating Type 2 veins. They consist of small grains of dolomite and calcite with REE abundances similar to recrystallized Type 2 carbonates. Type 3 carbonates have δ13CPDB = -8.3 to -5.8‰ and δ18OSMOW = 28.8 to 32.7‰, suggesting precipitation temperatures 100°C). Formation of carbonate veins (Type 2) indicates localization of fluid flux, while serpentinization remains the dominant alteration process. Low T carbonate veins (Type 3) remain the main flow path through ophiolitic peridotites. Our study suggests that

  15. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.


    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  16. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey


    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  17. Grain refinement of AZ91D alloy by intensive melt shearing and its persistence after remelting and isothermal holding

    Directory of Open Access Journals (Sweden)

    Zuo Yubo


    Full Text Available Intensive melt shearing has a significant grain refining effect on some light alloys. However, the persistence of the grain refining effect during isothermal holding and remelting is still unclear, although it is very important for the practical application. In this study, intensive melt shearing was achieved in a twin-screw mechanism to investigate its grain refining effect on AZ91D magnesium alloy. The refinement mechanism was discussed and the persistence of grain refinement after remelting and isothermal holding was also studied. A Zeiss imaging system with polarized light was used for quantitative measurement of grain size. The results show that the intensive melt shearing has a significant grain refining effect on AZ91D magnesium alloy. With the application of intensive melt shearing, the grain size of AZ91D magnesium alloy can be reduced from 530 μm (for a typical as-cast microstructure to 170 μm, which is about 70% size reduction. The grain refinement achieved by the intensive melt shearing can be partially kept after isothermal holding and remelting. It is believed that the refinement effect was mainly due to the finer and well dispersed oxide particles formed by high intensive shearing. The smaller size of oxide particles and their slow motion velocity in the sheared melt could make important contributions to the remained grain refinement.

  18. Structural and dynamical heterogeneity of undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yu; Wang, Li; Wang, Shenghai, E-mail:; Li, Xuelian; Cui, Wenchao


    Highlights: • We simulate the undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap at atomic level. • Fe{sub 75}Cu{sub 25} melts separate into Cu-rich and Fe-rich liquid upon relaxation. • The process is controlled by the nucleation and grows mechanism. • Both PPCFs and CN confirm that L–L phase separation is a successive process. - Abstract: Molecular dynamics simulation (MD) based upon the developed embedded atom method (EAM) has been performed to explore the structural and dynamical heterogeneity of Fe{sub 75}Cu{sub 25} melts. The results show that the melts separate into Cu-rich droplets surround by the Fe-rich matrix controlled by nucleation and growth mechanism. The larger undercoolings suggest the higher nucleation rate and growth rate of droplets. The growth of droplet is achieved by the aggregation and coagulation of neighbor droplet with the characteristics of collective movement for homogeneous atoms. A sharp increase of S{sub CC} (q = 0) is found at all simulated temperature, which means concentration fluctuation on large length scales are much pronounced. Both partial pair correlation functions (PPCFs) and coordination number (CN) confirm that liquid–liquid (L–L) phase separation is a successive process with a stronger interaction of homogeneous pairs than that of heterogeneous pairs in Fe{sub 75}Cu{sub 25} melts. The studies above characterize the phase separation of metal melts on the atomic scale.

  19. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee


    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  20. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System (United States)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)


    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  1. Rotational melting in displacive quantum paraelectrics

    International Nuclear Information System (INIS)

    Martonak, R.; Tosatti, E.


    Displacive quantum paraelectrics are discussed as possible realizations of rotational quantum melting. The phenomenology of SrTiO 3 and KTaO 3 is discussed in this light. Both old and fresh theoretical work on two-dimensional lattice models for quantum paraelectricity is reviewed. (author). 73 refs, 15 figs

  2. Using Melting Ice to Teach Radiometric Dating. (United States)

    Wise, Donald Underkofler


    Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)

  3. Models and observations of Arctic melt ponds (United States)

    Golden, K. M.


    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  4. Erythritol: crystal growth from the melt. (United States)

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S


    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. Melting Metal on a Playing Card (United States)

    Greenslade, Thomas B., Jr.


    Many of us are familiar with the demonstration of boiling water in a paper cup held over a candle or a Bunsen burner; the ignition temperature of paper is above the temperature of 100°C at which water boils under standard conditions. A more dramatic demonstration is melting tin held in a playing card. This illustration is from Tissandier's book on…

  6. The atmospheric boundary layer over melting glaciers

    NARCIS (Netherlands)

    Oerlemans, J.


    Results from a number of glacio-meteorological experiments carried out over melting glaciers are summarized. It is shown that in summer the microclimate of a glacier tongue is dominated by katabatic flow, initiated by the downward sensible heat flux. Characteristic obstacle height is an

  7. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.


    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  8. Can Text Messages Mitigate Summer Melt? (United States)

    Castleman, Benjamin L.; Page, Lindsay C.


    Higher education officials have long been familiar with the concept of "summer melt," where students who have paid a deposit to attend one college or university instead matriculate at a different institution, usually presumed to be of comparable quality. In previous research, drawing on longitudinal data from various urban school…

  9. Linking Polymer Dynamics to Melt Processing

    Indian Academy of Sciences (India)

    Ashish Lele

    Linking Polymer Dynamics to Melt Processing. Ashish Lele. NaUonal Chemical Laboratory, Pune Mid-‐Year MeeUng July 2-‐3, 2010. Indian Academy of Sciences, Bangalore ...

  10. Educating Multicultural Citizens: Melting Pot or Mosaic? (United States)

    Entwistle, Harold


    Explores the educational metaphors of the melting pot (immigrants must assimilate into the mainstream culture) and the cultural mosaic (immigrants should retain their cultural identifies). Focuses on such issues as multiculturalism and justice for immigrants, social cohesion, the notion of cultural relativism, and differing conceptions of culture.…

  11. Needleless Melt-Electrospinning of Polypropylene Nanofibres

    Directory of Open Access Journals (Sweden)

    Jian Fang


    Full Text Available Polypropylene (PP nanofibres have been electrospun from molten PP using a needleless melt-electrospinning setup containing a rotary metal disc spinneret. The influence of the disc spinneret (e.g., disc material and diameter, operating parameters (e.g., applied voltage, spinning distance, and a cationic surfactant on the fibre formation and average fibre diameter were examined. It was shown that the metal material used for making the disc spinneret had a significant effect on the fibre formation. Although the applied voltage had little effect on the fibre diameter, the spinning distance affected the fibre diameter considerably, with shorter spinning distance resulting in finer fibres. When a small amount of cationic surfactant (dodecyl trimethyl ammonium bromide was added to the PP melt for melt-electrospinning, the fibre diameter was reduced considerably. The finest fibres produced from this system were 400±290 nm. This novel melt-electrospinning setup may provide a continuous and efficient method to produce PP nanofibres.

  12. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.


    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  13. Arctic Ice Melting: National Security Implications (United States)


    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the


    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolskij


    Full Text Available The nonlinear mathematical model of calculation of temperature fields in the process of metal melting is formulated and solved using the method of equivalent source taking into account nonlinearity of thermophysical properties of material and variable terms of heat exchange.

  15. Partial Actions and Power Sets

    Directory of Open Access Journals (Sweden)

    Jesús Ávila


    Full Text Available We consider a partial action (X,α with enveloping action (T,β. In this work we extend α to a partial action on the ring (P(X,Δ,∩ and find its enveloping action (E,β. Finally, we introduce the concept of partial action of finite type to investigate the relationship between (E,β and (P(T,β.

  16. Algorithms over partially ordered sets

    DEFF Research Database (Denmark)

    Baer, Robert M.; Østerby, Ole


    in partially ordered sets, answer the combinatorial question of how many maximal chains might exist in a partially ordered set withn elements, and we give an algorithm for enumerating all maximal chains. We give (in § 3) algorithms which decide whether a partially ordered set is a (lower or upper) semi......-lattice, and whether a lattice has distributive, modular, and Boolean properties. Finally (in § 4) we give Algol realizations of the various algorithms....

  17. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions (United States)

    Saper, L.; Stolper, E.


    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  18. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle. (United States)

    Wilson, A H; Shirey, S B; Carlson, R W


    Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.

  19. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts (United States)

    Arndt, Nicholas T.; Kerr, Andrew C.; Tarney, John


    The small Pacific island of Gorgona, off the coast of Colombia, is well known for its spectacular spinifex-textured komatiites. These high-Mg liquids, which have been linked to a late Cretaceous deep mantle plume, are part of a volcanic series with a wide range of trace-element compositions, from moderately enriched basalts ( La/SmN ˜ 1.5) to extremely depleted ultramafic tuffs and picrites ( La/SmN ˜ 0.2). Neither fractional crystallization, nor partial melting of a homogeneous mantle source, can account for this large variation: the source must have been chemically heterogeneous. Low 143Nd/144Nd in the more enriched basalts indicates some initial source heterogeneity but most of the variation in magma compositions is believed to result from dynamic melting during the ascent of a plume. Modelling of major- and trace-element compositions suggests that ultramafic magmas formed at ˜ 60-100 km depth, and that the melt extraction that gave rise to their depleted sources started at still greater depths. The ultra-depleted lavas represent magmas derived directly from the hottest, most depleted parts of the plume; the more abundant moderately depleted basalts are interpreted as the products of pooling of liquids from throughout the melting region.

  20. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek


    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  1. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan


    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  2. Melting of SiC powders preplaced duplex stainless steel using TIG welding (United States)

    Maleque, M. A.; Afiq, M.


    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  3. Constraints on the Parental Melts of Enriched Shergottites from Image Analysis and High Pressure Experiments (United States)

    Collinet, M.; Medard, E.; Devouard, B.; Peslier, A.


    Martian basalts can be classified in at least two geochemically different families: enriched and depleted shergottites. Enriched shergottites are characterized by higher incompatible element concentrations and initial Sr-87/Sr-86 and lower initial Nd-143/Nd-144 and Hf-176/Hf-177 than depleted shergottites [e.g. 1, 2]. It is now generally admitted that shergottites result from the melting of at least two distinct mantle reservoirs [e.g. 2, 3]. Some of the olivine-phyric shergottites (either depleted or enriched), the most magnesian Martian basalts, could represent primitive melts, which are of considerable interest to constrain mantle sources. Two depleted olivine-phyric shergottites, Yamato (Y) 980459 and Northwest Africa (NWA) 5789, are in equilibrium with their most magnesian olivine (Fig. 1) and their bulk rock compositions are inferred to represent primitive melts [4, 5]. Larkman Nunatak (LAR) 06319 [3, 6, 7] and NWA 1068 [8], the most magnesian enriched basalts, have bulk Mg# that are too high to be in equilibrium with their olivine megacryst cores. Parental melt compositions have been estimated by subtracting the most magnesian olivine from the bulk rock composition, assuming that olivine megacrysts have partially accumulated [3, 9]. However, because this technique does not account for the actual petrography of these meteorites, we used image analysis to study these rocks history, reconstruct their parent magma and understand the nature of olivine megacrysts.

  4. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field (United States)

    Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier


    In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.

  5. Anatomic partial nephrectomy: technique evolution. (United States)

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S


    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  6. Partial order infinitary term rewriting

    DEFF Research Database (Denmark)

    Bahr, Patrick


    We study an alternative model of infinitary term rewriting. Instead of a metric on terms, a partial order on partial terms is employed to formalise convergence of reductions. We consider both a weak and a strong notion of convergence and show that the metric model of convergence coincides with th...... to the metric setting -- orthogonal systems are both infinitarily confluent and infinitarily normalising in the partial order setting. The unique infinitary normal forms that the partial order model admits are Böhm trees....

  7. Determination of hydrogen solubility in Fe-Mn-C melts

    Energy Technology Data Exchange (ETDEWEB)

    Lob, Alexander; Senk, Dieter [Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University (Germany); Hallstedt, Bengt [Materials Chemistry (MCh), RWTH Aachen University (Germany)


    High manganese steels are supposed to be sensitive to hydrogen embrittlement. This can be explained by increased hydrogen solubility in comparison to unalloyed steels. To minimise hydrogen pick up during melting operations, it is necessary to know accurately the hydrogen solubility as function of hydrogen partial pressure, temperature and Mn content. In this work in situ measurements of hydrogen content at 12, 18 and 23 wt.% Mn (and 0.6 wt.% C) using the Hydris {sup registered} system are compared to pin-tube measurements. Below about 7 ppm [H] both methods gave the same results and above 7 ppm [H] the in situ measurement showed slightly higher hydrogen contents because some hydrogen is lost during quenching with the pin-tube method. The measured solubilities were compared with thermodynamic calculations. Using dilute solution theory with data developed for alloyed Fe-based melts with up to 10 wt.% Mn gives reasonable results except that the hydrogen solubility is slightly underestimated for the presently investigated Mn contents. This could be compensated by using an interaction parameter of e{sup Mn}{sub H}=-0.004 instead of e{sup Mn}{sub H}=-0.0012. A Calphad type extrapolation from the binary Fe-H, Mn-H and Fe-Mn systems gave results very close to the experimental ones. This work is a contribution from the collaborative research centre SFB 761 ''Steel - ab initio''. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Induction melting of simulated transuranic waste

    International Nuclear Information System (INIS)

    Tenaglia, R.D.; McCall, J.L.


    Coreless induction melting was investigated as a method to melt and consolidate waste material representative of the transuranic waste (TRU) stored at the Idaho National Engineering Laboratory (INEL). Waste material was introduced onto the surface of a molten cast iron bath in a coreless induction furnace. Waste metallics were incorporated into the bath. Noncombustibles formed a slag which was poured or skimmed from the bath surface. Stack sampling was performed to characterize the off-gas and particulate matter evolved. Experimental melting tests were performed for a variety of types of wastes including metallics, chemical sludge, soil, concrete, and glass. Each test also included a representative level of combustible materials consisting of paper, wood, cloth, polyvinyl chloride and polyethylene. Metallic wastes were readily processed by induction melting with a minimum of slag production. Test waste consisting primarily of chemical sludge provided fluid slags which could be poured from the bath surface. Processing of wastes consisting of soil, concrete, or glass was limited by the inability to achieve fluid slags. It appears from test results that coreless induction melting is a feasible method to process INEL-type waste materials if two problems can be resolved. First, slag fluidity must be improved to facilitate the collection of slags formed from soil, concrete, or glass containing wastes. Secondly, refractory life must be further optimized to permit prolonged processing of the waste materials. The use of a chrome-bearing high-alumina refractory was found to resist slag line attach much better than a magnesia refractory, although some attack was still noted

  9. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water (United States)

    Skemer, Philip; Katayama, Ikuo; Karato, Shun-Ichiro


    We report a new observation of the olivine B-type lattice-preferred orientation (LPO), from the garnet peridotite at Cima di Gagnone, Switzerland. The olivine B-type fabric forms at low temperatures and/or high stress in the presence of water, and is of particular interest because it may be used to explain the trench-parallel shear-wave splitting that is often observed at subduction zones. In conjunction with the olivine B-type fabric, we have found strong orthopyroxene LPO that is identical to those fo