WorldWideScience

Sample records for performing organizion code

  1. Fuel performance analysis code 'FAIR'

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1994-01-01

    For modelling nuclear reactor fuel rod behaviour of water cooled reactors under severe power maneuvering and high burnups, a mechanistic fuel performance analysis code FAIR has been developed. The code incorporates finite element based thermomechanical module, physically based fission gas release module and relevant models for modelling fuel related phenomena, such as, pellet cracking, densification and swelling, radial flux redistribution across the pellet due to the build up of plutonium near the pellet surface, pellet clad mechanical interaction/stress corrosion cracking (PCMI/SSC) failure of sheath etc. The code follows the established principles of fuel rod analysis programmes, such as coupling of thermal and mechanical solutions along with the fission gas release calculations, analysing different axial segments of fuel rod simultaneously, providing means for performing local analysis such as clad ridging analysis etc. The modular nature of the code offers flexibility in affecting modifications easily to the code for modelling MOX fuels and thorium based fuels. For performing analysis of fuel rods subjected to very long power histories within a reasonable amount of time, the code has been parallelised and is commissioned on the ANUPAM parallel processing system developed at Bhabha Atomic Research Centre (BARC). (author). 37 refs

  2. Performance analysis of WS-EWC coded optical CDMA networks with/without LDPC codes

    Science.gov (United States)

    Huang, Chun-Ming; Huang, Jen-Fa; Yang, Chao-Chin

    2010-10-01

    One extended Welch-Costas (EWC) code family for the wavelength-division-multiplexing/spectral-amplitude coding (WDM/SAC; WS) optical code-division multiple-access (OCDMA) networks is proposed. This system has a superior performance as compared to the previous modified quadratic congruence (MQC) coded OCDMA networks. However, since the performance of such a network is unsatisfactory when the data bit rate is higher, one class of quasi-cyclic low-density parity-check (QC-LDPC) code is adopted to improve that. Simulation results show that the performance of the high-speed WS-EWC coded OCDMA network can be greatly improved by using the LDPC codes.

  3. Blood and Books: Performing Code Switching

    Directory of Open Access Journals (Sweden)

    Jeff Friedman

    2008-05-01

    Full Text Available Code switching is a linguistic term that identifies ways individuals use communication modes and registers to negotiate difference in social relations. This essay suggests that arts-based inquiry, in the form of choreography and performance, provides a suitable and efficacious location within which both verbal and nonverbal channels of code switching can be investigated. Blood and Books, a case study of dance choreography within the context of post-colonial Maori performance in Aotearoa/New Zealand, is described and analyzed for its performance of code switching. The essay is framed by a discussion of how arts-based research within tertiary higher education requires careful negotiation in the form of code switching, as performed by the author's reflexive use of vernacular and formal registers in the essay. URN: urn:nbn:de:0114-fqs0802462

  4. Performance Analysis of CRC Codes for Systematic and Nonsystematic Polar Codes with List Decoding

    Directory of Open Access Journals (Sweden)

    Takumi Murata

    2018-01-01

    Full Text Available Successive cancellation list (SCL decoding of polar codes is an effective approach that can significantly outperform the original successive cancellation (SC decoding, provided that proper cyclic redundancy-check (CRC codes are employed at the stage of candidate selection. Previous studies on CRC-assisted polar codes mostly focus on improvement of the decoding algorithms as well as their implementation, and little attention has been paid to the CRC code structure itself. For the CRC-concatenated polar codes with CRC code as their outer code, the use of longer CRC code leads to reduction of information rate, whereas the use of shorter CRC code may reduce the error detection probability, thus degrading the frame error rate (FER performance. Therefore, CRC codes of proper length should be employed in order to optimize the FER performance for a given signal-to-noise ratio (SNR per information bit. In this paper, we investigate the effect of CRC codes on the FER performance of polar codes with list decoding in terms of the CRC code length as well as its generator polynomials. Both the original nonsystematic and systematic polar codes are considered, and we also demonstrate that different behaviors of CRC codes should be observed depending on whether the inner polar code is systematic or not.

  5. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2013-01-01

    Fuel performance codes approximate this complex behavior using an axisymmetric, axially-stacked, one-dimensional radial representation to save computation cost. However, the need for improved modeling of PCMI and, particularly, the importance of multidimensional capability for accurate fuel performance simulation has been identified as safety margin decreases. Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed

  6. Performance measures for transform data coding.

    Science.gov (United States)

    Pearl, J.; Andrews, H. C.; Pratt, W. K.

    1972-01-01

    This paper develops performance criteria for evaluating transform data coding schemes under computational constraints. Computational constraints that conform with the proposed basis-restricted model give rise to suboptimal coding efficiency characterized by a rate-distortion relation R(D) similar in form to the theoretical rate-distortion function. Numerical examples of this performance measure are presented for Fourier, Walsh, Haar, and Karhunen-Loeve transforms.

  7. Developments of fuel performance analysis codes in KEPCO NF

    International Nuclear Information System (INIS)

    Han, H. T.; Choi, J. M.; Jung, C. D.; Yoo, J. S.

    2012-01-01

    The KEPCO NF has developed fuel performance analysis and design code named as ROPER, and utility codes of XGCOL and XDNB in order to perform fuel rod design evaluation for Korean nuclear power plants. The ROPER code intends to cover full range of fuel performance evaluation. The XGCOL code is for the clad flattening evaluation and the XDNB code is for the extensive DNB propagation evaluation. In addition to these, the KEPCO NF is now in the developing stage for 3-dimensional fuel performance analysis code, named as OPER3D, using 3-dimensional FEM for the nest generation within the joint project CANDU ENERGY in order to analyze PCMI behavior and fuel performance under load following operation. Of these, the ROPER code is now in the stage of licensing activities by Korean regulatory body and the other two are almost in the final developing stage. After finishing the developing, licensing activities are to be performed. These activities are intending to acquire competitiveness, originality, vendor-free ownership of fuel performance codes in the KEPCO NF

  8. On the Performance of the Cache Coding Protocol

    Directory of Open Access Journals (Sweden)

    Behnaz Maboudi

    2018-03-01

    Full Text Available Network coding approaches typically consider an unrestricted recoding of coded packets in the relay nodes to increase performance. However, this can expose the system to pollution attacks that cannot be detected during transmission, until the receivers attempt to recover the data. To prevent these attacks while allowing for the benefits of coding in mesh networks, the cache coding protocol was proposed. This protocol only allows recoding at the relays when the relay has received enough coded packets to decode an entire generation of packets. At that point, the relay node recodes and signs the recoded packets with its own private key, allowing the system to detect and minimize the effect of pollution attacks and making the relays accountable for changes on the data. This paper analyzes the delay performance of cache coding to understand the security-performance trade-off of this scheme. We introduce an analytical model for the case of two relays in an erasure channel relying on an absorbing Markov chain and an approximate model to estimate the performance in terms of the number of transmissions before successfully decoding at the receiver. We confirm our analysis using simulation results. We show that cache coding can overcome the security issues of unrestricted recoding with only a moderate decrease in system performance.

  9. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  10. Input data required for specific performance assessment codes

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Starmer, R.J.; Dicke, C.A.; Leonard, P.R.; Maheras, S.J.; Rood, A.S.; Smith, R.W.

    1992-02-01

    The Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory generated this report on input data requirements for computer codes to assist States and compacts in their performance assessments. This report gives generators, developers, operators, and users some guidelines on what input data is required to satisfy 22 common performance assessment codes. Each of the codes is summarized and a matrix table is provided to allow comparison of the various input required by the codes. This report does not determine or recommend which codes are preferable

  11. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2013-01-01

    Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed. Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena, occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. This multiphysics behavior is often tightly coupled, a well known example being the thermomechanical behavior. Adding to this complexity, important aspects of fuel behavior are inherently

  12. Performance Tuning of x86 OpenMP Codes with MAQAO

    Science.gov (United States)

    Barthou, Denis; Charif Rubial, Andres; Jalby, William; Koliai, Souad; Valensi, Cédric

    Failing to find the best optimization sequence for a given application code can lead to compiler generated codes with poor performances or inappropriate code. It is necessary to analyze performances from the assembly generated code to improve over the compilation process. This paper presents a tool for the performance analysis of multithreaded codes (OpenMP programs support at the moment). MAQAO relies on static performance evaluation to identify compiler optimizations and assess performance of loops. It exploits static binary rewriting for reading and instrumenting object files or executables. Static binary instrumentation allows the insertion of probes at instruction level. Memory accesses can be captured to help tune the code, but such traces require to be compressed. MAQAO can analyze the results and provide hints for tuning the code. We show on some examples how this can help users improve their OpenMP applications.

  13. The UK core performance code package

    International Nuclear Information System (INIS)

    Hutt, P.K.; Gaines, N.; McEllin, M.; White, R.J.; Halsall, M.J.

    1991-01-01

    Over the last few years work has been co-ordinated by Nuclear Electric, originally part of the Central Electricity Generating Board, with contributions from the United Kingdom Atomic Energy Authority and British Nuclear Fuels Limited, to produce a generic, easy-to-use and integrated package of core performance codes able to perform a comprehensive range of calculations for fuel cycle design, safety analysis and on-line operational support for Light Water Reactor and Advanced Gas Cooled Reactor plant. The package consists of modern rationalized generic codes for lattice physics (WIMS), whole reactor calculations (PANTHER), thermal hydraulics (VIPRE) and fuel performance (ENIGMA). These codes, written in FORTRAN77, are highly portable and new developments have followed modern quality assurance standards. These codes can all be run ''stand-alone'' but they are also being integrated within a new UNIX-based interactive system called the Reactor Physics Workbench (RPW). The RPW provides an interactive user interface and a sophisticated data management system. It offers quality assurance features to the user and has facilities for defining complex calculational sequences. The Paper reviews the current capabilities of these components, their integration within the package and outlines future developments underway. Finally, the Paper describes the development of an on-line version of this package which is now being commissioned on UK AGR stations. (author)

  14. BER performance comparison of optical CDMA systems with/without turbo codes

    Science.gov (United States)

    Kulkarni, Muralidhar; Chauhan, Vijender S.; Dutta, Yashpal; Sinha, Ravindra K.

    2002-08-01

    In this paper, we have analyzed and simulated the BER performance of a turbo coded optical code-division multiple-access (TC-OCDMA) system. A performance comparison has been made between uncoded OCDMA and TC-OCDMA systems employing various OCDMA address codes (optical orthogonal codes (OOCs), Generalized Multiwavelength Prime codes (GMWPC's), and Generalized Multiwavelength Reed Solomon code (GMWRSC's)). The BER performance of TC-OCDMA systems has been analyzed and simulated by varying the code weight of address code employed by the system. From the simulation results, it is observed that lower weight address codes can be employed for TC-OCDMA systems that can have the equivalent BER performance of uncoded systems employing higher weight address codes for a fixed number of active users.

  15. Performance of code 'FAIR' in IAEA CRP on FUMEX

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Kakodkar, A.

    1996-01-01

    A modern fuel performance analysis code FAIR has been developed for analysing high burnup fuel pins of water/heavy water cooled reactors. The code employs finite element method for modelling thermo mechanical behaviour of fuel pins and mechanistic models for modelling various physical and chemical phenomena affecting the behaviour of nuclear reactor fuel pins. High burnup affects such as pellet thermal conductivity degradation, enhanced fission gas release and radial flux redistribution are incorporated in the code FAIR. The code FAIR is capable of performing statistical analysis of fuel pins using Monte Carlo technique. The code is implemented on BARC parallel processing system ANUPAM. The code has recently participated in an International Atomic Energy Agency (IAEA) coordinated research program (CRP) on fuel modelling at extended burnups (FUMEX). Nineteen agencies from different countries participated in this exercise. In this CRP, spread over a period of three years, a number of high burnup fuel pins irradiated at Halden reactor are analysed. The first phase of the CRP is a blind code comparison exercise, where the computed results are compared with experimental results. The second phase consists of modifications to the code based on the experimental results of first phase and statistical analysis of fuel pins. The performance of the code FAIR in this CRP has been very good. The present report highlights the main features of code FAIR and its performance in the IAEA CRP on FUMEX. 14 refs., 5 tabs., ills

  16. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid

    2013-11-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.

  17. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  18. Performance of FSO-OFDM based on BCH code

    Directory of Open Access Journals (Sweden)

    Jiao Xiao-lu

    2016-01-01

    Full Text Available As contrasted with the traditional OOK (on-off key system, FSO-OFDM system can resist the atmospheric scattering and improve the spectrum utilization rate effectively. Due to the instability of the atmospheric channel, the system will be affected by various factors, and resulting in a high BER. BCH code has a good error correcting ability, particularly in the short-length and medium-length code, and its performance is close to the theoretical value. It not only can check the burst errors but also can correct the random errors. Therefore, the BCH code is applied to the system to reduce the system BER. At last, the semi-physical simulation has been conducted with MATLAB. The simulation results show that when the BER is 10-2, the performance of OFDM is superior 4dB compared with OOK. In different weather conditions (extension rain, advection fog, dust days, when the BER is 10-5, the performance of BCH (255,191 channel coding is superior 4~5dB compared with uncoded system. All in all, OFDM technology and BCH code can reduce the system BER.

  19. Performance of JPEG Image Transmission Using Proposed Asymmetric Turbo Code

    Directory of Open Access Journals (Sweden)

    Siddiqi Mohammad Umar

    2007-01-01

    Full Text Available This paper gives the results of a simulation study on the performance of JPEG image transmission over AWGN and Rayleigh fading channels using typical and proposed asymmetric turbo codes for error control coding. The baseline JPEG algorithm is used to compress a QCIF ( "Suzie" image. The recursive systematic convolutional (RSC encoder with generator polynomials , that is, (13/11 in decimal, and 3G interleaver are used for the typical WCDMA and CDMA2000 turbo codes. The proposed asymmetric turbo code uses generator polynomials , that is, (13/11; 13/9 in decimal, and a code-matched interleaver. The effect of interleaver in the proposed asymmetric turbo code is studied using weight distribution and simulation. The simulation results and performance bound for proposed asymmetric turbo code for the frame length , code rate with Log-MAP decoder over AWGN channel are compared with the typical system. From the simulation results, it is observed that the image transmission using proposed asymmetric turbo code performs better than that with the typical system.

  20. Predictive Bias and Sensitivity in NRC Fuel Performance Codes

    Energy Technology Data Exchange (ETDEWEB)

    Geelhood, Kenneth J.; Luscher, Walter G.; Senor, David J.; Cunningham, Mitchel E.; Lanning, Donald D.; Adkins, Harold E.

    2009-10-01

    The latest versions of the fuel performance codes, FRAPCON-3 and FRAPTRAN were examined to determine if the codes are intrinsically conservative. Each individual model and type of code prediction was examined and compared to the data that was used to develop the model. In addition, a brief literature search was performed to determine if more recent data have become available since the original model development for model comparison.

  1. Performance evaluation based on data from code reviews

    OpenAIRE

    Andrej, Sekáč

    2016-01-01

    Context. Modern code review tools such as Gerrit have made available great amounts of code review data from different open source projects as well as other commercial projects. Code reviews are used to keep the quality of produced source code under control but the stored data could also be used for evaluation of the software development process. Objectives. This thesis uses machine learning methods for an approximation of review expert’s performance evaluation function. Due to limitations in ...

  2. A comparison of thermal algorithms of fuel rod performance code systems

    International Nuclear Information System (INIS)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C.

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance

  3. A comparison of thermal algorithms of fuel rod performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance.

  4. Performance testing of thermal analysis codes for nuclear fuel casks

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-01-01

    In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences

  5. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC): gap analysis for high fidelity and performance assessment code development

    International Nuclear Information System (INIS)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-01-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  6. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  7. Performance Evaluation of Spectral Amplitude Codes for OCDMA PON

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Jensen, Jesper Bevensee; Zhang, Xu

    2011-01-01

    the MAI effects in OCDMA. The performance has been characterized through received optical power (ROP) sensitivity and dispersion tolerance assessments. The numerical results show that the ZCC code has a slightly better performance compared to the other two codes for the ROP and similar behavior against...

  8. Cloud Computing for Complex Performance Codes.

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klein, Brandon Thorin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miner, John Gifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  9. Preserving Envelope Efficiency in Performance Based Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A. [Thornton Energy Consulting (United States); Sullivan, Greg P. [Efficiency Solutions (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  10. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K. [Cray Inc., St. Paul, MN 55101 (United States); Porter, D. [Minnesota Supercomputing Institute for Advanced Computational Research, Minneapolis, MN USA (United States); O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, P., E-mail: pjm@cray.com, E-mail: nradclif@cray.com, E-mail: kkandalla@cray.com, E-mail: oneill@astro.umn.edu, E-mail: nolt0040@umn.edu, E-mail: donnert@ira.inaf.it, E-mail: twj@umn.edu, E-mail: dhp@umn.edu, E-mail: pedmon@cfa.harvard.edu [Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  11. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    International Nuclear Information System (INIS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W.; Edmon, P.

    2017-01-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  12. On the Performance of the Cache Coding Protocol

    DEFF Research Database (Denmark)

    Maboudi, Behnaz; Sehat, Hadi; Pahlevani, Peyman

    2018-01-01

    Network coding approaches typically consider an unrestricted recoding of coded packets in the relay nodes to increase performance. However, this can expose the system to pollution attacks that cannot be detected during transmission, until the receivers attempt to recover the data. To prevent thes...

  13. The fuel performance code future

    International Nuclear Information System (INIS)

    Ronchi, C.; Van de Laar, J.

    1988-01-01

    The paper describes the LWR version of the fuel performance code FUTURE, which was recently developed to calculate the fuel response (swelling, cladding deformation, release) to reactor transient conditions, starting from a broad-based description of the processes of major concern. The main physical models assumed are presented together with the scheme of the computer program

  14. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  15. Performance Analysis of Optical Code Division Multiplex System

    Science.gov (United States)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  16. Code structure for U-Mo fuel performance analysis in high performance research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Cho, Tae Won; Lee, Chul Min; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A performance analysis modeling applicable to research reactor fuel is being developed with available models describing fuel performance phenomena observed from in-pile tests. We established the calculation algorithm and scheme to best predict fuel performance using radio-thermo-mechanically coupled system to consider fuel swelling, interaction layer growth, pore formation in the fuel meat, and creep fuel deformation and mass relocation, etc. In this paper, we present a general structure of the performance analysis code for typical research reactor fuel and advanced features such as a model to predict fuel failure induced by combination of breakaway swelling and pore growth in the fuel meat. Thermo-mechanical code dedicated to the modeling of U-Mo dispersion fuel plates is being under development in Korea to satisfy a demand for advanced performance analysis and safe assessment of the plates. The major physical phenomena during irradiation are considered in the code such that interaction layer formation by fuel-matrix interdiffusion, fission induced swelling of fuel particle, mass relocation by fission induced stress, and pore formation at the interface between the reaction product and Al matrix.

  17. Structure of fuel performance audit code for SFR metal fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Kim, Hyo Chan [KAERI, Daejeon (Korea, Republic of); Jeong, Hye Dong; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    A Sodium Cooled Fast Reactor (SFR) is a promising option to solve the spent fuel problems, but, there are still much technical issues to commercialize a SFR. One of issues is a development of advanced fuel which can solve the safety and the economic issues at the same time. Since a nuclear fuel is the first barrier to protect radioactive isotope release, the fuel's integrity must be secured. In Korea Institute of Nuclear Safety (KINS), the new project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. To develop the new code system, the code structure design and its requirements need to be studied. Various performance models and code systems are reviewed and their characteristics are analyzed in this paper. Based on this study, the fundamental performance models are deduced and basic code requirements and structure are established.

  18. Performance Analysis of New Binary User Codes for DS-CDMA Communication

    Science.gov (United States)

    Usha, Kamle; Jaya Sankar, Kottareddygari

    2016-03-01

    This paper analyzes new binary spreading codes through correlation properties and also presents their performance over additive white Gaussian noise (AWGN) channel. The proposed codes are constructed using gray and inverse gray codes. In this paper, a n-bit gray code appended by its n-bit inverse gray code to construct the 2n-length binary user codes are discussed. Like Walsh codes, these binary user codes are available in sizes of power of two and additionally code sets of length 6 and their even multiples are also available. The simple construction technique and generation of code sets of different sizes are the salient features of the proposed codes. Walsh codes and gold codes are considered for comparison in this paper as these are popularly used for synchronous and asynchronous multi user communications respectively. In the current work the auto and cross correlation properties of the proposed codes are compared with those of Walsh codes and gold codes. Performance of the proposed binary user codes for both synchronous and asynchronous direct sequence CDMA communication over AWGN channel is also discussed in this paper. The proposed binary user codes are found to be suitable for both synchronous and asynchronous DS-CDMA communication.

  19. A fuel performance code TRUST VIc and its validation

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M; Kogai, T [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan)

    1997-08-01

    This paper describes a fuel performance code TRUST V1c developed to analyze thermal and mechanical behavior of LWR fuel rod. Submodels in the code include FP gas models depicting gaseous swelling, gas release from pellet and axial gas mixing. The code has FEM-based structure to handle interaction between thermal and mechanical submodels brought by the gas models. The code is validated against irradiation data of fuel centerline temperature, FGR, pellet porosity and cladding deformation. (author). 9 refs, 8 figs.

  20. A fuel performance code TRUST VIc and its validation

    International Nuclear Information System (INIS)

    Ishida, M.; Kogai, T.

    1997-01-01

    This paper describes a fuel performance code TRUST V1c developed to analyze thermal and mechanical behavior of LWR fuel rod. Submodels in the code include FP gas models depicting gaseous swelling, gas release from pellet and axial gas mixing. The code has FEM-based structure to handle interaction between thermal and mechanical submodels brought by the gas models. The code is validated against irradiation data of fuel centerline temperature, FGR, pellet porosity and cladding deformation. (author). 9 refs, 8 figs

  1. The NMC code: conduct, performance and ethics.

    Science.gov (United States)

    Goldsmith, Jan

    The Code: Standards of Conduct, Performance and Ethics for Nurses and Midwives is a set of key principles that should underpin the practice of all nurses and midwives, and remind them of their professional responsibilities. It is not just a tool used in fitness-to-practise cases--it should be used to guide daily practice for all nurses and midwives. Alongside other standards, guidance and advice from the NMC, the code should be used to support professional development.

  2. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding

  3. The METEOR/TRANSURANUS fuel performance code

    International Nuclear Information System (INIS)

    Struzik, C.; Guerin, Y.

    1996-01-01

    The first calculations for the FUMEX exercise were performed using version 1.1 of the METEOR/TRANSURANUS code. Since then, important improvements have been implemented on several models. In its present state, the code describes fuel rod behaviour in standard PWR conditions. Its validity extends to UO 2 and MOX fuels clad in Zircaloy-4. Power transient calculations for UO 2 and Gd doped fuel calculations are possible, but further developments are in progress, and the applications will be fully qualified in version 2.0. A considerable effort is made to replace semi-empirical models with models that have a sounder physical basis. (authors). 14 refs

  4. Iterative optimization of performance libraries by hierarchical division of codes

    International Nuclear Information System (INIS)

    Donadio, S.

    2007-09-01

    The increasing complexity of hardware features incorporated in modern processors makes high performance code generation very challenging. Library generators such as ATLAS, FFTW and SPIRAL overcome this issue by empirically searching in the space of possible program versions for the one that performs the best. This thesis explores fully automatic solution to adapt a compute-intensive application to the target architecture. By mimicking complex sequences of transformations useful to optimize real codes, we show that generative programming is a practical tool to implement a new hierarchical compilation approach for the generation of high performance code relying on the use of state-of-the-art compilers. As opposed to ATLAS, this approach is not application-dependant but can be applied to fairly generic loop structures. Our approach relies on the decomposition of the original loop nest into simpler kernels. These kernels are much simpler to optimize and furthermore, using such codes makes the performance trade off problem much simpler to express and to solve. Finally, we propose a new approach for the generation of performance libraries based on this decomposition method. We show that our method generates high-performance libraries, in particular for BLAS. (author)

  5. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  6. Optimizing fusion PIC code performance at scale on Cori Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, T. S.; Deslippe, J.

    2017-07-23

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale well up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.

  7. Performance Analysis for Cooperative Communication System with QC-LDPC Codes Constructed with Integer Sequences

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-01-01

    Full Text Available This paper presents four different integer sequences to construct quasi-cyclic low-density parity-check (QC-LDPC codes with mathematical theory. The paper introduces the procedure of the coding principle and coding. Four different integer sequences constructing QC-LDPC code are compared with LDPC codes by using PEG algorithm, array codes, and the Mackey codes, respectively. Then, the integer sequence QC-LDPC codes are used in coded cooperative communication. Simulation results show that the integer sequence constructed QC-LDPC codes are effective, and overall performance is better than that of other types of LDPC codes in the coded cooperative communication. The performance of Dayan integer sequence constructed QC-LDPC is the most excellent performance.

  8. Input/output manual of light water reactor fuel performance code FEMAXI-7 and its related codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Saitou, Hiroaki [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-07-15

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which has been fully disclosed in the code model description published recently as JAEA-Data/Code 2010-035. The present manual, which is the counterpart of this description, gives detailed explanations of operation method of FEMAXI-7 code and its related codes, methods of Input/Output, methods of source code modification, features of subroutine modules, and internal variables in a specific manner in order to facilitate users to perform a fuel analysis with FEMAXI-7. This report includes some descriptions which are modified from the original contents of JAEA-Data/Code 2010-035. A CD-ROM is attached as an appendix. (author)

  9. Input/output manual of light water reactor fuel performance code FEMAXI-7 and its related codes

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2012-07-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which has been fully disclosed in the code model description published recently as JAEA-Data/Code 2010-035. The present manual, which is the counterpart of this description, gives detailed explanations of operation method of FEMAXI-7 code and its related codes, methods of Input/Output, methods of source code modification, features of subroutine modules, and internal variables in a specific manner in order to facilitate users to perform a fuel analysis with FEMAXI-7. This report includes some descriptions which are modified from the original contents of JAEA-Data/Code 2010-035. A CD-ROM is attached as an appendix. (author)

  10. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  11. Performance analysis of LDPC codes on OOK terahertz wireless channels

    International Nuclear Information System (INIS)

    Liu Chun; Wang Chang; Cao Jun-Cheng

    2016-01-01

    Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. (paper)

  12. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  13. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  14. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  15. FEMAXI-III, a computer code for fuel rod performance analysis

    International Nuclear Information System (INIS)

    Ito, K.; Iwano, Y.; Ichikawa, M.; Okubo, T.

    1983-01-01

    This paper presents a method of fuel rod thermal-mechanical performance analysis used in the FEMAXI-III code. The code incorporates the models describing thermal-mechanical processes such as pellet-cladding thermal expansion, pellet irradiation swelling, densification, relocation and fission gas release as they affect pellet-cladding gap thermal conductance. The code performs the thermal behavior analysis of a full-length fuel rod within the framework of one-dimensional multi-zone modeling. The mechanical effects including ridge deformation is rigorously analyzed by applying the axisymmetric finite element method. The finite element geometrical model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The 8-node quadratic isoparametric ring elements are adopted for obtaining accurate finite element solutions. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behaviors accurately and stably. The pellet-cladding interaction mechanism is exactly treated using the nodal continuity conditions. The code is applicable to the thermal-mechanical analysis of water reactor fuel rods experiencing variable power histories. (orig.)

  16. SCANAIR: A transient fuel performance code

    International Nuclear Information System (INIS)

    Moal, Alain; Georgenthum, Vincent; Marchand, Olivier

    2014-01-01

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  17. SCANAIR: A transient fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Moal, Alain, E-mail: alain.moal@irsn.fr; Georgenthum, Vincent; Marchand, Olivier

    2014-12-15

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  18. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA system using Zero Cross Correlation (ZCC code and multiband Orthogonal Frequency Division Multiplexing (OFDM called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  19. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Science.gov (United States)

    Nawawi, N. M.; Anuar, M. S.; Junita, M. N.; Rashidi, C. B. M.

    2017-11-01

    In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA) system using Zero Cross Correlation (ZCC) code and multiband Orthogonal Frequency Division Multiplexing (OFDM) called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  20. Performance Analysis of Faulty Gallager-B Decoding of QC-LDPC Codes with Applications

    Directory of Open Access Journals (Sweden)

    O. Al Rasheed

    2014-06-01

    Full Text Available In this paper we evaluate the performance of Gallager-B algorithm, used for decoding low-density parity-check (LDPC codes, under unreliable message computation. Our analysis is restricted to LDPC codes constructed from circular matrices (QC-LDPC codes. Using Monte Carlo simulation we investigate the effects of different code parameters on coding system performance, under a binary symmetric communication channel and independent transient faults model. One possible application of the presented analysis in designing memory architecture with unreliable components is considered.

  1. Development and validation of a fuel performance analysis code

    International Nuclear Information System (INIS)

    Majalee, Aaditya V.; Chaturvedi, S.

    2015-01-01

    CAD has been developing a computer code 'FRAVIZ' for calculation of steady-state thermomechanical behaviour of nuclear reactor fuel rods. It contains four major modules viz., Thermal module, Fission Gas Release module, Material Properties module and Mechanical module. All these four modules are coupled to each other and feedback from each module is fed back to others to get a self-consistent evolution in time. The computer code has been checked against two FUMEX benchmarks. Modelling fuel performance in Advance Heavy Water Reactor would require additional inputs related to the fuel and some modification in the code.(author)

  2. Performance of Product Codes and Related Structures with Iterated Decoding

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2011-01-01

    Several modifications of product codes have been suggested as standards for optical networks. We show that the performance exhibits a threshold that can be estimated from a result about random graphs. For moderate input bit error probabilities, the output error rates for codes of finite length can...

  3. PAPIRUS - a computer code for FBR fuel performance analysis

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsuboi, Y.; Sogame, M.

    1991-01-01

    The FBR fuel performance analysis code PAPIRUS has been developed to design fuels for demonstration and future commercial reactors. A pellet structural model was developed to describe the generation, depletion and transport of vacancies and atomic elements in unified fashion. PAPIRUS results in comparison with the power - to - melt test data from HEDL showed validity of the code at the initial reactor startup. (author)

  4. Verification of the CONPAS (CONtainment Performance Analysis System) code package

    International Nuclear Information System (INIS)

    Kim, See Darl; Ahn, Kwang Il; Song, Yong Man; Choi, Young; Park, Soo Yong; Kim, Dong Ha; Jin, Young Ho.

    1997-09-01

    CONPAS is a computer code package to integrate the numerical, graphical, and results-oriented aspects of Level 2 probabilistic safety assessment (PSA) for nuclear power plants under a PC window environment automatically. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules: (1) ET Editor, (2) Computer, (3) Text Editor, and (4) Mechanistic Code Plotter. Compared with other existing computer codes for Level 2 PSA, and CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friendly interface. The computational performance of CONPAS has been verified through a Level 2 PSA to a reference plant. The results of the CONPAS code was compared with an existing level 2 PSA code (NUCAP+) and the comparison proves that CONPAS is appropriate for Level 2 PSA. (author). 9 refs., 8 tabs., 14 figs

  5. Application of advanced validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON thermal-reactor fuel performance codes

    Energy Technology Data Exchange (ETDEWEB)

    Unal, C., E-mail: cu@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Williams, B.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Yacout, A. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Higdon, D.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-10-15

    Highlights: ► The application of advanced validation techniques (sensitivity, calibration and prediction) to nuclear performance codes FRAPCON and LIFE-4 is the focus of the paper. ► A sensitivity ranking methodology narrows down the number of selected modeling parameters from 61 to 24 for FRAPCON and from 69 to 35 for LIFE-4. ► Fuel creep, fuel thermal conductivity, fission gas transport/release, crack/boundary, and fuel gap conductivity models of LIFE-4 are identified for improvements. ► FRAPCON sensitivity results indicated the importance of the fuel thermal conduction and the fission gas release models. -- Abstract: Evolving nuclear energy programs expect to use enhanced modeling and simulation (M and S) capabilities, using multiscale, multiphysics modeling approaches, to reduce both cost and time from the design through the licensing phases. Interest in the development of the multiscale, multiphysics approach has increased in the last decade because of the need for predictive tools for complex interacting processes as a means of eliminating the limited use of empirically based model development. Complex interacting processes cannot be predicted by analyzing each individual component in isolation. In most cases, the mathematical models of complex processes and their boundary conditions are nonlinear. As a result, the solutions of these mathematical models often require high-performance computing capabilities and resources. The use of multiscale, multiphysics (MS/MP) models in conjunction with high-performance computational software and hardware introduces challenges in validating these predictive tools—traditional methodologies will have to be modified to address these challenges. The advanced MS/MP codes for nuclear fuels and reactors are being developed within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the US Department of Energy (DOE) – Nuclear Energy (NE). This paper does not directly address challenges in calibration

  6. The development of the fuel rod transient performance analysis code FTPAC

    International Nuclear Information System (INIS)

    Han Zhijie; Ji Songtao

    2014-01-01

    Fuel rod behavior, especially the integrity of cladding, played an important role in fuel safety research during reactor transient and hypothetical accidents conditions. In order to study fuel rod performance under transient accidents, FTPAC (Fuel Transient Performance Analysis Code) has been developed for simulating light water reactor fuel rod transient behavior when power or coolant boundary conditions are rapidly changing. It is composed of temperature, mechanical deformation, cladding oxidation and gas pressure model. The assessment was performed by comparing FTPAC code analysis result to experiments data and FRAPTRAN code calculations. Comparison shows that, the FTPAC gives reasonable agreement in temperature, deformation and gas pressure prediction. And the application of slip coefficient is more suitable for simulating the sliding between pellet and cladding when the gap is closed. (authors)

  7. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible

  8. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    International Nuclear Information System (INIS)

    Edelmann, Paul Guy; Williams, Brian J.; Unal, Cetin; Yacout, Abdellatif

    2012-01-01

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  9. High-performance computational fluid dynamics: a custom-code approach

    International Nuclear Information System (INIS)

    Fannon, James; Náraigh, Lennon Ó; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain

    2016-01-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier–Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing. (paper)

  10. High-performance computational fluid dynamics: a custom-code approach

    Science.gov (United States)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  11. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Science.gov (United States)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  12. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Directory of Open Access Journals (Sweden)

    DeTar Carleton

    2018-01-01

    Full Text Available With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  13. PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    HASSAN YOUSIF AHMED

    2012-06-01

    Full Text Available The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA systems using Vector Combinatorial (VC code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes.

  14. Code division multiple-access techniques in optical fiber networks. II - Systems performance analysis

    Science.gov (United States)

    Salehi, Jawad A.; Brackett, Charles A.

    1989-08-01

    A technique based on optical orthogonal codes was presented by Salehi (1989) to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using a optical hard-limiter would, in general, improve system performance.

  15. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    Science.gov (United States)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  16. Fusion PIC code performance analysis on the Cori KNL system

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Tuomas S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Raman, Karthic [INTEL Corp. (United States)

    2017-05-25

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization is shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.

  17. A development of containment performance analysis methodology using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. C.; Yoon, J. I. [Future and Challenge Company, Seoul (Korea, Republic of); Byun, C. S.; Lee, J. Y. [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, J. Y. [Seoul National University, Seoul (Korea, Republic of)

    2003-10-01

    In a circumstance that well-established containment pressure/temperature analysis code, CONTEMPT-LT treats the reactor containment as a single volume, this study introduces, as an alternative, the GOTHIC code for an usage on multi-compartmental containment performance analysis. With a developed GOTHIC methodology, its applicability is verified for containment performance analysis for Korean Nuclear Unit 1. The GOTHIC model for this plant is simply composed of 3 compartments including the reactor containment and RWST. In addition, the containment spray system and containment recirculation system are simulated. As a result of GOTHIC calculation, under the same assumptions and conditions as those in CONTEMPT-LT, the GOTHIC prediction shows a very good result; pressure and temperature transients including their peaks are nearly the same. It can be concluded that the GOTHIC could provide reasonable containment pressure and temperature responses if considering the inherent conservatism in CONTEMPT-LT code.

  18. A development of containment performance analysis methodology using GOTHIC code

    International Nuclear Information System (INIS)

    Lee, B. C.; Yoon, J. I.; Byun, C. S.; Lee, J. Y.; Lee, J. Y.

    2003-01-01

    In a circumstance that well-established containment pressure/temperature analysis code, CONTEMPT-LT treats the reactor containment as a single volume, this study introduces, as an alternative, the GOTHIC code for an usage on multi-compartmental containment performance analysis. With a developed GOTHIC methodology, its applicability is verified for containment performance analysis for Korean Nuclear Unit 1. The GOTHIC model for this plant is simply composed of 3 compartments including the reactor containment and RWST. In addition, the containment spray system and containment recirculation system are simulated. As a result of GOTHIC calculation, under the same assumptions and conditions as those in CONTEMPT-LT, the GOTHIC prediction shows a very good result; pressure and temperature transients including their peaks are nearly the same. It can be concluded that the GOTHIC could provide reasonable containment pressure and temperature responses if considering the inherent conservatism in CONTEMPT-LT code

  19. Sensitivity assessment of fuel performance codes for LOCA accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Alfredo; Gomes, Daniel; Silva, Antonio Teixeira e; Muniz, Rafael O.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia; Martins, Marcelo, E-mail: ayabe@ipen.br, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    FRAPCON code predicts fuel rod performance in LWR (Light Water Reactor) by modeling fuel responses under normal operating conditions and anticipated operational occurrences; FRAPTRAN code is applied for fuel transient under fast transient and accident conditions. The codes are well known and applied for different purposes and one of the use is to address sensitivity analysis considering fuel design parameters associated to fabrication, moreover can address the effect of physical models bias. The objective of this work was to perform an assessment of fuel manufacturing parameters tolerances and fuel models bias using FRAPCON and FRAPTRAN codes for Loss of Coolant Accident (LOCA) scenario. The preliminary analysis considered direct approach taken into account most relevant manufacturing tolerances (lower and upper bounds) related to design parameters and physical models bias without considering their statistical distribution. The simulations were carried out using the data available in the open literature related to the series of LOCA experiment performed at the Halden reactor (specifically IFA-650.5). The manufacturing tolerances associated to design parameters considered in this paper were: enrichment, cladding thickness, pellet diameter, pellet density, and filling gas pressure. The physical models considered were: fuel thermal expansion, fission gas release, fuel swelling, irradiation creep, cladding thermal expansion, cladding corrosion, and cladding hydrogen pickup. The results obtained from sensitivity analysis addressed the impact of manufacturing tolerances and physical models in the fuel cladding burst time observed for the IFA-650.5 experiment. (author)

  20. Sensitivity assessment of fuel performance codes for LOCA accident scenario

    International Nuclear Information System (INIS)

    Abe, Alfredo; Gomes, Daniel; Silva, Antonio Teixeira e; Muniz, Rafael O.R.; Giovedi, Claudia; Martins, Marcelo

    2017-01-01

    FRAPCON code predicts fuel rod performance in LWR (Light Water Reactor) by modeling fuel responses under normal operating conditions and anticipated operational occurrences; FRAPTRAN code is applied for fuel transient under fast transient and accident conditions. The codes are well known and applied for different purposes and one of the use is to address sensitivity analysis considering fuel design parameters associated to fabrication, moreover can address the effect of physical models bias. The objective of this work was to perform an assessment of fuel manufacturing parameters tolerances and fuel models bias using FRAPCON and FRAPTRAN codes for Loss of Coolant Accident (LOCA) scenario. The preliminary analysis considered direct approach taken into account most relevant manufacturing tolerances (lower and upper bounds) related to design parameters and physical models bias without considering their statistical distribution. The simulations were carried out using the data available in the open literature related to the series of LOCA experiment performed at the Halden reactor (specifically IFA-650.5). The manufacturing tolerances associated to design parameters considered in this paper were: enrichment, cladding thickness, pellet diameter, pellet density, and filling gas pressure. The physical models considered were: fuel thermal expansion, fission gas release, fuel swelling, irradiation creep, cladding thermal expansion, cladding corrosion, and cladding hydrogen pickup. The results obtained from sensitivity analysis addressed the impact of manufacturing tolerances and physical models in the fuel cladding burst time observed for the IFA-650.5 experiment. (author)

  1. Modelling of LOCA Tests with the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L [Idaho National Laboratory; Pastore, Giovanni [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Spencer, Benjamin Whiting [Idaho National Laboratory; Hales, Jason Dean [Idaho National Laboratory

    2016-05-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that is under development at Idaho National Laboratory (USA). Recent advances of BISON include the extension of the code to the analysis of LWR fuel rod behaviour during loss-of-coolant accidents (LOCAs). In this work, BISON models for the phenomena relevant to LWR cladding behaviour during LOCAs are described, followed by presentation of code results for the simulation of LOCA tests. Analysed experiments include separate effects tests of cladding ballooning and burst, as well as the Halden IFA-650.2 fuel rod test. Two-dimensional modelling of the experiments is performed, and calculations are compared to available experimental data. Comparisons include cladding burst pressure and temperature in separate effects tests, as well as the evolution of fuel rod inner pressure during ballooning and time to cladding burst. Furthermore, BISON three-dimensional simulations of separate effects tests are performed, which demonstrate the capability to reproduce the effect of azimuthal temperature variations in the cladding. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project, and the IAEA Coordinated Research Project FUMAC.

  2. User manual for the probabilistic fuel performance code FRP

    International Nuclear Information System (INIS)

    Friis Jensen, J.; Misfeldt, I.

    1980-10-01

    This report describes the use of the probabilistic fuel performance code FRP. Detailed description of both input to and output from the program are given. The use of the program is illustrated by an example. (author)

  3. Performance of Low-Density Parity-Check Coded Modulation

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  4. Verification testing of the compression performance of the HEVC screen content coding extensions

    Science.gov (United States)

    Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng

    2017-09-01

    This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.

  5. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  6. Performance analysis of wavelength/spatial coding system with fixed in-phase code matrices in OCDMA network

    Science.gov (United States)

    Tsai, Cheng-Mu; Liang, Tsair-Chun

    2011-12-01

    This paper proposes a wavelength/spatial (W/S) coding system with fixed in-phase code (FIPC) matrix in the optical code-division multiple-access (OCDMA) network. A scheme is presented to form the FIPC matrix which is applied to construct the W/S OCDMA network. The encoder/decoder in the W/S OCDMA network is fully able to eliminate the multiple-access-interference (MAI) at the balanced photo-detectors (PD), according to fixed in-phase cross correlation. The phase-induced intensity noise (PIIN) related to the power square is markedly suppressed in the receiver by spreading the received power into each PD while the net signal power is kept the same. Simulation results show that the W/S OCDMA network based on the FIPC matrices cannot only completely remove the MAI but effectively suppress the PIIN to upgrade the network performance.

  7. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    Science.gov (United States)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  8. Analysis of parallel computing performance of the code MCNP

    International Nuclear Information System (INIS)

    Wang Lei; Wang Kan; Yu Ganglin

    2006-01-01

    Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)

  9. Performance Comparison of Containment PT analysis between CAP and CONTEMPT Code

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yeon Jun; Hong, Soon Joon; Hwang, Su Hyun; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [KHNP-CENTERAL RESEARCH INSTITUTE, Daejeon (Korea, Republic of)

    2013-10-15

    CAP, in the form that is linked with SPACE, computed the containment back-pressure during LOCA accident. In previous SAR (safety analysis report) report of Shin-Kori Units 3 and 4, the CONTEMPT series of codes(hereby referred to as just 'CONTEMPT') is used to evaluate the containment safety during the postulated loss-of-coolant accident (LOCA). In more detail, CONTEMPT-LT/028 was used to calculate the containment maximum PT, while CONTEMPT4/MOD5 to calculate the minimum PT. Actually, in minimum PT analysis, CONTEMPT4/MOD5, which provide back pressure condition of containment, was linked with RELAP5/MOD3.3 which calculate the amount of blowdown into containment. In this analysis, CONTEMPT4/MOD5 was modified based on KREM. CONTEMPT code was developed to predict the long term behavior of water-cooled nuclear reactor containment systems subjected to LOCA conditions. It calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments, leakage on containment response. Models are provided for fan cooler and cooling spray as engineered safety systems. Any compartment may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. As mentioned above, CONTEMP has the similar code features and it therefore is expected to show the similar analysis performance with CAP. In this study, the differences between CAP and two CONTEMPT code versions (CONTEMPT-LT/028 for maximum PT and CONTEMPT4/MOD5 for minimum PT) are, in detail, identified and the code performances were compared for the same problem. Code by code comparison was carried out to identify the difference of LOCA analysis between a series of COMTEMPT and CAP code. With regard to important factors that affect the transient behavior of compartment thermodynamic

  10. Performance Comparison of Containment PT analysis between CAP and CONTEMPT Code

    International Nuclear Information System (INIS)

    Choo, Yeon Jun; Hong, Soon Joon; Hwang, Su Hyun; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2013-01-01

    CAP, in the form that is linked with SPACE, computed the containment back-pressure during LOCA accident. In previous SAR (safety analysis report) report of Shin-Kori Units 3 and 4, the CONTEMPT series of codes(hereby referred to as just 'CONTEMPT') is used to evaluate the containment safety during the postulated loss-of-coolant accident (LOCA). In more detail, CONTEMPT-LT/028 was used to calculate the containment maximum PT, while CONTEMPT4/MOD5 to calculate the minimum PT. Actually, in minimum PT analysis, CONTEMPT4/MOD5, which provide back pressure condition of containment, was linked with RELAP5/MOD3.3 which calculate the amount of blowdown into containment. In this analysis, CONTEMPT4/MOD5 was modified based on KREM. CONTEMPT code was developed to predict the long term behavior of water-cooled nuclear reactor containment systems subjected to LOCA conditions. It calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments, leakage on containment response. Models are provided for fan cooler and cooling spray as engineered safety systems. Any compartment may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. As mentioned above, CONTEMP has the similar code features and it therefore is expected to show the similar analysis performance with CAP. In this study, the differences between CAP and two CONTEMPT code versions (CONTEMPT-LT/028 for maximum PT and CONTEMPT4/MOD5 for minimum PT) are, in detail, identified and the code performances were compared for the same problem. Code by code comparison was carried out to identify the difference of LOCA analysis between a series of COMTEMPT and CAP code. With regard to important factors that affect the transient behavior of compartment thermodynamic state in

  11. Performance of the dot product function in radiative transfer code SORD

    Science.gov (United States)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-10-01

    The successive orders of scattering radiative transfer (RT) codes frequently call the scalar (dot) product function. In this paper, we study performance of some implementations of the dot product in the RT code SORD using 50 scenarios for light scattering in the atmosphere-surface system. In the dot product function, we use the unrolled loops technique with different unrolling factor. We also considered the intrinsic Fortran functions. We show results for two machines: ifort compiler under Windows, and pgf90 under Linux. Intrinsic DOT_PRODUCT function showed best performance for the ifort. For the pgf90, the dot product implemented with unrolling factor 4 was the fastest. The RT code SORD together with the interface that runs all the mentioned tests are publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/SORD_IP_16B (current release) or by email request from the corresponding (first) author.

  12. Performance and Complexity Evaluation of Iterative Receiver for Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Rida El Chall

    2016-01-01

    Full Text Available Multiple-input multiple-output (MIMO technology in combination with channel coding technique is a promising solution for reliable high data rate transmission in future wireless communication systems. However, these technologies pose significant challenges for the design of an iterative receiver. In this paper, an efficient receiver combining soft-input soft-output (SISO detection based on low-complexity K-Best (LC-K-Best decoder with various forward error correction codes, namely, LTE turbo decoder and LDPC decoder, is investigated. We first investigate the convergence behaviors of the iterative MIMO receivers to determine the required inner and outer iterations. Consequently, the performance of LC-K-Best based receiver is evaluated in various LTE channel environments and compared with other MIMO detection schemes. Moreover, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared with different modulation orders and coding rates. Simulation results show that LC-K-Best based receiver achieves satisfactory performance-complexity trade-offs.

  13. An Examination of the Performance Based Building Code on the Design of a Commercial Building

    Directory of Open Access Journals (Sweden)

    John Greenwood

    2012-11-01

    Full Text Available The Building Code of Australia (BCA is the principal code under which building approvals in Australia are assessed. The BCA adopted performance-based solutions for building approvals in 1996. Performance-based codes are based upon a set of explicit objectives, stated in terms of a hierarchy of requirements beginning with key general objectives. With this in mind, the research presented in this paper aims to analyse the impact of the introduction of the performance-based code within Western Australia to gauge the effect and usefulness of alternative design solutions in commercial construction using a case study project. The research revealed that there are several advantages to the use of alternative designs and that all parties, in general, are in favour of the performance-based building code of Australia. It is suggested that change in the assessment process to streamline the alternative design path is needed for the greater use of the performance-based alternative. With appropriate quality control measures, minor variations to the deemed-to-satisfy provisions could easily be managed by the current and future building surveying profession.

  14. Modification in the FUDA computer code to predict fuel performance at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Das, M; Arunakumar, B V; Prasad, P N [Nuclear Power Corp., Mumbai (India)

    1997-08-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig.

  15. Modification in the FUDA computer code to predict fuel performance at high burnup

    International Nuclear Information System (INIS)

    Das, M.; Arunakumar, B.V.; Prasad, P.N.

    1997-01-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig

  16. New Technique for Improving Performance of LDPC Codes in the Presence of Trapping Sets

    Directory of Open Access Journals (Sweden)

    Mohamed Adnan Landolsi

    2008-06-01

    Full Text Available Trapping sets are considered the primary factor for degrading the performance of low-density parity-check (LDPC codes in the error-floor region. The effect of trapping sets on the performance of an LDPC code becomes worse as the code size decreases. One approach to tackle this problem is to minimize trapping sets during LDPC code design. However, while trapping sets can be reduced, their complete elimination is infeasible due to the presence of cycles in the underlying LDPC code bipartite graph. In this work, we introduce a new technique based on trapping sets neutralization to minimize the negative effect of trapping sets under belief propagation (BP decoding. Simulation results for random, progressive edge growth (PEG and MacKay LDPC codes demonstrate the effectiveness of the proposed technique. The hardware cost of the proposed technique is also shown to be minimal.

  17. Source-term model for the SYVAC3-NSURE performance assessment code

    International Nuclear Information System (INIS)

    Rowat, J.H.; Rattan, D.S.; Dolinar, G.M.

    1996-11-01

    Radionuclide contaminants in wastes emplaced in disposal facilities will not remain in those facilities indefinitely. Engineered barriers will eventually degrade, allowing radioactivity to escape from the vault. The radionuclide release rate from a low-level radioactive waste (LLRW) disposal facility, the source term, is a key component in the performance assessment of the disposal system. This report describes the source-term model that has been implemented in Ver. 1.03 of the SYVAC3-NSURE (Systems Variability Analysis Code generation 3-Near Surface Repository) code. NSURE is a performance assessment code that evaluates the impact of near-surface disposal of LLRW through the groundwater pathway. The source-term model described here was developed for the Intrusion Resistant Underground Structure (IRUS) disposal facility, which is a vault that is to be located in the unsaturated overburden at AECL's Chalk River Laboratories. The processes included in the vault model are roof and waste package performance, and diffusion, advection and sorption of radionuclides in the vault backfill. The model presented here was developed for the IRUS vault; however, it is applicable to other near-surface disposal facilities. (author). 40 refs., 6 figs

  18. Validating the BISON fuel performance code to integral LWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gamble, K.A., E-mail: Kyle.Gamble@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Pastore, G., E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gardner, R.J., E-mail: Russell.Gardner@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Liu, W., E-mail: Wenfeng.Liu@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States); Mai, A., E-mail: Anh.Mai@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States)

    2016-05-15

    Highlights: • The BISON multidimensional fuel performance code is being validated to integral LWR experiments. • Code and solution verification are necessary prerequisites to validation. • Fuel centerline temperature comparisons through all phases of fuel life are very reasonable. • Accuracy in predicting fission gas release is consistent with state-of-the-art modeling and the involved uncertainties. • Rod diameter comparisons are not satisfactory and further investigation is underway. - Abstract: BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON's computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to date for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Results demonstrate that (1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, (2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and (3) comparison

  19. Performance analysis of LDPC codes on OOK terahertz wireless channels

    Science.gov (United States)

    Chun, Liu; Chang, Wang; Jun-Cheng, Cao

    2016-02-01

    Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).

  20. ATES/heat pump simulations performed with ATESSS code

    Science.gov (United States)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  1. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid

    2013-06-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.

  2. Generating performance portable geoscientific simulation code with Firedrake (Invited)

    Science.gov (United States)

    Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.

    2013-12-01

    This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations

  3. SNR and BER Models and the Simulation for BER Performance of Selected Spectral Amplitude Codes for OCDMA

    Directory of Open Access Journals (Sweden)

    Abdul Latif Memon

    2014-01-01

    Full Text Available Many encoding schemes are used in OCDMA (Optical Code Division Multiple Access Network but SAC (Spectral Amplitude Codes is widely used. It is considered an effective arrangement to eliminate dominant noise called MAI (Multi Access Interference. Various codes are studied for evaluation with respect to their performance against three noises namely shot noise, thermal noise and PIIN (Phase Induced Intensity Noise. Various Mathematical models for SNR (Signal to Noise Ratios and BER (Bit Error Rates are discussed where the SNRs are calculated and BERs are computed using Gaussian distribution assumption. After analyzing the results mathematically, it is concluded that ZCC (Zero Cross Correlation Code performs better than the other selected SAC codes and can serve larger number of active users than the other codes do. At various receiver power levels, analysis points out that RDC (Random Diagonal Code also performs better than the other codes. For the power interval between -10 and -20 dBm performance of RDC is better ZCC. Their lowest BER values suggest that these codes should be part of an efficient and cost effective OCDM access network in the future.

  4. Development of a general coupling interface for the fuel performance code TRANSURANUS – Tested with the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.; Macián-Juan, R.

    2015-01-01

    Highlights: • A general coupling interface was developed for couplings of the TRANSURANUS code. • With this new tool simplified fuel behavior models in codes can be replaced. • Applicable e.g. for several reactor types and from normal operation up to DBA. • The general coupling interface was applied to the reactor dynamics code DYN3D. • The new coupled code system DYN3D–TRANSURANUS was successfully tested for RIA. - Abstract: A general interface is presented for coupling the TRANSURANUS fuel performance code with thermal hydraulics system, sub-channel thermal hydraulics, computational fluid dynamics (CFD) or reactor dynamics codes. As first application the reactor dynamics code DYN3D was coupled at assembly level in order to describe the fuel behavior in more detail. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach transfers parameters like fuel temperature and cladding temperature back to DYN3D. Results of the coupled code system are presented for the reactivity transient scenario, initiated by control rod ejection. More precisely, the two-way coupling approach systematically calculates higher maximum values for the node fuel enthalpy. These differences can be explained thanks to the greater detail in fuel behavior modeling. The numerical performance for DYN3D–TRANSURANUS was proved to be fast and stable. The coupled code system can therefore improve the assessment of safety criteria, at a reasonable computational cost

  5. PORST: a computer code to analyze the performance of retrofitted steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Hwang, I.T.

    1980-09-01

    The computer code PORST was developed to analyze the performance of a retrofitted steam turbine that is converted from a single generating to a cogenerating unit for purposes of district heating. Two retrofit schemes are considered: one converts a condensing turbine to a backpressure unit; the other allows the crossover extraction of steam between turbine cylinders. The code can analyze the performance of a turbine operating at: (1) valve-wide-open condition before retrofit, (2) partial load before retrofit, (3) valve-wide-open after retrofit, and (4) partial load after retrofit.

  6. On the Performance of a Multi-Edge Type LDPC Code for Coded Modulation

    NARCIS (Netherlands)

    Cronie, H.S.

    2005-01-01

    We present a method to combine error-correction coding and spectral-efficient modulation for transmission over the Additive White Gaussian Noise (AWGN) channel. The code employs signal shaping which can provide a so-called shaping gain. The code belongs to the family of sparse graph codes for which

  7. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  8. Reliability issues and solutions for coding social communication performance in classroom settings.

    Science.gov (United States)

    Olswang, Lesley B; Svensson, Liselotte; Coggins, Truman E; Beilinson, Jill S; Donaldson, Amy L

    2006-10-01

    To explore the utility of time-interval analysis for documenting the reliability of coding social communication performance of children in classroom settings. Of particular interest was finding a method for determining whether independent observers could reliably judge both occurrence and duration of ongoing behavioral dimensions for describing social communication performance. Four coders participated in this study. They observed and independently coded 6 social communication behavioral dimensions using handheld computers. The dimensions were mutually exclusive and accounted for all verbal and nonverbal productions during a specified time frame. The technology allowed for coding frequency and duration for each entered code. Data were collected from 20 different 2-min video segments of children in kindergarten through 3rd-grade classrooms. Data were analyzed for interobserver and intraobserver agreements using time-interval sorting and Cohen's kappa. Further, interval size and total observation length were manipulated to determine their influence on reliability. The data revealed interval sorting and kappa to be a suitable method for examining reliability of occurrence and duration of ongoing social communication behavioral dimensions. Nearly all comparisons yielded medium to large kappa values; interval size and length of observation minimally affected results. Implications The analysis procedure described in this research solves a challenge in reliability: comparing coding by independent observers of both occurrence and duration of behaviors. Results indicate the utility of a new coding taxonomy and technology for application in online observations of social communication in a classroom setting.

  9. Setting live coding performance in wider historical contexts

    OpenAIRE

    Norman, Sally Jane

    2016-01-01

    This paper sets live coding in the wider context of performing arts, construed as the poetic modelling and projection of liveness. Concepts of liveness are multiple, evolving, and scale-dependent: entities considered live from different cultural perspectives range from individual organisms and social groupings to entire ecosystems, and consequently reflect diverse temporal and spatial orders. Concepts of liveness moreover evolve with our tools, which generate and reveal new senses and places ...

  10. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations

  11. Probabilistic evaluation of fuel element performance by the combined use of a fast running simplistic and a detailed deterministic fuel performance code

    International Nuclear Information System (INIS)

    Misfeldt, I.

    1980-01-01

    A comprehensive evaluation of fuel element performance requires a probabilistic fuel code supported by a well bench-marked deterministic code. This paper presents an analysis of a SGHWR ramp experiment, where the probabilistic fuel code FRP is utilized in combination with the deterministic fuel models FFRS and SLEUTH/SEER. The statistical methods employed in FRP are Monte Carlo simulation or a low-order Taylor approximation. The fast-running simplistic fuel code FFRS is used for the deterministic simulations, whereas simulations with SLEUTH/SEER are used to verify the predictions of FFRS. The ramp test was performed with a SGHWR fuel element, where 9 of the 36 fuel pins failed. There seemed to be good agreement between the deterministic simulations and the experiment, but the statistical evaluation shows that the uncertainty on the important performance parameters is too large for this ''nice'' result. The analysis does therefore indicate a discrepancy between the experiment and the deterministic code predictions. Possible explanations for this disagreement are discussed. (author)

  12. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  13. How could the replica method improve accuracy of performance assessment of channel coding?

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of technology, Yokohama 226-8502 (Japan)], E-mail: kaba@dis.titech.ac.jp

    2009-12-01

    We explore the relation between the techniques of statistical mechanics and information theory for assessing the performance of channel coding. We base our study on a framework developed by Gallager in IEEE Trans. Inform. Theory IT-11, 3 (1965), where the minimum decoding error probability is upper-bounded by an average of a generalized Chernoff's bound over a code ensemble. We show that the resulting bound in the framework can be directly assessed by the replica method, which has been developed in statistical mechanics of disordered systems, whereas in Gallager's original methodology further replacement by another bound utilizing Jensen's inequality is necessary. Our approach associates a seemingly ad hoc restriction with respect to an adjustable parameter for optimizing the bound with a phase transition between two replica symmetric solutions, and can improve the accuracy of performance assessments of general code ensembles including low density parity check codes, although its mathematical justification is still open.

  14. The CMSSW benchmarking suite: Using HEP code to measure CPU performance

    International Nuclear Information System (INIS)

    Benelli, G

    2010-01-01

    The demanding computing needs of the CMS experiment require thoughtful planning and management of its computing infrastructure. A key factor in this process is the use of realistic benchmarks when assessing the computing power of the different architectures available. In recent years a discrepancy has been observed between the CPU performance estimates given by the reference benchmark for HEP computing (SPECint) and actual performances of HEP code. Making use of the CPU performance tools from the CMSSW performance suite, comparative CPU performance studies have been carried out on several architectures. A benchmarking suite has been developed and integrated in the CMSSW framework, to allow computing centers and interested third parties to benchmark architectures directly with CMSSW. The CMSSW benchmarking suite can be used out of the box, to test and compare several machines in terms of CPU performance and report with the wanted level of detail the different benchmarking scores (e.g. by processing step) and results. In this talk we describe briefly the CMSSW software performance suite, and in detail the CMSSW benchmarking suite client/server design, the performance data analysis and the available CMSSW benchmark scores. The experience in the use of HEP code for benchmarking will be discussed and CMSSW benchmark results presented.

  15. Oxide fuel pin transient performance analysis and design with the TEMECH code

    International Nuclear Information System (INIS)

    Bard, F.E.; Dutt, S.P.; Hinman, C.A.; Hunter, C.W.; Pitner, A.L.

    1986-01-01

    The TEMECH code is a fast-running, thermal-mechanical-hydraulic, analytical program used to evaluate the transient performance of LMR oxide fuel pins. The code calculates pin deformation and failure probability due to fuel-cladding differential thermal expansion, expansion of fuel upon melting, and fission gas pressurization. The mechanistic fuel model in the code accounts for fuel cracking, crack closure, porosity decrease, and the temperature dependence of fuel creep through the course of the transient. Modeling emphasis has been placed on results obtained from Fuel Cladding Transient Test (FCTT) testing, Transient Fuel Deformation (TFD) tests and TREAT integral fuel pin experiments

  16. Development and validation of the ENIGMA code for MOX fuel performance modelling

    International Nuclear Information System (INIS)

    Palmer, I.; Rossiter, G.; White, R.J.

    2000-01-01

    The ENIGMA fuel performance code has been under development in the UK since the mid-1980s with contributions made by both the fuel vendor (BNFL) and the utility (British Energy). In recent years it has become the principal code for UO 2 fuel licensing for both PWR and AGR reactor systems in the UK and has also been used by BNFL in support of overseas UO 2 and MOX fuel business. A significant new programme of work has recently been initiated by BNFL to further develop the code specifically for MOX fuel application. Model development is proceeding hand in hand with a major programme of MOX fuel testing and PIE studies, with the objective of producing a fuel modelling code suitable for mechanistic analysis, as well as for licensing applications. This paper gives an overview of the model developments being undertaken and of the experimental data being used to underpin and to validate the code. The paper provides a summary of the code development programme together with specific examples of new models produced. (author)

  17. Impact of intra-flow network coding on the relay channel performance: an analytical study

    OpenAIRE

    Apavatjrut , Anya; Goursaud , Claire; Jaffrès-Runser , Katia; Gorce , Jean-Marie

    2012-01-01

    International audience; One of the most powerful ways to achieve trans- mission reliability over wireless links is to employ efficient coding techniques. This paper investigates the performance of a transmission over a relay channel where information is protected by two layers of coding. In the first layer, transmission reliability is ensured by fountain coding at the source. The second layer incorporates network coding at the relay node. Thus, fountain coded packets are re-encoded at the relay...

  18. Typical performance of regular low-density parity-check codes over general symmetric channels

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshiyuki [Department of Electronics and Information Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Saad, David [Neural Computing Research Group, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2003-10-31

    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.

  19. Typical performance of regular low-density parity-check codes over general symmetric channels

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Saad, David

    2003-01-01

    Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models

  20. A ''SuperCode'' for performing systems analysis of tokamak experiments and reactors

    International Nuclear Information System (INIS)

    Haney, S.W.; Barr, W.L.; Crotinger, J.A.; Perkins, L.J.; Solomon, C.J.; Chaniotakis, E.A.; Freidberg, J.P.; Wei, J.; Galambos, J.D.; Mandrekas, J.

    1992-01-01

    A new code, named the ''SUPERCODE,'' has been developed to fill the gap between currently available zero dimensional systems codes and highly sophisticated, multidimensional plasma performance codes. The former are comprehensive in content, fast to execute, but rather simple in terms of the accuracy of the physics and engineering models. The latter contain state-of-the-art plasma physics modelling but are limited in engineering content and time consuming to run. The SUPERCODE upgrades the reliability and accuracy of systems codes by calculating the self consistent 1 1/2 dimensional MHD-transport plasma evolution in a realistic engineering environment. By a combination of variational techniques and careful formation, there is only a modest increase in CPU time over O-D runs, thereby making the SUPERCODE suitable for use as a systems studies tool. In addition, considerable effort has been expended to make the code user- and programming-friendly, as well as operationally flexible, with the hope of encouraging wide usage throughout the fusion community

  1. Performance analysis of a decoding algorithm for algebraic-geometry codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund

    1999-01-01

    The fast decoding algorithm for one point algebraic-geometry codes of Sakata, Elbrond Jensen, and Hoholdt corrects all error patterns of weight less than half the Feng-Rao minimum distance. In this correspondence we analyze the performance of the algorithm for heavier error patterns. It turns out...

  2. Development of a general coupling interface for the fuel performance code transuranus tested with the reactor dynamic code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.

    2013-01-01

    Several institutions plan to couple the fuel performance code TRANSURANUS developed by the European Institute for Transuranium Elements with their own codes. One of these codes is the reactor dynamic code DYN3D maintained by the Helmholtz-Zentrum Dresden - Rossendorf. DYN3D was developed originally for VVER type reactors and was extended later to western type reactors. Usually, the fuel rod behavior is modeled in thermal hydraulics and neutronic codes in a simplified manner. The main idea of this coupling is to describe the fuel rod behavior in the frame of core safety analysis in a more detailed way, e.g. including the influence of the high burn-up structure, geometry changes and fission gas release. It allows to take benefit from the improved computational power and software achieved over the last two decades. The coupling interface was developed in a general way from the beginning. Thence it can be easily used also by other codes for a coupling with TRANSURANUS. The user can choose between a one-way as well as a two-way online coupling option. For a one-way online coupling, DYN3D provides only the time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, but the fuel performance code doesn’t transfer any variable back to DYN3D. In a two-way online coupling, TRANSURANUS in addition transfers parameters like fuel temperature and cladding temperature back to DYN3D. This list of variables can be extended easily by geometric and further variables of interest. First results of the code system DYN3D-TRANSURANUS will be presented for a control rod ejection transient in a modern western type reactor. Pre-analyses show already that a detailed fuel rod behavior modeling will influence the thermal hydraulics and thence also the neutronics due to the Doppler reactivity effect of the fuel temperature. The coupled code system has therefore a potential to improve the assessment of safety criteria. The developed code system DYN3D-TRANSURANUS can be used also

  3. Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment

    Science.gov (United States)

    Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of

  4. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    International Nuclear Information System (INIS)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user's guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACS is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway

  5. Performance studies of the parallel VIM code

    International Nuclear Information System (INIS)

    Shi, B.; Blomquist, R.N.

    1996-01-01

    In this paper, the authors evaluate the performance of the parallel version of the VIM Monte Carlo code on the IBM SPx at the High Performance Computing Research Facility at ANL. Three test problems with contrasting computational characteristics were used to assess effects in performance. A statistical method for estimating the inefficiencies due to load imbalance and communication is also introduced. VIM is a large scale continuous energy Monte Carlo radiation transport program and was parallelized using history partitioning, the master/worker approach, and p4 message passing library. Dynamic load balancing is accomplished when the master processor assigns chunks of histories to workers that have completed a previously assigned task, accommodating variations in the lengths of histories, processor speeds, and worker loads. At the end of each batch (generation), the fission sites and tallies are sent from each worker to the master process, contributing to the parallel inefficiency. All communications are between master and workers, and are serial. The SPx is a scalable 128-node parallel supercomputer with high-performance Omega switches of 63 microsec latency and 35 MBytes/sec bandwidth. For uniform and reproducible performance, they used only the 120 identical regular processors (IBM RS/6000) and excluded the remaining eight planet nodes, which may be loaded by other's jobs

  6. Knowledge and Performance about Nursing Ethic Codes from Nurses' and Patients' Perspective in Tabriz Teaching Hospitals, Iran.

    Science.gov (United States)

    Mohajjel-Aghdam, Alireza; Hassankhani, Hadi; Zamanzadeh, Vahid; Khameneh, Saied; Moghaddam, Sara

    2013-09-01

    Nursing profession requires knowledge of ethics to guide performance. The nature of this profession necessitates ethical care more than routine care. Today, worldwide definition of professional ethic code has been done based on human and ethical issues in the communication between nurse and patient. To improve all dimensions of nursing, we need to respect ethic codes. The aim of this study is to assess knowledge and performance about nursing ethic codes from nurses' and patients' perspective. A descriptive study Conducted upon 345 nurses and 500 inpatients in six teaching hospitals of Tabriz, 2012. To investigate nurses' knowledge and performance, data were collected by using structured questionnaires. Statistical analysis was done using descriptive and analytic statistics, independent t-test and ANOVA and Pearson correlation coefficient, in SPSS13. Most of the nurses were female, married, educated at BS degree and 86.4% of them were aware of Ethic codes also 91.9% of nurses and 41.8% of patients represented nurses respect ethic codes. Nurses' and patients' perspective about ethic codes differed significantly. Significant relationship was found between nurses' knowledge of ethic codes and job satisfaction and complaint of ethical performance. According to the results, consideration to teaching ethic codes in nursing curriculum for student and continuous education for staff is proposed, on the other hand recognizing failures of the health system, optimizing nursing care, attempt to inform patients about Nursing ethic codes, promote patient rights and achieve patient satisfaction can minimize the differences between the two perspectives.

  7. The error performance analysis over cyclic redundancy check codes

    Science.gov (United States)

    Yoon, Hee B.

    1991-06-01

    The burst error is generated in digital communication networks by various unpredictable conditions, which occur at high error rates, for short durations, and can impact services. To completely describe a burst error one has to know the bit pattern. This is impossible in practice on working systems. Therefore, under the memoryless binary symmetric channel (MBSC) assumptions, the performance evaluation or estimation schemes for digital signal 1 (DS1) transmission systems carrying live traffic is an interesting and important problem. This study will present some analytical methods, leading to efficient detecting algorithms of burst error using cyclic redundancy check (CRC) code. The definition of burst error is introduced using three different models. Among the three burst error models, the mathematical model is used in this study. The probability density function, function(b) of burst error of length b is proposed. The performance of CRC-n codes is evaluated and analyzed using function(b) through the use of a computer simulation model within CRC block burst error. The simulation result shows that the mean block burst error tends to approach the pattern of the burst error which random bit errors generate.

  8. Use of advanced simulations in fuel performance codes

    International Nuclear Information System (INIS)

    Van Uffelen, P.

    2015-01-01

    The simulation of the cylindrical fuel rod behaviour in a reactor or a storage pool for spent fuel requires a fuel performance code. Such tool solves the equations for the heat transfer, the stresses and strains in fuel and cladding, the evolution of several isotopes and the behaviour of various fission products in the fuel rod. The main equations along with their limitations are briefly described. The current approaches adopted for overcoming these limitations and the perspectives are also outlined. (author)

  9. Introduction into scientific work methods-a necessity when performance-based codes are introduced

    DEFF Research Database (Denmark)

    Dederichs, Anne; Sørensen, Lars Schiøtt

    The introduction of performance-based codes in Denmark in 2004 requires new competences from people working with different aspects of fire safety in the industry and the public sector. This abstract presents an attempt in reducing problems with handling and analysing the mathematical methods...... and CFD models when applying performance-based codes. This is done within the educational program "Master of Fire Safety Engineering" at the department of Civil Engineering at the Technical University of Denmark. It was found that the students had general problems with academic methods. Therefore, a new...

  10. Rate-adaptive BCH codes for distributed source coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren

    2013-01-01

    This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...

  11. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files

  12. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  13. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  14. A New Prime Code for Synchronous Optical Code Division Multiple-Access Networks

    Directory of Open Access Journals (Sweden)

    Huda Saleh Abbas

    2018-01-01

    Full Text Available A new spreading code based on a prime code for synchronous optical code-division multiple-access networks that can be used in monitoring applications has been proposed. The new code is referred to as “extended grouped new modified prime code.” This new code has the ability to support more terminal devices than other prime codes. In addition, it patches subsequences with “0s” leading to lower power consumption. The proposed code has an improved cross-correlation resulting in enhanced BER performance. The code construction and parameters are provided. The operating performance, using incoherent on-off keying modulation and incoherent pulse position modulation systems, has been analyzed. The performance of the code was compared with other prime codes. The results demonstrate an improved performance, and a BER floor of 10−9 was achieved.

  15. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    Science.gov (United States)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  16. Knowledge and Performance about Nursing Ethic Codes from Nurses' and Patients' Perspective in Tabriz Teaching Hospitals, Iran

    Directory of Open Access Journals (Sweden)

    Sara Moghaddam

    2013-08-01

    Full Text Available Introduction: Nursing profession requires knowledge of ethics to guide performance. The nature of this profession necessitates ethical care more than routine care. Today, worldwide definition of professional ethic code has been done based on human and ethical issues in the communication between nurse and patient. To improve all dimensions of nursing, we need to respect ethic codes. The aim of this study is to assess knowledge and performance about nursing ethic codes from nurses' and patients' perspective.Methods: A cross-sectional comparative study Conducted upon 345 nurses and 500 inpatients in six teaching hospitals of Tabriz, 2012. To investigate nurses' knowledge and performance, data were collected by using structured questionnaires. Statistical analysis was done using descriptive and analytic statistics, independent t-test and ANOVA and Pearson correlation coefficient, in SPSS13.Results: Most of the nurses were female, married, educated at BS degree and 86.4% of them were aware of Ethic codes also 91.9% of nurses and 41.8% of patients represented nurses respect ethic codes. Nurses' and patients' perspective about ethic codes differed significantly. Significant relationship was found between nurses' knowledge of ethic codes and job satisfaction and complaint of ethical performance. Conclusion: According to the results, consideration to teaching ethic codes in nursing curriculum for student and continuous education for staff is proposed, on the other hand recognizing failures of the health system, optimizing nursing care, attempt to inform patients about Nursing ethic codes, promote patient rights and achieve patient satisfaction can minimize the differences between the two perspectives.

  17. SCANAIR a transient fuel performance code Part two: Assessment of modelling capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Georgenthum, Vincent, E-mail: vincent.georgenthum@irsn.fr; Moal, Alain; Marchand, Olivier

    2014-12-15

    Highlights: • The SCANAIR code is devoted to the study of irradiated fuel rod behaviour during RIA. • The paper deals with the status of the code validation for PWR rods. • During the PCMI stage there is a good agreement between calculations and experiments. • The boiling crisis occurrence is rather well predicted. • The code assessment during the boiling crisis has still to be improved. - Abstract: In the frame of their research programmes on fuel safety, the French Institut de Radioprotection et de Sûreté Nucléaire develops the SCANAIR code devoted to the study of irradiated fuel rod behaviour during reactivity initiated accident. A first paper was focused on detailed modellings and code description. This second paper deals with the status of the code validation for pressurised water reactor rods performed thanks to the available experimental results. About 60 integral tests carried out in CABRI and NSRR experimental reactors and 24 separated tests performed in the PATRICIA facility (devoted to the thermal-hydraulics study) have been recalculated and compared to experimental data. During the first stage of the transient, the pellet clad mechanical interaction phase, there is a good agreement between calculations and experiments: the clad residual elongation and hoop strain of non failed tests but also the failure occurrence and failure enthalpy of failed tests are correctly calculated. After this first stage, the increase of cladding temperature can lead to the Departure from Nucleate Boiling. During the film boiling regime, the clad temperature can reach a very high temperature (>700 °C). If the boiling crisis occurrence is rather well predicted, the calculation of the clad temperature and the clad hoop strain during this stage have still to be improved.

  18. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous OCDMA systems

    Science.gov (United States)

    Li, Chuan-qi; Yang, Meng-jie; Zhang, Xiu-rong; Chen, Mei-juan; He, Dong-dong; Fan, Qing-bin

    2014-07-01

    A construction scheme of variable-weight optical orthogonal codes (VW-OOCs) for asynchronous optical code division multiple access (OCDMA) system is proposed. According to the actual situation, the code family can be obtained by programming in Matlab with the given code weight and corresponding capacity. The formula of bit error rate (BER) is derived by taking account of the effects of shot noise, avalanche photodiode (APD) bulk, thermal noise and surface leakage currents. The OCDMA system with the VW-OOCs is designed and improved. The study shows that the VW-OOCs have excellent performance of BER. Despite of coming from the same code family or not, the codes with larger weight have lower BER compared with the other codes in the same conditions. By taking simulation, the conclusion is consistent with the analysis of BER in theory. And the ideal eye diagrams are obtained by the optical hard limiter.

  19. Performance of Turbo Interference Cancellation Receivers in Space-Time Block Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Emmanuel Oluremi Bejide

    2008-07-01

    Full Text Available We investigate the performance of turbo interference cancellation receivers in the space time block coded (STBC direct-sequence code division multiple access (DS-CDMA system. Depending on the concatenation scheme used, we divide these receivers into the partitioned approach (PA and the iterative approach (IA receivers. The performance of both the PA and IA receivers is evaluated in Rayleigh fading channels for the uplink scenario. Numerical results show that the MMSE front-end turbo space-time iterative approach receiver (IA effectively combats the mixture of MAI and intersymbol interference (ISI. To further investigate the possible achievable data rates in the turbo interference cancellation receivers, we introduce the puncturing of the turbo code through the use of rate compatible punctured turbo codes (RCPTCs. Simulation results suggest that combining interference cancellation, turbo decoding, STBC, and RCPTC can significantly improve the achievable data rates for a synchronous DS-CDMA system for the uplink in Rayleigh flat fading channels.

  20. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  1. Performance of asynchronous fiber-optic code division multiple access system based on three-dimensional wavelength/time/space codes and its link analysis.

    Science.gov (United States)

    Singh, Jaswinder

    2010-03-10

    A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation.

  2. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  3. Implementation of computer codes for performance assessment of the Republic repository of LLW/ILW Mochovce

    International Nuclear Information System (INIS)

    Hanusik, V.; Kopcani, I.; Gedeon, M.

    2000-01-01

    This paper describes selection and adaptation of computer codes required to assess the effects of radionuclide release from Mochovce Radioactive Waste Disposal Facility. The paper also demonstrates how these codes can be integrated into performance assessment methodology. The considered codes include DUST-MS for source term release, MODFLOW for ground-water flow and BS for transport through biosphere and dose assessment. (author)

  4. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Gyori, C.; Schubert, A.; Laar, J. van de; Hozer, Z.; Spykman, G.

    2008-01-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events

  5. Isotopic modelling using the ENIGMA-B fuel performance code

    International Nuclear Information System (INIS)

    Rossiter, G.D.; Cook, P.M.A.; Weston, R.

    2001-01-01

    A number of experimental programmes by BNFL and other MOX fabricators have now shown that the in-pile performance of MOX fuel is generally similar to that of conventional UO 2 fuel. Models based on UO 2 fuel experience form a good basis for a description of MOX fuel behaviour. However, an area where the performance of MOX fuel is sufficiently different from that of UO 2 to warrant model changes is in the radial power and burnup profile. The differences in radial power and burnup profile arise from the presence of significant concentrations of plutonium in MOX fuel, at beginning of life, and their subsequent evolution with burnup. Amongst other effects, plutonium has a greater neutron absorption cross-section than uranium. This paper focuses on the development of a new model for the radial power and burnup profile within a UO 2 or MOX fuel rod, in which the underlying fissile isotope concentration distributions are tracked during irradiation. The new model has been incorporated into the ENIGMA-B fuel performance code and has been extended to track the isotopic concentrations of the fission gases, xenon and krypton. The calculated distributions have been validated against results from rod puncture measurements and electron probe micro-analysis (EPMA) linescans, performed during the M501 post irradiation examination (PIE) programme. The predicted gas inventory of the fuel/clad gap is compared with the isotopic composition measured during rod puncture and the measured radial distributions of burnup (from neodymium measurements) and plutonium in the fuel are compared with the calculated distributions. It is shown that there is good agreement between the code predictions and the measurements. (author)

  6. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding

  7. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    Science.gov (United States)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full

  8. Reliability in the performance-based concept of fib Model Code 2010

    NARCIS (Netherlands)

    Bigaj-van Vliet, A.; Vrouwenvelder, T.

    2013-01-01

    The design philosophy of the new fib Model Code for Concrete Structures 2010 represents the state of the art with regard to performance-based approach to the design and assessment of concrete structures. Given the random nature of quantities determining structural behaviour, the assessment of

  9. An accurate evaluation of the performance of asynchronous DS-CDMA systems with zero-correlation-zone coding in Rayleigh fading

    Science.gov (United States)

    Walker, Ernest; Chen, Xinjia; Cooper, Reginald L.

    2010-04-01

    An arbitrarily accurate approach is used to determine the bit-error rate (BER) performance for generalized asynchronous DS-CDMA systems, in Gaussian noise with Raleigh fading. In this paper, and the sequel, new theoretical work has been contributed which substantially enhances existing performance analysis formulations. Major contributions include: substantial computational complexity reduction, including a priori BER accuracy bounding; an analytical approach that facilitates performance evaluation for systems with arbitrary spectral spreading distributions, with non-uniform transmission delay distributions. Using prior results, augmented by these enhancements, a generalized DS-CDMA system model is constructed and used to evaluated the BER performance, in a variety of scenarios. In this paper, the generalized system modeling was used to evaluate the performance of both Walsh- Hadamard (WH) and Walsh-Hadamard-seeded zero-correlation-zone (WH-ZCZ) coding. The selection of these codes was informed by the observation that WH codes contain N spectral spreading values (0 to N - 1), one for each code sequence; while WH-ZCZ codes contain only two spectral spreading values (N/2 - 1,N/2); where N is the sequence length in chips. Since these codes span the spectral spreading range for DS-CDMA coding, by invoking an induction argument, the generalization of the system model is sufficiently supported. The results in this paper, and the sequel, support the claim that an arbitrary accurate performance analysis for DS-CDMA systems can be evaluated over the full range of binary coding, with minimal computational complexity.

  10. Performance of an Error Control System with Turbo Codes in Powerline Communications

    Directory of Open Access Journals (Sweden)

    Balbuena-Campuzano Carlos Alberto

    2014-07-01

    Full Text Available This paper reports the performance of turbo codes as an error control technique in PLC (Powerline Communications data transmissions. For this system, computer simulations are used for modeling data networks based on the model classified in technical literature as indoor, and uses OFDM (Orthogonal Frequency Division Multiplexing as a modulation technique. Taking into account the channel, modulation and turbo codes, we propose a methodology to minimize the bit error rate (BER, as a function of the average received signal noise ratio (SNR.

  11. Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes

    International Nuclear Information System (INIS)

    Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.

    2013-01-01

    The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)

  12. Systemizers Are Better Code-Breakers: Self-Reported Systemizing Predicts Code-Breaking Performance in Expert Hackers and Naïve Participants

    Science.gov (United States)

    Harvey, India; Bolgan, Samuela; Mosca, Daniel; McLean, Colin; Rusconi, Elena

    2016-01-01

    Studies on hacking have typically focused on motivational aspects and general personality traits of the individuals who engage in hacking; little systematic research has been conducted on predispositions that may be associated not only with the choice to pursue a hacking career but also with performance in either naïve or expert populations. Here, we test the hypotheses that two traits that are typically enhanced in autism spectrum disorders—attention to detail and systemizing—may be positively related to both the choice of pursuing a career in information security and skilled performance in a prototypical hacking task (i.e., crypto-analysis or code-breaking). A group of naïve participants and of ethical hackers completed the Autism Spectrum Quotient, including an attention to detail scale, and the Systemizing Quotient (Baron-Cohen et al., 2001, 2003). They were also tested with behavioral tasks involving code-breaking and a control task involving security X-ray image interpretation. Hackers reported significantly higher systemizing and attention to detail than non-hackers. We found a positive relation between self-reported systemizing (but not attention to detail) and code-breaking skills in both hackers and non-hackers, whereas attention to detail (but not systemizing) was related with performance in the X-ray screening task in both groups, as previously reported with naïve participants (Rusconi et al., 2015). We discuss the theoretical and translational implications of our findings. PMID:27242491

  13. Systemizers are better code-breakers:Self-reported systemizing predicts code-breaking performance in expert hackers and naïve participants

    Directory of Open Access Journals (Sweden)

    India eHarvey

    2016-05-01

    Full Text Available Studies on hacking have typically focused on motivational aspects and general personality traits of the individuals who engage in hacking; little systematic research has been conducted on predispositions that may be associated not only with the choice to pursue a hacking career but also with performance in either naïve or expert populations. Here we test the hypotheses that two traits that are typically enhanced in autism spectrum disorders - attention to detail and systemizing - may be positively related to both the choice of pursuing a career in information security and skilled performance in a prototypical hacking task (i.e. crypto-analysis or code-breaking. A group of naïve participants and of ethical hackers completed the Autism Spectrum Quotient, including an attention to detail scale, and the Systemizing Quotient (Baron-Cohen et al., 2001; Baron-Cohen et al., 2003. They were also tested with behavioural tasks involving code-breaking and a control task involving security x-ray image interpretation. Hackers reported significantly higher systemizing and attention to detail than non-hackers. We found a positive relation between self-reported systemizing (but not attention to detail and code-breaking skills in both hackers and non-hackers, whereas attention to detail (but not systemizing was related with performance in the x-ray screening task in both groups, as previously reported with naïve participants (Rusconi et al., 2015. We discuss the theoretical and translational implications of our findings.

  14. Systemizers Are Better Code-Breakers: Self-Reported Systemizing Predicts Code-Breaking Performance in Expert Hackers and Naïve Participants.

    Science.gov (United States)

    Harvey, India; Bolgan, Samuela; Mosca, Daniel; McLean, Colin; Rusconi, Elena

    2016-01-01

    Studies on hacking have typically focused on motivational aspects and general personality traits of the individuals who engage in hacking; little systematic research has been conducted on predispositions that may be associated not only with the choice to pursue a hacking career but also with performance in either naïve or expert populations. Here, we test the hypotheses that two traits that are typically enhanced in autism spectrum disorders-attention to detail and systemizing-may be positively related to both the choice of pursuing a career in information security and skilled performance in a prototypical hacking task (i.e., crypto-analysis or code-breaking). A group of naïve participants and of ethical hackers completed the Autism Spectrum Quotient, including an attention to detail scale, and the Systemizing Quotient (Baron-Cohen et al., 2001, 2003). They were also tested with behavioral tasks involving code-breaking and a control task involving security X-ray image interpretation. Hackers reported significantly higher systemizing and attention to detail than non-hackers. We found a positive relation between self-reported systemizing (but not attention to detail) and code-breaking skills in both hackers and non-hackers, whereas attention to detail (but not systemizing) was related with performance in the X-ray screening task in both groups, as previously reported with naïve participants (Rusconi et al., 2015). We discuss the theoretical and translational implications of our findings.

  15. Reactivity Insertion Accident (RIA) Capability Status in the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Folsom, Charles Pearson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    One of the Challenge Problems being considered within CASL relates to modelling and simulation of Light Water Reactor LWR) fuel under Reactivity Insertion Accident (RIA) conditions. BISON is the fuel performance code used within CASL for LWR fuel under both normal operating and accident conditions, and thus must be capable of addressing the RIA challenge problem. This report outlines required BISON capabilities for RIAs and describes the current status of the code. Information on recent accident capability enhancements, application of BISON to a RIA benchmark exercise, and plans for validation to RIA behavior are included.

  16. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    International Nuclear Information System (INIS)

    McGrail, B.P.; Mahoney, L.A.

    1995-10-01

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites

  17. Multiple LDPC decoding for distributed source coding and video coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Luong, Huynh Van; Huang, Xin

    2011-01-01

    Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate...... (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental...

  18. Performance Analysis of Spectral Amplitude Coding Based OCDMA System with Gain and Splitter Mismatch

    Science.gov (United States)

    Umrani, Fahim A.; Umrani, A. Waheed; Umrani, Naveed A.; Memon, Kehkashan A.; Kalwar, Imtiaz Hussain

    2013-09-01

    This paper presents the practical analysis of the optical code-division multiple-access (O-CDMA) systems based on perfect difference codes. The work carried out use SNR criterion to select the optimal value of avalanche photodiodes (APD) gain and shows how the mismatch in the splitters and gains of the APD used in the transmitters and receivers of network can degrade the BER performance of the system. The investigations also reveal that higher APD gains are not suitable for such systems even at higher powers. The system performance, with consideration of shot noise, thermal noise, bulk and surface leakage currents is also investigated.

  19. Performance of automated and manual coding systems for occupational data: a case study of historical records.

    Science.gov (United States)

    Patel, Mehul D; Rose, Kathryn M; Owens, Cindy R; Bang, Heejung; Kaufman, Jay S

    2012-03-01

    Occupational data are a common source of workplace exposure and socioeconomic information in epidemiologic research. We compared the performance of two occupation coding methods, an automated software and a manual coder, using occupation and industry titles from U.S. historical records. We collected parental occupational data from 1920-40s birth certificates, Census records, and city directories on 3,135 deceased individuals in the Atherosclerosis Risk in Communities (ARIC) study. Unique occupation-industry narratives were assigned codes by a manual coder and the Standardized Occupation and Industry Coding software program. We calculated agreement between coding methods of classification into major Census occupational groups. Automated coding software assigned codes to 71% of occupations and 76% of industries. Of this subset coded by software, 73% of occupation codes and 69% of industry codes matched between automated and manual coding. For major occupational groups, agreement improved to 89% (kappa = 0.86). Automated occupational coding is a cost-efficient alternative to manual coding. However, some manual coding is required to code incomplete information. We found substantial variability between coders in the assignment of occupations although not as large for major groups.

  20. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    Science.gov (United States)

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  1. Performance of super-orthogonal space-time trellis code in a multipath environment

    CSIR Research Space (South Africa)

    Sokoya, OA

    2007-09-01

    Full Text Available This paper investigates the performance of Super-Orthogonal Space-time Trellis Code (SOSTTC) designed primarily for non-frequency selective (i.e. flat) fading channel but now applied to a frequency selective fading channel. A new decoding trellis...

  2. LDGM Codes for Channel Coding and Joint Source-Channel Coding of Correlated Sources

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Frias

    2005-05-01

    Full Text Available We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes for channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the LDGM encoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting performance is very close to the theoretical limits.

  3. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks.

    Science.gov (United States)

    Dai, Lengshi; Shinn-Cunningham, Barbara G

    2016-01-01

    Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics

  4. Contributions of sensory coding and attentional control to individual differences in performance in spatial auditory selective attention tasks

    Directory of Open Access Journals (Sweden)

    Lengshi Dai

    2016-10-01

    Full Text Available Listeners with normal hearing thresholds differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding, onset event-related potentials from the scalp (ERPs, reflecting cortical responses to sound, and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones; however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance, inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with normal hearing thresholds can arise due to both subcortical coding differences and differences in attentional control, depending on

  5. Performance Evaluation of a Novel Optimization Sequential Algorithm (SeQ Code for FTTH Network

    Directory of Open Access Journals (Sweden)

    Fazlina C.A.S.

    2017-01-01

    Full Text Available The SeQ codes has advantages, such as variable cross-correlation property at any given number of users and weights, as well as effectively suppressed the impacts of phase induced intensity noise (PIIN and multiple access interference (MAI cancellation property. The result revealed, at system performance analysis of BER = 10-09, the SeQ code capable to achieved 1 Gbps up to 60 km.

  6. VINE-A NUMERICAL CODE FOR SIMULATING ASTROPHYSICAL SYSTEMS USING PARTICLES. II. IMPLEMENTATION AND PERFORMANCE CHARACTERISTICS

    International Nuclear Information System (INIS)

    Nelson, Andrew F.; Wetzstein, M.; Naab, T.

    2009-01-01

    We continue our presentation of VINE. In this paper, we begin with a description of relevant architectural properties of the serial and shared memory parallel computers on which VINE is intended to run, and describe their influences on the design of the code itself. We continue with a detailed description of a number of optimizations made to the layout of the particle data in memory and to our implementation of a binary tree used to access that data for use in gravitational force calculations and searches for smoothed particle hydrodynamics (SPH) neighbor particles. We describe the modifications to the code necessary to obtain forces efficiently from special purpose 'GRAPE' hardware, the interfaces required to allow transparent substitution of those forces in the code instead of those obtained from the tree, and the modifications necessary to use both tree and GRAPE together as a fused GRAPE/tree combination. We conclude with an extensive series of performance tests, which demonstrate that the code can be run efficiently and without modification in serial on small workstations or in parallel using the OpenMP compiler directives on large-scale, shared memory parallel machines. We analyze the effects of the code optimizations and estimate that they improve its overall performance by more than an order of magnitude over that obtained by many other tree codes. Scaled parallel performance of the gravity and SPH calculations, together the most costly components of most simulations, is nearly linear up to at least 120 processors on moderate sized test problems using the Origin 3000 architecture, and to the maximum machine sizes available to us on several other architectures. At similar accuracy, performance of VINE, used in GRAPE-tree mode, is approximately a factor 2 slower than that of VINE, used in host-only mode. Further optimizations of the GRAPE/host communications could improve the speed by as much as a factor of 3, but have not yet been implemented in VINE

  7. The added value of international benchmarks for fuel performance codes: an illustration on the basis of TRANSURANUS

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Schubert, A.; Gyeori, C.; Van De Laar, J.

    2009-01-01

    Safety authorities and fuel designers, as well as nuclear research centers rely heavily on fuel performance codes for predicting the behaviour and life-time of fuel rods. The simulation tools are developed and validated on the basis of experimental results, some of which is in the public domain such as the International Fuel Performance Experiments database of the OECD/NEA and IAEA. Publicly available data constitute an excellent basis for assessing codes themselves, but also to compare codes that are being developed by independent teams. The present report summarises the advantages for the TRANSURANUS code by taking part in previous benchmarks organised by the IAEA, and outlines the preliminary results along with the perspectives of our participation in the current coordinated research project FUMEXIII

  8. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    2017-02-01

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functional characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.

  9. Evaluation of finite element codes for demonstrating the performance of radioactive material packages in hypothetical accident drop scenarios

    International Nuclear Information System (INIS)

    Tso, C.F.; Hueggenberg, R.

    2004-01-01

    Drop testing and analysis are the two methods for demonstrating the performance of packages in hypothetical drop accident scenarios. The exact purpose of the tests and the analyses, and the relative prominence of the two in the license application, may depend on the Competent Authority and will vary between countries. The Finite Element Method (FEM) is a powerful analysis tool. A reliable finite element (FE) code when used correctly and appropriately, will allow a package's behaviour to be simulated reliably. With improvements in computing power, and in sophistication and reliability of FE codes, it is likely that FEM calculations will increasingly be used as evidence of drop test performance when seeking Competent Authority approval. What is lacking at the moment, however, is a standardised method of assessing a FE code in order to determine whether it is sufficiently reliable or pessimistic. To this end, the project Evaluation of Codes for Analysing the Drop Test Performance of Radioactive Material Transport Containers, funded by the European Commission Directorate-General XVII (now Directorate-General for Energy and Transport) and jointly performed by Arup and Gesellschaft fuer Nuklear-Behaelter mbH, was carried out in 1998. The work consisted of three components: Survey of existing finite element software, with a view to finding codes that may be capable of analysing drop test performance of radioactive material packages, and to produce an inventory of them. Develop a set of benchmark problems to evaluate software used for analysing the drop test performance of packages. Evaluate the finite element codes by testing them against the benchmarks This paper presents a summary of this work

  10. Evaluation of finite element codes for demonstrating the performance of radioactive material packages in hypothetical accident drop scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tso, C.F. [Arup (United Kingdom); Hueggenberg, R. [Gesellschaft fuer Nuklear-Behaelter mbH (Germany)

    2004-07-01

    Drop testing and analysis are the two methods for demonstrating the performance of packages in hypothetical drop accident scenarios. The exact purpose of the tests and the analyses, and the relative prominence of the two in the license application, may depend on the Competent Authority and will vary between countries. The Finite Element Method (FEM) is a powerful analysis tool. A reliable finite element (FE) code when used correctly and appropriately, will allow a package's behaviour to be simulated reliably. With improvements in computing power, and in sophistication and reliability of FE codes, it is likely that FEM calculations will increasingly be used as evidence of drop test performance when seeking Competent Authority approval. What is lacking at the moment, however, is a standardised method of assessing a FE code in order to determine whether it is sufficiently reliable or pessimistic. To this end, the project Evaluation of Codes for Analysing the Drop Test Performance of Radioactive Material Transport Containers, funded by the European Commission Directorate-General XVII (now Directorate-General for Energy and Transport) and jointly performed by Arup and Gesellschaft fuer Nuklear-Behaelter mbH, was carried out in 1998. The work consisted of three components: Survey of existing finite element software, with a view to finding codes that may be capable of analysing drop test performance of radioactive material packages, and to produce an inventory of them. Develop a set of benchmark problems to evaluate software used for analysing the drop test performance of packages. Evaluate the finite element codes by testing them against the benchmarks This paper presents a summary of this work.

  11. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  12. Improving 3D-Turbo Code's BER Performance with a BICM System over Rayleigh Fading Channel

    Directory of Open Access Journals (Sweden)

    R. Yao

    2016-12-01

    Full Text Available Classical Turbo code suffers from high error floor due to its small Minimum Hamming Distance (MHD. Newly-proposed 3D-Turbo code can effectively increase the MHD and achieve a lower error floor by adding a rate-1 post encoder. In 3D-Turbo codes, part of the parity bits from the classical Turbo encoder are further encoded through the post encoder. In this paper, a novel Bit-Interleaved Coded Modulation (BICM system is proposed by combining rotated mapping Quadrature Amplitude Modulation (QAM and 3D-Turbo code to improve the Bit Error Rate (BER performance of 3D-Turbo code over Raleigh fading channel. A key-bit protection scheme and a Two-Dimension (2D iterative soft demodulating-decoding algorithm are developed for the proposed BICM system. Simulation results show that the proposed system can obtain about 0.8-1.0 dB gain at BER of 10^{-6}, compared with the existing BICM system with Gray mapping QAM.

  13. Implementation and Performance Evaluation of Distributed Cloud Storage Solutions using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Fitzek, Frank; Toth, Tamas; Szabados, Áron

    2014-01-01

    This paper advocates the use of random linear network coding for storage in distributed clouds in order to reduce storage and traffic costs in dynamic settings, i.e. when adding and removing numerous storage devices/clouds on-the-fly and when the number of reachable clouds is limited. We introduce...... various network coding approaches that trade-off reliability, storage and traffic costs, and system complexity relying on probabilistic recoding for cloud regeneration. We compare these approaches with other approaches based on data replication and Reed-Solomon codes. A simulator has been developed...... to carry out a thorough performance evaluation of the various approaches when relying on different system settings, e.g., finite fields, and network/storage conditions, e.g., storage space used per cloud, limited network use, and limited recoding capabilities. In contrast to standard coding approaches, our...

  14. Application of the BISON Fuel Performance Code of the FUMEX-III Coordinated Research Project

    International Nuclear Information System (INIS)

    Williamson, R.L.; Novascone, S.R.

    2013-01-01

    Since 1981, the International Atomic Energy Agency (IAEA) has sponsored a series of Coordinated Research Projects (CRP) in the area of nuclear fuel modeling. These projects have typically lasted 3-5 years and have had broad international participation. The objectives of the projects have been to assess the maturity and predictive capability of fuel performance codes, support interaction and information exchange between countries with code development and application needs, build a database of well- defined experiments suitable for code validation, transfer a mature fuel modeling code to developing countries, and provide guidelines for code quality assurance and code application to fuel licensing. The fourth and latest of these projects, known as FUMEX-III1 (FUel Modeling at EXtended Burnup- III), began in 2008 and ended in December of 2011. FUMEX-III was the first of this series of fuel modeling CRP's in which the INL participated. Participants met at the beginning of the project to discuss and select a set of experiments ('priority cases') for consideration during the project. These priority cases were of broad interest to the participants and included reasonably well-documented and reliable data. A meeting was held midway through the project for participants to present and discuss progress on modeling the priority cases. A final meeting was held at close of the project to present and discuss final results and provide input for a final report. Also in 2008, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON, with code development progressing steadily during the three-year FUMEX-III project. Interactions with international fuel modeling researchers via FUMEX-III played a significant role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. The FUMEX-III cases are generally integral fuel rod experiments occurring

  15. Development and application of the BISON fuel performance code to the analysis of fission gas behaviour

    International Nuclear Information System (INIS)

    Pastore, G.; Hales, J.D.; Novascone, S.R.; Perez, D.M.; Spencer, B.W.; Williamson, R.L.

    2014-01-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that has been under development at Idaho National Laboratory (USA) since 2009. The capabilities of BISON comprise implicit solution of the fully coupled thermo-mechanics and diffusion equations, applicability to a variety of fuel forms, and simulation of both steady-state and transient conditions. The code includes multiphysics constitutive behavior for both fuel and cladding materials, and is designed for efficient use on highly parallel computers. This paper describes the main features of BISON, with emphasis on recent developments in modelling of fission gas behaviour in LWR-UO 2 fuel. The code is applied to the simulation of fuel rod irradiation experiments from the OECD/NEA International Fuel Performance Experiments Database. The comparison of the results with the available experimental data of fuel temperature, fission gas release, and cladding diametrical strain during pellet-cladding mechanical interaction is presented, pointing out a promising potential of the BISON code with the new fission gas behaviour model. (authors)

  16. System Performance of Concatenated STBC and Block Turbo Codes in Dispersive Fading Channels

    Directory of Open Access Journals (Sweden)

    Kam Tai Chan

    2005-05-01

    Full Text Available A new scheme of concatenating the block turbo code (BTC with the space-time block code (STBC for an OFDM system in dispersive fading channels is investigated in this paper. The good error correcting capability of BTC and the large diversity gain characteristics of STBC can be achieved simultaneously. The resulting receiver outperforms the iterative convolutional Turbo receiver with maximum- a-posteriori-probability expectation maximization (MAP-EM algorithm. Because of its ability to perform the encoding and decoding processes in parallel, the proposed system is easy to implement in real time.

  17. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    Energy Technology Data Exchange (ETDEWEB)

    Giovedi, Claudia; Martins, Marcelo Ramos, E-mail: claudia.giovedi@labrisco.usp.br, E-mail: mrmartin@usp.br [Laboratorio de Analise, Avaliacao e Gerenciamento de Risco (LabRisco/POLI/USP), São Paulo, SP (Brazil); Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: ayabe@ipen.br, E-mail: dsgomes@ipen.br, E-mail: teixiera@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  18. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Martins, Marcelo Ramos; Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e

    2017-01-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  19. Performance Analysis of DPSK Signals with Selection Combining and Convolutional Coding in Fading Channel

    National Research Council Canada - National Science Library

    Ong, Choon

    1998-01-01

    The performance analysis of a differential phase shift keyed (DPSK) communications system, operating in a Rayleigh fading environment, employing convolutional coding and diversity processing is presented...

  20. 3D Analysis of Cooling Performance with Loss of Offsite Power Using GOTHIC Code

    International Nuclear Information System (INIS)

    Oh, Kye Min; Heo, Gyun Young; Na, In Sik; Choi, Yu Jung

    2010-01-01

    GOTHIC code enables to analyze one-dimensional or multi-dimensional problems for evaluating the cooling performance of loss of offsite power. The conventional GOTHIC code analysis performs heat transfer between plant containment and the outside of the fan cooler tubes by modeling each of fan cooler part model and component cooling water inside tube each to analyze boiling probability. In this paper, we suggest a way which reduces the multi-procedure of the cooling performance with loss of offsite power or the heat transfer states with complex geometrical structure to a single-procedure and verify the applicability of the heat transfer differences from the containment atmosphere humidity changes by the multi-nodes which component cooling water of tube or air of Reactor Containment Fan Cooler in the containment, otherwise the component model uses only one node

  1. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    OpenAIRE

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...

  2. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    Science.gov (United States)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  3. Verification of the 2.00 WAPPA-B [Waste Package Performance Assessment-B version] code

    International Nuclear Information System (INIS)

    Tylock, B.; Jansen, G.; Raines, G.E.

    1987-07-01

    The old version of the Waste Package Performance Assessment (WAPPA) code has been modified into a new code version, 2.00 WAPPA-B. The input files and the results for two benchmarks at repository conditions are fully documented in the appendixes of the EA reference report. The 2.00 WAPPA-B version of the code is suitable for computation of barrier failure due to uniform corrosion; however, an improved sub-version, 2.01 WAPPA-B, is recommended for general use due to minor errors found in 2.00 WAPPA-B during its verification procedures. The input files and input echoes have been modified to include behavior of both radionuclides and elements, but the 2.00 WAPPA-B version of the WAPPA code is not recommended for computation of radionuclide releases. The 2.00 WAPPA-B version computes only mass balances and the initial presence of radionuclides that can be released. Future code development in the 3.00 WAPPA-C version will include radionuclide release computations. 19 refs., 10 figs., 1 tab

  4. Soft-Decision-Data Reshuffle to Mitigate Pulsed Radio Frequency Interference Impact on Low-Density-Parity-Check Code Performance

    Science.gov (United States)

    Ni, Jianjun David

    2011-01-01

    This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.

  5. Performance Comparison of Assorted Color Spaces for Multilevel Block Truncation Coding based Face Recognition

    OpenAIRE

    H.B. Kekre; Sudeep Thepade; Karan Dhamejani; Sanchit Khandelwal; Adnan Azmi

    2012-01-01

    The paper presents a performance analysis of Multilevel Block Truncation Coding based Face Recognition among widely used color spaces. In [1], Multilevel Block Truncation Coding was applied on the RGB color space up to four levels for face recognition. Better results were obtained when the proposed technique was implemented using Kekre’s LUV (K’LUV) color space [25]. This was the motivation to test the proposed technique using assorted color spaces. For experimental analysis, two face databas...

  6. Performance analysis of simultaneous dense coding protocol under decoherence

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai; Situ, Haozhen

    2017-09-01

    The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.

  7. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Manolova, M.; Stefanova, S.; Simeonova, V.; Passage, G.; Lassmann, K.

    1994-01-01

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: 1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; 2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; 3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs

  8. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    Energy Technology Data Exchange (ETDEWEB)

    Vitkova, M; Manolova, M; Stefanova, S; Simeonova, V; Passage, G [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Lassmann, K [European Atomic Energy Community, Karlsruhe (Germany). European Inst. for Transuranium Elements

    1994-12-31

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: (1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; (2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; (3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs.

  9. Error-correction coding and decoding bounds, codes, decoders, analysis and applications

    CERN Document Server

    Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak

    2017-01-01

    This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...

  10. A probabilistic analysis of PWR and BWR fuel rod performance using the code CASINO-SLEUTH

    International Nuclear Information System (INIS)

    Bull, A.J.

    1987-01-01

    This paper presents a brief description of the Monte Carlo and response surface techniques used in the code, and a probabilistic analysis of fuel rod performance in PWR and BWR applications. The analysis shows that fission gas release predictions are very sensitive to changes in certain of the code's inputs, identifies the most dominant input parameters and compares their effects in the two cases. (orig./HP)

  11. Influence of Code Size Variation on the Performance of 2D Hybrid ZCC/MD in OCDMA System

    Directory of Open Access Journals (Sweden)

    Matem Rima.

    2018-01-01

    Full Text Available Several two dimensional OCDMA have been developed in order to overcome many problems in optical network, enhancing cardinality, suppress Multiple Access Interference (MAI and mitigate Phase Induced Intensity Noise (PIIN. This paper propose a new 2D hybrid ZCC/MD code combining between 1D ZCC spectral encoding where M is its code length and 1D MD spatial spreading where N is its code length. The spatial spreading (N code length offers a good cardinality so it represents the main effect to enhance the performance of the system compared to the spectral (M code length according to the numerical results.

  12. Discussion on LDPC Codes and Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  13. The development of the Nuclear Electric core performance and fault transient analysis code package in support of Sizewell B

    International Nuclear Information System (INIS)

    Hall, P.; Hutt, P.

    1994-01-01

    This paper describes Nuclear Electric's (NE) development of an integrated code package in support of all its reactors including Sizewell B, designed for the provision of fuel management design, core performance studies, operational support and fault transient analysis. The package uses the NE general purpose three-dimensional transient reactor physics code PANTHER with cross-sections derived in the PWR case from the LWRWIMS LWR lattice neutronics code. The package also includes ENIGMA a generic fuel performance code and for PWR application VIPRE-01 a subchannel thermal hydraulics code, RELAP5 the system thermal hydraulics transient code and SCORPIO an on-line surveillance system. The paper describes the capabilities and validation of the elements of this package for PWR, how they are coupled within the package and the way in which they are being applied for Sizewell B to on-line surveillance and fault transient analysis. (Author)

  14. Assessment of stainless steel 348 fuel rod performance against literature available data using TRANSURANUS code

    Directory of Open Access Journals (Sweden)

    Giovedi Claudia

    2016-01-01

    Full Text Available Early pressurized water reactors were originally designed to operate using stainless steel as cladding material, but during their lifetime this material was replaced by zirconium-based alloys. However, after the Fukushima Daiichi accident, the problems related to the zirconium-based alloys due to the hydrogen production and explosion under severe accident brought the importance to assess different materials. In this sense, initiatives as ATF (Accident Tolerant Fuel program are considering different material as fuel cladding and, one candidate is iron-based alloy. In order to assess the fuel performance of fuel rods manufactured using iron-based alloy as cladding material, it was necessary to select a specific stainless steel (type 348 and modify properly conventional fuel performance codes developed in the last decades. Then, 348 stainless steel mechanical and physics properties were introduced in the TRANSURANUS code. The aim of this paper is to present the obtained results concerning the verification of the modified TRANSURANUS code version against data collected from the open literature, related to reactors which operated using stainless steel as cladding. Considering that some data were not available, some assumptions had to be made. Important differences related to the conventional fuel rods were taken into account. Obtained results regarding the cladding behavior are in agreement with available information. This constitutes an evidence of the modified TRANSURANUS code capabilities to perform fuel rod investigation of fuel rods manufactured using 348 stainless steel as cladding material.

  15. A Linear Algebra Framework for Static High Performance Fortran Code Distribution

    Directory of Open Access Journals (Sweden)

    Corinne Ancourt

    1997-01-01

    Full Text Available High Performance Fortran (HPF was developed to support data parallel programming for single-instruction multiple-data (SIMD and multiple-instruction multiple-data (MIMD machines with distributed memory. The programmer is provided a familiar uniform logical address space and specifies the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors, and to migrate data between processors when required. We show here that linear algebra is a powerful framework to encode HPF directives and to synthesize distributed code with space-efficient array allocation, tight loop bounds, and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, and overlap analysis. The systematic use of an affine framework makes it possible to prove the compilation scheme correct.

  16. PERFORMANCE EVALUATION OF TURBO CODED OFDM SYSTEMS AND APPLICATION OF TURBO DECODING FOR IMPULSIVE CHANNEL

    Directory of Open Access Journals (Sweden)

    Savitha H. M.

    2010-09-01

    Full Text Available A comparison of the performance of hard and soft-decision turbo coded Orthogonal Frequency Division Multiplexing systems with Quadrature Phase Shift Keying (QPSK and 16-Quadrature Amplitude Modulation (16-QAM is considered in the first section of this paper. The results show that the soft-decision method greatly outperforms the hard-decision method. The complexity of the demapper is reduced with the use of simplified algorithm for 16-QAM demapping. In the later part of the paper, we consider the transmission of data over additive white class A noise (AWAN channel, using turbo coded QPSK and 16-QAM systems. We propose a novel turbo decoding scheme for AWAN channel. Also we compare the performance of turbo coded systems with QPSK and 16-QAM on AWAN channel with two different channel values- one computed as per additive white Gaussian noise (AWGN channel conditions and the other as per AWAN channel conditions. The results show that the use of appropriate channel value in turbo decoding helps to combat the impulsive noise more effectively. The proposed model for AWAN channel exhibits comparable Bit error rate (BER performance as compared to AWGN channel.

  17. Application and analysis of performance of dqpsk advanced modulation format in spectral amplitude coding ocdma

    International Nuclear Information System (INIS)

    Memon, A.

    2015-01-01

    SAC (Spectral Amplitude Coding) is a technique of OCDMA (Optical Code Division Multiple Access) to encode and decode data bits by utilizing spectral components of the broadband source. Usually OOK (ON-Off-Keying) modulation format is used in this encoding scheme. To make SAC OCDMA network spectrally efficient, advanced modulation format of DQPSK (Differential Quaternary Phase Shift Keying) is applied, simulated and analyzed, m-sequence code is encoded in the simulated setup. Performance regarding various lengths of m-sequence code is also analyzed and displayed in the pictorial form. The results of the simulation are evaluated with the help of electrical constellation diagram, eye diagram and bit error rate graph. All the graphs indicate better transmission quality in case of advanced modulation format of DQPSK used in SAC OCDMA network as compared with OOK. (author)

  18. Combinatorial neural codes from a mathematical coding theory perspective.

    Science.gov (United States)

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  19. COMPASS: A source term code for investigating capillary barrier performance

    International Nuclear Information System (INIS)

    Zhou, Wei; Apted, J.J.

    1996-01-01

    A computer code COMPASS based on compartment model approach is developed to calculate the near-field source term of the High-Level-Waste repository under unsaturated conditions. COMPASS is applied to evaluate the expected performance of Richard's (capillary) barriers as backfills to divert infiltrating groundwater at Yucca Mountain. Comparing the release rates of four typical nuclides with and without the Richard's barrier, it is shown that the Richard's barrier significantly decreases the peak release rates from the Engineered-Barrier-System (EBS) into the host rock

  20. Performance analysis of 2D asynchronous hard-limiting optical code-division multiple access system through atmospheric scattering channel

    Science.gov (United States)

    Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu

    2013-09-01

    Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.

  1. Enhancing the performance of the light field microscope using wavefront coding.

    Science.gov (United States)

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  2. Sub-Transport Layer Coding

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani

    2014-01-01

    Packet losses in wireless networks dramatically curbs the performance of TCP. This paper introduces a simple coding shim that aids IP-layer traffic in lossy environments while being transparent to transport layer protocols. The proposed coding approach enables erasure correction while being...... oblivious to the congestion control algorithms of the utilised transport layer protocol. Although our coding shim is indifferent towards the transport layer protocol, we focus on the performance of TCP when ran on top of our proposed coding mechanism due to its widespread use. The coding shim provides gains...

  3. Analyses with the FSTATE code: fuel performance in destructive in-pile experiments

    International Nuclear Information System (INIS)

    Bauer, T.H.; Meek, C.C.

    1982-01-01

    Thermal-mechanical analysis of a fuel pin is an essential part of the evaluation of fuel behavior during hypothetical accident transients. The FSTATE code has been developed to provide this required computational ability in situations lacking azimuthal symmetry about the fuel-pin axis by performing 2-dimensional thermal, mechanical, and fission gas release and redistribution computations for a wide range of possible transient conditions. In this paper recent code developments are described and application is made to in-pile experiments undertaken to study fast-reactor fuel under accident conditions. Three accident simulations, including a fast and slow ramp-rate overpower as well as a loss-of-cooling accident sequence, are used as representative examples, and the interpretation of STATE computations relative to experimental observations is made

  4. Performance of the coupled thermalhydraulics/neutron kinetics code R/P/C on workstation clusters and multiprocessor systems

    International Nuclear Information System (INIS)

    Hammer, C.; Paffrath, M.; Boeer, R.; Finnemann, H.; Jackson, C.J.

    1996-01-01

    The light water reactor core simulation code PANBOX has been coupled with the transient analysis code RELAP5 for the purpose of performing plant safety analyses with a three-dimensional (3-D) neutron kinetics model. The system has been parallelized to improve the computational efficiency. The paper describes the features of this system with emphasis on performance aspects. Performance results are given for different types of parallelization, i. e. for using an automatic parallelizing compiler, using the portable PVM platform on a workstation cluster, using PVM on a shared memory multiprocessor, and for using machine dependent interfaces. (author)

  5. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  6. DLLExternalCode

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  7. Application and Analysis of Performance of DQPSK Advanced Modulation Format in Spectral Amplitude Coding OCDMA

    Directory of Open Access Journals (Sweden)

    Abdul Latif Memon

    2014-04-01

    Full Text Available SAC (Spectral Amplitude Coding is a technique of OCDMA (Optical Code Division Multiple Access to encode and decode data bits by utilizing spectral components of the broadband source. Usually OOK (ON-Off-Keying modulation format is used in this encoding scheme. To make SAC OCDMA network spectrally efficient, advanced modulation format of DQPSK (Differential Quaternary Phase Shift Keying is applied, simulated and analyzed. m-sequence code is encoded in the simulated setup. Performance regarding various lengths of m-sequence code is also analyzed and displayed in the pictorial form. The results of the simulation are evaluated with the help of electrical constellation diagram, eye diagram and bit error rate graph. All the graphs indicate better transmission quality in case of advanced modulation format of DQPSK used in SAC OCDMA network as compared with OOK

  8. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  9. Early Experiences Writing Performance Portable OpenMP 4 Codes

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, Wayne [ORNL; Hernandez, Oscar R [ORNL

    2016-01-01

    In this paper, we evaluate the recently available directives in OpenMP 4 to parallelize a computational kernel using both the traditional shared memory approach and the newer accelerator targeting capabilities. In addition, we explore various transformations that attempt to increase application performance portability, and examine the expressiveness and performance implications of using these approaches. For example, we want to understand if the target map directives in OpenMP 4 improve data locality when mapped to a shared memory system, as opposed to the traditional first touch policy approach in traditional OpenMP. To that end, we use recent Cray and Intel compilers to measure the performance variations of a simple application kernel when executed on the OLCF s Titan supercomputer with NVIDIA GPUs and the Beacon system with Intel Xeon Phi accelerators attached. To better understand these trade-offs, we compare our results from traditional OpenMP shared memory implementations to the newer accelerator programming model when it is used to target both the CPU and an attached heterogeneous device. We believe the results and lessons learned as presented in this paper will be useful to the larger user community by providing guidelines that can assist programmers in the development of performance portable code.

  10. User's manual for the vertical axis wind turbine performance computer code darter

    Energy Technology Data Exchange (ETDEWEB)

    Klimas, P. C.; French, R. E.

    1980-05-01

    The computer code DARTER (DARrieus, Turbine, Elemental Reynolds number) is an aerodynamic performance/loads prediction scheme based upon the conservation of momentum principle. It is the latest evolution in a sequence which began with a model developed by Templin of NRC, Canada and progressed through the Sandia National Laboratories-developed SIMOSS (SSImple MOmentum, Single Streamtube) and DART (SARrieus Turbine) to DARTER.

  11. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  12. Effect of beat noise on the performance of two-dimensional time-spreading/wavelength-hopping optical code-division multiple-access systems

    Science.gov (United States)

    Bazan, T.; Harle, D.; Andonovic, I.; Meenakshi, M.

    2005-03-01

    The effect of beat noise on optical code-division multiple-access (OCDMA) systems using a range of two-dimensional (2-D) time-spreading/wavelength-hopping (TW) code families is presented. A derivation of a general formula for the error probability of the system is given. The properties of the 2-D codes--namely, the structure, length, and cross-correlation characteristics--are found to have a great influence on system performance. Improved performance can be obtained by use of real-time dynamic thresholding.

  13. Development of an object-oriented simulation code for repository performance assessment

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Ahn, J.

    1999-01-01

    As understanding for mechanisms of radioactivity confinement by a deep geologic repository improves at the individual process level, it has become imperative to evaluate consequences of individual processes to the performance of the whole repository system. For this goal, the authors have developed a model for radionuclide transport in, and release from, the repository region by incorporating multiple-member decay chains and multiple waste canisters. A computer code has been developed with C++, an object-oriented language. By utilizing the feature that a geologic repository consists of thousands of objects of the same kind, such as the waste canister, the repository region is divided into multiple compartments and objects for simulation of radionuclide transport. Massive computational tasks are distributed over, and executed by, multiple networked workstations, with the help of parallel virtual machine (PVM) technology. Temporal change of the mass distribution of 28 radionuclides in the repository region for the time period of 100 million yr has been successfully obtained by the code

  14. Test Code Quality and Its Relation to Issue Handling Performance

    NARCIS (Netherlands)

    Athanasiou, D.; Nugroho, A.; Visser, J.; Zaidman, A.

    2014-01-01

    Automated testing is a basic principle of agile development. Its benefits include early defect detection, defect cause localization and removal of fear to apply changes to the code. Therefore, maintaining high quality test code is essential. This study introduces a model that assesses test code

  15. High efficiency video coding coding tools and specification

    CERN Document Server

    Wien, Mathias

    2015-01-01

    The video coding standard High Efficiency Video Coding (HEVC) targets at improved compression performance for video resolutions of HD and beyond, providing Ultra HD video at similar compressed bit rates as for HD video encoded with the well-established video coding standard H.264 | AVC. Based on known concepts, new coding structures and improved coding tools have been developed and specified in HEVC. The standard is expected to be taken up easily by established industry as well as new endeavors, answering the needs of todays connected and ever-evolving online world. This book presents the High Efficiency Video Coding standard and explains it in a clear and coherent language. It provides a comprehensive and consistently written description, all of a piece. The book targets at both, newbies to video coding as well as experts in the field. While providing sections with introductory text for the beginner, it suits as a well-arranged reference book for the expert. The book provides a comprehensive reference for th...

  16. Performance of Different OCDMA Codes with FWM and XPM Nonlinear Effects

    Science.gov (United States)

    Rana, Shivani; Gupta, Amit

    2017-08-01

    In this paper, 1 Gb/s non-linear optical code division multiple access system have been simulated and modeled. To reduce multiple user interference multi-diagonal (MD) code which possesses the property of having zero cross-correlation have been deployed. The MD code shows better results than Walsh-Hadamard and multi-weight code under the nonlinear effect of four-wave mixing (FWM) and cross-phase modulation (XPM). The simulation results reveal that effect of FWM reduces when MD codes are employed as compared to other codes.

  17. System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link.

    Science.gov (United States)

    Nakamura, M; Kitayama, K

    1998-05-10

    Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.

  18. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE

  19. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  20. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  1. Overview of the geochemical code MINTEQ: applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Graham, M.J.; Peterson, S.R.

    1985-09-01

    The MINTEQ geochemical computer code, developed at Pacific Northwest Laboratory, integrates many of the capabilities of its two immediate predecessors, WATEQ3 and MINEQL. MINTEQ can be used to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments or the interaction of ground water with solidified low-level wastes. The code is capable of performing calculations of ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial solidified low-level wastes. The wastes being evaluated include power reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code is being upgraded before the geochemical modeling is performed. Thermodynamic data for cobalt, antimony, cerium, and cesium solid phases and aqueous species are being added to the database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the wastes predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partical field validation of the geochemical model. 28 refs

  2. Selection of a computer code for Hanford low-level waste engineered-system performance assessment. Revision 1

    International Nuclear Information System (INIS)

    McGrail, B.P.; Bacon, D.H.

    1998-02-01

    Planned performance assessments for the proposed disposal of low-activity waste (LAW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. The available computer codes with suitable capabilities at the time Revision 0 of this document was prepared were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical processes expected to affect LAW glass corrosion and the mobility of radionuclides. This analysis was repeated in this report but updated to include additional processes that have been found to be important since Revision 0 was issued and to include additional codes that have been released. The highest ranked computer code was found to be the STORM code developed at PNNL for the US Department of Energy for evaluation of arid land disposal sites

  3. Quality Improvement of MARS Code and Establishment of Code Coupling

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Jeong, Jae Jun; Kim, Kyung Doo

    2010-04-01

    The improvement of MARS code quality and coupling with regulatory auditing code have been accomplished for the establishment of self-reliable technology based regulatory auditing system. The unified auditing system code was realized also by implementing the CANDU specific models and correlations. As a part of the quality assurance activities, the various QA reports were published through the code assessments. The code manuals were updated and published a new manual which describe the new models and correlations. The code coupling methods were verified though the exercise of plant application. The education-training seminar and technology transfer were performed for the code users. The developed MARS-KS is utilized as reliable auditing tool for the resolving the safety issue and other regulatory calculations. The code can be utilized as a base technology for GEN IV reactor applications

  4. Performance Modeling and Optimization of a High Energy CollidingBeam Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

    2006-06-01

    An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms.

  5. Performance Modeling and Optimization of a High Energy Colliding Beam Simulation Code

    International Nuclear Information System (INIS)

    Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

    2006-01-01

    An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms

  6. A model of R-D performance evaluation for Rate-Distortion-Complexity evaluation of H.264 video coding

    DEFF Research Database (Denmark)

    Wu, Mo; Forchhammer, Søren

    2007-01-01

    This paper considers a method for evaluation of Rate-Distortion-Complexity (R-D-C) performance of video coding. A statistical model of the transformed coefficients is used to estimate the Rate-Distortion (R-D) performance. A model frame work for rate, distortion and slope of the R-D curve for inter...... and intra frame is presented. Assumptions are given for analyzing an R-D model for fast R-D-C evaluation. The theoretical expressions are combined with H.264 video coding, and confirmed by experimental results. The complexity frame work is applied to the integer motion estimation....

  7. Performance Measures of Diagnostic Codes for Detecting Opioid Overdose in the Emergency Department.

    Science.gov (United States)

    Rowe, Christopher; Vittinghoff, Eric; Santos, Glenn-Milo; Behar, Emily; Turner, Caitlin; Coffin, Phillip O

    2017-04-01

    Opioid overdose mortality has tripled in the United States since 2000 and opioids are responsible for more than half of all drug overdose deaths, which reached an all-time high in 2014. Opioid overdoses resulting in death, however, represent only a small fraction of all opioid overdose events and efforts to improve surveillance of this public health problem should include tracking nonfatal overdose events. International Classification of Disease (ICD) diagnosis codes, increasingly used for the surveillance of nonfatal drug overdose events, have not been rigorously assessed for validity in capturing overdose events. The present study aimed to validate the use of ICD, 9th revision, Clinical Modification (ICD-9-CM) codes in identifying opioid overdose events in the emergency department (ED) by examining multiple performance measures, including sensitivity and specificity. Data on ED visits from January 1, 2012, to December 31, 2014, including clinical determination of whether the visit constituted an opioid overdose event, were abstracted from electronic medical records for patients prescribed long-term opioids for pain from any of six safety net primary care clinics in San Francisco, California. Combinations of ICD-9-CM codes were validated in the detection of overdose events as determined by medical chart review. Both sensitivity and specificity of different combinations of ICD-9-CM codes were calculated. Unadjusted logistic regression models with robust standard errors and accounting for clustering by patient were used to explore whether overdose ED visits with certain characteristics were more or less likely to be assigned an opioid poisoning ICD-9-CM code by the documenting physician. Forty-four (1.4%) of 3,203 ED visits among 804 patients were determined to be opioid overdose events. Opioid-poisoning ICD-9-CM codes (E850.2-E850.2, 965.00-965.09) identified overdose ED visits with a sensitivity of 25.0% (95% confidence interval [CI] = 13.6% to 37.8%) and

  8. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Burr Alister

    2009-01-01

    Full Text Available Abstract This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are and . The performances of both systems with high ( and low ( BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  9. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  10. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  11. Impact of the Revised Malaysian Code on Corporate Governance on Audit Committee Attributes and Firm Performance

    OpenAIRE

    KALLAMU, Basiru Salisu

    2016-01-01

    Abstract. Using a sample of 37 finance companies listed under the finance segment of Bursa Malaysia, we examined the impact of the revision to Malaysian code on corporate governance on audit committee attributes and firm performance. Our result suggests that audit committee attributes significantly improved after the Code was revised. In addition, the coefficient for audit committee and risk committee interlock has a significant negative relationship with Tobin’s Q in the period before the re...

  12. Performance and complexity of tunable sparse network coding with gradual growing tuning functions over wireless networks

    OpenAIRE

    Garrido Ortiz, Pablo; Sørensen, Chres W.; Lucani Roetter, Daniel Enrique; Agüero Calvo, Ramón

    2016-01-01

    Random Linear Network Coding (RLNC) has been shown to be a technique with several benefits, in particular when applied over wireless mesh networks, since it provides robustness against packet losses. On the other hand, Tunable Sparse Network Coding (TSNC) is a promising concept, which leverages a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and comp...

  13. Software Design Document for the AMP Nuclear Fuel Performance Code

    International Nuclear Information System (INIS)

    Philip, Bobby; Clarno, Kevin T.; Cochran, Bill

    2010-01-01

    The purpose of this document is to describe the design of the AMP nuclear fuel performance code. It provides an overview of the decomposition into separable components, an overview of what those components will do, and the strategic basis for the design. The primary components of a computational physics code include a user interface, physics packages, material properties, mathematics solvers, and computational infrastructure. Some capability from established off-the-shelf (OTS) packages will be leveraged in the development of AMP, but the primary physics components will be entirely new. The material properties required by these physics operators include many highly non-linear properties, which will be replicated from FRAPCON and LIFE where applicable, as well as some computationally-intensive operations, such as gap conductance, which depends upon the plenum pressure. Because there is extensive capability in off-the-shelf leadership class computational solvers, AMP will leverage the Trilinos, PETSc, and SUNDIALS packages. The computational infrastructure includes a build system, mesh database, and other building blocks of a computational physics package. The user interface will be developed through a collaborative effort with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Capability Transfer program element as much as possible and will be discussed in detail in a future document.

  14. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, M. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fromm, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teague, M. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  15. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  16. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC)

    International Nuclear Information System (INIS)

    Schultz, Peter Andrew

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V and V) is required throughout the system to establish evidence-based metrics for the level of confidence in M and S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V and V challenge at the subcontinuum scale, an approach to incorporate V and V concepts into subcontinuum scale modeling and simulation (M and S), and a plan to incrementally incorporate effective V and V into subcontinuum scale M and S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  17. Performance Based Plastic Design of Concentrically Braced Frame attuned with Indian Standard code and its Seismic Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Sejal Purvang Dalal

    2015-12-01

    Full Text Available In the Performance Based Plastic design method, the failure is predetermined; making it famous throughout the world. But due to lack of proper guidelines and simple stepwise methodology, it is not quite popular in India. In this paper, stepwise design procedure of Performance Based Plastic Design of Concentrically Braced frame attuned with the Indian Standard code has been presented. The comparative seismic performance evaluation of a six storey concentrically braced frame designed using the displacement based Performance Based Plastic Design (PBPD method and currently used force based Limit State Design (LSD method has also been carried out by nonlinear static pushover analysis and time history analysis under three different ground motions. Results show that Performance Based Plastic Design method is superior to the current design in terms of displacement and acceleration response. Also total collapse of the frame is prevented in the PBPD frame.

  18. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Lei Ye

    2009-01-01

    Full Text Available This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are 1/2 and 1/3. The performances of both systems with high (10−2 and low (10−4 BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  19. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    Science.gov (United States)

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  20. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  1. Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    Science.gov (United States)

    Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  2. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), Tsukuba (Japan); Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States)

    2014-12-11

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2–5GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances. - Highlights: • We characterize optical element performance of an e{sup ±} x-ray beam size monitor. • We standardize beam size resolving power measurements to reference conditions. • Standardized resolving power measurements compare favorably to model predictions. • Key model features include simulation of photon-counting statistics and image fitting. • Results validate a coded aperture design optimized for the x-ray spectrum encountered.

  3. Performance and Complexity Co-evaluation of the Advanced Video Coding Standard for Cost-Effective Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Saponara Sergio

    2004-01-01

    Full Text Available The advanced video codec (AVC standard, recently defined by a joint video team (JVT of ITU-T and ISO/IEC, is introduced in this paper together with its performance and complexity co-evaluation. While the basic framework is similar to the motion-compensated hybrid scheme of previous video coding standards, additional tools improve the compression efficiency at the expense of an increased implementation cost. As a first step to bridge the gap between the algorithmic design of a complex multimedia system and its cost-effective realization, a high-level co-evaluation approach is proposed and applied to a real-life AVC design. An exhaustive analysis of the codec compression efficiency versus complexity (memory and computational costs project space is carried out at the early algorithmic design phase. If all new coding features are used, the improved AVC compression efficiency (up to 50% compared to current video coding technology comes with a complexity increase of a factor 2 for the decoder and larger than one order of magnitude for the encoder. This represents a challenge for resource-constrained multimedia systems such as wireless devices or high-volume consumer electronics. The analysis also highlights important properties of the AVC framework allowing for complexity reduction at the high system level: when combining the new coding features, the implementation complexity accumulates, while the global compression efficiency saturates. Thus, a proper use of the AVC tools maintains the same performance as the most complex configuration while considerably reducing complexity. The reported results provide inputs to assist the profile definition in the standard, highlight the AVC bottlenecks, and select optimal trade-offs between algorithmic performance and complexity.

  4. Performance Evaluation of HARQ Technique with UMTS Turbo Code

    Directory of Open Access Journals (Sweden)

    S. S. Brkić

    2011-11-01

    Full Text Available The hybrid automatic repeat request technique (HARQ represents the error control principle which combines an error correcting code and automatic repeat request procedure (ARQ, within the same transmission system. In this paper, using Monte Carlo simulation process, the characteristics of HARQ technique are determined, for the case of the Universal Mobile Telecommunication System (UMTS turbo code.

  5. Impact of optical hard limiter on the performance of an optical overlapped-code division multiple access system

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Tablieh, Nicole

    2011-08-01

    Throughout this paper, a closed form expression of the multiple access interference (MAI) limited bit error rate (BER) is provided for the multiwavelength optical code-division multiple-access system when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. This system is known in literature as the optical overlapped code division multiple access (OV-CDMA) system. A unified analytical framework is presented emphasizing the impact of optical hard limiter (OHL) on the BER performance of such a system. Results show that the performance of the OV-CDMA system may be highly improved when using OHL preprocessing at the receiver side.

  6. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  7. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes

  8. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  9. Governance codes: facts or fictions? a study of governance codes in colombia1,2

    Directory of Open Access Journals (Sweden)

    Julián Benavides Franco

    2010-10-01

    Full Text Available This article studies the effects on accounting performance and financing decisions of Colombian firms after issuing a corporate governance code. We assemble a database of Colombian issuers and test the hypotheses of improved performance and higher leverage after issuing a code. The results show that the firms’ return on assets after the code introduction improves in excess of 1%; the effect is amplified by the code quality. Additionally, the firms leverage increased, in excess of 5%, when the code quality was factored into the analysis. These results suggest that controlling parties commitment to self restrain, by reducing their private benefits and/or the expropriation of non controlling parties, through the code introduction, is indeed an effective measure and that the financial markets agree, increasing the supply of funds to the firms.

  10. Comparative performance evaluation of transform coding in image pre-processing

    Science.gov (United States)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  11. A fast and compact Fuel Rod Performance Simulator code for predictive, interpretive and educational purpose

    International Nuclear Information System (INIS)

    Lorenzen, J.

    1990-01-01

    A new Fuel rod Performance Simulator code FRPS has been developed, tested and benchmarked and is now available in different versions. The user may choose between the batch version INTERPIN producing results in form of listings or beforehand defined plots, or the interactive simulator code SIMSIM which is stepping through a power history under the control of user. Both versions are presently running on minicomputers and PC:s using EGA-Graphics. A third version is the implementation in a Studsvik Compact Simulator with FRPS being one of its various modules receiving the dynamic inputs from the simulator

  12. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  13. Performance Evaluation of Wavelet-Coded OFDM on a 4.9 Gbps W-Band Radio-over-Fiber Link

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Rommel, Simon; Dinis, Rui

    2017-01-01

    Future generation mobile communications running on mm-wave frequencies will require great robustness against frequency selective channels. In this work we evaluate the transmission performance of 4.9 Gbps Wavelet-Coded OFDM signals on a 10 km fiber plus 58 m wireless Radio-over-Fiber link using...... a mm-wave radio frequency carrier. The results show that a 2×128 Wavelet-Coded OFDM system achieves a bit-error rate of 1e-4 with nearly 2.5 dB less signal-to-noise ratio than a convolutional coded OFDM system with equivalent spectral efficiency for 8 GHz-wide signals with 512 sub-carriers on a carrier...

  14. Current Status of the LIFE Fast Reactors Fuel Performance Codes

    International Nuclear Information System (INIS)

    Yacout, A.M.; Billone, M.C.

    2013-01-01

    The LIFE-4 (Rev. 1) code was calibrated and validated using data from (U,Pu)O2 mixed-oxide fuel pins and UO2 blanket rods which were irradiation tested under steady-state and transient conditions. – It integrates a broad material and fuel-pin irradiation database into a consistent framework for use and extrapolation of the database to reactor design applications. – The code is available and running on different computer platforms (UNIX & PC) – Detailed documentations of the code’s models, routines, calibration and validation data sets are available. LIFE-METAL code is based on LIFE4 with modifications to include key phenomena applicable to metallic fuel, and metallic fuel properties – Calibrated with large database from irradiations in EBR-II – Further effort for calibration and detailed documentation. Recent activities with the codes are related to reactor design studies and support of licensing efforts for 4S and KAERI SFR designs. Future activities are related to re-assessment of the codes calibration and validation and inclusion of models for advanced fuels (transmutation fuels)

  15. Rate-adaptive BCH coding for Slepian-Wolf coding of highly correlated sources

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Salmistraro, Matteo; Larsen, Knud J.

    2012-01-01

    This paper considers using BCH codes for distributed source coding using feedback. The focus is on coding using short block lengths for a binary source, X, having a high correlation between each symbol to be coded and a side information, Y, such that the marginal probability of each symbol, Xi in X......, given Y is highly skewed. In the analysis, noiseless feedback and noiseless communication are assumed. A rate-adaptive BCH code is presented and applied to distributed source coding. Simulation results for a fixed error probability show that rate-adaptive BCH achieves better performance than LDPCA (Low......-Density Parity-Check Accumulate) codes for high correlation between source symbols and the side information....

  16. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  17. Bearing performance degradation assessment based on time-frequency code features and SOM network

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-01-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data. (paper)

  18. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  19. Coded communications with nonideal interleaving

    Science.gov (United States)

    Laufer, Shaul

    1991-02-01

    Burst error channels - a type of block interference channels - feature increasing capacity but decreasing cutoff rate as the memory rate increases. Despite the large capacity, there is degradation in the performance of practical coding schemes when the memory length is excessive. A short-coding error parameter (SCEP) was introduced, which expresses a bound on the average decoding-error probability for codes shorter than the block interference length. The performance of a coded slow frequency-hopping communication channel is analyzed for worst-case partial band jamming and nonideal interleaving, by deriving expressions for the capacity and cutoff rate. The capacity and cutoff rate, respectively, are shown to approach and depart from those of a memoryless channel corresponding to the transmission of a single code letter per hop. For multiaccess communications over a slot-synchronized collision channel without feedback, the channel was considered as a block interference channel with memory length equal to the number of letters transmitted in each slot. The effects of an asymmetrical background noise and a reduced collision error rate were studied, as aspects of real communications. The performance of specific convolutional and Reed-Solomon codes was examined for slow frequency-hopping systems with nonideal interleaving. An upper bound is presented for the performance of a Viterbi decoder for a convolutional code with nonideal interleaving, and a soft decision diversity combining technique is introduced.

  20. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  1. Performance evaluations of advanced massively parallel platforms based on gyrokinetic toroidal five-dimensional Eulerian code GT5D

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro; Jolliet, Sebastien

    2010-01-01

    A gyrokinetic toroidal five dimensional Eulerian code GT5D is ported on six advanced massively parallel platforms and comprehensive benchmark tests are performed. A parallelisation technique based on physical properties of the gyrokinetic equation is presented. By extending the parallelisation technique with a hybrid parallel model, the scalability of the code is improved on platforms with multi-core processors. In the benchmark tests, a good salability is confirmed up to several thousands cores on every platforms, and the maximum sustained performance of ∼18.6 Tflops is achieved using 16384 cores of BX900. (author)

  2. THREEDANT: A code to perform three-dimensional, neutral particle transport calculations

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1994-01-01

    The THREEDANT code solves the three-dimensional neutral particle transport equation in its first order, multigroup, discrate ordinate form. The code allows an unlimited number of groups (depending upon the cross section set), angular quadrature up to S-100, and unlimited Pn order again depending upon the cross section set. The code has three options for spatial differencing, diamond with set-to-zero fixup, adaptive weighted diamond, and linear modal. The geometry options are XYZ and RZΘ with a special XYZ option based upon a volume fraction method. This allows objects or bodies of any shape to be modelled as input which gives the code as much geometric description flexibility as the Monte Carlo code MCNP. The transport equation is solved by source iteration accelerated by the DSA method. Both inner and outer iterations are so accelerated. Some results are presented which demonstrate the effectiveness of these techniques. The code is available on several types of computing platforms

  3. Performance-based building codes: a call for injury prevention indicators that bridge health and building sectors.

    Science.gov (United States)

    Edwards, N

    2008-10-01

    The international introduction of performance-based building codes calls for a re-examination of indicators used to monitor their implementation. Indicators used in the building sector have a business orientation, target the life cycle of buildings, and guide asset management. In contrast, indicators used in the health sector focus on injury prevention, have a behavioural orientation, lack specificity with respect to features of the built environment, and do not take into account patterns of building use or building longevity. Suggestions for metrics that bridge the building and health sectors are discussed. The need for integrated surveillance systems in health and building sectors is outlined. It is time to reconsider commonly used epidemiological indicators in the field of injury prevention and determine their utility to address the accountability requirements of performance-based codes.

  4. Performance of Multilevel Coding Schemes with Different Decoding Methods and Mapping Strategies in Mobile Fading Channels

    Institute of Scientific and Technical Information of China (English)

    YUAN Dongfeng; WANG Chengxiang; YAO Qi; CAO Zhigang

    2001-01-01

    Based on "capacity rule", the perfor-mance of multilevel coding (MLC) schemes with dif-ferent set partitioning strategies and decoding meth-ods in AWGN and Rayleigh fading channels is investi-gated, in which BCH codes are chosen as componentcodes and 8ASK modulation is used. Numerical re-sults indicate that MLC scheme with UP strategy canobtain optimal performance in AWGN channels andBP is the best mapping strategy for Rayleigh fadingchannels. BP strategy is of good robustness in bothkinds of channels to realize an optimum MLC system.Multistage decoding (MSD) is a sub-optimal decodingmethod of MLC for both channels. For Ungerboeckpartitioning (UP) and mixed partitioning (MP) strat-egy, MSD is strongly recommended to use for MLCsystem, while for BP strategy, PDL is suggested to useas a simple decoding method compared with MSD.

  5. Vocable Code

    DEFF Research Database (Denmark)

    Soon, Winnie; Cox, Geoff

    2018-01-01

    a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...

  6. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    Science.gov (United States)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  7. Syndrome-source-coding and its universal generalization. [error correcting codes for data compression

    Science.gov (United States)

    Ancheta, T. C., Jr.

    1976-01-01

    A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.

  8. Performance and Complexity of Tunable Sparse Network Coding with Gradual Growing Tuning Functions over Wireless Networks

    DEFF Research Database (Denmark)

    Garrido, Pablo; Sørensen, Chres Wiant; Roetter, Daniel Enrique Lucani

    2016-01-01

    Random Linear Network Coding (RLNC) has been shown to be a technique with several benefits, in particular when applied over wireless mesh networks, since it provides robustness against packet losses. On the other hand, Tunable Sparse Network Coding (TSNC) is a promising concept, which leverages...... a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and computational cost. In addition, it would be difficult to implement, due to the feedback delay. In this work...

  9. SIEX: a correlated code for the prediction of liquid metal fast breeder reactor (LMFBR) fuel thermal performance

    International Nuclear Information System (INIS)

    Dutt, D.S.; Baker, R.B.

    1975-06-01

    The SIEX computer program is a steady state heat transfer code developed to provide thermal performance calculations for a mixed-oxide fuel element in a fast neutron environment. Fuel restructuring, fuel-cladding heat conduction and fission gas release are modeled to provide assessment of the temperature. Modeling emphasis has been placed on correlations to measurable quantities from EBR-II irradiation tests and the inclusion of these correlations in a physically based computational scheme. SIEX is completely modular in construction allowing the user options for material properties and correlated models. Required code input is limited to geometric and environmental parameters, with a ''consistent'' set of material properties and correlated models provided by the code. 24 references. (U.S.)

  10. Application of the coupled code Athlet-Quabox/Cubbox for the extreme scenarios of the OECD/NRC BWR turbine trip benchmark and its performance on multi-processor computers

    International Nuclear Information System (INIS)

    Langenbuch, S.; Schmidt, K.D.; Velkov, K.

    2003-01-01

    The OECD/NRC BWR Turbine Trip (TT) Benchmark is investigated to perform code-to-code comparison of coupled codes including a comparison to measured data which are available from turbine trip experiments at Peach Bottom 2. This Benchmark problem for a BWR over-pressure transient represents a challenging application of coupled codes which integrate 3-dimensional neutron kinetics into thermal-hydraulic system codes for best-estimate simulation of plant transients. This transient represents a typical application of coupled codes which are usually performed on powerful workstations using a single CPU. Nowadays, the availability of multi-CPUs is much easier. Indeed, powerful workstations already provide 4 to 8 CPU, computer centers give access to multi-processor systems with numbers of CPUs in the order of 16 up to several 100. Therefore, the performance of the coupled code Athlet-Quabox/Cubbox on multi-processor systems is studied. Different cases of application lead to changing requirements of the code efficiency, because the amount of computer time spent in different parts of the code is varying. This paper presents main results of the coupled code Athlet-Quabox/Cubbox for the extreme scenarios of the BWR TT Benchmark together with evaluations of the code performance on multi-processor computers. (authors)

  11. Performance analysis of linear codes under maximum-likelihood decoding: a tutorial

    National Research Council Canada - National Science Library

    Sason, Igal; Shamai, Shlomo

    2006-01-01

    ..., upper and lower bounds on the error probability of linear codes under ML decoding are surveyed and applied to codes and ensembles of codes on graphs. For upper bounds, we discuss various bounds where focus is put on Gallager bounding techniques and their relation to a variety of other reported bounds. Within the class of lower bounds, we ad...

  12. Modified BTC Algorithm for Audio Signal Coding

    Directory of Open Access Journals (Sweden)

    TOMIC, S.

    2016-11-01

    Full Text Available This paper describes modification of a well-known image coding algorithm, named Block Truncation Coding (BTC and its application in audio signal coding. BTC algorithm was originally designed for black and white image coding. Since black and white images and audio signals have different statistical characteristics, the application of this image coding algorithm to audio signal presents a novelty and a challenge. Several implementation modifications are described in this paper, while the original idea of the algorithm is preserved. The main modifications are performed in the area of signal quantization, by designing more adequate quantizers for audio signal processing. The result is a novel audio coding algorithm, whose performance is presented and analyzed in this research. The performance analysis indicates that this novel algorithm can be successfully applied in audio signal coding.

  13. Comparison of Analytical and Measured Performance Results on Network Coding in IEEE 802.11 Ad-Hoc Networks

    DEFF Research Database (Denmark)

    Zhao, Fang; Médard, Muriel; Hundebøll, Martin

    2012-01-01

    CATWOMAN that can run on standard WiFi hardware. We present an analytical model to evaluate the performance of COPE in simple networks, and our results show the excellent predictive quality of this model. By closely examining the performance in two simple topologies, we observe that the coding gain results...

  14. Transient and fuel performance analysis with VTT's coupled code system

    International Nuclear Information System (INIS)

    Daavittila, A.; Hamalainen, A.; Raty, H.

    2005-01-01

    VTT (technical research center of Finland) maintains and further develops a comprehensive safety analysis code system ranging from the basic neutronic libraries to 3-dimensional transient analysis and fuel behaviour analysis codes. The code system is based on various types of couplings between the relevant physical phenomena. The main tools for analyses of reactor transients are presently the 3-dimensional reactor dynamics code HEXTRAN for cores with a hexagonal fuel assembly geometry and TRAB-3D for cores with a quadratic fuel assembly geometry. HEXTRAN has been applied to safety analyses of VVER type reactors since early 1990's. TRAB-3D is the latest addition to the code system, and has been applied to BWR and PWR analyses in recent years. In this paper it is shown that TRAB-3D has calculated accurately the power distribution during the Olkiluoto-1 load rejection test. The results from the 3-dimensional analysis can be used as boundary conditions for more detailed fuel rod analysis. For this purpose a general flow model GENFLO, developed at VTT, has been coupled with USNRC's FRAPTRAN fuel accident behaviour model. The example case for FRAPTRAN-GENFLO is for an ATWS at a BWR plant. The basis for the analysis is an oscillation incident in the Olkiluoto-1 BWR during reactor startup on February 22, 1987. It is shown that the new coupled code FRAPTRAN/GENFLO is quite a promising tool that can handle flow situations and give a detailed analysis of reactor transients

  15. Multimodal Code-pairing and Switching of Visual-verbal Texts in Selected Nigerian Stand-up Comedy Performances

    Directory of Open Access Journals (Sweden)

    Mufutau Temitayo Lamidi

    2017-10-01

    Full Text Available This study examines multimodal pairing and switching of codes as features of visual-verbal texts and how they are used as strategies for evoking humour in Nigerian stand-up comedy performances, an area that has not attracted much scholarly attention. Data were obtained through purposive random sampling and analysed through content analysis. Six DVDs (Vols. 3, 7, 8 & 28 of Nite of a Thousand Laughs; Vols. 27 & 28 of AY LIVE Happiness Edition and 6 video clips (downloaded from the Internet all totalling 8 hours and 20 minutes of play were selected for the study. Incongruity, Layered Meaning and Visual Semiotics serve as theoretical framework. The study identifies different multimodal strategies such as code-pairing and integration in different forms of oral codes, gestures, costume, and symbols; intertextuality; incongruous translations/ deliberate misinterpretations; and mimicry, quotes and paralanguage used to elicit laughter. It suggests that these features are also useful in other speech-making events, and concludes that the integration of codes and modes of communication serves as an effective strategy in evoking humour and laughter in stand-up comedy

  16. Performance, Accuracy and Efficiency Evaluation of a Three-Dimensional Whole-Core Neutron Transport Code AGENT

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Hursin, Mathieu; Satvat, Nader; Hopkins, John; Xiao, Shanjie; Gert, Godfree

    2006-01-01

    as three-dimensional maps of the energy-dependent mesh-wise scalar flux, reaction rate and power peaking factor. The AGENT code is in a process of an extensive and rigorous testing for various reactor types through the evaluation of its performance (ability to model any reactor geometry type), accuracy (in comparison with Monte Carlo results and other deterministic solutions or experimental data) and efficiency (computational speed that is directly determined by the mathematical and numerical solution to the iterative approach of the flux convergence). This paper outlines main aspects of the theories unified into the AGENT code formalism and demonstrates the code performance, accuracy and efficiency using few representative examples. The AGENT code is a main part of the so called virtual reactor system developed for numerical simulations of research reactors. Few illustrative examples of the web interface are briefly outlined. (authors)

  17. Conservative performance analysis of a PWR nuclear fuel rod using the FRAPCON code

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de; Sabundjian, Gaiane, E-mail: fabio@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this paper, some of the preliminary results of the sensitivity and conservative analysis of a hypothetical pressurized water reactor fuel rod are presented, using the FRAPCON code as a basic and preparation tool for the future transient analysis, which will be carried out by the FRAPTRAN code. Emphasis is given to the evaluation of the cladding behavior, since it is one of the critical containment barriers of the fission products, generated during fuel irradiation. Sensitivity analyses were performed by the variation of the values of some parameters, which were mainly related with thermal cycle conditions, and taking into account an intermediate value between the realistic and conservative conditions for the linear heat generation rate parameter, given in literature. Time lengths were taken from typical nuclear power plant operational cycle, adjusted to the obtention of a chosen burnup. Curves of fuel and cladding temperatures, and also for their mechanical and oxidation behavior, as a function of the reactor operation's time, are presented for each one of the nodes considered, over the nuclear fuel rod. Analyzing the curves, it was possible to observe the influence of the thermal cycle on the fuel rod performance, in this preliminary step for the accident/transient analysis. (author)

  18. Stego Keys Performance on Feature Based Coding Method in Text Domain

    Directory of Open Access Journals (Sweden)

    Din Roshidi

    2017-01-01

    Full Text Available A main critical factor on embedding process in any text steganography method is a key used known as stego key. This factor will be influenced the success of the embedding process of text steganography method to hide a message from third party or any adversary. One of the important aspects on embedding process in text steganography method is the fitness performance of the stego key. Three parameters of the fitness performance of the stego key have been identified such as capacity ratio, embedded fitness ratio and saving space ratio. It is because a better as capacity ratio, embedded fitness ratio and saving space ratio offers of any stego key; a more message can be hidden. Therefore, main objective of this paper is to analyze three features coding based namely CALP, VERT and QUAD of stego keys in text steganography on their capacity ratio, embedded fitness ratio and saving space ratio. It is found that CALP method give a good effort performance compared to VERT and QUAD methods.

  19. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  20. Confidence building on the total system performance assessment code, MASCOT-K for permanent disposal of HLW in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y. S.; Kim, S. G.; Kang, C. H

    2002-12-01

    To perform Total System Performance Assessment(TSPA) of a potential HLW repository, it is necessary to develop the TSPA code. KAERI has developed the one-dimensional PSA code MASCOT-K since 1997 and verified special modules dedicated for the dissolution of spent nuclear fuel. In the second R and D phase, MASCOT-K is once again verified as a part of the confidence building for TSPA. The AMBER code based on the totally different mathematical approach, compartment theory is used together with MASCOT-K to assess the annual individual doses for given K- and Q- scenarios. Results indicate that both AMBER and MASCOT-K simulate the annual individual doses to a potential biosphere. And the MASCOT-K is more flexible to describe the natural barrier such as a fracture for sensitivity studies. In the third R and D phase, MASCOT-K will be actively used to check whether the proposed KAERI reference disposal concept is solid or not.

  1. Confidence building on the total system performance assessment code, MASCOT-K for permanent disposal of HLW in Korea

    International Nuclear Information System (INIS)

    Hwang, Y. S.; Kim, S. G.; Kang, C. H.

    2002-12-01

    To perform Total System Performance Assessment(TSPA) of a potential HLW repository, it is necessary to develop the TSPA code. KAERI has developed the one-dimensional PSA code MASCOT-K since 1997 and verified special modules dedicated for the dissolution of spent nuclear fuel. In the second R and D phase, MASCOT-K is once again verified as a part of the confidence building for TSPA. The AMBER code based on the totally different mathematical approach, compartment theory is used together with MASCOT-K to assess the annual individual doses for given K- and Q- scenarios. Results indicate that both AMBER and MASCOT-K simulate the annual individual doses to a potential biosphere. And the MASCOT-K is more flexible to describe the natural barrier such as a fracture for sensitivity studies. In the third R and D phase, MASCOT-K will be actively used to check whether the proposed KAERI reference disposal concept is solid or not

  2. Construction and performance research on variable-length codes for multirate OCDMA multimedia networks

    Science.gov (United States)

    Li, Chuan-qi; Yang, Meng-jie; Luo, De-jun; Lu, Ye; Kong, Yi-pu; Zhang, Dong-chuang

    2014-09-01

    A new kind of variable-length codes with good correlation properties for the multirate asynchronous optical code division multiple access (OCDMA) multimedia networks is proposed, called non-repetition interval (NRI) codes. The NRI codes can be constructed by structuring the interval-sets with no repetition, and the code length depends on the number of users and the code weight. According to the structural characteristics of NRI codes, the formula of bit error rate (BER) is derived. Compared with other variable-length codes, the NRI codes have lower BER. A multirate OCDMA multimedia simulation system is designed and built, the longer codes are assigned to the users who need slow speed, while the shorter codes are assigned to the users who need high speed. It can be obtained by analyzing the eye diagram that the user with slower speed has lower BER, and the conclusion is the same as the actual demand in multimedia data transport.

  3. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    International Nuclear Information System (INIS)

    Hall, D.G.; Watkins, J.C.

    1987-01-01

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In addition to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use

  4. Assessment of the prediction capability of the TRANSURANUS fuel performance code on the basis of power ramp tested LWR fuel rods

    International Nuclear Information System (INIS)

    Pastore, G.; Botazzoli, P.; Di Marcello, V.; Luzzi, L.

    2009-01-01

    The present work is aimed at assessing the prediction capability of the TRANSURANUS code for the performance analysis of LWR fuel rods under power ramp conditions. The analysis refers to all the power ramp tested fuel rods belonging to the Studsvik PWR Super-Ramp and BWR Inter-Ramp Irradiation Projects, and is focused on some integral quantities (i.e., burn-up, fission gas release, cladding creep-down and failure due to pellet cladding interaction) through a systematic comparison between the code predictions and the experimental data. To this end, a suitable setup of the code is established on the basis of previous works. Besides, with reference to literature indications, a sensitivity study is carried out, which considers the 'ITU model' for fission gas burst release and modifications in the treatment of the fuel solid swelling and the cladding stress corrosion cracking. The performed analyses allow to individuate some issues, which could be useful for the future development of the code. Keywords: Light Water Reactors, Fuel Rod Performance, Power Ramps, Fission Gas Burst Release, Fuel Swelling, Pellet Cladding Interaction, Stress Corrosion Cracking

  5. Adaptive distributed source coding.

    Science.gov (United States)

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  6. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    Energy Technology Data Exchange (ETDEWEB)

    Camous, F.; Jacq, F.; Chatelard, P. [IPSN/DRS/SEMAR CE-Cadarache, St Paul Lez Durance (France)] [and others

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  7. Blahut-Arimoto algorithm and code design for action-dependent source coding problems

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Simeone, Osvaldo; Popovski, Petar

    2013-01-01

    The source coding problem with action-dependent side information at the decoder has recently been introduced to model data acquisition in resource-constrained systems. In this paper, an efficient Blahut-Arimoto-type algorithm for the numerical computation of the rate-distortion-cost function...... for this problem is proposed. Moreover, a simplified two-stage code structure based on multiplexing is put forth, whereby the first stage encodes the actions and the second stage is composed of an array of classical Wyner-Ziv codes, one for each action. Leveraging this structure, specific coding/decoding...... strategies are designed based on LDGM codes and message passing. Through numerical examples, the proposed code design is shown to achieve performance close to the rate-distortion-cost function....

  8. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  9. The Analysis and the Performance Simulation of the Capacity of Bit-interleaved Coded Modulation System

    Directory of Open Access Journals (Sweden)

    Hongwei ZHAO

    2014-09-01

    Full Text Available In this paper, the capacity of the BICM system over AWGN channels is first analyzed; the curves of BICM capacity versus SNR are also got by the Monte-Carlo simulations===?=== and compared with the curves of the CM capacity. Based on the analysis results, we simulate the error performances of BICM system with LDPC codes. Simulation results show that the capacity of BICM system with LDPC codes is enormously influenced by the mapping methods. Given a certain modulation method, the BICM system can obtain about 2-3 dB gain with Gray mapping compared with Non-Gray mapping. Meanwhile, the simulation results also demonstrate the correctness of the theory analysis.

  10. Inter-comparison of Computer Codes for TRISO-based Fuel Micro-Modeling and Performance Assessment

    International Nuclear Information System (INIS)

    Boer, Brian; Keun Jo, Chang; Wu, Wen; Ougouag, Abderrafi M.; McEachren, Donald; Venneri, Francesco

    2010-01-01

    The Next Generation Nuclear Plant (NGNP), the Deep Burn Pebble Bed Reactor (DB-PBR) and the Deep Burn Prismatic Block Reactor (DB-PMR) are all based on fuels that use TRISO particles as their fundamental constituent. The TRISO particle properties include very high durability in radiation environments, hence the designs reliance on the TRISO to form the principal barrier to radioactive materials release. This durability forms the basis for the selection of this fuel type for applications such as Deep Bun (DB), which require exposures up to four times those expected for light water reactors. It follows that the study and prediction of the durability of TRISO particles must be carried as part of the safety and overall performance characterization of all the designs mentioned above. Such evaluations have been carried out independently by the performers of the DB project using independently developed codes. These codes, PASTA, PISA and COPA, incorporate models for stress analysis on the various layers of the TRISO particle (and of the intervening matrix material for some of them), model for fission products release and migration then accumulation within the SiC layer of the TRISO particle, just next to the layer, models for free oxygen and CO formation and migration to the same location, models for temperature field modeling within the various layers of the TRISO particle and models for the prediction of failure rates. All these models may be either internal to the code or external. This large number of models and the possibility of different constitutive data and model formulations and the possibility of a variety of solution techniques makes it highly unlikely that the model would give identical results in the modeling of identical situations. The purpose of this paper is to present the results of an inter-comparison between the codes and to identify areas of agreement and areas that need reconciliation. The inter-comparison has been carried out by the cooperating

  11. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    International Nuclear Information System (INIS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-01-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  12. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Science.gov (United States)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  13. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac (Mexico); Vega-Carrillo, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica. Av. Ramon Lopez Velarde 801. Col. Centro Zacatecas, Zac., Mexico. and Unidad Academica de Estudios Nucleares. C. Cip (Mexico)

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in

  14. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  15. Distributed Video Coding for Multiview and Video-plus-depth Coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo

    The interest in Distributed Video Coding (DVC) systems has grown considerably in the academic world in recent years. With DVC the correlation between frames is exploited at the decoder (joint decoding). The encoder codes the frame independently, performing relatively simple operations. Therefore......, with DVC the complexity is shifted from encoder to decoder, making the coding architecture a viable solution for encoders with limited resources. DVC may empower new applications which can benefit from this reversed coding architecture. Multiview Distributed Video Coding (M-DVC) is the application...... of the to-be-decoded frame. Another key element is the Residual estimation, indicating the reliability of the SI, which is used to calculate the parameters of the correlation noise model between SI and original frame. In this thesis new methods for Inter-camera SI generation are analyzed in the Stereo...

  16. Low Complexity List Decoding for Polar Codes with Multiple CRC Codes

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2017-04-01

    Full Text Available Polar codes are the first family of error correcting codes that provably achieve the capacity of symmetric binary-input discrete memoryless channels with low complexity. Since the development of polar codes, there have been many studies to improve their finite-length performance. As a result, polar codes are now adopted as a channel code for the control channel of 5G new radio of the 3rd generation partnership project. However, the decoder implementation is one of the big practical problems and low complexity decoding has been studied. This paper addresses a low complexity successive cancellation list decoding for polar codes utilizing multiple cyclic redundancy check (CRC codes. While some research uses multiple CRC codes to reduce memory and time complexity, we consider the operational complexity of decoding, and reduce it by optimizing CRC positions in combination with a modified decoding operation. Resultingly, the proposed scheme obtains not only complexity reduction from early stopping of decoding, but also additional reduction from the reduced number of decoding paths.

  17. Graphical User Interface for the NASA FLOPS Aircraft Performance and Sizing Code

    Science.gov (United States)

    Lavelle, Thomas M.; Curlett, Brian P.

    1994-01-01

    XFLOPS is an X-Windows/Motif graphical user interface for the aircraft performance and sizing code FLOPS. This new interface simplifies entering data and analyzing results, thereby reducing analysis time and errors. Data entry is simpler because input windows are used for each of the FLOPS namelists. These windows contain fields to input the variable's values along with help information describing the variable's function. Analyzing results is simpler because output data are displayed rapidly. This is accomplished in two ways. First, because the output file has been indexed, users can view particular sections with the click of a mouse button. Second, because menu picks have been created, users can plot engine and aircraft performance data. In addition, XFLOPS has a built-in help system and complete on-line documentation for FLOPS.

  18. Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Palombo, Adolfo

    2014-01-01

    Highlights: • A new dynamic simulation code for building energy performance analysis is presented. • The thermal behavior of each building element is modeled by a thermal RC network. • The physical models implemented in the code are illustrated. • The code was validated by the BESTEST standard procedure. • We investigate residential buildings, offices and stores in different climates. - Abstract: A novel dynamic simulation model for the building envelope energy performance analysis is presented in this paper. This tool helps the investigation of many new building technologies to increase the system energy efficiency and it can be carried out for scientific research purposes. In addition to the yearly heating and cooling load and energy demand, the obtained output is the dynamic temperature profile of indoor air and surfaces and the dynamic profile of the thermal fluxes through the building elements. The presented simulation model is also validated through the BESTEST standard procedure. Several new case studies are developed for assessing, through the presented code, the energy performance of three different building envelopes with several different weather conditions. In particular, dwelling and commercial buildings are analysed. Light and heavyweight envelopes as well as different glazed surfaces areas have been used for every case study. With the achieved results interesting design and operating guidelines can be obtained. Such data have been also compared vs. those calculated by TRNSYS and EnergyPlus. The detected deviation of the obtained results vs. those of such standard tools are almost always lower than 10%

  19. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  20. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    Toebbe, H.

    1990-05-01

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  1. Design of convolutional tornado code

    Science.gov (United States)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  2. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  3. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    Science.gov (United States)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  4. Parallelization of Subchannel Analysis Code MATRA

    International Nuclear Information System (INIS)

    Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk

    2014-01-01

    A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems

  5. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  6. Opportunistic Adaptive Transmission for Network Coding Using Nonbinary LDPC Codes

    Directory of Open Access Journals (Sweden)

    Cocco Giuseppe

    2010-01-01

    Full Text Available Network coding allows to exploit spatial diversity naturally present in mobile wireless networks and can be seen as an example of cooperative communication at the link layer and above. Such promising technique needs to rely on a suitable physical layer in order to achieve its best performance. In this paper, we present an opportunistic packet scheduling method based on physical layer considerations. We extend channel adaptation proposed for the broadcast phase of asymmetric two-way bidirectional relaying to a generic number of sinks and apply it to a network context. The method consists of adapting the information rate for each receiving node according to its channel status and independently of the other nodes. In this way, a higher network throughput can be achieved at the expense of a slightly higher complexity at the transmitter. This configuration allows to perform rate adaptation while fully preserving the benefits of channel and network coding. We carry out an information theoretical analysis of such approach and of that typically used in network coding. Numerical results based on nonbinary LDPC codes confirm the effectiveness of our approach with respect to previously proposed opportunistic scheduling techniques.

  7. Comparison of the ENIGMA code with experimental data on thermal performance, stable fission gas and iodine release at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    The predictions of the ENIGMA code have been compared with data from high burn-up fuel experiments from the Halden and RISO reactors. The experiments modelled were IFA-504 and IFA-558 from Halden and the test II-5 from the RISO power burnup test series. The code has well modelled the fuel thermal performance and has provided a good measure of iodine release from pre-interlinked fuel. After interlinkage the iodine predictions remain a good fit for one experiment, but there is significant overprediction for a second experiment (IFA-558). Stable fission gas release is also well modelled and the predictions are within the expected uncertainly band throughout the burn-up range. This report presents code predictions for stable fission gas release to 40GWd/tU, iodine release measurements to 50GWd/tU and thermal performance (fuel centre temperature) to 55GWd/tU. Fuel ratings of up to 38kW/m were modelled at the high burn-up levels. The code is shown to accurately or conservatively predict all these parameters. (author). 1 ref., 6 figs.

  8. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation.

  9. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    International Nuclear Information System (INIS)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation

  10. Building codes : obstacle or opportunity?

    Science.gov (United States)

    Alberto Goetzl; David B. McKeever

    1999-01-01

    Building codes are critically important in the use of wood products for construction. The codes contain regulations that are prescriptive or performance related for various kinds of buildings and construction types. A prescriptive standard might dictate that a particular type of material be used in a given application. A performance standard requires that a particular...

  11. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  12. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  13. Network Coding Fundamentals and Applications

    CERN Document Server

    Medard, Muriel

    2011-01-01

    Network coding is a field of information and coding theory and is a method of attaining maximum information flow in a network. This book is an ideal introduction for the communications and network engineer, working in research and development, who needs an intuitive introduction to network coding and to the increased performance and reliability it offers in many applications. This book is an ideal introduction for the research and development communications and network engineer who needs an intuitive introduction to the theory and wishes to understand the increased performance and reliabil

  14. Performance Analysis of an Astrophysical Simulation Code on the Intel Xeon Phi Architecture

    OpenAIRE

    Noormofidi, Vahid; Atlas, Susan R.; Duan, Huaiyu

    2015-01-01

    We have developed the astrophysical simulation code XFLAT to study neutrino oscillations in supernovae. XFLAT is designed to utilize multiple levels of parallelism through MPI, OpenMP, and SIMD instructions (vectorization). It can run on both CPU and Xeon Phi co-processors based on the Intel Many Integrated Core Architecture (MIC). We analyze the performance of XFLAT on configurations with CPU only, Xeon Phi only and both CPU and Xeon Phi. We also investigate the impact of I/O and the multi-n...

  15. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  16. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    Science.gov (United States)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present

  17. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    International Nuclear Information System (INIS)

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-01-01

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  18. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, Jan Oliver, E-mail: jan.oliver.oelerich@physik.uni-marburg.de; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D.; Volz, Kerstin

    2017-06-15

    Highlights: • We present STEMsalabim, a modern implementation of the multislice algorithm for simulation of STEM images. • Our package is highly parallelizable on high-performance computing clusters, combining shared and distributed memory architectures. • With STEMsalabim, computationally and memory expensive STEM image simulations can be carried out within reasonable time. - Abstract: We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space.

  19. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  20. Simulating the performance of a distance-3 surface code in a linear ion trap

    Science.gov (United States)

    Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.

    2018-04-01

    We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.

  1. Introduction of SCIENCE code package

    International Nuclear Information System (INIS)

    Lu Haoliang; Li Jinggang; Zhu Ya'nan; Bai Ning

    2012-01-01

    The SCIENCE code package is a set of neutronics tools based on 2D assembly calculations and 3D core calculations. It is made up of APOLLO2F, SMART and SQUALE and used to perform the nuclear design and loading pattern analysis for the reactors on operation or under construction of China Guangdong Nuclear Power Group. The purpose of paper is to briefly present the physical and numerical models used in each computation codes of the SCIENCE code pack age, including the description of the general structure of the code package, the coupling relationship of APOLLO2-F transport lattice code and SMART core nodal code, and the SQUALE code used for processing the core maps. (authors)

  2. Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues

    Science.gov (United States)

    Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.

    Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.

  3. Parallelization of 2-D lattice Boltzmann codes

    International Nuclear Information System (INIS)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)

  4. Parallelization of 2-D lattice Boltzmann codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).

  5. Performance Assessment and analysis of national building codes with fire safety in all wards of a hospital

    Directory of Open Access Journals (Sweden)

    M. Mahdinia

    2009-04-01

    Full Text Available Background and aimsAIDS as a re-emergent disease and Viral hepatitis (B and C as one of thBackground and objective: Fire safety is an important problem in hospitals. Movement less, lack of awareness and special situation of residents are the reasons of this subject. In more countries such as Iran, fire protection regulations have compiled within the framework of national building codes. Current building codes don't create sufficient safety for patient in the hospitals in different situations and more of the advanced countries in the world effort to establish building code, base  on performance. This study to be accomplished with this goal that determination of fire risk level in the wards of a hospital and survey the efficiency of the national building codes. Methodsfire risk assesses is done, using "engineering fire risk assessment method" with the checklist for Data gathering. In this manner, risk calculate in all compartments and in the next  stage for survey the effect of building codes, with this supposition that all compartment is  conforming to building code requirement, risk level calculate in two situation.Resultsthe results of present study reveals that, risk level in all wards is more than one and even though risk less than one is acceptable, consequently minimum of safely situations didn't  produce in most wards. The results show the national building code in the different conditions  don't have appropriate efficient for creation of suitable safety. Conclusionin order to access to a fire safety design with sufficient efficiency, suitable selection is use of risk assessment based on, design methods.

  6. Design and performance analysis for several new classes of codes for optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA communication systems

    Science.gov (United States)

    Kostic, Zoran; Titlebaum, Edward L.

    1994-08-01

    New families of spread-spectrum codes are constructed, that are applicable to optical synchronous code-division multiple-access (CDMA) communications as well as to arbitrary-medium time-hopping synchronous CDMA communications. Proposed constructions are based on the mappings from integer sequences into binary sequences. We use the concept of number theoretic quadratic congruences and a subset of Reed-Solomon codes similar to the one utilized in the Welch-Costas frequency-hop (FH) patterns. The properties of the codes are as good as or better than the properties of existing codes for synchronous CDMA communications: Both the number of code-sequences within a single code family and the number of code families with good properties are significantly increased when compared to the known code designs. Possible applications are presented. To evaluate the performance of the proposed codes, a new class of hit arrays called cyclical hit arrays is recalled, which give insight into the previously unknown properties of the few classes of number theoretic FH patterns. Cyclical hit arrays and the proposed mappings are used to determine the exact probability distribution functions of random variables that represent interference between users of a time-hopping or optical CDMA system. Expressions for the bit error probability in multi-user CDMA systems are derived as a function of the number of simultaneous CDMA system users, the length of signature sequences and the threshold of a matched filter detector. The performance results are compared with the results for some previously known codes.

  7. Performance Analysis of a Decoding Algorithm for Algebraic Geometry Codes

    DEFF Research Database (Denmark)

    Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund; Høholdt, Tom

    1998-01-01

    We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...

  8. Differentially Encoded LDPC Codes—Part II: General Case and Code Optimization

    Directory of Open Access Journals (Sweden)

    Jing Li (Tiffany

    2008-04-01

    Full Text Available This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC codes, especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code, however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently. Through extrinsic information transfer (EXIT analysis and a modified “convergence-constraint” density evolution (DE method developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection (or a recursive inner code in general, and demonstrate how to optimize these LDPC codes. The convergence-constraint method provides a useful extension to the conventional “threshold-constraint” method, and can match an outer LDPC code to any given inner code with the imperfectness of the inner decoder taken into consideration.

  9. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  10. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  11. Performance Theories for Sentence Coding: Some Quantitative Models

    Science.gov (United States)

    Aaronson, Doris; And Others

    1977-01-01

    This study deals with the patterns of word-by-word reading times over a sentence when the subject must code the linguistic information sufficiently for immediate verbatim recall. A class of quantitative models is considered that would account for reading times at phrase breaks. (Author/RM)

  12. Preliminary investigation study of code of developed country for developing Korean fuel cycle code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2012-01-01

    In order to develop Korean fuel cycle code, the analyses has been performed with the fuel cycle codes which are used in advanced country. Also, recommendations were proposed for future development. The fuel cycle codes are AS FLOOWS: VISTA which has been developed by IAEA, DANESS code which developed by ANL and LISTO, and VISION developed by INL for the Advanced Fuel Cycle Initiative (AFCI) system analysis. The recommended items were proposed for software, program scheme, material flow model, isotope decay model, environmental impact analysis model, and economics analysis model. The described things will be used for development of Korean nuclear fuel cycle code in future

  13. Spread-spectrum communication using binary spatiotemporal chaotic codes

    International Nuclear Information System (INIS)

    Wang Xingang; Zhan Meng; Gong Xiaofeng; Lai, C.H.; Lai, Y.-C.

    2005-01-01

    We propose a scheme to generate binary code for baseband spread-spectrum communication by using a chain of coupled chaotic maps. We compare the performances of this type of spatiotemporal chaotic code with those of a conventional code used frequently in digital communication, the Gold code, and demonstrate that our code is comparable or even superior to the Gold code in several key aspects: security, bit error rate, code generation speed, and the number of possible code sequences. As the field of communicating with chaos faces doubts in terms of performance comparison with conventional digital communication schemes, our work gives a clear message that communicating with chaos can be advantageous and it deserves further attention from the nonlinear science community

  14. Interleaved Product LDPC Codes

    OpenAIRE

    Baldi, Marco; Cancellieri, Giovanni; Chiaraluce, Franco

    2011-01-01

    Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.

  15. The data requirements for the verification and validation of a fuel performance code - the transuranus perspective

    International Nuclear Information System (INIS)

    Schubert, A.; Di Marcello, V.; Rondinella, V.; Van De Laar, J.; Van Uffelen, P.

    2013-01-01

    In general, the verification and validation (V and V) of a fuel performance code like TRANSURANUS consists of three basic steps: a) verifying the correctness and numerical stability of the sub-models; b) comparing the sub-models with experimental data; c) comparing the results of the integral fuel performance code with experimental data Only the second and third steps of the V and V rely on experimental information. This scheme can be further detailed according to the physical origin of the data: on one hand, in-reactor ('in-pile') experimental data are generated in the course of the irradiation; on the other hand ex-reactor ('out-of-pile') experimental data are obtained for instance from various postirradiation examinations (PIE) or dedicated experiments with fresh samples. For both categories, we will first discuss the V and V of sub-models of TRANSURANUS related to separate aspects of the fuel behaviour: this includes the radial variation of the composition and fissile isotopes, the thermal properties of the fuel (e.g. thermal conductivity, melting temperature, etc.), the mechanical properties of fuel and cladding (e.g. elastic constants, creep properties), as well as the models for the fission product behaviour. Secondly, the integral code verification will be addressed as it treats various aspects of the fuel behaviour, including the geometrical changes in the fuel and the gas pressure and composition of the free volume in the rod. (authors)

  16. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....

  17. Insurance billing and coding.

    Science.gov (United States)

    Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H

    2008-07-01

    The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.

  18. Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance

    International Nuclear Information System (INIS)

    Baldwin, C.; Brown, P.N.; Falgout, R.; Graziani, F.; Jones, J.

    1999-01-01

    Computer codes containing both hydrodynamics and radiation play a central role in simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial aspect of these codes is that they require an implicit solution of the radiation diffusion equations. The authors present in this paper the results of a comparison of five different linear solvers on a range of complex radiation and radiation-hydrodynamics problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These problems involve shock propagation, opacities varying over 5--6 orders of magnitude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian) meshes. They perform a problem size scalability study by comparing linear solver performance over a wide range of problem sizes from 1,000 to 100,000 zones. The fundamental question they address in this paper is: Is it more efficient to invert the matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In addition, what is the answer to this question as a function of problem size and is the answer problem dependent? They find that the diagonally scaled conjugate gradient method performs poorly with the growth of problem size, increasing in both iteration count and overall CPU time with the size of the problem and also increasing for larger time steps. For all problems considered, the multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately independent of problem size and problem time step). For pure radiation flow problems (i.e., no hydrodynamics), they see speedups in CPU time of factors of ∼15--30 for the largest problems, when comparing the multigrid solvers relative to diagonal scaled conjugate gradient

  19. The HELIOS-2 lattice physics code

    International Nuclear Information System (INIS)

    Wemple, C.A.; Gheorghiu, H-N.M.; Stamm'ler, R.J.J.; Villarino, E.A.

    2008-01-01

    Major advances have been made in the HELIOS code, resulting in the impending release of a new version, HELIOS-2. The new code includes a method of characteristics (MOC) transport solver to supplement the existing collision probabilities (CP) solver. A 177-group, ENDF/B-VII nuclear data library has been developed for inclusion with the new code package. Computational tests have been performed to verify the performance of the MOC solver against the CP solver, and validation testing against computational and measured benchmarks is underway. Results to-date of the verification and validation testing are presented, demonstrating the excellent performance of the new transport solver and nuclear data library. (Author)

  20. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  1. Protograph-Based Raptor-Like Codes

    Science.gov (United States)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  2. Turbo coding, turbo equalisation and space-time coding for transmission over fading channels

    CERN Document Server

    Hanzo, L; Yeap, B

    2002-01-01

    Against the backdrop of the emerging 3G wireless personal communications standards and broadband access network standard proposals, this volume covers a range of coding and transmission aspects for transmission over fading wireless channels. It presents the most important classic channel coding issues and also the exciting advances of the last decade, such as turbo coding, turbo equalisation and space-time coding. It endeavours to be the first book with explicit emphasis on channel coding for transmission over wireless channels. Divided into 4 parts: Part 1 - explains the necessary background for novices. It aims to be both an easy reading text book and a deep research monograph. Part 2 - provides detailed coverage of turbo conventional and turbo block coding considering the known decoding algorithms and their performance over Gaussian as well as narrowband and wideband fading channels. Part 3 - comprehensively discusses both space-time block and space-time trellis coding for the first time in literature. Par...

  3. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  4. Studies on DANESS Code Modeling

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2009-09-01

    The DANESS code modeling study has been performed. DANESS code is widely used in a dynamic fuel cycle analysis. Korea Atomic Energy Research Institute (KAERI) has used the DANESS code for the Korean national nuclear fuel cycle scenario analysis. In this report, the important models such as Energy-demand scenario model, New Reactor Capacity Decision Model, Reactor and Fuel Cycle Facility History Model, and Fuel Cycle Model are investigated. And, some models in the interface module are refined and inserted for Korean nuclear fuel cycle model. Some application studies have also been performed for GNEP cases and for US fast reactor scenarios with various conversion ratios

  5. Iterative demodulation and decoding of coded non-square QAM

    Science.gov (United States)

    Li, L.; Divsalar, D.; Dolinar, S.

    2003-01-01

    Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM performs 0.5 dB better than standard 8QAM and 0.7 dB better than 8PSK at BER= 10(sup -5), when the FEC code is the (15, 11) Hamming code concatenated with a rate-1 accumulator code, while coded NS-32QAM performs 0.25 dB better than standard 32QAM.

  6. Error-correction coding for digital communications

    Science.gov (United States)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  7. The Aesthetics of Coding

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik

    2007-01-01

    Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...

  8. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system

    Science.gov (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah

    2016-10-01

    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  9. Dynamic benchmarking of simulation codes

    International Nuclear Information System (INIS)

    Henry, R.E.; Paik, C.Y.; Hauser, G.M.

    1996-01-01

    Computer simulation of nuclear power plant response can be a full-scope control room simulator, an engineering simulator to represent the general behavior of the plant under normal and abnormal conditions, or the modeling of the plant response to conditions that would eventually lead to core damage. In any of these, the underlying foundation for their use in analysing situations, training of vendor/utility personnel, etc. is how well they represent what has been known from industrial experience, large integral experiments and separate effects tests. Typically, simulation codes are benchmarked with some of these; the level of agreement necessary being dependent upon the ultimate use of the simulation tool. However, these analytical models are computer codes, and as a result, the capabilities are continually enhanced, errors are corrected, new situations are imposed on the code that are outside of the original design basis, etc. Consequently, there is a continual need to assure that the benchmarks with important transients are preserved as the computer code evolves. Retention of this benchmarking capability is essential to develop trust in the computer code. Given the evolving world of computer codes, how is this retention of benchmarking capabilities accomplished? For the MAAP4 codes this capability is accomplished through a 'dynamic benchmarking' feature embedded in the source code. In particular, a set of dynamic benchmarks are included in the source code and these are exercised every time the archive codes are upgraded and distributed to the MAAP users. Three different types of dynamic benchmarks are used: plant transients; large integral experiments; and separate effects tests. Each of these is performed in a different manner. The first is accomplished by developing a parameter file for the plant modeled and an input deck to describe the sequence; i.e. the entire MAAP4 code is exercised. The pertinent plant data is included in the source code and the computer

  10. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  11. Validation of SCALE code package on high performance neutron shields

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Smuc, T.

    1999-01-01

    The shielding ability and other properties of new high performance neutron shielding materials from the KRAFTON series have been recently published. A comparison of the published experimental and MCNP results for the two materials of the KRAFTON series, with our own calculations has been done. Two control modules of the SCALE-4.4 code system have been used, one of them based on one dimensional radiation transport analysis (SAS1) and other based on the three dimensional Monte Carlo method (SAS3). The comparison of the calculated neutron dose equivalent rates shows a good agreement between experimental and calculated results for the KRAFTON-N2 material.. Our results indicate that the N2-M-N2 sandwich type is approximately 10% inferior as neutron shield to the KRAFTON-N2 material. All values of neutron dose equivalent obtained by SAS1 are approximately 25% lower in comparison with the SAS3 results, which indicates proportions of discrepancies introduced by one-dimensional geometry approximation.(author)

  12. One-way quantum repeaters with quantum Reed-Solomon codes

    Science.gov (United States)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-05-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.

  13. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  14. Implications of Sepedi/English code switching for ASR systems

    CSIR Research Space (South Africa)

    Modipa, TI

    2013-12-01

    Full Text Available . We also perform an initial acoustic analysis to determine the impact of such code switching on speech recognition performance. We nd that the frequency of code switching is unexpectedly high, and that the continuum of code switching (from unmodi ed...

  15. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  16. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors

    Science.gov (United States)

    Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.

    The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several

  17. Ultrasound strain imaging using Barker code

    Science.gov (United States)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  18. Single integrated device for optical CDMA code processing in dual-code environment.

    Science.gov (United States)

    Huang, Yue-Kai; Glesk, Ivan; Greiner, Christoph M; Iazkov, Dmitri; Mossberg, Thomas W; Wang, Ting; Prucnal, Paul R

    2007-06-11

    We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length.

  19. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....

  20. Gap Conductance model Validation in the TASS/SMR-S code using MARS code

    International Nuclear Information System (INIS)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae

    2010-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case

  1. The OpenMC Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Romano, Paul K.; Forget, Benoit

    2013-01-01

    Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.

  2. Development of three-dimensional neoclassical transport simulation code with high performance Fortran on a vector-parallel computer

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Okamoto, Masao; Nakajima, Noriyoshi; Takamaru, Hisanori

    2005-11-01

    A neoclassical transport simulation code (FORTEC-3D) applicable to three-dimensional configurations has been developed using High Performance Fortran (HPF). Adoption of computing techniques for parallelization and a hybrid simulation model to the δf Monte-Carlo method transport simulation, including non-local transport effects in three-dimensional configurations, makes it possible to simulate the dynamism of global, non-local transport phenomena with a self-consistent radial electric field within a reasonable computation time. In this paper, development of the transport code using HPF is reported. Optimization techniques in order to achieve both high vectorization and parallelization efficiency, adoption of a parallel random number generator, and also benchmark results, are shown. (author)

  3. PURDU-WINCOF: A computer code for establishing the performance of a fan-compressor unit with water ingestion

    Science.gov (United States)

    Leonardo, M.; Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A model for predicting the performance of a multi-spool axial-flow compressor with a fan during operation with water ingestion was developed incorporating several two-phase fluid flow effects as follows: (1) ingestion of water, (2) droplet interaction with blades and resulting changes in blade characteristics, (3) redistribution of water and water vapor due to centrifugal action, (4) heat and mass transfer processes, and (5) droplet size adjustment due to mass transfer and mechanical stability considerations. A computer program, called the PURDU-WINCOF code, was generated based on the model utilizing a one-dimensional formulation. An illustrative case serves to show the manner in which the code can be utilized and the nature of the results obtained.

  4. Repository seal materials performance for a SALT Repository Project 5-year code/model development plan: Draft

    International Nuclear Information System (INIS)

    1987-06-01

    This document describes an integrated laboratory testing and model development effort for the seal system for a high-level nuclear waste repository in salt. The testing and modeling efforts are designed to determine seal material response in the repository environment, to provide models of seal system components for performance assessment, and to assist in the development of seal system designs. A code/model development and performance analysis program will be performed to predict the short- and long-term response of seal materials and seal components. The results from these analyses will be used to support the material testing activities on this contract and to support performance assessment activities that are conducted in other parts of the Salt Repository Project (SRP). 48 refs., 15 figs., 4 tabs

  5. Preparation of the TRANSURANUS code for TEMELIN NPP

    International Nuclear Information System (INIS)

    Klouzal, J.

    2011-01-01

    Since 2010 Temelin NPP started using TVSA-T fuel supplied by JSC TVEL. The transition process included implementation of several new core reload design codes. TRANSURANUS code was selected for the evaluation of the fuel rod thermomechanical performance. The adaptation and validation of the code was performed by Nuclear Research Institute Rez. TRANSURANUS code contains wide selection of alternative models for most of phenomena important for the fuel behaviour. It was therefore necessary to select, based on a comparison with experimental data, those most suitable for the modeling of TVSA-T fuel rods. In some cases, new models were implemented. Software tools and methodology for the evaluation of the proposed core reload design using TRANSURANUS code were also developed in NRI. The software tools include the interface to core physics code ANDREA and a set of scripts for an automated execution and processing of the computational runs. Independent confirmation of some of the vendor specified core reload design criteria was performed using TRANSURANUS. (authors)

  6. Optical Code-Division Multiple Access: Challenges and Solutions

    Science.gov (United States)

    Chen, Lawrence R.

    2003-02-01

    Optical code-division multiple-access (OCDMA) is a technique well-suited for providing the required photonic connectivity in local access networks. Although the principles of OCDMA have been known for many years, it has never delivered on its potential. In this paper, we will describe the key challenges and impediments that have prevented OCDMA from delivering on its potential, as well as discuss possible solutions. We focus on the limitations of one-dimensional codes and the benefit of exploiting the additional degrees of freedom in using multiple dimensions for defining the codes. We discuss the advantages of using differential detection in order to implement bipolar communications. We then show how two-dimensional wavelength-time codes can be appropriately combined with differential detection in order to achieve high performance OCDMA systems with a large number of users operating with good BER performance for a large aggregate capacity. We also discuss the impact of channel coding techniques, for example forward error correction or turbo coding, on BER performance.

  7. CIEMAT’s contribution to the phase II of the OECD-NEA RIA benchmark on thermo-mechanical fuel codes performance

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado, I.C.; Vallejo, I.; Herranz, L.E.

    2015-07-01

    As a part of the international efforts devoted to validate and/or update the current fuel safety criteria, the OECD-NEA has launched a second phase of the RIA benchmark on thermomechanical fuel codes performance. CIEMAT contributes simulating the ten scenarios proposed with FRAPTRAN and SCANAIR. Both codes lead to similar predictions during the heating-up; however, during the cooling-down significant deviations may appear. They are mainly caused by the estimations of gap closure and re-opening and the clad to water heat exchange approaches. The uncertainty analysis performed for the SCANAIR estimations leads to uncertainty ranges below 15% and 28% for maximum temperatures and deformations, respectively. The corresponding sensitivity analysis shows that, in addition to the injected energy, special attention should be paid to fuel thermal expansion and clad yield stress models. (Author)

  8. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  9. The 1996 ENDF pre-processing codes

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1996-01-01

    The codes are named 'the Pre-processing' codes, because they are designed to pre-process ENDF/B data, for later, further processing for use in applications. This is a modular set of computer codes, each of which reads and writes evaluated nuclear data in the ENDF/B format. Each code performs one or more independent operations on the data, as described below. These codes are designed to be computer independent, and are presently operational on every type of computer from large mainframe computer to small personal computers, such as IBM-PC and Power MAC. The codes are available from the IAEA Nuclear Data Section, free of charge upon request. (author)

  10. On the Comparative Performance Analysis of Turbo-Coded Non-Ideal Sigle-Carrier and Multi-Carrier Waveforms over Wideband Vogler-Hoffmeyer HF Channels

    Directory of Open Access Journals (Sweden)

    F. Genc

    2014-09-01

    Full Text Available The purpose of this paper is to compare the turbo-coded Orthogonal Frequency Division Multiplexing (OFDM and turbo-coded Single Carrier Frequency Domain Equalization (SC-FDE systems under the effects of Carrier Frequency Offset (CFO, Symbol Timing Offset (STO and phase noise in wide-band Vogler-Hoffmeyer HF channel model. In mobile communication systems multi-path propagation occurs. Therefore channel estimation and equalization is additionally necessary. Furthermore a non-ideal local oscillator generally is misaligned with the operating frequency at the receiver. This causes carrier frequency offset. Hence in coded SC-FDE and coded OFDM systems; a very efficient, low complex frequency domain channel estimation and equalization is implemented in this paper. Also Cyclic Prefix (CP based synchronization synchronizes the clock and carrier frequency offset.The simulations show that non-ideal turbo-coded OFDM has better performance with greater diversity than non-ideal turbo-coded SC-FDE system in HF channel.

  11. Error-Rate Bounds for Coded PPM on a Poisson Channel

    Science.gov (United States)

    Moision, Bruce; Hamkins, Jon

    2009-01-01

    Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.

  12. Should diagnosis codes from emergency department data be used for case selection for emergency department key performance indicators?

    Science.gov (United States)

    Howell, Stuart C; Wills, Rachael A; Johnston, Trisha C

    2014-02-01

    The aim of the present study was to assess the suitability of emergency department (ED) discharge diagnosis for identifying patient cohorts included in the definitions of key performance indicators (KPIs) that are used to evaluate ED performance. Hospital inpatient episodes of care with a principal diagnosis that corresponded to an ED-defined KPI were extracted from the Queensland Hospital Admitted Patient Data Collection (QHAPDC) for the year 2010-2011. The data were then linked to the corresponding ED patient record and the diagnoses applied in the two settings were compared. The asthma and injury cohorts produced favourable results with respect to matching the QHAPDC principal diagnosis with the ED discharge diagnosis. The results were generally modest when the QHAPDC principal diagnosis was upper respiratory tract infection, poisoning and toxic effects or a mental health diagnosis, and were quite poor for influenza. There is substantial variation in the capture of patient cohorts using discharge diagnosis as recorded on Queensland Hospital Emergency Department data. WHAT IS KNOWN ABOUT THE TOPIC? There are several existing KPIs that are defined according to the diagnosis recorded on ED data collections. However, there have been concerns over the quality of ED diagnosis in Queensland and other jurisdictions, and the value of these data in identifying patient cohorts for the purpose of assessing ED performance remains uncertain. WHAT DOES THIS PAPER ADD? This paper identifies diagnosis codes that are suitable for use in capturing the patient cohorts that are used to evaluate ED performance, as well as those codes that may be of limited value. WHAT ARE THE IMPLICATIONS FOR PRACTITIONERS? The limitations of diagnosis codes within ED data should be understood by those seeking to use these data items for healthcare planning and management or for research into healthcare quality and outcomes.

  13. Code Modernization of VPIC

    Science.gov (United States)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  14. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2012-01-01

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  15. Optimized periodic verification testing blended risk and performance-based MOV inservice test program an application of ASME code case OMN-1

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, C.; Fleming, K.; Bidwell, D.; Forbes, P. [and others

    1996-12-01

    This paper presents an application of ASME Code Case OMN-1 to the GL 89-10 Program at the South Texas Project Electric Generating Station (STPEGS). Code Case OMN-1 provides guidance for a performance-based MOV inservice test program that can be used for periodic verification testing and allows consideration of risk insights. Blended probabilistic and deterministic evaluation techniques were used to establish inservice test strategies including both test methods and test frequency. Described in the paper are the methods and criteria for establishing MOV safety significance based on the STPEGS probabilistic safety assessment, deterministic considerations of MOV performance characteristics and performance margins, the expert panel evaluation process, and the development of inservice test strategies. Test strategies include a mix of dynamic and static testing as well as MOV exercising.

  16. Optimized periodic verification testing blended risk and performance-based MOV inservice test program an application of ASME code case OMN-1

    International Nuclear Information System (INIS)

    Sellers, C.; Fleming, K.; Bidwell, D.; Forbes, P.

    1996-01-01

    This paper presents an application of ASME Code Case OMN-1 to the GL 89-10 Program at the South Texas Project Electric Generating Station (STPEGS). Code Case OMN-1 provides guidance for a performance-based MOV inservice test program that can be used for periodic verification testing and allows consideration of risk insights. Blended probabilistic and deterministic evaluation techniques were used to establish inservice test strategies including both test methods and test frequency. Described in the paper are the methods and criteria for establishing MOV safety significance based on the STPEGS probabilistic safety assessment, deterministic considerations of MOV performance characteristics and performance margins, the expert panel evaluation process, and the development of inservice test strategies. Test strategies include a mix of dynamic and static testing as well as MOV exercising

  17. On Code Parameters and Coding Vector Representation for Practical RLNC

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    RLNC provides a theoretically efficient method for coding. The drawbacks associated with it are the complexity of the decoding and the overhead resulting from the encoding vector. Increasing the field size and generation size presents a fundamental trade-off between packet-based throughput...... to higher energy consumption. Therefore, the optimal trade-off is system and topology dependent, as it depends on the cost in energy of performing coding operations versus transmitting data. We show that moderate field sizes are the correct choice when trade-offs are considered. The results show that sparse...

  18. Heterogeneous fuels for minor actinides transmutation: Fuel performance codes predictions in the EFIT case study

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, R., E-mail: rolando.calabrese@enea.i [ENEA, Innovative Nuclear Reactors and Fuel Cycle Closure Division, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Vettraino, F.; Artioli, C. [ENEA, Innovative Nuclear Reactors and Fuel Cycle Closure Division, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Sobolev, V. [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Thetford, R. [Serco Technical and Assurance Services, 150 Harwell Business Centre, Didcot OX11 0QB (United Kingdom)

    2010-06-15

    Plutonium recycling in new-generation fast reactors coupled with minor actinides (MA) transmutation in dedicated nuclear systems could achieve a decrease of nuclear waste long-term radiotoxicity by two orders of magnitude in comparison with current once-through strategy. In a double-strata scenario, purpose-built accelerator-driven systems (ADS) could transmute minor actinides. The innovative nuclear fuel conceived for such systems demands significant R and D efforts in order to meet the safety and technical performance of current fuel systems. The Integrated Project EUROTRANS (EUROpean research programme for the TRANSmutation of high level nuclear waste in ADS), part of the EURATOM Framework Programme 6 (FP6), undertook some of this research. EUROTRANS developed from the FP5 research programmes on ADS (PDS-XADS) and on fuels dedicated to MA transmutation (FUTURE, CONFIRM). One of its main objectives is the conceptual design of a small sub-critical nuclear system loaded with uranium-free fuel to provide high MA transmutation efficiency. These principles guided the design of EFIT (European Facility for Industrial Transmutation) in the domain DESIGN of IP EUROTRANS. The domain AFTRA (Advanced Fuels for TRAnsmutation system) identified two composite fuel systems: a ceramic-ceramic (CERCER) where fuel particles are dispersed in a magnesia matrix, and a ceramic-metallic (CERMET) with a molybdenum matrix in the place of MgO matrix to host a ceramic fissile phase. The EFIT fuel is composed of plutonium and MA oxides in solid solution with isotopic vectors typical of LWR spent fuel with 45 MWd/kg{sub HM} discharge burnup and 30 years interim storage before reprocessing. This paper is focused on the thermomechanical state of the hottest fuel pins of two EFIT cores of 400 MW{sub (th)} loaded with either CERCER or CERMET fuels. For calculations three fuel performance codes were used: FEMALE, TRAFIC and TRANSURANUS. The analysis was performed at the beginning of fuel life

  19. Current status of the transient integral fuel element performance code URANUS

    International Nuclear Information System (INIS)

    Preusser, T.; Lassmann, K.

    1983-01-01

    To investigate the behavior of fuel pins during normal and off-normal operation, the integral fuel rod code URANUS has been extended to include a transient version. The paper describes the current status of the program system including a presentation of newly developed models for hypothetical accident investigation. The main objective of current development work is to improve the modelling of fuel and clad material behavior during fast transients. URANUS allows detailed analysis of experiments until the onset of strong material transport phenomena. Transient fission gas analysis is carried out due to the coupling with a special version of the LANGZEIT-KURZZEIT-code (KfK). Fuel restructuring and grain growth kinetics models have been improved recently to better characterize pre-experimental steady-state operation; transient models are under development. Extensive verification of the new version has been carried out by comparison with analytical solutions, experimental evidence, and code-to-code evaluation studies. URANUS, with all these improvements, has been successfully applied to difficult fast breeder fuel rod analysis including TOP, LOF, TUCOP, local coolant blockage and specific carbide fuel experiments. Objective of further studies is the description of transient PCMI. It is expected that the results of these developments will contribute significantly to the understanding of fuel element structural behavior during severe transients. (orig.)

  20. Improved side information generation for distributed video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2008-01-01

    As a new coding paradigm, distributed video coding (DVC) deals with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. The performance of DVC highly depends on the quality of side information. With a better side...... information generation method, fewer bits will be requested from the encoder and more reliable decoded frames will be obtained. In this paper, a side information generation method is introduced to further improve the rate-distortion (RD) performance of transform domain distributed video coding. This algorithm...

  1. The DIT nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    Jonsson, A.

    1988-01-01

    The DIT code is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, that may be characterized by the spectrum and spatial calculations being performed in two dimensions and in a single job step for the entire assembly. The forerunner of this class of codes is the United Kingdom Atomic Energy Authority WIMS code, the first version of which was completed 25 yr ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added that significantly influence the accuracy and performance of the resulting computational tool. Those features, which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers, are described and discussed

  2. FEMAXI-III. An axisymmetric finite element computer code for the analysis of fuel rod performance

    International Nuclear Information System (INIS)

    Ichikawa, M.; Nakajima, T.; Okubo, T.; Iwano, Y.; Ito, K.; Kashima, K.; Saito, H.

    1980-01-01

    For the analysis of local deformation of fuel rods, which is closely related to PCI failure in LWR, FEMAXI-III has been developed as an improved version based on the essential models of FEMAXI-II, MIPAC, and FEAST codes. The major features of FEMAXI-III are as follows: Elasto-plasticity, creep, pellet cracking, relocation, densification, hot pressing, swelling, fission gas release, and their interrelated effects are considered. Contact conditions between pellet and cladding are exactly treated, where sliding or sticking is defined by iterations. Special emphasis is placed on creep and pellet cracking. In the former, an implicit algorithm is applied to improve numerical stability. In the latter, the pellet is assumed to be non-tension material. The recovery of pellet stiffness under compression is related to initial relocation. Quadratic isoparametric elements are used. The skyline method is applied to solve linear stiffness equation to reduce required core memories. The basic performance of the code has been proven to be satisfactory. (author)

  3. Coded Ultrasound for Blood Flow Estimation Using Subband Processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael Bachamnn

    2008-01-01

    the excitation signal is broadband and has good spatial resolution after pulse compression. This means that time can be saved by using the same data for B-mode imaging and blood flow estimation. Two different coding schemes are used in this paper, Barker codes and Golay codes. The performance of the codes......This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded...... signals are used to increase SNR, followed by subband processing. The received broadband signal is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared with what would be possible when transmitting a narrow...

  4. Coding task performance in early adolescence: A large-scale controlled study into boy-girl differences

    Directory of Open Access Journals (Sweden)

    Sanne eDekker

    2013-08-01

    Full Text Available This study examined differences between boys and girls regarding efficiency of information processing in early adolescence. 306 healthy adolescents (50.3% boys in grade 7 and 9 (aged 13 and 15 respectively performed a coding task based on over-learned symbols. An age effect was revealed as subjects in grade 9 performed better than subjects in grade 7. Main effects for sex were found in the advantage of girls. The 25% best-performing students comprised twice as many girls as boys. The opposite pattern was found for the worst performing 25%. In addition, a main effect was found for educational track in favor of the highest track. No interaction effects were found. School grades did not explain additional variance in LDST performance. This indicates that cognitive performance is relatively independent from school performance. Student characteristics like age, sex and education level were more important for efficiency of information processing than school performance. The findings imply that after age 13, efficiency of information processing is still developing and that girls outperform boys in this respect. The findings provide new information on the mechanisms underlying boy-girl differences in scholastic performance.

  5. Performance Evaluation of SMART Passive Safety System for Small Break LOCA Using MARS Code

    International Nuclear Information System (INIS)

    Chun, Ji Han; Lee, Guy Hyung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo

    2013-01-01

    SMART has significantly enhanced safety by reducing its core damage frequency to 1/10 that of a conventional nuclear power plant. KAERI is developing a passive safety injection system to replace the active safety injection pump in SMART. It consists of four trains, each of which includes gravity-driven core makeup tank (CMT) and safety injection tank (SIT). This system is required to meet the passive safety performance requirements, i.e., the capability to maintain a safe shutdown condition for a minimum of 72 hours without an AC power supply or operator action in the case of design basis accidents (DBAs). The CMT isolation valve is opened by the low pressurizer pressure signal, and the SIT isolation valve is opened at 2 MPa. Additionally, two stages of automatic depressurization systems are used for rapid depressurization. Preliminary safety analysis of SMART passive safety system in the event of a small-break loss-of-coolant accident (SBLOCA) was performed using MARS code. In this study, the safety analysis results of a guillotine break of safety injection line which was identified as the limiting SBLOCA in SMART are given. The preliminary safety analysis of a SBLOCA for the SMART passive safety system was performed using the MARS code. The analysis results of the most limiting SI line guillotine break showed that the collapsed liquid level inside the core support barrel was maintained sufficiently high above the top of core throughout the transient. This means that the passive safety injection flow from the CMT and SIT causes no core uncovery during the 72 hours following the break with no AC power supply or operator action, which in turn results in a consistent decrease in the fuel cladding temperature. Therefore, the SMART passive safety system can meet the passive safety performance requirement of maintaining the plant at a safe shutdown condition for a minimum of 72 hours without AC power or operator action for a representing accident of SBLOCA

  6. Some optimizations of the animal code

    International Nuclear Information System (INIS)

    Fletcher, W.T.

    1975-01-01

    Optimizing techniques were performed on a version of the ANIMAL code (MALAD1B) at the source-code (FORTRAN) level. Sample optimizing techniques and operations used in MALADOP--the optimized version of the code--are presented, along with a critique of some standard CDC 7600 optimizing techniques. The statistical analysis of total CPU time required for MALADOP and MALAD1B shows a run-time saving of 174 msec (almost 3 percent) in the code MALADOP during one time step

  7. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Lin, H; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States); Su, L [John Hopkins University, Baltimore, MD (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analytically derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.

  8. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    International Nuclear Information System (INIS)

    Liu, T; Lin, H; Xu, X; Su, L; Shi, C; Tang, X; Bednarz, B

    2016-01-01

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analytically derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.

  9. QC-LDPC code-based cryptography

    CERN Document Server

    Baldi, Marco

    2014-01-01

    This book describes the fundamentals of cryptographic primitives based on quasi-cyclic low-density parity-check (QC-LDPC) codes, with a special focus on the use of these codes in public-key cryptosystems derived from the McEliece and Niederreiter schemes. In the first part of the book, the main characteristics of QC-LDPC codes are reviewed, and several techniques for their design are presented, while tools for assessing the error correction performance of these codes are also described. Some families of QC-LDPC codes that are best suited for use in cryptography are also presented. The second part of the book focuses on the McEliece and Niederreiter cryptosystems, both in their original forms and in some subsequent variants. The applicability of QC-LDPC codes in these frameworks is investigated by means of theoretical analyses and numerical tools, in order to assess their benefits and drawbacks in terms of system efficiency and security. Several examples of QC-LDPC code-based public key cryptosystems are prese...

  10. Stability analysis by ERATO code

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Matsuura, Toshihiko; Azumi, Masafumi; Kurita, Gen-ichi

    1979-12-01

    Problems in MHD stability calculations by ERATO code are described; which concern convergence property of results, equilibrium codes, and machine optimization of ERATO code. It is concluded that irregularity on a convergence curve is not due to a fault of the ERATO code itself but due to inappropriate choice of the equilibrium calculation meshes. Also described are a code to calculate an equilibrium as a quasi-inverse problem and a code to calculate an equilibrium as a result of a transport process. Optimization of the code with respect to I/O operations reduced both CPU time and I/O time considerably. With the FACOM230-75 APU/CPU multiprocessor system, the performance is about 6 times as high as with the FACOM230-75 CPU, showing the effectiveness of a vector processing computer for the kind of MHD computations. This report is a summary of the material presented at the ERATO workshop 1979(ORNL), supplemented with some details. (author)

  11. Spatial-Aided Low-Delay Wyner-Ziv Video Coding

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-01-01

    Full Text Available In distributed video coding, the side information (SI quality plays an important role in Wyner-Ziv (WZ frame coding. Usually, SI is generated at the decoder by the motion-compensated interpolation (MCI from the past and future key frames under the assumption that the motion trajectory between the adjacent frames is translational with constant velocity. However, this assumption is not always true and thus, the coding efficiency for WZ coding is often unsatisfactory in video with high and/or irregular motion. This situation becomes more serious in low-delay applications since only motion-compensated extrapolation (MCE can be applied to yield SI. In this paper, a spatial-aided Wyner-Ziv video coding (WZVC in low-delay application is proposed. In SA-WZVC, at the encoder, each WZ frame is coded as performed in the existing common Wyner-Ziv video coding scheme and meanwhile, the auxiliary information is also coded with the low-complexity DPCM. At the decoder, for the WZ frame decoding, auxiliary information should be decoded firstly and then SI is generated with the help of this auxiliary information by the spatial-aided motion-compensated extrapolation (SA-MCE. Theoretical analysis proved that when a good tradeoff between the auxiliary information coding and WZ frame coding is achieved, SA-WZVC is able to achieve better rate distortion performance than the conventional MCE-based WZVC without auxiliary information. Experimental results also demonstrate that SA-WZVC can efficiently improve the coding performance of WZVC in low-delay application.

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  13. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  14. A Study of Performance in Low-Power Tokamak Reactor with Integrated Predictive Modeling Code

    International Nuclear Information System (INIS)

    Pianroj, Y.; Onjun, T.; Suwanna, S.; Picha, R.; Poolyarat, N.

    2009-07-01

    Full text: A fusion hybrid or a small fusion power output with low power tokamak reactor is presented as another useful application of nuclear fusion. Such tokamak can be used for fuel breeding, high-level waste transmutation, hydrogen production at high temperature, and testing of nuclear fusion technology components. In this work, an investigation of the plasma performance in a small fusion power output design is carried out using the BALDUR predictive integrated modeling code. The simulations of the plasma performance in this design are carried out using the empirical-based Mixed Bohm/gyro Bohm (B/gB) model, whereas the pedestal temperature model is based on magnetic and flow shear (δ α ρ ζ 2 ) stabilization pedestal width scaling. The preliminary results using this core transport model show that the central ion and electron temperatures are rather pessimistic. To improve the performance, the optimization approach are carried out by varying some parameters, such as plasma current and power auxiliary heating, which results in some improvement of plasma performance

  15. NSURE code

    International Nuclear Information System (INIS)

    Rattan, D.S.

    1993-11-01

    NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases

  16. Entanglement-assisted quantum low-density parity-check codes

    International Nuclear Information System (INIS)

    Fujiwara, Yuichiro; Clark, David; Tonchev, Vladimir D.; Vandendriessche, Peter; De Boeck, Maarten

    2010-01-01

    This article develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error-correction performance, high rates, and low decoding complexity. The proposed method produces several infinite families of codes with a wide variety of parameters and entanglement requirements. Our framework encompasses the previously known entanglement-assisted quantum LDPC codes having the best error-correction performance and many other codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.

  17. Theoretical atomic physics code development III TAPS: A display code for atomic physics data

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Kramer, S.P.

    1988-12-01

    A large amount of theoretical atomic physics data is becoming available through use of the computer codes CATS and ACE developed at Los Alamos National Laboratory. A new code, TAPS, has been written to access this data, perform averages over terms and configurations, and display information in graphical or text form. 7 refs., 13 figs., 1 tab

  18. Adaptable recursive binary entropy coding technique

    Science.gov (United States)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2002-07-01

    We present a novel data compression technique, called recursive interleaved entropy coding, that is based on recursive interleaving of variable-to variable length binary source codes. A compression module implementing this technique has the same functionality as arithmetic coding and can be used as the engine in various data compression algorithms. The encoder compresses a bit sequence by recursively encoding groups of bits that have similar estimated statistics, ordering the output in a way that is suited to the decoder. As a result, the decoder has low complexity. The encoding process for our technique is adaptable in that each bit to be encoded has an associated probability-of-zero estimate that may depend on previously encoded bits; this adaptability allows more effective compression. Recursive interleaved entropy coding may have advantages over arithmetic coding, including most notably the admission of a simple and fast decoder. Much variation is possible in the choice of component codes and in the interleaving structure, yielding coder designs of varying complexity and compression efficiency; coder designs that achieve arbitrarily small redundancy can be produced. We discuss coder design and performance estimation methods. We present practical encoding and decoding algorithms, as well as measured performance results.

  19. Roadmap for the Future of Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria.

  20. Evaluation of the DRAGON code for VHTR design analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  1. Evaluation of the DRAGON code for VHTR design analysis

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-01

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR

  2. Validation of fuel performance codes at the NRI Rez plc for Temelin and Dukovany NPPs fuel safety evaluations and operation support

    International Nuclear Information System (INIS)

    Valach, M.; Hejna, J.; Zymak, J.

    2003-05-01

    The report summarises the first phase of the FUMEX II related work performed in the period September 2002 - May 2003. An inventory of the PIN and FRAS codes family used and developed during previous years was made in light of their applicability (validity) in the domain of high burn-up and FUMEX II Project Experimental database. KOLA data were chosen as appropriate for the first step of both codes fixing (both tuned for VVER fuel originally). The modern requirements, expressed by adaptation of the UO 2 conductivity degradation from OECD HRP, RIM and FGR (athermal) modelling implementation into the PIN code and a diffusion FGR model development planned for embedding, into this code allow us to reasonably shadow or keep tight contact with top quality models as TRANSURANUS, COPERNIC, CYRANO, FEMAXI, FRAPCON3 or ENIGMA. Testing and validation runs with prepared input KOLA deck were made. FUMEX II exercise propose LOCA and RIA like transients, so we started development of those two codes coupling - denominated as PIN2FRAS code. Principles of the interface were tested, benchmarking on tentative RIA pulses on highly burned KOLA fuel are presented as the first achievement from our work. (author)

  3. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  4. Numerical verification of equilibrium chemistry software within nuclear fuel performance codes

    International Nuclear Information System (INIS)

    Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing transport source terms, material properties, and boundary conditions in heat and mass transport modules. Consequently, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method called the Gibbs Criteria is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes. (author)

  5. Performance Comparison of Orthogonal and Quasi-orthogonal Codes in Quasi-Synchronous Cellular CDMA Communication

    Science.gov (United States)

    Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat

    Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.

  6. ETF system code: composition and applications

    International Nuclear Information System (INIS)

    Reid, R.L.; Wu, K.F.

    1980-01-01

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies, such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system

  7. User's manual for a measurement simulation code

    International Nuclear Information System (INIS)

    Kern, E.A.

    1982-07-01

    The MEASIM code has been developed primarily for modeling process measurements in materials processing facilities associated with the nuclear fuel cycle. In addition, the code computes materials balances and the summation of materials balances along with associated variances. The code has been used primarily in performance assessment of materials' accounting systems. This report provides the necessary information for a potential user to employ the code in these applications. A number of examples that demonstrate most of the capabilities of the code are provided

  8. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  9. Uncertainty and sensitivity analysis using probabilistic system assessment code. 1

    International Nuclear Information System (INIS)

    Honma, Toshimitsu; Sasahara, Takashi.

    1993-10-01

    This report presents the results obtained when applying the probabilistic system assessment code under development to the PSACOIN Level 0 intercomparison exercise organized by the Probabilistic System Assessment Code User Group in the Nuclear Energy Agency (NEA) of OECD. This exercise is one of a series designed to compare and verify probabilistic codes in the performance assessment of geological radioactive waste disposal facilities. The computations were performed using the Monte Carlo sampling code PREP and post-processor code USAMO. The submodels in the waste disposal system were described and coded with the specification of the exercise. Besides the results required for the exercise, further additional uncertainty and sensitivity analyses were performed and the details of these are also included. (author)

  10. Improving performance of single-path code through a time-predictable memory hierarchy

    DEFF Research Database (Denmark)

    Cilku, Bekim; Puffitsch, Wolfgang; Prokesch, Daniel

    2017-01-01

    -predictable memory hierarchy with a prefetcher that exploits the predictability of execution traces in single-path code to speed up code execution. The new memory hierarchy reduces both the cache-miss penalty time and the cache-miss rate on the instruction cache. The benefit of the approach is demonstrated through...

  11. UEP LT Codes with Intermediate Feedback

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Popovski, Petar; Østergaard, Jan

    2013-01-01

    We analyze a class of rateless codes, called Luby transform (LT) codes with unequal error protection (UEP). We show that while these codes successfully provide UEP, there is a significant price in terms of redundancy in the lower prioritized segments. We propose a modification with a single inter...... intermediate feedback message. Our analysis shows a dramatic improvement on the decoding performance of the lower prioritized segment....

  12. Using clinical data to predict high-cost performance coding issues associated with pressure ulcers: a multilevel cohort model.

    Science.gov (United States)

    Padula, William V; Gibbons, Robert D; Pronovost, Peter J; Hedeker, Donald; Mishra, Manish K; Makic, Mary Beth F; Bridges, John Fp; Wald, Heidi L; Valuck, Robert J; Ginensky, Adam J; Ursitti, Anthony; Venable, Laura Ruth; Epstein, Ziv; Meltzer, David O

    2017-04-01

    Hospital-acquired pressure ulcers (HAPUs) have a mortality rate of 11.6%, are costly to treat, and result in Medicare reimbursement penalties. Medicare codes HAPUs according to Agency for Healthcare Research and Quality Patient-Safety Indicator 3 (PSI-03), but they are sometimes inappropriately coded. The objective is to use electronic health records to predict pressure ulcers and to identify coding issues leading to penalties. We evaluated all hospitalized patient electronic medical records at an academic medical center data repository between 2011 and 2014. These data contained patient encounter level demographic variables, diagnoses, prescription drugs, and provider orders. HAPUs were defined by PSI-03: stages III, IV, or unstageable pressure ulcers not present on admission as a secondary diagnosis, excluding cases of paralysis. Random forests reduced data dimensionality. Multilevel logistic regression of patient encounters evaluated associations between covariates and HAPU incidence. The approach produced a sample population of 21 153 patients with 1549 PSI-03 cases. The greatest odds ratio (OR) of HAPU incidence was among patients diagnosed with spinal cord injury (ICD-9 907.2: OR = 14.3; P  coded for paralysis, leading to a PSI-03 flag. Other high ORs included bed confinement (ICD-9 V49.84: OR = 3.1, P  coded without paralysis, leading to PSI-03 flags. The resulting statistical model can be tested to predict HAPUs during hospitalization. Inappropriate coding of conditions leads to poor hospital performance measures and Medicare reimbursement penalties. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Quality assurance and verification of the MACCS [MELCOR Accident Consequence Code System] code, Version 1.5

    International Nuclear Information System (INIS)

    Dobbe, C.A.; Carlson, E.R.; Marshall, N.H.; Marwil, E.S.; Tolli, J.E.

    1990-02-01

    An independent quality assurance (QA) and verification of Version 1.5 of the MELCOR Accident Consequence Code System (MACCS) was performed. The QA and verification involved examination of the code and associated documentation for consistent and correct implementation of the models in an error-free FORTRAN computer code. The QA and verification was not intended to determine either the adequacy or appropriateness of the models that are used MACCS 1.5. The reviews uncovered errors which were fixed by the SNL MACCS code development staff prior to the release of MACCS 1.5. Some difficulties related to documentation improvement and code restructuring are also presented. The QA and verification process concluded that Version 1.5 of the MACCS code, within the scope and limitations process concluded that Version 1.5 of the MACCS code, within the scope and limitations of the models implemented in the code is essentially error free and ready for widespread use. 15 refs., 11 tabs

  14. Environmental performance of green building code and certification systems.

    Science.gov (United States)

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  15. Improvement of Parallel Algorithm for MATRA Code

    International Nuclear Information System (INIS)

    Kim, Seong-Jin; Seo, Kyong-Won; Kwon, Hyouk; Hwang, Dae-Hyun

    2014-01-01

    The feasibility study to parallelize the MATRA code was conducted in KAERI early this year. As a result, a parallel algorithm for the MATRA code has been developed to decrease a considerably required computing time to solve a bigsize problem such as a whole core pin-by-pin problem of a general PWR reactor and to improve an overall performance of the multi-physics coupling calculations. It was shown that the performance of the MATRA code was greatly improved by implementing the parallel algorithm using MPI communication. For problems of a 1/8 core and whole core for SMART reactor, a speedup was evaluated as about 10 when the numbers of used processor were 25. However, it was also shown that the performance deteriorated as the axial node number increased. In this paper, the procedure of a communication between processors is optimized to improve the previous parallel algorithm.. To improve the performance deterioration of the parallelized MATRA code, the communication algorithm between processors was newly presented. It was shown that the speedup was improved and stable regardless of the axial node number

  16. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1988-01-01

    This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared

  17. Input/output manual of light water reactor fuel analysis code FEMAXI-7 and its related codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Saitou, Hiroaki [ITOCHU Techno-Solutions Corporation, Tokyo (Japan)

    2013-10-15

    A light water reactor fuel analysis code FEMAXI-7 has been developed, as an extended version from the former version FEMAXI-6, for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which are fully disclosed in the code model description published in the form of another JAEA-Data/Code report. The present manual, which is the very counterpart of this description document, gives detailed explanations of files and operation method of FEMAXI-7 code and its related codes, methods of input/output, sample Input/Output, methods of source code modification, subroutine structure, and internal variables in a specific manner in order to facilitate users to perform fuel analysis by FEMAXI-7. (author)

  18. Input/output manual of light water reactor fuel analysis code FEMAXI-7 and its related codes

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2013-10-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed, as an extended version from the former version FEMAXI-6, for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which are fully disclosed in the code model description published in the form of another JAEA-Data/Code report. The present manual, which is the very counterpart of this description document, gives detailed explanations of files and operation method of FEMAXI-7 code and its related codes, methods of input/output, sample Input/Output, methods of source code modification, subroutine structure, and internal variables in a specific manner in order to facilitate users to perform fuel analysis by FEMAXI-7. (author)

  19. PERCON: A flexible computer code for detailed thermal performance studies

    International Nuclear Information System (INIS)

    Boardman, F.B.; Collier, W.D.

    1975-07-01

    PERCON is a computer code which evaluates temperatures in three dimensions for a block containing heat sources and having coolant flow in one dimension. The solution is obtained at successive planes perpendicular to the coolant flow and the progression from one plane to the next occurs by the heat to the coolant determining convective boundary conditions at the next plane after due allowance being made for any lateral mixing or mass transfer between coolants. It is also possible to calculate the diametral change along a radius as a function of irradiation shrinkage and thermal expansion. This is used in a 'through life' calculation which evalates interaction pressure in tubular fuel elements. Physical property data used by the code may be specified as functions of temperature. The coolant flow may be specified, or alternatively derived by the program to satisfy either a specified overall pressure drop or mixed mean temperature rise. The pressure drop through each coolant is calculated and the flow modified, followed by a repeat of the temperature calculation, until the pressure imbalance between chosen flow channels at chosen axial positions is less than the specified convergence limit. A detailed description of the facilities in the code is given and some cases which have been studied are discussed. (U.K.)

  20. Fast decoders for qudit topological codes

    International Nuclear Information System (INIS)

    Anwar, Hussain; Brown, Benjamin J; Campbell, Earl T; Browne, Dan E

    2014-01-01

    Qudit toric codes are a natural higher-dimensional generalization of the well-studied qubit toric code. However, standard methods for error correction of the qubit toric code are not applicable to them. Novel decoders are needed. In this paper we introduce two renormalization group decoders for qudit codes and analyse their error correction thresholds and efficiency. The first decoder is a generalization of a ‘hard-decisions’ decoder due to Bravyi and Haah (arXiv:1112.3252). We modify this decoder to overcome a percolation effect which limits its threshold performance for many-level quantum systems. The second decoder is a generalization of a ‘soft-decisions’ decoder due to Poulin and Duclos-Cianci (2010 Phys. Rev. Lett. 104 050504), with a small cell size to optimize the efficiency of implementation in the high dimensional case. In each case, we estimate thresholds for the uncorrelated bit-flip error model and provide a comparative analysis of the performance of both these approaches to error correction of qudit toric codes. (paper)

  1. Iterative List Decoding of Concatenated Source-Channel Codes

    Directory of Open Access Journals (Sweden)

    Hedayat Ahmadreza

    2005-01-01

    Full Text Available Whenever variable-length entropy codes are used in the presence of a noisy channel, any channel errors will propagate and cause significant harm. Despite using channel codes, some residual errors always remain, whose effect will get magnified by error propagation. Mitigating this undesirable effect is of great practical interest. One approach is to use the residual redundancy of variable length codes for joint source-channel decoding. In this paper, we improve the performance of residual redundancy source-channel decoding via an iterative list decoder made possible by a nonbinary outer CRC code. We show that the list decoding of VLC's is beneficial for entropy codes that contain redundancy. Such codes are used in state-of-the-art video coders, for example. The proposed list decoder improves the overall performance significantly in AWGN and fully interleaved Rayleigh fading channels.

  2. The Dit nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    Jonsson, A.

    1987-01-01

    DIT is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, which may be characterized by the spectrum and spatial calculations being performed in 2D and in a single job step for the entire assembly. The forerunner of this class of codes is the U.K.A.E.A. WIMS code, the first version of which was completed 25 years ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added which significantly influence the accuracy and performance of the resulting computational tool. This paper describes and discusses those features which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers

  3. Network Coding Over The 232

    DEFF Research Database (Denmark)

    Pedersen, Morten Videbæk; Heide, Janus; Vingelmann, Peter

    2013-01-01

    Creating efficient finite field implementations has been an active research topic for several decades. Many appli- cations in areas such as cryptography, signal processing, erasure coding and now also network coding depend on this research to deliver satisfactory performance. In this paper we...... from a benchmark application written in C++. These results are finally compared to different binary and binary extension field implementations. The results show that the prime field implementation offers a large field size while maintaining a very good performance. We believe that using prime fields...

  4. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    Science.gov (United States)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  5. Improvement of implicit finite element code performance in deep drawing simulations by dynamics contributions

    NARCIS (Netherlands)

    Meinders, Vincent T.; van den Boogaard, Antonius H.; Huetink, Han

    2003-01-01

    To intensify the use of implicit finite element codes for solving large scale problems, the computation time of these codes has to be decreased drastically. A method is developed which decreases the computational time of implicit codes by factors. The method is based on introducing inertia effects

  6. Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code

    Directory of Open Access Journals (Sweden)

    Ahmed Amin El Said Abd El Hameed

    2015-08-01

    Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code.  We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon

  7. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    Science.gov (United States)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  8. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    2012-09-01

    Full Text Available Tinkering with pre-existing genes has long been known as a major way to create new genes. Recently, however, motherless protein-coding genes have been found to have emerged de novo from ancestral non-coding DNAs. How these genes originated is not well addressed to date. Here we identified 24 hominoid-specific de novo protein-coding genes with precise origination timing in vertebrate phylogeny. Strand-specific RNA-Seq analyses were performed in five rhesus macaque tissues (liver, prefrontal cortex, skeletal muscle, adipose, and testis, which were then integrated with public transcriptome data from human, chimpanzee, and rhesus macaque. On the basis of comparing the RNA expression profiles in the three species, we found that most of the hominoid-specific de novo protein-coding genes encoded polyadenylated non-coding RNAs in rhesus macaque or chimpanzee with a similar transcript structure and correlated tissue expression profile. According to the rule of parsimony, the majority of these hominoid-specific de novo protein-coding genes appear to have acquired a regulated transcript structure and expression profile before acquiring coding potential. Interestingly, although the expression profile was largely correlated, the coding genes in human often showed higher transcriptional abundance than their non-coding counterparts in rhesus macaque. The major findings we report in this manuscript are robust and insensitive to the parameters used in the identification and analysis of de novo genes. Our results suggest that at least a portion of long non-coding RNAs, especially those with active and regulated transcription, may serve as a birth pool for protein-coding genes, which are then further optimized at the transcriptional level.

  9. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  10. NESTLE: A nodal kinetics code

    International Nuclear Information System (INIS)

    Al-Chalabi, R.M.; Turinsky, P.J.; Faure, F.-X.; Sarsour, H.N.; Engrand, P.R.

    1993-01-01

    The NESTLE nodal kinetics code has been developed for utilization as a stand-alone code for steady-state and transient reactor neutronic analysis and for incorporation into system transient codes, such as TRAC and RELAP. The latter is desirable to increase the simulation fidelity over that obtained from currently employed zero- and one-dimensional neutronic models and now feasible due to advances in computer performance and efficiency of nodal methods. As a stand-alone code, requirements are that it operate on a range of computing platforms from memory-limited personal computers (PCs) to supercomputers with vector processors. This paper summarizes the features of NESTLE that reflect the utilization and requirements just noted

  11. The octopus burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de

    1996-09-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  12. The OCTOPUS burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).

  13. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  14. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  15. Iterative nonlinear unfolding code: TWOGO

    International Nuclear Information System (INIS)

    Hajnal, F.

    1981-03-01

    a new iterative unfolding code, TWOGO, was developed to analyze Bonner sphere neutron measurements. The code includes two different unfolding schemes which alternate on successive iterations. The iterative process can be terminated either when the ratio of the coefficient of variations in terms of the measured and calculated responses is unity, or when the percentage difference between the measured and evaluated sphere responses is less than the average measurement error. The code was extensively tested with various known spectra and real multisphere neutron measurements which were performed inside the containments of pressurized water reactors

  16. Reasons for Adopting or Revising a Journalism Ethics Code: The Case of Three Ethics Codes in the Netherlands

    OpenAIRE

    Poler Kovačič, Melita; van Putten, Anne-Marie

    2011-01-01

    The authors of this article approached the dilemma of whether or not a universal code of journalism ethics should be drafted based on the existence of factors prompting the need for a new ethics code in a national environment. Semi-structured interviews were performed with the key persons involved in the process of drafting or revising three ethics codes in the Netherlands from 2007 onwards: the Journalism Guideline by the Press Council, the Journalism Code by the Society of Chief-Editors and...

  17. Distributed source coding of video

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Van Luong, Huynh

    2015-01-01

    A foundation for distributed source coding was established in the classic papers of Slepian-Wolf (SW) [1] and Wyner-Ziv (WZ) [2]. This has provided a starting point for work on Distributed Video Coding (DVC), which exploits the source statistics at the decoder side offering shifting processing...... steps, conventionally performed at the video encoder side, to the decoder side. Emerging applications such as wireless visual sensor networks and wireless video surveillance all require lightweight video encoding with high coding efficiency and error-resilience. The video data of DVC schemes differ from...... the assumptions of SW and WZ distributed coding, e.g. by being correlated in time and nonstationary. Improving the efficiency of DVC coding is challenging. This paper presents some selected techniques to address the DVC challenges. Focus is put on pin-pointing how the decoder steps are modified to provide...

  18. Facial expression coding in children and adolescents with autism: Reduced adaptability but intact norm-based coding.

    Science.gov (United States)

    Rhodes, Gillian; Burton, Nichola; Jeffery, Linda; Read, Ainsley; Taylor, Libby; Ewing, Louise

    2018-05-01

    Individuals with autism spectrum disorder (ASD) can have difficulty recognizing emotional expressions. Here, we asked whether the underlying perceptual coding of expression is disrupted. Typical individuals code expression relative to a perceptual (average) norm that is continuously updated by experience. This adaptability of face-coding mechanisms has been linked to performance on various face tasks. We used an adaptation aftereffect paradigm to characterize expression coding in children and adolescents with autism. We asked whether face expression coding is less adaptable in autism and whether there is any fundamental disruption of norm-based coding. If expression coding is norm-based, then the face aftereffects should increase with adaptor expression strength (distance from the average expression). We observed this pattern in both autistic and typically developing participants, suggesting that norm-based coding is fundamentally intact in autism. Critically, however, expression aftereffects were reduced in the autism group, indicating that expression-coding mechanisms are less readily tuned by experience. Reduced adaptability has also been reported for coding of face identity and gaze direction. Thus, there appears to be a pervasive lack of adaptability in face-coding mechanisms in autism, which could contribute to face processing and broader social difficulties in the disorder. © 2017 The British Psychological Society.

  19. Fuel Rod Performance Evaluation of CE 16 x 16 LTA Operated at Steady State Using Transuranus and Pad Codes

    Energy Technology Data Exchange (ETDEWEB)

    Krasnorutskyy, V.; Slyeptsov, O. [Nuclear Fuel Cycle Science and Technology Establishment (NFCSTE), National Science Center, Kharkhov Institute of Physics and Technology (NSC KIPT), Kharkhov (Ukraine)

    2013-03-15

    The report performed under IAEA research contract No. 15370 describes the results of fuel performance evaluation of PWR fuel rods operated at steady state up to discharge burnup of {approx}60 GWD/MTU using the codes of TRANSURANUS designed by ITU and PAD designed by Westinghouse. The experimental results from US-PWR 16x16 LTA Extended Burnup Demonstration Program presented in the IFPE database of the OECD/NEA have been utilized for assessing the codes themselves during simulation of such properties as rod burnup, cladding corrosion, fuel densification and swelling, cladding irradiation growth and strain, FGR and RIP. The results obtained by PAD showed that the code properly simulates rod burnup, cladding irradiation growth and cladding oxidation with Standard Zr-4 material. The calculated burnup values along the fuel stack vary within {+-} 5% of the rod average burnup. The predicted values of the rod axial growth are (0.88-0.94) % and within the measured ones obtained in the burnup range of (50 - 60) GWD/MTU. With allowance made for probability of crud deposition and hot channel hydraulic diameter variation, the axial distribution of oxide layer is predicted well. For the nominal rod dimensions and operation conditions, the calculated peak oxide thickness is slightly overestimated based on the BE corrosion model parameters. The WEC fuel swelling and densification model together with the US NRC one, which is incorporated in the code, were used to assess the change in fuel pellet density ({Delta}{rho}) and fuel volume ({Delta}V{sub F}/V) vs. burnup as well as the rod void volume change, {Delta}V{sub V}/V, and the cladding outer diameter (OD) variation along the fuel stack. (author)

  20. Codes and Standards Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Codes and Standards Tech Team (CSTT) mission is to enable and facilitate the appropriate research, development, & demonstration (RD&D) for the development of safe, performance-based defensible technical codes and standards that support the technology readiness and are appropriate for widespread consumer use of fuel cells and hydrogen-based technologies with commercialization by 2020. Therefore, it is important that the necessary codes and standards be in place no later than 2015.

  1. Measured performances on vectorization and multitasking with a Monte Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    Chauvet, Y.

    1985-01-01

    This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in neutron transport problems, the authors briefly describe the work done in order to get a vector code. Vectorization principles are presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples are presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example they propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion they prove that Monte Carlo algorithms are very well suited to future vector and parallel computers

  2. Evaluation of Design & Analysis Code, CACTUS, for Predicting Crossflow Hydrokinetic Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wosnik, Martin [Univ. of New Hampshire, Durham, NH (United States). Center for Ocean Renewable Energy; Bachant, Pete [Univ. of New Hampshire, Durham, NH (United States). Center for Ocean Renewable Energy; Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murphy, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements in a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.

  3. Myths and realities of rateless coding

    KAUST Repository

    Bonello, Nicholas

    2011-08-01

    Fixed-rate and rateless channel codes are generally treated separately in the related research literature and so, a novice in the field inevitably gets the impression that these channel codes are unrelated. By contrast, in this treatise, we endeavor to further develop a link between the traditional fixed-rate codes and the recently developed rateless codes by delving into their underlying attributes. This joint treatment is beneficial for two principal reasons. First, it facilitates the task of researchers and practitioners, who might be familiar with fixed-rate codes and would like to jump-start their understanding of the recently developed concepts in the rateless reality. Second, it provides grounds for extending the use of the well-understood codedesign tools-originally contrived for fixed-rate codes-to the realm of rateless codes. Indeed, these versatile tools proved to be vital in the design of diverse fixed-rate-coded communications systems, and thus our hope is that they will further elucidate the associated performance ramifications of the rateless coded schemes. © 2011 IEEE.

  4. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  5. An Implementation of Error Minimization Data Transmission in OFDM using Modified Convolutional Code

    Directory of Open Access Journals (Sweden)

    Hendy Briantoro

    2016-04-01

    Full Text Available This paper presents about error minimization in OFDM system. In conventional system, usually using channel coding such as BCH Code or Convolutional Code. But, performance BCH Code or Convolutional Code is not good in implementation of OFDM System. Error bits of OFDM system without channel coding is 5.77%. Then, we used convolutional code with code rate 1/2, it can reduce error bitsonly up to 3.85%. So, we proposed OFDM system with Modified Convolutional Code. In this implementation, we used Software Define Radio (SDR, namely Universal Software Radio Peripheral (USRP NI 2920 as the transmitter and receiver. The result of OFDM system using Modified Convolutional Code with code rate is able recover all character received so can decrease until 0% error bit. Increasing performance of Modified Convolutional Code is about 1 dB in BER of 10-4 from BCH Code and Convolutional Code. So, performance of Modified Convolutional better than BCH Code or Convolutional Code. Keywords: OFDM, BCH Code, Convolutional Code, Modified Convolutional Code, SDR, USRP

  6. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  7. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  8. Code Team Training: Demonstrating Adherence to AHA Guidelines During Pediatric Code Blue Activations.

    Science.gov (United States)

    Stewart, Claire; Shoemaker, Jamie; Keller-Smith, Rachel; Edmunds, Katherine; Davis, Andrew; Tegtmeyer, Ken

    2017-10-16

    Pediatric code blue activations are infrequent events with a high mortality rate despite the best effort of code teams. The best method for training these code teams is debatable; however, it is clear that training is needed to assure adherence to American Heart Association (AHA) Resuscitation Guidelines and to prevent the decay that invariably occurs after Pediatric Advanced Life Support training. The objectives of this project were to train a multidisciplinary, multidepartmental code team and to measure this team's adherence to AHA guidelines during code simulation. Multidisciplinary code team training sessions were held using high-fidelity, in situ simulation. Sessions were held several times per month. Each session was filmed and reviewed for adherence to 5 AHA guidelines: chest compression rate, ventilation rate, chest compression fraction, use of a backboard, and use of a team leader. After the first study period, modifications were made to the code team including implementation of just-in-time training and alteration of the compression team. Thirty-eight sessions were completed, with 31 eligible for video analysis. During the first study period, 1 session adhered to all AHA guidelines. During the second study period, after alteration of the code team and implementation of just-in-time training, no sessions adhered to all AHA guidelines; however, there was an improvement in percentage of sessions adhering to ventilation rate and chest compression rate and an improvement in median ventilation rate. We present a method for training a large code team drawn from multiple hospital departments and a method of assessing code team performance. Despite subjective improvement in code team positioning, communication, and role completion and some improvement in ventilation rate and chest compression rate, we failed to consistently demonstrate improvement in adherence to all guidelines.

  9. Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....

  10. Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries

    Science.gov (United States)

    2014-01-01

    Background Physician-coded verbal autopsy (PCVA) is the most widely used method to determine causes of death (CODs) in countries where medical certification of death is uncommon. Computer-coded verbal autopsy (CCVA) methods have been proposed as a faster and cheaper alternative to PCVA, though they have not been widely compared to PCVA or to each other. Methods We compared the performance of open-source random forest, open-source tariff method, InterVA-4, and the King-Lu method to PCVA on five datasets comprising over 24,000 verbal autopsies from low- and middle-income countries. Metrics to assess performance were positive predictive value and partial chance-corrected concordance at the individual level, and cause-specific mortality fraction accuracy and cause-specific mortality fraction error at the population level. Results The positive predictive value for the most probable COD predicted by the four CCVA methods averaged about 43% to 44% across the datasets. The average positive predictive value improved for the top three most probable CODs, with greater improvements for open-source random forest (69%) and open-source tariff method (68%) than for InterVA-4 (62%). The average partial chance-corrected concordance for the most probable COD predicted by the open-source random forest, open-source tariff method and InterVA-4 were 41%, 40% and 41%, respectively, with better results for the top three most probable CODs. Performance generally improved with larger datasets. At the population level, the King-Lu method had the highest average cause-specific mortality fraction accuracy across all five datasets (91%), followed by InterVA-4 (72% across three datasets), open-source random forest (71%) and open-source tariff method (54%). Conclusions On an individual level, no single method was able to replicate the physician assignment of COD more than about half the time. At the population level, the King-Lu method was the best method to estimate cause-specific mortality

  11. Benchmarking NNWSI flow and transport codes: COVE 1 results

    International Nuclear Information System (INIS)

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of the codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs

  12. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  13. Performance analysis of quantum access network using code division multiple access model

    International Nuclear Information System (INIS)

    Hu Linxi; Yang Can; He Guangqiang

    2017-01-01

    A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently, the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise. (paper)

  14. Analysis of ATLAS FLB-EC6 Experiment using SPACE Code

    International Nuclear Information System (INIS)

    Lee, Donghyuk; Kim, Yohan; Kim, Seyun

    2013-01-01

    The new code is named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). As a part of code validation effort, simulation of ATLAS FLB(Feedwater Line Break) experiment using SPACE code has been performed. The FLB-EC6 experiment is economizer break of a main feedwater line. The calculated results using the SPACE code are compared with those from the experiment. The ATLAS FLB-EC6 experiment, which is economizer feedwater line break, was simulated using the SPACE code. The calculated results were compared with those from the experiment. The comparisons of break flow rate and steam generator water level show good agreement with the experiment. The SPACE code is capable of predicting physical phenomena occurring during ATLAS FLB-EC6 experiment

  15. Optimisation des codes LDPC irréguliers et algorithmes de décodage des codes LDPC q-aires

    OpenAIRE

    Cances , Jean-Pierre

    2013-01-01

    Cette note technique rappelle les principes d'optimisation pour obtenir les profils de codes LDPC irréguliers performants et rappelle les principes des algorithmes de décodage utilizes pour les codes LDPC q-aires à grande efficacité spectrale.

  16. Automatic coding method of the ACR Code

    International Nuclear Information System (INIS)

    Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi

    1993-01-01

    The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology

  17. Computer codes for neutron data evaluation

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1979-01-01

    Data compilation codes such as NESTOR and REPSTOR, and NDES (Neutron Data Evaluation System) are mainly discussed. NDES is a code for neutron data evaluation using a TSS terminal, TEKTRONIX 4014. Users of NDES can perform plotting of data and calculation with nuclear models under conversational mode. (author)

  18. Two-dimensional color-code quantum computation

    International Nuclear Information System (INIS)

    Fowler, Austin G.

    2011-01-01

    We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.

  19. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  20. Construction of Short-Length High-Rates LDPC Codes Using Difference Families

    Directory of Open Access Journals (Sweden)

    Deny Hamdani

    2010-10-01

    Full Text Available Low-density parity-check (LDPC code is linear-block error-correcting code defined by sparse parity-check matrix. It is decoded using the massage-passing algorithm, and in many cases, capable of outperforming turbo code. This paper presents a class of low-density parity-check (LDPC codes showing good performance with low encoding complexity. The code is constructed using difference families from  combinatorial design. The resulting code, which is designed to have short code length and high code rate, can be encoded with low complexity due to its quasi-cyclic structure, and performs well when it is iteratively decoded with the sum-product algorithm. These properties of LDPC code are quite suitable for applications in future wireless local area network.

  1. Multi-level trellis coded modulation and multi-stage decoding

    Science.gov (United States)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  2. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  3. Implementation of LT codes based on chaos

    International Nuclear Information System (INIS)

    Zhou Qian; Li Liang; Chen Zengqiang; Zhao Jiaxiang

    2008-01-01

    Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator. (general)

  4. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  5. Performance Prediction of Centrifugal Compressor for Drop-In Testing Using Low Global Warming Potential Alternative Refrigerants and Performance Test Codes

    Directory of Open Access Journals (Sweden)

    Joo Hoon Park

    2017-12-01

    Full Text Available As environmental regulations to stall global warming are strengthened around the world, studies using newly developed low global warming potential (GWP alternative refrigerants are increasing. In this study, substitute refrigerants, R-1234ze (E and R-1233zd (E, were used in the centrifugal compressor of an R-134a 2-stage centrifugal chiller with a fixed rotational speed. Performance predictions and thermodynamic analyses of the centrifugal compressor for drop-in testing were performed. A performance prediction method based on the existing ASME PTC-10 performance test code was proposed. The proposed method yielded the expected operating area and operating point of the centrifugal compressor with alternative refrigerants. The thermodynamic performance of the first and second stages of the centrifugal compressor was calculated as the polytropic state. To verify the suitability of the proposed method, the drop-in test results of the two alternative refrigerants were compared. The predicted operating range based on the permissible deviation of ASME PTC-10 confirmed that the temperature difference was very small at the same efficiency. Because the drop-in test of R-1234ze (E was performed within the expected operating range, the centrifugal compressor using R-1234ze (E is considered well predicted. However, the predictions of the operating point and operating range of R-1233zd (E were lower than those of the drop-in test. The proposed performance prediction method will assist in understanding thermodynamic performance at the expected operating point and operating area of a centrifugal compressor using alternative gases based on limited design and structure information.

  6. Coding for effective denial management.

    Science.gov (United States)

    Miller, Jackie; Lineberry, Joe

    2004-01-01

    Nearly everyone will agree that accurate and consistent coding of diagnoses and procedures is the cornerstone for operating a compliant practice. The CPT or HCPCS procedure code tells the payor what service was performed and also (in most cases) determines the amount of payment. The ICD-9-CM diagnosis code, on the other hand, tells the payor why the service was performed. If the diagnosis code does not meet the payor's criteria for medical necessity, all payment for the service will be denied. Implementation of an effective denial management program can help "stop the bleeding." Denial management is a comprehensive process that works in two ways. First, it evaluates the cause of denials and takes steps to prevent them. Second, denial management creates specific procedures for refiling or appealing claims that are initially denied. Accurate, consistent and compliant coding is key to both of these functions. The process of proactively managing claim denials also reveals a practice's administrative strengths and weaknesses, enabling radiology business managers to streamline processes, eliminate duplicated efforts and shift a larger proportion of the staff's focus from paperwork to servicing patients--all of which are sure to enhance operations and improve practice management and office morale. Accurate coding requires a program of ongoing training and education in both CPT and ICD-9-CM coding. Radiology business managers must make education a top priority for their coding staff. Front office staff, technologists and radiologists should also be familiar with the types of information needed for accurate coding. A good staff training program will also cover the proper use of Advance Beneficiary Notices (ABNs). Registration and coding staff should understand how to determine whether the patient's clinical history meets criteria for Medicare coverage, and how to administer an ABN if the exam is likely to be denied. Staff should also understand the restrictions on use of

  7. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    Mantsinen, M.J.

    1995-03-01

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  8. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  9. Validations and applications of the FEAST code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Tayal, M.; Lau, J.H.; Evinou, D. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Jun, J.S. [Korea Atomic Energy Research Inst. (Korea, Republic of)

    1999-07-01

    The FEAST (Finite Element Analysis for STresses) code is part of a suite of computer codes that are used to assess the structural integrity of CANDu fuel elements and bundles. A detailed validation of the FEAST code was recently performed. The FEAST calculations are in good agreement with a variety of analytical solutions (18 cases) for stresses, strains and displacements. This consistency shows that the FEAST code correctly incorporates the fundamentals of stress analysis. Further, the calculations of the FEAST code match the variations in axial and hoop strain profiles, measured by strain gauges near the sheath-endcap weld during an out-reactor compression test. The code calculations are also consistent with photoelastic measurements in simulated endcaps. (author)

  10. Validations and applications of the FEAST code

    International Nuclear Information System (INIS)

    Xu, Z.; Tayal, M.; Lau, J.H.; Evinou, D.; Jun, J.S.

    1999-01-01

    The FEAST (Finite Element Analysis for STresses) code is part of a suite of computer codes that are used to assess the structural integrity of CANDu fuel elements and bundles. A detailed validation of the FEAST code was recently performed. The FEAST calculations are in good agreement with a variety of analytical solutions (18 cases) for stresses, strains and displacements. This consistency shows that the FEAST code correctly incorporates the fundamentals of stress analysis. Further, the calculations of the FEAST code match the variations in axial and hoop strain profiles, measured by strain gauges near the sheath-endcap weld during an out-reactor compression test. The code calculations are also consistent with photoelastic measurements in simulated endcaps. (author)

  11. Production of analysis code for 'JOYO' dosimetry experiment

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Nakazawa, Masaharu.

    1981-01-01

    As part of the measurement and analysis plan for the Dosimetry Experiment at the ''JOYO'' experimental fast reactor, neutron flux spectra analysis is performed using the NEUPAC (Neutron Unfolding Code Package) computer program. The code calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils. The NEUPAC code is based on the J1-type unfolding method, and the estimated neutron flux spectra is obtained as its solution. The program is able to determine the integral quantities and their sensitivities, together with an error estimate of the unfolded spectra and integral quantities. The code also performs a chi-square test of the input/output data, and contains many options for the calculational routines. This report presents the analytic theory, the program algorithms, and a description of the functions and use of the NEUPAC code. (author)

  12. Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code

    Directory of Open Access Journals (Sweden)

    Marinkovic Slavica

    2006-01-01

    Full Text Available Quantized frame expansions based on block transforms and oversampled filter banks (OFBs have been considered recently as joint source-channel codes (JSCCs for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC or a fixed-length code (FLC. This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an -ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.

  13. Coding in pigeons: Multiple-coding versus single-code/default strategies.

    Science.gov (United States)

    Pinto, Carlos; Machado, Armando

    2015-05-01

    To investigate the coding strategies that pigeons may use in a temporal discrimination tasks, pigeons were trained on a matching-to-sample procedure with three sample durations (2s, 6s and 18s) and two comparisons (red and green hues). One comparison was correct following 2-s samples and the other was correct following both 6-s and 18-s samples. Tests were then run to contrast the predictions of two hypotheses concerning the pigeons' coding strategies, the multiple-coding and the single-code/default. According to the multiple-coding hypothesis, three response rules are acquired, one for each sample. According to the single-code/default hypothesis, only two response rules are acquired, one for the 2-s sample and a "default" rule for any other duration. In retention interval tests, pigeons preferred the "default" key, a result predicted by the single-code/default hypothesis. In no-sample tests, pigeons preferred the key associated with the 2-s sample, a result predicted by multiple-coding. Finally, in generalization tests, when the sample duration equaled 3.5s, the geometric mean of 2s and 6s, pigeons preferred the key associated with the 6-s and 18-s samples, a result predicted by the single-code/default hypothesis. The pattern of results suggests the need for models that take into account multiple sources of stimulus control. © Society for the Experimental Analysis of Behavior.

  14. The RETRAN-03 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; McFadden, J.H.; Peterson, C.E.; McClure, J.A.; Gose, G.C.; Jensen, P.J.

    1991-01-01

    The RETRAN-03 code development effort is designed to overcome the major theoretical and practical limitations associated with the RETRAN-02 computer code. The major objectives of the development program are to extend the range of analyses that can be performed with RETRAN, to make the code more dependable and faster running, and to have a more transportable code. The first two objectives are accomplished by developing new models and adding other models to the RETRAN-02 base code. The major model additions for RETRAN-03 are as follows: implicit solution methods for the steady-state and transient forms of the field equations; additional options for the velocity difference equation; a new steady-state initialization option for computer low-power steam generator initial conditions; models for nonequilibrium thermodynamic conditions; and several special-purpose models. The source code and the environmental library for RETRAN-03 are written in standard FORTRAN 77, which allows the last objective to be fulfilled. Some models in RETRAN-02 have been deleted in RETRAN-03. In this paper the changes between RETRAN-02 and RETRAN-03 are reviewed

  15. Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes

    OpenAIRE

    Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman

    2011-01-01

    Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...

  16. Code Cactus; Code Cactus

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)

  17. Fast QC-LDPC code for free space optical communication

    Science.gov (United States)

    Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong

    2017-02-01

    Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.

  18. Combined Coding And Modulation Using Runlength Limited Error ...

    African Journals Online (AJOL)

    In this paper we propose a Combined Coding and Modulation (CCM) scheme employing RLL/ECCs and MPSK modulation as well as RLL/ECC codes and BFSK/MPSK modulation with a view to optimise on channel bandwidth. The CCM codes and their trellis are designed and their error performances simulated in AWGN ...

  19. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  20. The VULKIN code used for evaluation of the cladding tube's performance

    International Nuclear Information System (INIS)

    Marbach, G.

    1979-01-01

    Full text: 1 - Introduction. The French approach for fast subassembly project is to analyse each component part of the subassembly and each basic phenomenon to estimate the total behaviour. The VULKIN code describes the mechanical behaviour of a clad alone. A cladding damage parameter is calculated from the observed deformations. When it is greater than a fixed value we consider that the rupture probability is not negligible. But this function is not the only limit for the irradiation project. Other limits are bound to other problems: no fuel melting bundle, interaction behaviour. 2 - VULKIN code - Presentation. The VULKIN code gives the evolution of stresses and strains distribution in the thickness of the clad with the hypothesis of revolution symmetry. This program takes into account temperature dilatation and radial thermal gradient, fission gas pressure and steel swelling due to neutron flux. The fuel clad mechanical interaction is not described by this model. Experimental results show that its influence is negligible for the most unusual subassemblies but, if it is necessary, a special calculation is obtained using a specific code like TUREN, described in another paper. This model does not consider the stresses and strains resulting from interaction between bundle and wrapper. Another model describes the bundle behaviour and determines diametral deformation limit from the subassembly geometrical characteristics. The clad is considered as an elasto-plastic element. Plastic flows instantaneous, thermal creep or irradiation creep are determined at each time. The data of this code are the geometry, the irradiation parameters (temperature, dose), the fission gas pressure evolution, the swelling law and the experimental relations for thermal and irradiation creep. The mechanical resolution is classical: the clad is divided into concentric rings. At each time the equations resulting from the equilibrium of strengths and compatibility of displacements are resolved

  1. Interfacial and Wall Transport Models for SPACE-CAP Code

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul; Choi, Hoon; Ha, Sang Jun

    2009-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code

  2. Interfacial and Wall Transport Models for SPACE-CAP Code

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.

  3. Spectral amplitude coding OCDMA using and subtraction technique.

    Science.gov (United States)

    Hasoon, Feras N; Aljunid, S A; Samad, M D A; Abdullah, Mohamad Khazani; Shaari, Sahbudin

    2008-03-20

    An optical decoding technique is proposed for a spectral-amplitude-coding-optical code division multiple access, namely, the AND subtraction technique. The theory is being elaborated and experimental results have been done by comparing a double-weight code against the existing code, Hadamard. We have proved that the and subtraction technique gives better bit error rate performance than the conventional complementary subtraction technique against the received power level.

  4. OPAL reactor calculations using the Monte Carlo code serpent

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Diego; Villarino, Eduardo [Nuclear Engineering Dept., INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    In the present work the Monte Carlo cell code developed by VTT Serpent v1.1.14 is used to model the MTR fuel assemblies (FA) and control rods (CR) from OPAL (Open Pool Australian Light-water) reactor in order to obtain few-group constants with burnup dependence to be used in the already developed reactor core models. These core calculations are performed using CITVAP 3-D diffusion code, which is well-known reactor code based on CITATION. Subsequently the results are compared with those obtained by the deterministic calculation line used by INVAP, which uses the Collision Probability Condor cell-code to obtain few-group constants. Finally the results are compared with the experimental data obtained from the reactor information for several operation cycles. As a result several evaluations are performed, including a code to code cell comparison at cell and core level and calculation-experiment comparison at core level in order to evaluate the Serpent code actual capabilities. (author)

  5. Performance of a neutron transport code with full phase space decomposition on the Cray Research T3D

    International Nuclear Information System (INIS)

    Dorr, M.R.; Salo, E.M.

    1995-01-01

    We present performance results obtained on a 128-node Cray Research T3D computer by a neutron transport code implementing a standard mtiltigroup, discrete ordinates algorithm on a three-dimensional Cartesian grid. After summarizing the implementation strategy used to obtain a full decomposition of phase space (i.e., simultaneous parallelization of the neutron energy, directional and spatial variables), we investigate the scalability of the fundamental source iteration step with respect to each phase space variable. We also describe enhancements that have enabled performance rates approaching 10 gigaflops on the full 128-node machine

  6. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  7. An analysis, using the CLAPTRAP code, of the pressure transients developed in the Carolinas Virginia Tube Reactor during containment performance tests

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1982-11-01

    To check containment performance of the CVTR, steam was injected above the operating floor through a 10 foot pipe cap containing the 1 inch diameter holes, at a steady rate of 102.8 lb/sec for a period of 166 seconds. This steam had an enthalpy of 1195 Btu/lb and was therefore not entirely typical of the much wetter material which would be rejected for the greater part of a true breached circuit accident. Pressure transients measured experimentally within the containment were compared with results calculated by the American code CONTEMPT and these results in turn have allowed the Winfrith code CLAPTRAP to be tested for consistency and to establish that the use of this code would have led to similar conclusions about the heat transfer coefficients at the heat absorbent surfaces. (U.K.)

  8. Fast H.264/AVC FRExt intra coding using belief propagation.

    Science.gov (United States)

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  9. 'Turbo' coding for deep space applications

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl

    1995-01-01

    The performance of the `turbo' coding scheme is measured and an error floor is discovered. These residual errors are corrected with an outer BCH code. The complexity of the system is discussed, and for low data rates a realizable system operating at Eb/N0 below 0.2 dB is presented...

  10. Construction of Protograph LDPC Codes with Linear Minimum Distance

    Science.gov (United States)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  11. Adaptive decoding of convolutional codes

    Science.gov (United States)

    Hueske, K.; Geldmacher, J.; Götze, J.

    2007-06-01

    Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  12. Improvement of calculation method for temperature coefficient of HTTR by neutronics calculation code based on diffusion theory. Analysis for temperature coefficient by SRAC code system

    International Nuclear Information System (INIS)

    Goto, Minoru; Takamatsu, Kuniyoshi

    2007-03-01

    The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)

  13. Survey of nuclear fuel-cycle codes

    International Nuclear Information System (INIS)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code

  14. Latest improvements on TRACPWR six-equations thermohydraulic code

    International Nuclear Information System (INIS)

    Rivero, N.; Batuecas, T.; Martinez, R.; Munoz, J.; Lenhardt, G.; Serrano, P.

    1999-01-01

    The paper presents the latest improvements on TRACPWR aimed at adapting the code to present trends on computer platforms, architectures and training requirements as well as extending the scope of the code itself and its applicability to other technologies different from Westinghouse PWR one. Firstly major features of TRACPWR as best estimate and real time simulation code are summed, then the areas where TRACPWR is being improved are presented. These areas comprising: (1) Architecture: integrating TRACPWR and RELAP5 codes, (2) Code scope enhancement: modelling the Mid-Loop operation, (3) Code speed-up: applying parallelization techniques, (4) Code platform downswing: porting to Windows N1 platform, (5) On-line performance: allowing simulation initialisation from a Plant Process Computer, and (6) Code scope extension: using the code for modelling VVER and PHWR technology. (author)

  15. Performance assessment of new neutron cross section libraries using MCNP code and some critical benchmarks

    International Nuclear Information System (INIS)

    Bakkari, B El; Bardouni, T El.; Erradi, L.; Chakir, E.; Meroun, O.; Azahra, M.; Boukhal, H.; Khoukhi, T El.; Htet, A.

    2007-01-01

    Full text: New releases of nuclear data files made available during the few recent years. The reference MCNP5 code (1) for Monte Carlo calculations is usually distributed with only one standard nuclear data library for neutron interactions based on ENDF/B-VI. The main goal of this work is to process new neutron cross sections libraries in ACE continuous format for MCNP code based on the most recent data files recently made available for the scientific community : ENDF/B-VII.b2, ENDF/B-VI (release 8), JEFF3.0, JEFF-3.1, JENDL-3.3 and JEF2.2. In our data treatment, we used the modular NJOY system (release 99.9) (2) in conjunction with its most recent upadates. Assessment of the processed point wise cross sections libraries performances was made by means of some criticality prediction and analysis of other integral parameters for a set of reactor benchmarks. Almost all the analyzed benchmarks were taken from the international handbook of Evaluated criticality safety benchmarks experiments from OECD (3). Some revised benchmarks were taken from references (4,5). These benchmarks use Pu-239 or U-235 as the main fissionable materiel in different forms, different enrichments and cover various geometries. Monte Carlo calculations were performed in 3D with maximum details of benchmark description and the S(α,β) cross section treatment was adopted in all thermal cases. The resulting one standard deviation confidence interval for the eigenvalue is typically +/-13% to +/-20 pcm [fr

  16. Evaluation Codes from an Affine Veriety Code Perspective

    DEFF Research Database (Denmark)

    Geil, Hans Olav

    2008-01-01

    Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...

  17. Measured performances on vectorization and multitasking with a Monte Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    Chauvet, Y.

    1985-01-01

    This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in our neutron transport problems, we briefly describe the work we have done in order to get a vector code. Vectorization principles will be presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples will be presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example we propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion we prove that Monte Carlo algorithms are very well suited to future vector and parallel computers. (orig.)

  18. Multi-stage decoding for multi-level block modulation codes

    Science.gov (United States)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  19. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Marc Fossorier

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M=2k. Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  20. Building a Better Campus: An Update on Building Codes.

    Science.gov (United States)

    Madden, Michael J.

    2002-01-01

    Discusses the implications for higher education institutions in terms of facility planning, design, construction, and renovation of the move from regionally-developed model-building codes to two international sets of codes. Also addresses the new performance-based design option within the codes. (EV)