WorldWideScience

Sample records for performed functional mri

  1. Adaptive Analysis of Functional MRI Data

    International Nuclear Information System (INIS)

    Friman, Ola

    2003-01-01

    Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuro-imaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities to unravel the mysteries and advance the understanding of the human brain, as well as to perform pre-surgical examinations in order to optimize surgical interventions. This dissertation introduces new approaches for the analysis of fMRI data. The detection of active brain areas is a challenging problem due to high noise levels and artifacts present in the data. A fundamental tool in the developed methods is Canonical Correlation Analysis (CCA). CCA is used in two novel ways. First as a method with the ability to fully exploit the spatio-temporal nature of fMRI data for detecting active brain areas. Established analysis approaches mainly focus on the temporal dimension of the data and they are for this reason commonly referred to as being mass-univariate. The new CCA detection method encompasses and generalizes the traditional mass-univariate methods and can in this terminology be viewed as a mass-multivariate approach. The concept of spatial basis functions is introduced as a spatial counterpart of the temporal basis functions already in use in fMRI analysis. The spatial basis functions implicitly perform an adaptive spatial filtering of the fMRI images, which significantly improves detection performance. It is also shown how prior information can be incorporated into the analysis by imposing constraints on the temporal and spatial models and a constrained version of CCA is devised to this end. A general Principal Component Analysis technique for generating and constraining temporal and spatial subspace models is proposed to be used in combination with the constrained CCA

  2. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  3. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  4. Neuro-pharmacological functional MRI of epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji [Okayama Univ. (Japan). School of Medicine; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-03-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  5. Neuro-pharmacological functional MRI of epilepsy

    International Nuclear Information System (INIS)

    Kiriyama, Hideki; Makabe, Tetsuo; Tomita, Susumu; Omoto, Takashi; Asari, Shoji; Aihara, Hiroshi; Kinugasa, Kazushi; Nishimoto, Akira; Ito, Takahiko

    2000-01-01

    We studied patients with epilepsy by neuro-pharmacological functional MRI technique using diazepam. Five normal volunteers and 7 patients with epilepsy were investigated. MRI was performed by a 1.5 T unit (SIGNA Horizon, GE) using the following parameters: TR/TE 5000 msec/80 msec, FA 90 deg, FOV 200 mm, matrix 128 x 128, slice thickness 7 mm. We performed MRI scanning over 5 minutes (2 minutes before and 3 minutes after injection of diazepam) for each 1 session; we scanned 3 sessions for each patient at intervals of 5 minutes. The diazepam was injected rapidly from the antecubital vein. The dose of diazepam was 0.05 mg/kg/injection (total dose was 0.15 mg/kg). The data were analyzed statistically using t-test. Signal change after administration of diazepam was less than 1 to 2% in healthy volunteers. By contrast, in patient with epilepsy, the signal change was almost 3%, which was significantly greater than that of the normal area (p=0.01). The neuro-pharmacological functional MRI technique using diazepam might be a useful method to identify epileptic foci. (author)

  6. Determination of language lateralization using functional MRI during the performance of shiritori tasks in neurosurgery patients

    International Nuclear Information System (INIS)

    Takayama, Hideichi; Kobayashi, Masahito; Sugishita, Morihiro; Onozuka, Satoshi; Kawase, Takeshi

    2001-01-01

    Assessment of language lateralization is crucial in patients considered for neurological surgery. The authors used functional MRI (fMRI) in conjunction with shiritori, a kind of word-generation task as paradigms, to determine language lateralization in the patients. We used a 1.5 Tesla magnetic resonance imaging devise with an echo-planar imaging sequence. Thirty-two patients undergoing neurological surgery would alternately rest and silently perform shiritori during fMRI acquisition. Language lateralization was determined in 29 out of 32 patients. Twenty-two patients were considered as left-hemisphere dominant and seven were right-hemisphere dominant. Brain activation was seen in the prefrontal area, premotor area, superior temporal gyrus and parietal lobe of the dominant hemisphere, which is consistent with the results in normal adults. Language lateralization was particularly useful in a case of meningioma in the left lateral ventricle and in a case of AVM in the left temporoparietal region. fMRI with shiritori tasks revealed right-hemisphere dominance in both cases, which was also confirmed by intracarotid amobarbital (Wada) testing. Both lesions were treated successfully without causing any further deficit to the patients' language function. These results suggest that fMRI with shiritori tasks can be used to assess language lateralization non-invasively, compared with the current techniques, such as intracarotid amobarbital testing and cortical electrostimulation mapping. Thus, fMRI with shiritori tasks has significant clinical potential as a presurgical evaluation tool. (author)

  7. Determination of language lateralization using functional MRI during the performance of shiritori tasks in neurosurgery patients

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Hideichi; Kobayashi, Masahito [Mihara Memorial Hospital, Isesaki, Gunma (Japan); Sugishita, Morihiro; Onozuka, Satoshi; Kawase, Takeshi

    2001-03-01

    Assessment of language lateralization is crucial in patients considered for neurological surgery. The authors used functional MRI (fMRI) in conjunction with shiritori, a kind of word-generation task as paradigms, to determine language lateralization in the patients. We used a 1.5 Tesla magnetic resonance imaging devise with an echo-planar imaging sequence. Thirty-two patients undergoing neurological surgery would alternately rest and silently perform shiritori during fMRI acquisition. Language lateralization was determined in 29 out of 32 patients. Twenty-two patients were considered as left-hemisphere dominant and seven were right-hemisphere dominant. Brain activation was seen in the prefrontal area, premotor area, superior temporal gyrus and parietal lobe of the dominant hemisphere, which is consistent with the results in normal adults. Language lateralization was particularly useful in a case of meningioma in the left lateral ventricle and in a case of AVM in the left temporoparietal region. fMRI with shiritori tasks revealed right-hemisphere dominance in both cases, which was also confirmed by intracarotid amobarbital (Wada) testing. Both lesions were treated successfully without causing any further deficit to the patients' language function. These results suggest that fMRI with shiritori tasks can be used to assess language lateralization non-invasively, compared with the current techniques, such as intracarotid amobarbital testing and cortical electrostimulation mapping. Thus, fMRI with shiritori tasks has significant clinical potential as a presurgical evaluation tool. (author)

  8. Functional MRI of the kidneys

    OpenAIRE

    Zhang, Jeff L.; Rusinek, Henry; Chandarana, Hersh; Lee, Vivian S.

    2013-01-01

    Renal function is characterized by different physiologic aspects, including perfusion, glomerular filtration, interstitial diffusion and tissue oxygenation. MRI shows great promise in assessing these renal tissue characteristics noninvasively. The last decade has witnessed a dramatic progress in MRI techniques for renal function assessment. This article briefly describes relevant renal anatomy and physiology, reviews the applications of functional MRI techniques for the diagnosis of renal dis...

  9. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  10. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  11. Low-Cost High-Performance MRI

    Science.gov (United States)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (standards for affordable (<$50,000) and robust portable devices.

  12. Extraction of temporal information in functional MRI

    Science.gov (United States)

    Singh, M.; Sungkarat, W.; Jeong, Jeong-Won; Zhou, Yongxia

    2002-10-01

    The temporal resolution of functional MRI (fMRI) is limited by the shape of the haemodynamic response function (hrf) and the vascular architecture underlying the activated regions. Typically, the temporal resolution of fMRI is on the order of 1 s. We have developed a new data processing approach to extract temporal information on a pixel-by-pixel basis at the level of 100 ms from fMRI data. Instead of correlating or fitting the time-course of each pixel to a single reference function, which is the common practice in fMRI, we correlate each pixel's time-course to a series of reference functions that are shifted with respect to each other by 100 ms. The reference function yielding the highest correlation coefficient for a pixel is then used as a time marker for that pixel. A Monte Carlo simulation and experimental study of this approach were performed to estimate the temporal resolution as a function of signal-to-noise ratio (SNR) in the time-course of a pixel. Assuming a known and stationary hrf, the simulation and experimental studies suggest a lower limit in the temporal resolution of approximately 100 ms at an SNR of 3. The multireference function approach was also applied to extract timing information from an event-related motor movement study where the subjects flexed a finger on cue. The event was repeated 19 times with the event's presentation staggered to yield an approximately 100-ms temporal sampling of the haemodynamic response over the entire presentation cycle. The timing differences among different regions of the brain activated by the motor task were clearly visualized and quantified by this method. The results suggest that it is possible to achieve a temporal resolution of /spl sim/200 ms in practice with this approach.

  13. Structural and functional MRI in children with renal disease. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Bettina; Froekiaer, Joergen [Aarhus Univ. Hospital (Denmark). Inst. of Clinical Medicine; Karstoft, Kristian; Pedersen, Michael [Aarhus Univ. Hospital (Denmark). Inst. of Clinical Medicine; Aarhus Univ. Hospital (Denmark). MR Research Centre; Joergensen, Troels Munch [Aarhus Univ. Hospital (Denmark). Dept. of Urology; Rittig, Soeren [Aarhus Univ. Hospital (Denmark). Dept. of Paediatrics

    2010-07-01

    This MRI study demonstrates our first clinical experiences with structural and functional evaluation in children with renal dysfunction, and communicates our experience with quantitative measurements of renal function compared to reference values found employing radionucleotides. We included renal impaired children who were recruited for clinical radioisotopic GFR measurements (n=8). MRI was performed 2 hours after Cr-EDTA measurements and was conducted using a protocol involving both anatomical/structural sequences and a dynamic contrast-enhanced sequence. Data obtained with the dynamic MRI sequence were processed using the graphical Patlak approach to obtain estimates of GFR. We were able to characterize the intrarenal configuration (cortex, medulla, pelvicalyceal arrangement) in all cases. Functional analyses of dynamic contrast-enhanced MRI revealed an overall underestimation of GFR measured by MRI compared to Cr-EDTPA measures (range: -2% to -43%). We advocate the use of MRI as a single-modality approach in the structural and functional evaluation of impaired kidneys in children, and concurrently, we presented a clinically available strategy for estimations of renal cortical volume and single kidney function. However, the use of MRI contrast agents have recently become controversial in renal patients due to the risk of NSF. (orig.)

  14. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search.

    Science.gov (United States)

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-03-01

    Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.

  15. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  16. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  17. Combination of functional MRI with SAS and MRA

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masayuki; Takeshita, Shinichirou; Kutsuna, Munenori; Akimitsu, Tomohide; Arita, Kazunori; Kurisu, Kaoru [Hiroshima Univ. (Japan). School of Medicine

    1999-02-01

    For presurgical diagnosis of brain surface, combination of functional MRI (fMRI) with the MR angiography was examined. This method could visualize brain bay, convolution and vein as index of surface. Five normal adults (male, mean age: 28-year-old) and 7 patients with brain tumor on the main locus to surface (male: 4, female: 3, mean age: 52.3-year-old) were studied. fMRI was performed by SPGR method (TR 70, TE 40, flip angle 60, one slice, thickness 10 mm, FOV 20 cm, matrix 128 x 128). The brain surface was visualized by SAS (surface anatomy scanning). SAS was performed by FSE method (TR 6000, TE 200, echo train 16, thickness 20 mm, slice 3, NEX 2). Cortical veins near superior sagittal sinus were visualized by MRA with 2D-TOF method (TR 50, TE 20, flip angle 60, thickness 2 mm, slice 28, NEX 1). These images were superimposed and functional image of peripheral sensorimotor region was evaluated anatomically. In normal adults, high signal was visualized at another side of near sensorimotor region at 8 of 10 sides. All high signal area of fMRI agreed with cortical vein near sensorimotor region that was visualized by MRA. In patients with brain tumor, signal was visualized at another side of sensorimotor region of tumor without 2 cases with palsy. In another side of tumor, signal of fMRI was visualized in 5 of 7 cases. The tumor was visualized as opposite low signal field in SAS. Locational relation between tumor and brain surface and brain function was visualized distinctly by combination of MRA, SAS and MRA. This method could become useful for presurgical diagnosis. (K.H.)

  18. Functional MRI for planning in neurosurgery

    International Nuclear Information System (INIS)

    Erb, M.; Saur, R.

    2007-01-01

    Beside structural images from CT and MR, functional data about localization of brain activations with different tasks becomes more and more important for presurgical planning. With this method, it's possible to depict mainly primary sensory and motoric areas, but also higher functions like speech and memory. To judge this information adequately, one has to be aware of the variability of activation pattern dependent on chosen threshold. Especially, the absence of such activation at a given location does not necessary mean that this area has no function. The reliability of a measurement strongly depends on efficiency of experimental design and cooperation of the patient. Therefore, short and easy tasks which can be performed in a block design should be preferred. Information about localization of functions determined by fMRI can mainly be used for presurgical planning. Intraoperative usage in the navigation system is problematic due to the brain shift. Therefore, intraoperative imaging together with dynamic adaptation using nonlinear deformation algorithms may improve the value of fMRI in the future. (orig.)

  19. Clinical application of functional MRI

    International Nuclear Information System (INIS)

    Taniwaki, Takayuki

    2010-01-01

    Described is the present state of clinical application of fMRI in the preoperative assessment of brain tumors, and plasticity in and pathophysiology of central diseases. For the tumor resection, fMRI is useful for risk assessment of postoperative nerve dysfunction, for selection of the patient rather suitable for brain mapping at the invasive surgery than at the pre-operation and for guidance of the operation itself. Preoperative fMRI alone can neither distinguish the regions of the primary and secondary functions nor exhibit the relation between the tumor and white matter fibers but there are compensatory means for these drawbacks. Benefit of preoperative fMRI has not yet been based on the evidence on double blind trials. Combination of fMRI imaging and electroencephalography (EEG) finding has shown that, in generalized epilepsy, extensive and stimulated activation occurs in both frontal/occipital regions and in thalamus area, respectively, and that the concomitant lowered activities are conceivably the reflection of burst discharge in normal brain functions. Plasticity in the human brain has been demonstrated by fMRI in cerebral vascular diseases, multiple sclerosis and amyotrophic lateral sclerosis. Pathogenesis of Parkinson disease and depression has been better understood by fMRI investigations revealing regions with elevated and reduced activities. Studies of attention deficit hyperactivity disorder have shown similar change of activities with functional reductions of the right dorsolateral frontal anterior area and of dorsal frontal cingulate gyrus, together with stimulated wider regions to given tasks. As above, fMRI has greatly contributed to our understanding of diseases of central nervous system and is to be expected to expand wider in this field. (T.T.)

  20. Research progress of functional MRI in depression

    International Nuclear Information System (INIS)

    Xie Shenghui; Niu Guangming; Han Xiaodong; Qiao Pengfei

    2013-01-01

    The mood disorders of depression are associated with abnormalities of brain structure and function, and exploring their pathological mechanism has important significance for the choice of treatment and the curative effect evaluation. In recent years, the research of MRI on brain structure and function of depression has made great progress, especially in functional magnetic resonance imaging (fMRI). fMRI can detect the functional change in real time, and also can display the activity of brain and changes in the nerve pathways in patients with depression. This article summarizes the present research situation and progress of MRI in the diagnosis of depression. (authors)

  1. Quality assurance in functional MRI

    DEFF Research Database (Denmark)

    Liu, Thomas T; Glover, Gary H; Mueller, Bryon A

    2015-01-01

    Over the past 20 years, functional magnetic resonance imaging (fMRI) has ben- efited greatly from improvements in MRI hardware and software. At the same time, fMRI researchers have pushed the technical limits of MRI systems and greatly in- fluenced the development of state-of-the-art systems...... consistent data throughout the course of a study, and consistent stability across time and sites is needed to allow data from different time periods or acquisition sites to be optimally integrated....

  2. Comparison of left ventricular function assessment between echocardiography and MRI in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Buddhe, Sujatha; Lewin, Mark; Olson, Aaron; Soriano, Brian D. [University of Washington School of Medicine and Seattle Children' s Hospital, Division of Cardiology, Department of Pediatrics, Seattle, WA (United States); Ferguson, Mark [University of Washington School of Medicine and Seattle Children' s Hospital, Department of Radiology, Seattle, WA (United States)

    2016-09-15

    Cardiomyopathy in Duchenne muscular dystrophy (DMD) is associated with death in approximately 40% of patients. Echocardiography is routinely used to assess left ventricular (LV) function; however, it has limitations in these patients. We compared echocardiographic measures of cardiac function assessment to cardiac MRI. We included children and young adults with DMD who had MRI performed between January 2010 and July 2015. We measured echocardiographic and MRI parameters of function assessment, including strain. Presence of late gadolinium enhancement (LGE) was assessed by MRI. Subjects were divided into two groups based on MRI left ventricular ejection fraction (LVEF): group I, LVEF ≥55% and group II, LVEF <55%. We included 41 studies in 33 subjects, with 25 in group I and 16 in group II. Mean age of subjects was 13.6 ± 2.8 years and mean duration between echocardiogram and MRI was 7.6 ± 4.1 months. Only 8 of 16 (50%) patients in group II had diminished function on echocardiogram. Echocardiographic images were suboptimal in 16 subjects (39%). Overall, echocardiographic parameters had weak correlation with MRI-derived ejection fraction percentage. MRI-derived myocardial strain assessment has better correlation with MRI ejection fraction as compared to echocardiography-derived strain parameters. Echocardiography-based ventricular functional assessment has weak correlation with MRI parameters in children and young adults with Duchenne muscular dystrophy. While this correlation improves in the subset of subjects with adequate echocardiographic image quality, it remains modest and potentially suboptimal for clinical management. Accordingly, we conclude that MRI should be performed routinely and early in children with DMD, not only for LGE imaging but also for functional assessment. (orig.)

  3. Comparison of left ventricular function assessment between echocardiography and MRI in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Buddhe, Sujatha; Lewin, Mark; Olson, Aaron; Soriano, Brian D.; Ferguson, Mark

    2016-01-01

    Cardiomyopathy in Duchenne muscular dystrophy (DMD) is associated with death in approximately 40% of patients. Echocardiography is routinely used to assess left ventricular (LV) function; however, it has limitations in these patients. We compared echocardiographic measures of cardiac function assessment to cardiac MRI. We included children and young adults with DMD who had MRI performed between January 2010 and July 2015. We measured echocardiographic and MRI parameters of function assessment, including strain. Presence of late gadolinium enhancement (LGE) was assessed by MRI. Subjects were divided into two groups based on MRI left ventricular ejection fraction (LVEF): group I, LVEF ≥55% and group II, LVEF <55%. We included 41 studies in 33 subjects, with 25 in group I and 16 in group II. Mean age of subjects was 13.6 ± 2.8 years and mean duration between echocardiogram and MRI was 7.6 ± 4.1 months. Only 8 of 16 (50%) patients in group II had diminished function on echocardiogram. Echocardiographic images were suboptimal in 16 subjects (39%). Overall, echocardiographic parameters had weak correlation with MRI-derived ejection fraction percentage. MRI-derived myocardial strain assessment has better correlation with MRI ejection fraction as compared to echocardiography-derived strain parameters. Echocardiography-based ventricular functional assessment has weak correlation with MRI parameters in children and young adults with Duchenne muscular dystrophy. While this correlation improves in the subset of subjects with adequate echocardiographic image quality, it remains modest and potentially suboptimal for clinical management. Accordingly, we conclude that MRI should be performed routinely and early in children with DMD, not only for LGE imaging but also for functional assessment. (orig.)

  4. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    International Nuclear Information System (INIS)

    Stippich, Christoph

    2015-01-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  5. Clinical functional MRI. Persurgical functional neuroimaging. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Stippich, Christoph (ed.) [Univ. Hospitals Basel (Switzerland). Division of Diagnostic and Inventional Neuroradiology

    2015-06-01

    The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.

  6. Diffusion, confusion and functional MRI

    International Nuclear Information System (INIS)

    Le Bihan, Denis

    2012-01-01

    Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)

  7. Application of functional MRI in breast diseases

    International Nuclear Information System (INIS)

    Feng Yun; Liu Shiyuan; Wang Chenguang; Tao Xiaofeng; Wang Jinlin; Wang Jian

    2007-01-01

    Objective: To investigate the value of functional MRI in the diagnosis and differential diagnosis of breast diseases. Methods: Sixty-five patients with 68 lesions were enrolled in this study. Conventional T 1 WI and T 2 WI scan, dynamic contrast enhanced MRI, diffusion weighted imaging and 1 H single voxel MR spectroscopy were performed consequently. All lesions were verified by pathology, including 4 cases of breast adenosis, 22 fibroadenomas, 2 chronic inflammations, 3 cysts, 33 infitrating ductal carcinomas, 1 intraductal carcinoma and 3 cystosarcoma phyllodes tumors. Morphological features, maximum enhancement ratio, time-intensity curve, apparent diffusion coefficient and Choline peak were analyzed. Results: The detection rates of T 1 WI and T 2 WI were 14.7% (n=10) and 51.5% (n=35). The sensitivity, specificity, accuracy of dynamic contrast enhanced MRI for the malignant tumor were 94. 6%, 71.4% and 76.5% respectively. Retrospective study showed that diffusion weighted imaging, with the b value from 800 s/mm 2 to 1000 s/mm 2 , could be used to differentiate various types of breast lesions. 1 H signal voxel spectroscopy had a sensitivity of 51.4%, specificity of 82.6%, and accuracy of 67.6% for the malignent. The sensitivity, specificity and accuracy could reach 97.3%, 90.0% and 92.6% respectively by combining conventional scan, dynamic contrast enhanced MRI and MR spectroscopy. Conclusion: Functional MRI, with high sensitivity, specificity and accuracy, can be used widely in the diagnosis of malignant breast lesions. (authors)

  8. Functional MRI (fMRI) on lesions in and around the motor and the eloquent cortices

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamura, Shogo; Tamaki, Norihiko; Kitamura, Junji

    1999-01-01

    From the view point of neurosurgeons, to aim the preoperative localized diagnosis on the motor and the eloquent cortices and postoperative preservation of neurological functions, fMRI was carried for patients with lesions in and around the motor and the eloquent cortices. Even in cases of mechanical oppression or brain edema, the motor and the eloquent cortices are localized on cerebral gyri. In perioperative period, identification and preserving the motor and the eloquent cortices are important for keeping brain function. Twenty six preoperative cases and 3 normal healthy subjects were observed. Exercise enhanced fMRI was performed on 3 normal healthy subjects, fMRI with motor stimulation in 24 cases and fMRI with speech stimulation in 4 cases. The signal intensity increased in all cases responsing to both stimulations. But the signal intensity in 8 cases decreased in some regions by motor stimulation and 1 case by speech stimulation. The decrease of signal intensity in this study seems to be a clinically important finding and it will be required to examine the significance in future. (K.H.)

  9. IClinfMRI Software for Integrating Functional MRI Techniques in Presurgical Mapping and Clinical Studies.

    Science.gov (United States)

    Hsu, Ai-Ling; Hou, Ping; Johnson, Jason M; Wu, Changwei W; Noll, Kyle R; Prabhu, Sujit S; Ferguson, Sherise D; Kumar, Vinodh A; Schomer, Donald F; Hazle, John D; Chen, Jyh-Horng; Liu, Ho-Ling

    2018-01-01

    Task-evoked and resting-state (rs) functional magnetic resonance imaging (fMRI) techniques have been applied to the clinical management of neurological diseases, exemplified by presurgical localization of eloquent cortex, to assist neurosurgeons in maximizing resection while preserving brain functions. In addition, recent studies have recommended incorporating cerebrovascular reactivity (CVR) imaging into clinical fMRI to evaluate the risk of lesion-induced neurovascular uncoupling (NVU). Although each of these imaging techniques possesses its own advantage for presurgical mapping, a specialized clinical software that integrates the three complementary techniques and promptly outputs the analyzed results to radiology and surgical navigation systems in a clinical format is still lacking. We developed the Integrated fMRI for Clinical Research (IClinfMRI) software to facilitate these needs. Beyond the independent processing of task-fMRI, rs-fMRI, and CVR mapping, IClinfMRI encompasses three unique functions: (1) supporting the interactive rs-fMRI mapping while visualizing task-fMRI results (or results from published meta-analysis) as a guidance map, (2) indicating/visualizing the NVU potential on analyzed fMRI maps, and (3) exporting these advanced mapping results in a Digital Imaging and Communications in Medicine (DICOM) format that are ready to export to a picture archiving and communication system (PACS) and a surgical navigation system. In summary, IClinfMRI has the merits of efficiently translating and integrating state-of-the-art imaging techniques for presurgical functional mapping and clinical fMRI studies.

  10. Quantitation of global and regional left ventricular function by MRI

    NARCIS (Netherlands)

    van der Geest, RJ; Reiber, JHC; Reiber, JHC; VanDerWall, EE

    1998-01-01

    Magnetic resonance imaging (MRI) provides several imaging strategies for assessing left ventricular function. As a three-dimensional imaging technique, all measurements can be performed without relying on geometrical assumptions. Global and regional function parameters can be derived from

  11. “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy?☆

    Science.gov (United States)

    Lu, Jun-Feng; Zhang, Han; Wu, Jin-Song; Yao, Cheng-Jun; Zhuang, Dong-Xiao; Qiu, Tian-Ming; Jia, Wen-Bin; Mao, Ying; Zhou, Liang-Fu

    2012-01-01

    As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided. PMID:24179766

  12. Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

    Science.gov (United States)

    2015-10-01

    including the Wechsler Intelligence Scale for Children (WISC-IV) for verbal and non-verbal intelligence; the Boston Naming Test , which evaluates a...demonstrated congruency between fMRI mappings and patient performance; 2) testing of the fMRI methods we developed for use in POMS patients was carried out...adaptive functional reorganization as a way to explain how some early-stage MS patients are able to perform well in clinical cognitive testing

  13. MRI in Optic Neuritis: Structure, Function, Interactions

    DEFF Research Database (Denmark)

    Fuglø, Dan

    2011-01-01

    resonance imaging (MRI), and the visual evoked potential (VEP) continues to show a delayed P100 indicating persistent demyelination. The explanation for this apparent discrepancy between structure and function could be due to either a redundancy in the visual pathways so that some degree of signal loss...... will have very few or no clinical symptoms, or it could be due to compensatory mechanisms in the visual pathway or the visual cortex. In order to understand the pathophysiology and recovery processes in ON it is essential to have sensitive methods to asses both structure and function. These methods...... are low. Functional MRI (fMRI) is a non-invasive technique that can measure brain activity with a high spatial resolution. Recently, technical and methodological advancements have made it feasible to record VEPs and fMRI simultaneously and the relationship between averaged VEPs and averaged fMRI signals...

  14. Cortical language activation in aphasia: a functional MRI study

    International Nuclear Information System (INIS)

    Xu Xiaojun; Zhang Minming; Shang Desheng; Wang Qidong; Luo Benyan

    2004-01-01

    Objective: To investigate the differences of the underlying neural basis of language processing between normal subjects and aphasics, and to study the feasibility for functional magnetic resonance imaging (fMRI) in examining the cortical language activation in clinical aphasics. Methods: fMRI was used to map language network in 6 normal subjects and 3 patients with aphasia who were in the stage of recovery from acute stroke. The participants performed word generation task during fMRI scanning, which measured the signal changes associated with regional neural activity induced by the task. These signal changes were processed to statistically generate the activation map that represented the language area. Results: In normal subjects, a distributed language network was activated. Activations were present in the frontal, temporal, parietal and occipital regions in normal group. In the patient group, however, no activation was showed in the left inferior frontal gyrus whether or not the patient had lesion in the left frontal lobe. Two patients showed activations in some right hemisphere regions where no activation appeared in normal subjects. Conclusion: The remote effect of focal lesion and functional redistribution or reorganization was found in aphasic patients. fMRI was useful in evaluating the language function in aphasic patients. (authors)

  15. Imaging tools to study pharmacology: functional MRI on small rodents

    OpenAIRE

    Elisabeth eJonckers; Disha eShah; Julie eHamaide; Marleen eVerhoye; Annemie eVan Der Linden

    2015-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimu...

  16. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  17. Bayesian spatiotemporal model of fMRI data using transfer functions.

    Science.gov (United States)

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Functional magnetic resonance imaging (fMRI) of motor deficits in schizophrenia

    International Nuclear Information System (INIS)

    Wenz, F.; Floemer, F.; Kaick, G. van

    1995-01-01

    The purpose of this study was to investigate differences in the cerebral activation pattern in ten schizophrenic patients and ten healthy volunteers using functional MRI. fMRI was performed using a modified FLASH sequence (TR/TE/α=100/60/40 ) and a conventional 1.5 T MR scanner. Colorcoded statistical parametric maps based on Student's t-test were calculated. Activation strength was quantified using a 5x6 grid overlay. The volunteers showed a higher activation strength during left hand movement compared to right hand movement. This lateralization effect was reversed in patients who showed overall reduced activation strength. Disturbed interhemispheric balance in schizophrenic patients during motor task performance can be demonstrated using fMRI. (orig.) [de

  19. Gait improvement after treadmill training in ischemic stroke survivors: A critical review of functional MRI studies ☆

    OpenAIRE

    Xiao, Xiang; Huang, Dongfeng; O’Young, Bryan

    2012-01-01

    Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimot...

  20. Functional MRI in pre-surgical planning: Case study and cautionary notes

    Directory of Open Access Journals (Sweden)

    Bruce S Spottiswoode

    2012-09-01

    Full Text Available Background. Since its inception almost 20 years ago, functional magnetic resonance imaging (fMRI has greatly advanced our knowledge of human brain function. Although the clinical applications of fMRI are still limited, there have recently been encouraging advances for its use in pre-operative functional cortical mapping to identify potentially eloquent areas prior to neurosurgery. Objectives. We explore the potential use of this emerging technique by presenting a neurosurgical case study, as performed at the Cape Universities Brain Imaging Centre (CUBIC, Tygerberg, Cape Town. We conclude with a brief summary of the potential pitfalls of this technique, as well as cautionary guidelines based on our experience. Methods and results. A 22-year-old male patient from Tygerberg Hospital underwent the successful resection of an anaplastic astrocytoma after fMRI presurgical planning at our facility. The subject was able to leave the ward unassisted. Conclusion. If consideration is given to the many limitations of this emerging technique, fMRI can be useful in aiding the neurosurgeon in pre-operative planning of his surgical approach.

  1. Emerging role of functional brain MRI in low-grade glioma surgery

    DEFF Research Database (Denmark)

    Friismose, Ancuta; Traise, Peter; Markovic, Ljubo

    Learning objectives 1. To describe the use of functional MRI (fMRI) in cranial surgery planning for patients with low-grade gliomas (LGG). 2. To show the increasing importance of fMRI in the clinical setting. Background LGG include brain tumors classified by the World Health Organization as grade I...... be used to map eloquent cortex areas, thus minimizing postoperative deficits and improving surgical performance. Findings and procedure details Patients diagnosed with low-grade gliomas located in eloquent brain areas undergo fMRI prior to surgery. The exams are performed on a 3T MR system (Achieva TX....... Language comprehension and visual tasks can be added to visualize Wernicke’s area or the visual cortex. Diffusion tensor imaging (DTI) is used to map nerve tract course relative to the tumour. Conclusion FMRI has proven its clinical utility in locating eloquent brain areas with relation to tumor site...

  2. Evaluation of various somatosensory stimulations for functional MRI

    International Nuclear Information System (INIS)

    Hara, Kazushi; Nakasato, Nobukazu; Mizoi, Kazuo; Yoshimoto, Takashi; Shimizu, Hiroaki.

    1997-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to test detectability of activated area using various somatosensory stimulations. The following stimulations were performed in normal volunteers: regular or irregular electrical median nerve stimulation (n=5, each), tactile stimulation to the palm and fingers (n=8), pain stimulation to the index finger (n=5) or to the palm and fingers (n=5). fMRI was acquired with a spoiled gradient echo sequence at 1.5 T. Detectability of activated area was the highest when the pain stimulation was applied to the palm and fingers (80%). A successful rate for the tactile stimulation was 25%, and the other stimulations failed to demonstrate any activation. When successful, the highest signal activation on fMRI was seen on a sulcus, which presumably arose from a vein. The sulcus was defined as the central sulcus by somatosensory evoked field using a median nerve stimulation. Our study indicates that the pain stimulation to the palm and fingers may be a choice for the sensory fMRI. (author)

  3. Detection of focal epileptic activity using combined simultaneous electroencephalogram-functional MRI

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Lu Guangming; Tian Lei; Sun Kanjian; Tan Qifu; Zhu Jianguo; Nie Cong; Hao Shaowei; Jiang Li; Liu Yijun

    2007-01-01

    Objective: To observe the brain activation of interictal epiletiform discharges (IEDs) and to localize the epileptogenic foci of epilepsy. Methods: The electroencephalogram (EEG) and functional MRI data of 12 focal epileptic patients were acquired using a combination of EEG and functional MRI simultaneously. The IEDs onset time detected with EEG were set as the time parameters in an event- related paradigm of functional MRI analysis. The spatial and temporal characters of IEDs activation were analyzed in detail. In order to confirm the consistency of this method, all patients were scanned repeatedly and the results were correlated with clinical evaluation. Results: Of the 12 patients, valid data from EEG- fMRI were obtained from 10 patients in a total of 18 sessions. Compared with the structural foci, the epileptic foci localization results of eleven sessions were good, five sessions were fairly good, and two sessions were poor. The results obtained from six patients in two separate sessions were concordant, respectively. Moreover, thalamic activation was detected in ten sessions, cerebellar activation was detected in all sessions, and the deactivation was found in the default mode loci in nine sessions. Conclusion: The method of performing EEG and fMRI simultaneously can potentially be a useful tool in epilepsy research. (authors)

  4. Inaudible functional MRI using a truly mute gradient echo sequence

    International Nuclear Information System (INIS)

    Marcar, V.L.; Girard, F.; Rinkel, Y.; Schneider, J.F.; Martin, E.

    2002-01-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  5. A SVM-based quantitative fMRI method for resting-state functional network detection.

    Science.gov (United States)

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma

    International Nuclear Information System (INIS)

    Ponisio, Maria Rosana; Laforest, Richard; Khanna, Geetika; McConathy, Jonathan

    2016-01-01

    Whole-body 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is the standard of care for lymphoma. Simultaneous PET/MRI (magnetic resonance imaging) is a promising new modality that combines the metabolic information of PET with superior soft-tissue resolution and functional imaging capabilities of MRI while decreasing radiation dose. There is limited information on the clinical performance of PET/MRI in the pediatric setting. This study evaluated the feasibility, dosimetry, and qualitative and quantitative diagnostic performance of simultaneous whole-body FDG-PET/MRI in children with lymphoma compared to PET/CT. Children with lymphoma undergoing standard of care FDG-PET/CT were prospectively recruited for PET/MRI performed immediately after the PET/CT. Images were evaluated for quality, lesion detection and anatomical localization of FDG uptake. Maximum and mean standardized uptake values (SUV max/mean ) of normal organs and SUV max of the most FDG-avid lesions were measured for PET/MRI and PET/CT. Estimation of radiation exposure was calculated using specific age-related factors. Nine PET/MRI scans were performed in eight patients (mean age: 15.3 years). The mean time interval between PET/CT and PET/MRI was 51 ± 10 min. Both the PET/CT and PET/MRI exams had good image quality and alignment with complete (9/9) concordance in response assessment. The SUVs from PET/MRI and PET/CT were highly correlated for normal organs (SUV mean r 2 : 0.88, P<0.0001) and very highly for FDG-avid lesions (SUV max r 2 : 0.94, P=0.0002). PET/MRI demonstrated an average percent radiation exposure reduction of 39% ± 13% compared with PET/CT. Simultaneous whole-body PET/MRI is clinically feasible in pediatric lymphoma. PET/MRI performance is comparable to PET/CT for lesion detection and SUV measurements. Replacement of PET/CT with PET/MRI can significantly decrease radiation dose from diagnostic imaging in children. (orig.)

  7. Parameterized hemodynamic response function data of healthy individuals obtained from resting-state functional MRI in a 7T MRI scanner

    Directory of Open Access Journals (Sweden)

    D. Rangaprakash

    2018-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI, being an indirect measure of brain activity, is mathematically defined as a convolution of the unmeasured latent neural signal and the hemodynamic response function (HRF. The HRF is known to vary across the brain and across individuals, and it is modulated by neural as well as non-neural factors. Three parameters characterize the shape of the HRF, which is obtained by performing deconvolution on resting-state fMRI data: response height, time-to-peak and full-width at half-max. The data provided here, obtained from 47 healthy adults, contains these three HRF parameters at every voxel in the brain, as well as HRF parameters from the default-mode network (DMN. In addition, we have provided functional connectivity (FC data from the same DMN regions, obtained for two cases: data with deconvolution (HRF variability minimized and data with no deconvolution (HRF variability corrupted. This would enable researchers to compare regional changes in HRF with corresponding FC differences, to assess the impact of HRF variability on FC. Importantly, the data was obtained in a 7T MRI scanner. While most fMRI studies are conducted at lower field strengths, like 3T, ours is the first study to report HRF data obtained at 7T. FMRI data at ultra-high fields contains larger contributions from small vessels, consequently HRF variability is lower for small vessels at higher field strengths. This implies that findings made from this data would be more conservative than from data acquired at lower fields, such as 3T. Results obtained with this data and further interpretations are available in our recent research study (Rangaprakash et al., in press [1]. This is a valuable dataset for studying HRF variability in conjunction with FC, and for developing the HRF profile in healthy individuals, which would have direct implications for fMRI data analysis, especially resting-state connectivity modeling. This is the first public HRF

  8. MRI to assess renal structure and function.

    Science.gov (United States)

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  9. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  10. Inaudible functional MRI using a truly mute gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)

    2002-11-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  11. Tablet-Based Functional MRI of the Trail Making Test: Effect of Tablet Interaction Mode

    Directory of Open Access Journals (Sweden)

    Mahta Karimpoor

    2017-10-01

    Full Text Available The Trail Making Test (TMT is widely used for assessing executive function, frontal lobe abilities, and visual motor skills. Part A of this pen-and-paper test (TMT-A involves linking numbers randomly distributed in space, in ascending order. Part B (TMT-B alternates between linking numbers and letters. TMT-B is more demanding than TMT-A, but the mental processing that supports the performance of this test remains incompletely understood. Functional MRI (fMRI may help to clarify the relationship between TMT performance and brain activity, but providing an environment that supports real-world pen-and-paper interactions during fMRI is challenging. Previously, an fMRI-compatible tablet system was developed for writing and drawing with two modes of interaction: the original cursor-based, proprioceptive approach, and a new mode involving augmented reality to provide visual feedback of hand position (VFHP for enhanced user interaction. This study characterizes the use of the tablet during fMRI of young healthy adults (n = 22, with half of the subjects performing TMT with VFHP and the other half performing TMT without VFHP. Activation maps for both TMT-A and TMT-B performance showed considerable overlap between the two tablet modes, and no statistically differences in brain activity were detected when contrasting TMT-B vs. TMT-A for the two tablet modes. Behavioral results also showed no statistically different interaction effects for TMT-B vs. TMT-A for the two tablet modes. Tablet-based TMT scores showed reasonable convergent validity with those obtained by administering the standard pen-and-paper TMT to the same subjects. Overall, the results suggest that despite the slightly different mechanisms involved for the two modes of tablet interaction, both are suitable for use in fMRI studies involving TMT performance. This study provides information for using tablet-based TMT methods appropriately in future fMRI studies involving patients and healthy

  12. Functional MRI in children: clinical and research applications

    International Nuclear Information System (INIS)

    Leach, James L.; Holland, Scott K.

    2010-01-01

    Functional MRI has become a critical research tool for evaluating brain function and developmental trajectories in children. Its clinical use in children is becoming more common. This presentation will review the basic underlying physiologic and technical aspects of fMRI, review research applications that have direct clinical relevance, and outline the current clinical uses of this technology. (orig.)

  13. Large-scale Granger causality analysis on resting-state functional MRI

    Science.gov (United States)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  14. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function.

    Science.gov (United States)

    Coolen, Bram F; Abdurrachim, Desiree; Motaal, Abdallah G; Nicolay, Klaas; Prompers, Jeanine J; Strijkers, Gustav J

    2013-03-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered at will to increase the frame rate because of gradient hardware, spatial resolution, and signal-to-noise limitations. To overcome these limitations associated with electrocardiography-triggered Cine MRI, in this paper, we introduce a retrospectively triggered Cine MRI protocol capable of producing high-resolution high frame rate Cine MRI of the mouse heart for addressing left ventricular diastolic function. Simulations were performed to investigate the influence of MRI sequence parameters and the k-space filling trajectory in relation to the desired number of frames per cardiac cycle. An optimized protocol was applied in vivo and compared with electrocardiography-triggered Cine for which a high-frame rate could only be achieved by several interleaved acquisitions. Retrospective high frame rate Cine MRI proved superior to the interleaved electrocardiography-triggered protocols. High spatial-resolution Cine movies with frames rates up to 80 frames per cardiac cycle were obtained in 25 min. Analysis of left ventricular filling rate curves allowed accurate determination of early and late filling rates and revealed subtle impairments in left ventricular diastolic function of diabetic mice in comparison with nondiabetic mice. Copyright © 2012 Wiley Periodicals, Inc.

  15. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    Science.gov (United States)

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  16. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    Science.gov (United States)

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  17. Functional imaging of the kidneys with fast MRI techniques

    International Nuclear Information System (INIS)

    Prasad, Pottumarthi V.; Priatna, Agus

    1999-01-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible

  18. Functional MRI in Patients with Intracranial Lesions near Language Areas.

    Science.gov (United States)

    Hakyemez, B; Erdogan, C; Yildirim, N; Bora, I; Bekar, A; Parlak, M

    2006-06-30

    We aimed to depict Broca's area and Wernicke's area by word generation and sentence formation paradigms in patients with various intracranial lesions adjacent to language areas using functional MRI technique and to evaluate the ability of functional MRI to lateralize the hemispheric dominance for language. Twenty-three right-handed patients were included in this study. Lesions were classified as low-grade glioma (n=8), high-grade glioma (n=9), metastasis (n=1), meningioma (n=1), arteriovenous malformation (n=2) and mesial temporal sclerosis (n=2). We performed blood-oxygenated-level-dependant functional MRI using a 1.5-T unit. Word generation and sentence formation tasks were used to activate language areas. Language areas were defined as Brodmann 44, 45 (Broca's area) and Brodmann 22 area (Wernicke's area). Laterality index was used to show the dominant hemisphere. Two poorly cooperative patients showed no activation and were excluded from the study. Broca's area was localized in 21 patients (100 %). Wernicke's area, on the other hand, could only be localized in eight of the 21 patients (38 %).The left hemisphere was dominant in 86% of patients while atypical language lateralization (right or bilateral) was demonstrated in 14% of the patients. Bilateral activation areas were shown in 10% of those patients while right cerebral hemisphere was dominant in 4% of the patients. Word generation and sentence formation tasks are especially helpful in localizing Broca's area. Wernicke's area could also be demonstrated in some of the cases. Functional MRI can be used as an important and useful means of demonstrating language areas in patients with lesions adjacent to those areas and depicting the hemispheric dominance.

  19. Functional Proton MRI in Emphysematous Rats.

    Science.gov (United States)

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Stiller, Detlef; Rasche, Volker

    2015-12-01

    To demonstrate the feasibility of proton magnetic resonance imaging (MRI) ventilation-related maps in rodents for the evaluation of lung function in the presence of pancreatic porcine elastase (PPE)-induced emphysema. Twelve rats were equally divided into 3 groups: group 1 (no administration of PPE); group 2 (PPE selectively only in the left lung); and group 3 (PPE administered in both lungs). Magnetic resonance imaging (MRI) and computed tomographic (CT) data were acquired at baseline, at 2 weeks and 4 weeks after administration, after which the animals were euthanized. The MRI protocol comprised a golden angle 2-dimensional ultrashort echo time MRI sequence [echo time, 0.343 millisecond (ms); repetition time, 120 ms; 12 slides with thickness, 1 mm; acquisition time, 30 minutes], from which inspiration and expiration images were reconstructed after the extraction of a self-gating signal. Inspiration images were registered to images at expiration, and expansion maps were created by calculating the specific difference in signal intensity. The lungs were segmented, and the mean specific expansion (MSE) calculated as an established surrogate for fractional ventilation. Computed tomographic data provided lung density (peak of the Hounsfield unit histogram, HU_P), whereas histology provided the mean linear intercept for each lung. Two weeks after administration, the control group had a mean MSE in both lungs corresponding to 96% of the baseline. Group 2 had 85% of the baseline, and group 3 had 57%. Considering the PPE-treated lungs alone, a significant reduction in MSE of 27% at 2 weeks and 40% at 4 weeks was found with respect to nontreated lungs. Significant correlations between HU_P and MSE were found at all time points (baseline: r = 0.606, P = 0.0017; 2 weeks: r = 0.837, P ≤ 0.0001; 4 weeks: r = 0.765, P Mean linear intercept values significantly correlated both with MRI MSE (r = -0.770, P The calculated ventilation-related maps showed a reduction of function in

  20. Mandarin functional MRI Language paradigms

    OpenAIRE

    Ci, He; van Graan, Andre; Gonz?lvez, Gloria; Thompson, Pamela; Hill, Andrea; Duncan, John S.

    2016-01-01

    Abstract Objective The objective of this study was to implement convenient, fast, and accurate Mandarin task paradigms for functional MRI, and to locate the Chinese language functional areas in frontal and temporal lobes. Materials and Methods Nineteen healthy Chinese volunteers participated in this study, which utilized a block design with four language tasks: auditory naming (AN), picture naming (PN), verbal fluency?character (VFC), and verbal fluency?letter (VFL). All functional images wer...

  1. Functional MRI experiments : acquisition, analysis and interpretation of data

    NARCIS (Netherlands)

    Ramsey, NF; Hoogduin, H; Jansma, JM

    2002-01-01

    Functional MRI is widely used to address basic and clinical neuroscience questions. In the key domains of fMRI experiments, i.e. acquisition, processing and analysis, and interpretation of data, developments are ongoing. The main issues are sensitivity for changes in fMRI signal that are associated

  2. Development of functional MRI in gastric cancer

    International Nuclear Information System (INIS)

    Zhang Lei; Shao Guoliang

    2013-01-01

    Gastric cancer is one of the most common malignant tumors in digestive tract functional MRI can represent the functional changes of the tumor. DWI not only provides a new way to diagnosis the gastric cancer, but also reflect the pathology changes of the tumor, which has great value to predict the therapeutic effect and prognosis of the tumor. MRS is the only method to test the chemical composition of tissues in live without injury, which has great value in the early diagnosis of gastric tumor and in the research of tumor mechanism. This review is mainly focused on the status and development of functional MRI in gastric cancer. (authors)

  3. Clinical fMRI of language function in aphasic patients: Reading paradigm successful, while word generation paradigm fails

    International Nuclear Information System (INIS)

    Engstroem, Maria; Landtblom, Anne-Marie; Ragnehed, Mattias; Lundberg, Peter; Karlsson, Marie; Crone, Marie; Antepohl, Wolfram

    2010-01-01

    Background: In fMRI examinations, it is very important to select appropriate paradigms assessing the brain function of interest. In addition, the patients' ability to perform the required cognitive tasks during fMRI must be taken into account. Purpose: To evaluate two language paradigms, word generation and sentence reading for their usefulness in examinations of aphasic patients and to make suggestions for improvements of clinical fMRI. Material and Methods: Five patients with aphasia after stroke or trauma sequelae were examined by fMRI. The patients' language ability was screened by neurolinguistic tests and elementary pre-fMRI language tests. Results: The sentence-reading paradigm succeeded to elicit adequate language-related activation in perilesional areas whereas the word generation paradigm failed. These findings were consistent with results on the behavioral tests in that all patients showed very poor performance in phonemic fluency, but scored well above mean at a reading comprehension task. Conclusion: The sentence-reading paradigm is appropriate to assess language function in this patient group, while the word-generation paradigm seems to be inadequate. In addition, it is crucial to use elementary pre-fMRI language tests to guide the fMRI paradigm decision.

  4. Clinical fMRI of language function in aphasic patients: Reading paradigm successful, while word generation paradigm fails

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Maria; Landtblom, Anne-Marie; Ragnehed, Mattias; Lundberg, Peter (Center for Medical Image Science and Visualization (CMIV), Linkoeping Univ., Linkoeping (Sweden)), e-mail: maria.engstrom@liu.se; Karlsson, Marie; Crone, Marie (Dept. of Clinical and Experimental Medicine/Logopedics, Linkoeping Univ., Linkoeping (Sweden)); Antepohl, Wolfram (Dept. of Clinical and Experimental Medicine/Rehabilitation, Linkoeping Univ., Linkoeping (Sweden))

    2010-07-15

    Background: In fMRI examinations, it is very important to select appropriate paradigms assessing the brain function of interest. In addition, the patients' ability to perform the required cognitive tasks during fMRI must be taken into account. Purpose: To evaluate two language paradigms, word generation and sentence reading for their usefulness in examinations of aphasic patients and to make suggestions for improvements of clinical fMRI. Material and Methods: Five patients with aphasia after stroke or trauma sequelae were examined by fMRI. The patients' language ability was screened by neurolinguistic tests and elementary pre-fMRI language tests. Results: The sentence-reading paradigm succeeded to elicit adequate language-related activation in perilesional areas whereas the word generation paradigm failed. These findings were consistent with results on the behavioral tests in that all patients showed very poor performance in phonemic fluency, but scored well above mean at a reading comprehension task. Conclusion: The sentence-reading paradigm is appropriate to assess language function in this patient group, while the word-generation paradigm seems to be inadequate. In addition, it is crucial to use elementary pre-fMRI language tests to guide the fMRI paradigm decision.

  5. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    activation patterns thanks to the unsupervised character of the HSMESM mapping approach. Along with activation maps, the method offers a wide range of additional fMRI analysis functionalities, including activation lag mapping, activation mode visualization, and hemodynamic response function analysis. Real event-related data: Activation detection results confirm and validate the overall strategy that consists in focusing the analysis on the transients, time-localized events that are the HROs. All the experiments performed on synthetic and real fMRI data demonstrate the relevance of HSMESMs in fMRI brain mapping. In particular, the statistical character of these models, along with their learning and generalizing abilities are of particular interest when dealing with strong variabilities of the active fMRI signal across time, space, experiments, and subjects.

  6. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters

    International Nuclear Information System (INIS)

    Hoetker, Andreas M.; Tarlinton, Lisa; Gollub, Marc J.; Mazaheri, Yousef; Woo, Kaitlin M.; Goenen, Mithat; Saltz, Leonard B.; Goodman, Karyn A.; Garcia-Aguilar, Julio

    2016-01-01

    To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant K"t"r"a"n"s on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. (orig.)

  7. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hoetker, Andreas M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Universitaetsmedizin Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Tarlinton, Lisa; Gollub, Marc J. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Mazaheri, Yousef [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Woo, Kaitlin M.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Saltz, Leonard B. [Memorial Sloan Kettering Cancer Center, Department of Medicine, Gastrointestinal Oncology Service, New York, NY (United States); Goodman, Karyn A. [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Garcia-Aguilar, Julio [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States)

    2016-12-15

    To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant K{sup trans} on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. (orig.)

  8. Functional MRI in pre-surgical planning: case study and cautionary ...

    African Journals Online (AJOL)

    Background. Since its inception almost 20 years ago, functional magnetic resonance imaging (fMRI) has greatly advanced our knowledge of human brain function. Although the clinical applications of fMRI are still limited, there have recently been encouraging advances for its use in pre-operative functional cortical mapping ...

  9. Cerebral activity mapped by functional MRI

    International Nuclear Information System (INIS)

    Bruening, R.; Danek, A.; Wu, R.H.; Berchtenbreiter, C.; Reiser, M.

    1997-01-01

    Functional magnetic resonance imaging (fMRI) is a method to noninvasively measure the changes in cerebral activation during sensitive, cognitive or motor activity. fMRI detects activity by subtraction of states of activity and rest. During activity the signal is increased presumably due to a decrease of deoxyhemoglobin in the capillary and venous structures. Using a full field visual stimulation by flashlight goggles, a signal increase of 3% was detected in the primary visual cortex (V1). Different sequences and postprocessing algorythms will be discussed. Data from the primary cortical areas suggest a high reproducability of the experiments. Successfull experiments highly depend on cooperation of subjects. Despite success in experiments fMRI still has to be established for clinical purposes. (orig.) [de

  10. Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging, and functional MRI

    International Nuclear Information System (INIS)

    Schad, L.R.; Bock, M.; Baudendistel, K.; Essig, M.; Debus, J.; Knopp, M.V.; Engenhart, R.; Lorenz, W.J.

    1996-01-01

    The authors report the sterotactic correlation of different MRI-techniques [MR angiography (MRA), MRI, blood bolus tagging (STAR), and functional MRI] in 10 patients with cerebral arteriovenous malformations (AVM) and its application in precision radiotherapy planning. The patient's head was fixed in a stereotactic localization system. By phantom measurements different materials (steel, aluminium, titanium, plastic, wood, ceramics) used for the stereotactic system were tested for mechanical stability and geometrical MR image distortion. All metallic stereotactic rings led to a more or less dramatic geometrical distortion and signal cancellation in the MR images. The best properties - nearly no distortion and high mechanical stability - are provided by a ceramic ring. If necessary, the remaining geometrical MR image distortion can be 'corrected' by calculations based on modeling the distortion as a fourth-order 2D-polynomial. Using this method multimodality matching can be performed automatically as long as all images are acquired in the same examination and the patient is sufficiently immobilized. Precise definition of the target volume could be performed by the radiotherapist either directly in MR images or in calculated projection MR angiograms. As a result, information about the hemodynamics of the AVM was provided by a 3D-phase-contrast flow measurement and a dynamic MRA with the STAR technique leading to an improved definition of the size of the nidus, and the pattern of the venous drainage. In addition, functional MRI was performed in patients with lesions close to the primary motor cortex area leading to an improved definition of structures at risk for high-dose application in radiosurgery. (orig./MG)

  11. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI.

    Directory of Open Access Journals (Sweden)

    David M L Lilburn

    Full Text Available Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp (129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129Xe. Straightforward hp (129Xe MRI protocols provide residual lung volume (RV data and permit for spatially resolved tracking of small hp (129Xe probe volumes during the inhalation cycle. Hp (129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.

  12. Functional imaging of the kidneys with fast MRI techniques

    International Nuclear Information System (INIS)

    Prasad, P.V.; Priatna, A.

    1999-01-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Functional imaging of the kidneys with fast MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, P.V.; Priatna, A. [AN-234, MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA (United States)

    1999-02-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India); Sujesh, Sreedharan [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum (India); Ashalata, Radhakrishnan; Radhakrishnan, Kurupath [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum (India); Abraham, Mathew [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurosurgery, Trivandrum (India)

    2007-10-15

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  15. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    International Nuclear Information System (INIS)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun; Sujesh, Sreedharan; Ashalata, Radhakrishnan; Radhakrishnan, Kurupath; Abraham, Mathew

    2007-01-01

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  16. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  17. Differentiating between bipolar and unipolar depression in functional and structural MRI studies.

    Science.gov (United States)

    Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku

    2018-03-28

    Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Normal pancreatic exocrine function does not exclude MRI/MRCP chronic pancreatitis findings.

    Science.gov (United States)

    Alkaade, Samer; Cem Balci, Numan; Momtahen, Amir Javad; Burton, Frank

    2008-09-01

    Abnormal pancreatic function tests have been reported to precede the imaging findings of chronic pancreatitis. Magnetic resonance imaging (MRI) with magnetic resonance cholangiopancreatography (MRCP) is increasingly accepted as the primary imaging modality for the detection of structural changes of early mild chronic pancreatitis. The aim of this study was to evaluate MRI/MRCP findings in patients with symptoms consistent with chronic pancreatitis who have normal Secretin Endoscopic Pancreatic Function test. A retrospective study of 32 patients referred for evaluation of chronic abdominal pain consistent with chronic pancreatitis and reported normal standard abdominal imaging (ultrasound, computed tomography, or MRI). All patients underwent Secretin Endoscopic Pancreatic Function testing and pancreatic MRI/MRCP at our institution. We reviewed the MRI/MRCP images in patients who had normal Secretin Endoscopic Pancreatic Function testing. MRI/MRCP images were assessed for pancreatic duct morphology, gland size, parenchymal signal and morphology, and arterial contrast enhancement. Of the 32 patients, 23 had normal Secretin Endoscopic Pancreatic Function testing, and 8 of them had mild to marked spectrum of abnormal MRI/MRCP findings that were predominantly focal. Frequencies of the findings were as follows: pancreatic duct stricture (n=3), pancreatic duct dilatation (n=3), side branch ectasia (n=4), atrophy (n=5), decreased arterial enhancement (n=5), decreased parenchymal signal (n=1), and cavity formation (n=1). The remaining15 patients had normal pancreatic structure on MRI/MRCP. Normal pancreatic function testing cannot exclude abnormal MRI/MRCP especially focal findings of chronic pancreatitis. Further studies needed to verify significance of these findings and establish MRI/MRCP imaging criteria for the diagnosis of chronic pancreatitis.

  19. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    International Nuclear Information System (INIS)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van; Smits, Marion; Lugt, Aad van der; Groot, Marius de; Vrooman, Henri A.; Mattace Raso, Francesco U.; Niessen, Wiro J.; Veen, Frederik M. van der; Prins, Niels D.

    2017-01-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  20. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van [Erasmus MC - University Medical Center Rotterdam, Department of Neurology, Rotterdam (Netherlands); Smits, Marion; Lugt, Aad van der [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Groot, Marius de; Vrooman, Henri A. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Mattace Raso, Francesco U. [Erasmus MC - University Medical Center Rotterdam, Department of Geriatrics, Rotterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Veen, Frederik M. van der [Erasmus University Rotterdam, Institute of Psychology, Rotterdam (Netherlands); Prins, Niels D. [VU University Medical Center, Alzheimer Center, Department of Neurology, Amsterdam (Netherlands)

    2017-09-15

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)

  1. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  2. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment.

    Science.gov (United States)

    Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D

    2017-09-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.

  3. Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series

    Energy Technology Data Exchange (ETDEWEB)

    Brendle, C.; Schwenzer, N.F.; Rempp, H.; Schmidt, H.; Pfannenberg, C.; Nikolaou, K.; Schraml, C. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); La Fougere, C. [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany)

    2016-01-15

    The purpose was to investigate the diagnostic performance of different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT for the evaluation of metastatic colorectal cancer lesions. Image data of 15 colorectal cancer patients (FDG-PET/CT and subsequent FDG-PET/MRI) were retrospectively evaluated by two readers in five reading sessions: MRI (morphology) alone, MRI/diffusion-weighted MRI (DWI), MRI/PET, MRI/DWI/PET; and PET/CT. Diagnostic performance of lesion detection with each combination was assessed in general and organ-based. The reference standard was given by histology and/or follow-up imaging. Separate analysis of mucinous tumours was performed. One hundred and eighty lesions (110 malignant) were evaluated (intestine n = 6, liver n = 37, lymph nodes n = 55, lung n = 4, and peritoneal n = 74). The overall lesion-based diagnostic accuracy was 0.46 for MRI, 0.47 for MRI/DWI, 0.57 for MRI/PET, 0.69 for MRI/DWI/PET and 0.66 for PET/CT. In the organ-based assessment, MRI/DWI/PET showed the highest accuracy for liver metastases (0.74), a comparable accuracy to PET/CT in peritoneal lesions (0.55), and in lymph node metastases (0.84). The accuracy in mucinous tumour lesions was limited in all modalities (MRI/DWI/PET = 0.52). PET/MRI including DWI is comparable to PET/CT in the evaluation of colorectal cancer metastases, with a markedly higher accuracy when using combined imaging data than the modalities separately. Further improvement is needed in the imaging of peritoneal carcinomatosis and mucinous tumours. (orig.)

  4. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All

  5. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    International Nuclear Information System (INIS)

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  6. Effects of Field-Map Distortion Correction on Resting State Functional Connectivity MRI

    Directory of Open Access Journals (Sweden)

    Hiroki Togo

    2017-12-01

    Full Text Available Magnetic field inhomogeneities cause geometric distortions of echo planar images used for functional magnetic resonance imaging (fMRI. To reduce this problem, distortion correction (DC with field map is widely used for both task and resting-state fMRI (rs-fMRI. Although DC with field map has been reported to improve the quality of task fMRI, little is known about its effects on rs-fMRI. Here, we tested the influence of field-map DC on rs-fMRI results using two rs-fMRI datasets derived from 40 healthy subjects: one with DC (DC+ and the other without correction (DC−. Independent component analysis followed by the dual regression approach was used for evaluation of resting-state functional connectivity networks (RSN. We also obtained the ratio of low-frequency to high-frequency signal power (0.01–0.1 Hz and above 0.1 Hz, respectively; LFHF ratio to assess the quality of rs-fMRI signals. For comparison of RSN between DC+ and DC− datasets, the default mode network showed more robust functional connectivity in the DC+ dataset than the DC− dataset. Basal ganglia RSN showed some decreases in functional connectivity primarily in white matter, indicating imperfect registration/normalization without DC. Supplementary seed-based and simulation analyses supported the utility of DC. Furthermore, we found a higher LFHF ratio after field map correction in the anterior cingulate cortex, posterior cingulate cortex, ventral striatum, and cerebellum. In conclusion, field map DC improved detection of functional connectivity derived from low-frequency rs-fMRI signals. We encourage researchers to include a DC step in the preprocessing pipeline of rs-fMRI analysis.

  7. Body-centred map in parietal eye fields - functional MRI study

    International Nuclear Information System (INIS)

    Brotchie, P.; Chen, D.Y.; Bradley, W.G.

    2002-01-01

    Full text: In order for us to interact with our environment we need to know where objects are around us, relative to our body. In monkeys, a body-centred map of visual space is known to exist within the parietal eye fields. This map is formed by the modulation of neuronal activity by eye and head position (Brotchie et al, Nature 1995; Synder et al, Nature 1998). In humans no map of body centred space has been demonstrated. By using functional MRI we have localised a region along the intraparietal sulcus which has properties similar to the parietal eye fields of monkeys (Brotchie et al, ISMRM, 2000). The aim of this study was to determine if activity in this region is modulated by head position, consistent with a body centered representation of visual space. Functional MRI was performed on 6 subjects performing simple visually guided saccades using a 1.5 Tesla GE Echospeed scanner. 10 scans were performed on the 6 subjects at left and right body orientations. Regions of interest were selected around the intraparietal sulcus proper (IPSP) of both hemispheres and voxels with BOLD signal which correlated with the paradigm (r>0.35) were selected for further analysis. Comparisons of percentage signal change were made between the left and right IPSP using Student t test. Of the 10 MRI examinations, 6 demonstrated statistically significant differences in the amount of signal change between left and right IPSP. In each of these 6 cases, the signal change was greater within the IPSP contralateral to the direction of head position relative to the body. This indicates a modulation of activity within the IPSP related to head position, most likely reflecting modulation of the underlying neuronal activity and suggests the existence of a body-centred encoding of space within the parietal eye fields of humans. Copyright (2002) Blackwell Science Pty Ltd

  8. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Functional MRI of the pharynx in obstructive sleep apnea (OSA) with rapid 2-D flash sequences

    International Nuclear Information System (INIS)

    Jaeger, L.; Guenther, E.; Gauger, J.; Nitz, W.; Kastenbauer, E.; Reiser, M.

    1996-01-01

    Functional imaging of the pharynx used to be the domain of cineradiography, CT and ultrafast CT. The development of modern MRI techniques led to new access to functional disorders of the pharynx. The aim of this study was to implement a new MRI technique to examine oropharyngeal obstructive mechanisms in patients with obstructive sleep apnea (OSA). Sixteen patients suffering from OSA and 6 healthy volunteers were examined on a 1.5 T whole-body imager ('Vision', Siemens, Erlangen Medical Engineering, Germany) using a circular polarized head coil. Imaging was performed with 2D flash sequences in midsagittal and axial planes. Patients and volunteers were asked to breathe normally through the nose and to simulate snoring and the Mueller maneuver during magnetic resonance imaging (MRI). Prior to MRI, all patients underwent an ear, nose and throat (ENT) examination, functional fiberoptic nasopharyngoscopy and polysomnography. A temporal resolution of 6 images/s and an in-plane resolution of 2.67x1.8 mm were achieved. The mobility of the tongue, soft palate and pharyngeal surface could be clearly delineated. The MRI findings correlated well with the clinical examinations. We propose ultrafast MRI as a reliable and non-invasive method of evaluating pharyngeal obstruction and their levels. (orig.) [de

  10. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  11. Methodological principles for optimising functional MRI experiments

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Giesel, F.L.; Strasburger, H.

    2005-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most common methods for localising neuronal activity in the brain. Even though the sensitivity of fMRI is comparatively low, the optimisation of certain experimental parameters allows obtaining reliable results. In this article, approaches for optimising the experimental design, imaging parameters and analytic strategies will be discussed. Clinical neuroscientists and interested physicians will receive practical rules of thumb for improving the efficiency of brain imaging experiments. (orig.) [de

  12. Functional MRI for immediate monitoring stereotactic thalamotomy in a patient with essential tremor

    International Nuclear Information System (INIS)

    Hesselmann, Volker; Schaaf, Maike; Krug, Barbara; Lackner, Klaus; Maarouf, Mohammed; Hunsche, Stefan; Sturm, Volker; Lasek, Kathrin; Wedekind, Christoph

    2006-01-01

    The effect of stereotactic thalamotomy was assessed with pre- and postoperative functional magnetic resonance imaging (fMRI) under motor stimulation. A patient with unilateral essential tremor (ET) of the left arm underwent stereotactically guided thalamotomy of the right ventral intermediate thalamic nucleus (VIM). FMRI was done directly before and after surgery on a 1.5-Tesla scanner. The stimulation paradigm was maintainance of the affected arm in an extended position and hand clenching being performed in a block design manner. Statistical analysis was done with Brain Voyager 2000. After thalamotomy the tremor diminished completely. As a difference between the pre- and postoperative fMRI, a significant activation was found in the VIM contralateral to the activation site, adjacent to the inferior olivary nucleus contralateral to the activation site and in the dorsal cingulum. In conclusion, fMRI can detect the functional effect of thalamotomy for tremor treatment. Direct postoperative fMRI provides a sufficient method for estimating the effect of thalamotomy immediately after intervention. The importance of the intermediate thalamic nucleus and the olivary nucleus in tremor generation is supported by our findings. (orig.)

  13. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  14. Large-scale functional MRI analysis to accumulate knowledge on brain functions

    International Nuclear Information System (INIS)

    Schwartz, Yannick

    2015-01-01

    . Conversely, [Poldrack 2006] describes reverse inference as the probability of a cognitive process given an activation, but warns of a logical fallacy in concluding on such inference from evoked activity. Avoiding this issue requires to perform reverse inference with a large coverage of the cognitive space. We present a framework that uses a 'meta-design' to describe many different tasks with a common vocabulary, and use forward and reverse inference in conjunction to outline functional networks that are consistently represented across the studies. We use a predictive model for reverse inference, and perform prediction on unseen studies to guarantee that we do not learn studies' idiosyncrasies. This final contribution permits to learn functional atlases, i.e. functional networks associated with a cognitive concept. We explored different possibilities to jointly analyse multiple fMRI experiments. We have found that one of the main challenges is to be able to relate the experiments with one another. As a solution, we propose a common vocabulary to describe the tasks. [Henson 2006] advocates the use of forward and reverse inference in conjunction to associate cognitive functions to brain regions, which is only possible in the context of a large scale analysis to overcome the limitations of reverse inference. This framing of the problem therefore makes it possible to establish a large statistical model of the brain, and accumulate knowledge across functional neuroimaging studies. (author) [fr

  15. Motor association cortex activity in Parkinson's disease. A functional MRI study

    International Nuclear Information System (INIS)

    Tada, Yukiko

    1998-01-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  16. Research progress of BOLD-functional MRI of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Ni Ling; Zhang Longjiang; Lu Guangming

    2013-01-01

    Hepatic encephalopathy (HE), characterized by a wide spectrum of clinical manifestations, ranging from behavior abnormality, conscious disorder and even coma, is a consequence of liver dysfunction in both acute and chronic hepatic diseases. Minimal hepatic encephalopathy (MHE) refers to a subgroup of cirrhotic patients without clinical overt hepatic encephalopathy symptoms hut with abnormalities in neuro -cognitive functions. HE/MHE can have a far-reaching impact on quality of life and prognosis. The exact neuropathology mechanism was still unclear. Recently, functional MRI (fMRI) has been increasingly applied for investigating the neuro-pathophysiological mechanism of HE. This paper will review the fMRI research applied on uncovering the neuropathology mechanism of HE. (authors)

  17. Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions

    International Nuclear Information System (INIS)

    Liu, Yaou; Dai, Zhengjia; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Li, Kuncheng; Liu, Zheng; Dong, Huiqing; Shu, Ni; He, Yong; Vrenken, Hugo; Wattjes, Mike P.; Barkhof, Frederik

    2016-01-01

    To investigate brain functional connectivity (FC) alterations in patients with clinically isolated syndromes (CIS) presenting without conventional brain MRI lesions, and to identify the FC differences between the CIS patients who converted to multiple sclerosis (MS) and those not converted during a 5-year follow-up. We recruited 20 CIS patients without conventional brain lesions, 28 patients with MS and 28 healthy controls (HC). Normalized voxel-based functional connectivity strength (nFCS) was determined using resting-state fMRI (R-fMRI) and compared among groups. Furthermore, 5-years clinical follow-up of the CIS patients was performed to examine the differences in nFCS between converters and non-converters. Compared to HC, CIS patients showed significantly decreased nFCS in the visual areas and increased nFCS in several brain regions predominately in the temporal lobes. MS patients revealed more widespread higher nFCS especially in deep grey matter (DGM), compared to CIS and HC. In the four CIS patients converting to MS, significantly higher nFCS was found in right anterior cingulate gyrus (ACC) and fusiform gyrus (FG), compared to non-converted patients. We demonstrated both functional impairment and compensation in CIS by R-fMRI. nFCS alteration in ACC and FG seems to occur in CIS patients at risk of developing MS. (orig.)

  18. A comparative study of single and multiple hand tasks using functional MRI

    International Nuclear Information System (INIS)

    Shin, Byung Suck; Lee, Ho Kyu; Park, Sung Tae; Kim, Dong Eun; Lee, Myung Jun; Choi, Choong Gon; Kim, Jae Kyun; Suh, Dae Chul; Lim, Tae Hwan

    1998-01-01

    The purpose of this study is to assess, using functional MRI and by comparing activated motor sensory areas, the independence of brain activation during single and alternative multiple hand tasks. The subjects were six healthy volunteers. Using at 1.5T Siemens system and single shot FID-EPI sequencing (T2 weighted image; TR/TE 0.96 msec/ 61msec, flip angle 90 deg, matrix size 96 x 128, slice thickness/gap 5 mm/0.8 mm, FOV 200 mm) and T1-weighted anatomic images, functional MRI was performed. The paradigm of motor tasks consisted of appositional finger movements; the first involved the separate use of the right, left, and both hands in sequence. Using cross-correlation method (threshold : 0.6) and fMRI analysis software (stimulate 5.0), functional images were obtained. The activated area of brain cortex, the number of pixel, the average percentage change in signal intensity, and correlation of the time-signal intensity curve in the activated motor area were analysed and compared between the two task groups. Statistical analysis involved the use of Wilcoxon signed-rank test. Brain activation did not differ according to whether the motor task was single or alternative. We therefore suggest that during multiple stimuli, the relevant functional area and neuronal column are activated independently. (author). 19 refs., 2 tabs., 3 figs

  19. TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy

    International Nuclear Information System (INIS)

    Capaldi, D; Sheikh, K; Parraga, G; Hoover, D; Yaremko, B; Palma, D

    2016-01-01

    Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ( 3 He and 129 Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing 1 H MRI exploits non-rigid registration and Fourier decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing 1 H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized 3 He/ 129 Xe and dynamic free tidal-breathing 1 H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ( 3 He:VDP He , 129 Xe:VDP Xe , Free-breathing- 1 H:VDP FB ) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP FB was significantly related to VDP He (r=.71; p=.04) and VDP Xe (r=.80; p=.01) and there were also strong spatial relationships (DSC He /DSC Xe =89±3%/77±11

  20. Functional MRI language mapping in pre-surgical epilepsy patients ...

    African Journals Online (AJOL)

    Background. Functional magnetic resonance imaging (fMRI) is commonly applied to study the neural substrates of language in clinical research and for neurosurgical planning. fMRI language mapping is used to assess language lateralisation, or determine hemispheric dominance, and to localise regions of the brain ...

  1. Three-dimensional anisotropy contrast MRI and functional MRI of the human brain. Clinical application to assess pyramidal tract in patients with brain tumor and infarction

    International Nuclear Information System (INIS)

    Morikawa, Minoru; Kaminogo, Makio; Ishimaru, Hideki; Nakashima, Kazuaki; Kitagawa, Naoki; Ochi, Makoto; Hayashi, Kuniaki; Shibata, Shobu; Kabasawa, Hiroyuki

    2001-01-01

    We describe and evaluate the findings of three-dimensional anisotropy contrast MR axonography (3DAC MRX) and functional MRI (fMRI) in brain tumor and infarction. We obtained diffusion-weighted images (DWI) in 28 patients including 23 brain tumors and 15 acute infarctions located in or near pyramidal tract. Three anisotropic DWIs were transformed into graduations color-coded as red, green and blue, and then composed to form a combined color 3DAC MRX. We also performed functional MRI in 7 of the 28 patients and compared with cortical mapping of 3DAC MRX. 3DAC MRX with 23 brain tumors showed that the ipsilateral pyramidal tract was either discontinuous due to impaired anisotropy (n=8) or compressed due to mass effect (n=15). In 10 patients of acute infarction with motor impairment, pyramidal tract involvement was visually more conspicuous on 3DAC MRX compared to standard DWI. On functional MRI, hand motor activation was observed between blue vertical directional colors of pre- and post central gyrus. In conclusion, 3DAC MRX is a new noninvasive approach for visualization of the white matter neuronal tract and provides the information concerning pyramidal tract involvement. (author)

  2. Assessment of language lateralization with functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Salagierska-Barwinska, A.; Goraj, B.

    2004-01-01

    fMRI offers powerful methods to delineate which brain regions are engaged in language processing in the intact brain. Until now hemisphere dominance for language has been usually assessed by means of the intraoperative methods: the Wada test or electrocortical stimulation mapping. Recently functional MRI becomes the valuable method in determining hemisphere dominance for language. fMRI study was proved to be concordant with invasive measures. fMRI was carried out in 30 healthy selected participants (15 females: 10 strongly right-handed and 5 strongly left-handed; 15 males: 10 strongly right-handed and 5 strongly left-handed). The subject's handedness was assessed by standardized psychological tests inter alia the 'lateralization inventory'. Two different language tasks were used: a verb generation task and a phonological task. Subjects were scanned,while performing experimental block. The block contained alternately 8 active (language task) and 8 control conditions. Statistical analysis of evoked blood oxygenation level-dependent BOLD) responses, measured with echo planar imagining (1.5 T) were used. During a verb generation task in strongly right or left handed subjects the inferior frontal region was activated on the side opposite to the subject's handedness determined by the psychological test. Our fMRI studies demonstrated no gender effects on brain during these language tasks. Our study suggests that fMRI is a good device for the study of the language organization. The advantage of fMRI is its capacity for exact localization of activated areas. fMRI together with adequate neurolinguistic test could be promising routine preoperative tool in identification hemisphere dominance for language. These results encourage to further investigation for evaluating correlation in patients with brain injuries. (author)

  3. Robust preprocessing for stimulus-based functional MRI of the moving fetus.

    Science.gov (United States)

    You, Wonsang; Evangelou, Iordanis E; Zun, Zungho; Andescavage, Nickie; Limperopoulos, Catherine

    2016-04-01

    Fetal motion manifests as signal degradation and image artifact in the acquired time series of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) studies. We present a robust preprocessing pipeline to specifically address fetal and placental motion-induced artifacts in stimulus-based fMRI with slowly cycled block design in the living fetus. In the proposed pipeline, motion correction is optimized to the experimental paradigm, and it is performed separately in each phase as well as in each region of interest (ROI), recognizing that each phase and organ experiences different types of motion. To obtain the averaged BOLD signals for each ROI, both misaligned volumes and noisy voxels are automatically detected and excluded, and the missing data are then imputed by statistical estimation based on local polynomial smoothing. Our experimental results demonstrate that the proposed pipeline was effective in mitigating the motion-induced artifacts in stimulus-based fMRI data of the fetal brain and placenta.

  4. Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI.

    Science.gov (United States)

    Geisel, Dominik; Lüdemann, Lutz; Keuchel, Thomas; Malinowski, Maciej; Seehofer, Daniel; Stockmann, Martin; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2013-09-01

    To prospectively evaluate the early development of regional liver function after right portal vein embolisation (PVE) with Gd-EOB-DTPA-enhanced MRI in patients scheduled for extended right hemihepatectomy. Ten patients who received a PVE before an extended hemihepatectomy were examined before and 14 days after PVE using Gd-EOB-DTPA-enhanced MRI of the liver. In these sequences representative region of interest measurements were performed in the embolised right (RLL) and the non-embolised left liver lobe (LLL). The volume as well as hepatic uptake index (HUI) was calculated independently for each lobe. Relative enhancement 14 days after PVE decreased in the RLL and increased significantly in the LLL (P DTPA-enhanced MRI, which could reflect the redirected portal venous blood flow and the rapid utilisation of a hepatic functional reserve. • Preoperative portal vein embolisation (PVE) is widely performed before right-sided hepatic resection. • PVE increases intravenous contrast medium uptake in the left lobe of liver. • The hepatic uptake index for the left liver lobe increases rapidly after PVE. • Left liver lobe function increase may be visualised by Gd-EOB-DTPA-enhanced MRI.

  5. Graph-based network analysis of resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2010-06-01

    Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  6. Graph-based network analysis of resting-state functional MRI.

    Science.gov (United States)

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  7. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  8. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  9. Clinical application of functional MRI for chronic epilepsy

    International Nuclear Information System (INIS)

    Woermann, F.G.; Labudda, K.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is frequently used in the presurgical diagnostic procedure of epilepsy patients, in particular for lateralization of speech and memory and for localization of the primary motor cortex to delineate the epileptogenic lesion from eloquent brain areas. fMRI is one of the non-invasive procedures in the presurgical diagnostic process, together with medical history, seizure semiology, neurological examination, interictal and ictal EEG, structural MRI, video EEG monitoring and neuropsychology. This diagnostic sequence leads either to the decision for or against elective epilepsy surgery or to the decision to proceed with invasive diagnostic techniques (Wada test, intra-operative or extra-operative cortical stimulation). It is difficult to evaluate the contribution of the fMRI test in isolation to the validity of the entire diagnostic sequence. Complications such as memory loss and aphasia in temporal lobe resections or paresis after frontal lobe resections are rare and rarely of disastrous extent. This further complicates the evaluation of the clinical relevance of fMRI as a predictive tool. In this article studies which investigated the concordance between fMRI and other diagnostic gold standards will be presented as well as the association between presurgical fMRI and postsurgical morbidity. (orig.) [de

  10. Partially Adaptive STAP Algorithm Approaches to functional MRI

    Science.gov (United States)

    Huang, Lejian; Thompson, Elizabeth A.; Schmithorst, Vincent; Holland, Scott K.; Talavage, Thomas M.

    2010-01-01

    In this work, the architectures of three partially adaptive STAP algorithms are introduced, one of which is explored in detail, that reduce dimensionality and improve tractability over fully adaptive STAP when used in construction of brain activation maps in fMRI. Computer simulations incorporating actual MRI noise and human data analysis indicate that element space partially adaptive STAP can attain close to the performance of fully adaptive STAP while significantly decreasing processing time and maximum memory requirements, and thus demonstrates potential in fMRI analysis. PMID:19272913

  11. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    Science.gov (United States)

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  12. HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI

    NARCIS (Netherlands)

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with

  13. Windowed correlation: a suitable tool for providing dynamic fMRI-based functional connectivity neurofeedback on task difficulty.

    Directory of Open Access Journals (Sweden)

    Anna Zilverstand

    Full Text Available The goal of neurofeedback training is to provide participants with relevant information on their ongoing brain processes in order to enable them to change these processes in a meaningful way. Under the assumption of an intrinsic brain-behavior link, neurofeedback can be a tool to guide a participant towards a desired behavioral state, such as a healthier state in the case of patients. Current research in clinical neuroscience regarding the most robust indicators of pathological brain processes in psychiatric and neurological disorders indicates that fMRI-based functional connectivity measures may be among the most important biomarkers of disease. The present study therefore investigated the general potential of providing fMRI neurofeedback based on functional correlations, computed from short-window time course data at the level of single task periods. The ability to detect subtle changes in task performance with block-wise functional connectivity measures was evaluated based on imaging data from healthy participants performing a simple motor task, which was systematically varied along two task dimensions representing two different aspects of task difficulty. The results demonstrate that fMRI-based functional connectivity measures may provide a better indicator for an increase in overall (motor task difficulty than activation level-based measures. Windowed functional correlations thus seem to provide relevant and unique information regarding ongoing brain processes, which is not captured equally well by standard activation level-based neurofeedback measures. Functional connectivity markers, therefore, may indeed provide a valuable tool to enhance and monitor learning within an fMRI neurofeedback setup.

  14. Methodological Improvements in Combining TMS and Functional MRI

    OpenAIRE

    Moisa, Marius

    2011-01-01

    Since 1997, when Bohning and colleagues demonstrated for the first time the feasibility of interleaving transcranial magnetic stimulation (TMS) with blood oxygenation level dependency functional magnetic resonance imaging (BOLD fMRI), this combination became a very promising techniques to study brain connectivity. However, the implementation of a reliable setup for interleaved TMS/fMRI is still technically challenging. In this thesis, I intended to further explore and develop methodological i...

  15. Functional alterations of V1 cortex in patients with primary open angle glaucoma using functional MRI retinotopic mapping

    International Nuclear Information System (INIS)

    Shi Linping; Cai Ping; Li Changying; Li Xueqin; Xie Bing; Li Sha; Liu Ting; Chen Xing; Shi Yanshu; Wang Jian

    2011-01-01

    Objective: To evaluate the functional changes of visual cortex (V1) in patients with primary open angle glaucoma (POAG) by fMRI retinotopic mapping technology. Methods: Fifteen POAG patients and 15 healthy volunteers underwent stimulations with fMRI retinotopic mapping stimulus and contrast-reversing checkerboard patterns stimulus on a Siemens Trio 3.0 T MRI whole-body scanner for functional data collection. Comparisons of V1 fMRI responses between the glaucomatous eyes and the healthy eyes of the patients were carried out using paired samples t-test, while independent samples t-test was used to compare V1 fMRI responses and activations between the healthy eyes of patients and the age-, gender- and side- matched eyes of normal people. Differences of V1 cortical functions and visual functions were analyzed by linear correlation analysis when the glaucomatous and the healthy eyes were simulated individually., Results: (1) V1 fMRI responses of the individually stimulated glaucomatous eyes [(1.24±0.72)%] were weaker than those of the healthy eyes [(2.18±0.93)%] (t=4.757, P 0.05). (2) Differences of V1 cortical functions were negatively correlated with those of visual functions in the individually stimulated glaucomatous and healthy eyes (r=-0.887, P< 0.01). (3) The activated area indexes of V1 cortexes in the healthy eyes from patients (0.72±0.12) were lower than those in the matched eyes of normal people (0.85±0.09) (t=-3.801, P<0.01) . Conclusion: Cortical function impairment was in accordance with visual function impairment in glaucoma. Located and quantified measurement with fMRI retinotopic mapping was a useful method for clinical follow-up and evaluation of functional alteration of glaucomatous visual cortex, and a potentially useful means of studying trans-synaptic degeneration of visual pathways of in vivo glaucoma. (authors)

  16. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Toma, Keiichiro

    2002-01-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  17. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  18. Measurement and imaging of brain function using MRI, MEG, and TMS

    International Nuclear Information System (INIS)

    Iramina, Keiji

    2008-01-01

    This paper reviews functional imaging techniques in neuroscience such as magnetic resonance imaging (MRI) functional MRI (fMRI), magnetoencephalogray (MEG), and transcranial magnetic stimulation (TMS). fMRI and MEG allow the neuronal activity of the brain to be measured non-invasively. MEG detects an electrical activity as neuronal activity, while, fMRI detects a hemodynamic response as neuronal activity. TMS is the application of a brief magnetic pulse or a train of pulses to the skull, which results in the induction of a local electric current in the underlying surface of the brain, thereby producing a localized axonal depolarization. As a non-invasive and effective method to make reversible lesions in the human brain, TMS has a long and successful history. All of these techniques have major potential for applications in the neuroscience and medicine. (author)

  19. Functional MRI: Genesis, State of the art and the Sequel

    International Nuclear Information System (INIS)

    Bharath, Rose Dawn

    2014-01-01

    The last 25 years have seen functional magnetic resonance imaging (fMRI) grow from an interesting experimental imaging technique in the hands of some to a primary investigation of choice in the localization and lateralization of brain function prior to surgery. Developments in the field of computational neurosciences have transformed fMRI analysis from classical subtractive type analysis to dynamic casual modeling, and now to graph theory analysis. This has widened the scope of fMRI, and is therefore finding applications in understanding neural correlates of diseases like autism and Alzheimer's disease, prognostication of diseases like traumatic brain injury, and has the potential to direct therapy. It is unfortunately true that this widened ambit has not received the clinical attention it deserves, probably because fMRI is susceptible to artifacts from skull base and blood products and has reduced sensitivity in patients with vascular malformations, or because a change in medical practice usually lags behind the technological and scientific developments that make it possible. This review focuses on the developmental chronology of fMRI image analysis in the last 25 years with highlights on major milestones like developments in the field of paradigms, analysis methods, resting state fMRI, and functional connectivity. To make the statistical images of brain at work more colorful, the article starts with genesis of fMRI and ends with the hope of a promising bright future. Many inputs for this article are obtained from a series of 103 review articles edited by Bandettini et al., compiling personal experiences of pioneers in this field. Interested readers are encouraged to refer to these for a more complete overview.

  20. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    Science.gov (United States)

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  1. TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Capaldi, D; Sheikh, K; Parraga, G [Robarts Research Institute, The University of Western Ontario, London, Ontario, CA (United States); Department of Medical Biophysics, The University of Western Ontario, London, Ontario, CA (United States); Hoover, D; Yaremko, B; Palma, D [Department of Medical Biophysics, The University of Western Ontario, London, Ontario, CA (United States); Department of Oncology, The University of Western Ontario, London, Ontario, CA (United States)

    2016-06-15

    Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ({sup 3}He and {sup 129}Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing {sup 1}H MRI exploits non-rigid registration and Fourier decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing {sup 1}H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized {sup 3}He/{sup 129}Xe and dynamic free tidal-breathing {sup 1}H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ({sup 3}He:VDP{sub He}, {sup 129}Xe:VDP{sub Xe}, Free-breathing-{sup 1}H:VDP{sub FB}) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP{sub FB} was significantly related to VDP{sub He} (r=.71; p=.04) and VDP{sub Xe} (r=.80; p=.01) and

  2. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  3. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  4. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  5. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    Science.gov (United States)

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  6. Evaluation of pulmonary arterial morphology and function in cyanotic congenital heart disease by MRI and cine MRI

    International Nuclear Information System (INIS)

    Hashimoto, Ikuo; Tsubata, Shinichi; Miyazaki, Ayumi; Ichida, Fukiko; Okada, Toshio; Murakami, Arata; Futatsuya, Ryuusuke; Nakajima, Kenshuu; Nakajima, Akio

    1993-01-01

    Pulmonary arterial anatomy was evaluated by magnetic resonance imaging (MRI), angiography and two-dimensional echocardiography in 20 patients with cyanotic heart disease associated with decreased pulmonary blood flow. Excellent correlation between MRI and angiographic estimates of pulmonary artery diameter was obtained (main pulmonary artery, r=0.87; right pulmonary artery, r=0.96; left pulmonary artery, r=0.95). However, echocardiography could not describe peripheral pulmonary arteries obviously, especially left pulmonary artery. In the assessment of peripheral pulmonary stenosis or obstruction, cine MRI was superior to echocardiography. We conclude that MRI and cine MRI will play an important role in the serial evaluation of pulmonary arterial morphology and function in patients with cyanotic congenital heart disease before and after surgical repair. (author)

  7. Evaluation of pulmonary arterial morphology and function in cyanotic congenital heart disease by MRI and cine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Ikuo; Tsubata, Shinichi; Miyazaki, Ayumi; Ichida, Fukiko; Okada, Toshio; Murakami, Arata; Futatsuya, Ryuusuke; Nakajima, Kenshuu; Nakajima, Akio [Toyama Medical and Pharmaceutical Univ. (Japan)

    1993-01-01

    Pulmonary arterial anatomy was evaluated by magnetic resonance imaging (MRI), angiography and two-dimensional echocardiography in 20 patients with cyanotic heart disease associated with decreased pulmonary blood flow. Excellent correlation between MRI and angiographic estimates of pulmonary artery diameter was obtained (main pulmonary artery, r=0.87; right pulmonary artery, r=0.96; left pulmonary artery, r=0.95). However, echocardiography could not describe peripheral pulmonary arteries obviously, especially left pulmonary artery. In the assessment of peripheral pulmonary stenosis or obstruction, cine MRI was superior to echocardiography. We conclude that MRI and cine MRI will play an important role in the serial evaluation of pulmonary arterial morphology and function in patients with cyanotic congenital heart disease before and after surgical repair. (author).

  8. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    Science.gov (United States)

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  9. Functional MRI studies in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Zhang Lei; Jin Zhen; Zeng Yawei; Wang Yan; Zang Yufeng

    2004-01-01

    Objective: To investigate the brain activation map during Go-NoGo tasks in children with attention deficit hyperactivity disorder (ADHD) and matched controls using functional MRI. Methods: Block designed BOLD functional MRI scan covering the whole brain was performed on 10 boys having ADHD and 11 healthy boys. The 2 groups were matched by age, sex, and handedness. Executing advanced inhibitory Go-NoGo tasks served as stimuli for all subjects. The fMRI data was analyzed by SPM99 (Statistical Parametric Mapping) software with statistic t-test to generate the activation map. Results: (1) The normal children showed significant activations in left thalamus and right cingulate gyrus and fewer activations in right middle frontal gyrus during stimulate controlled Go task, but the children with ADHD showed less activations in left thalamus. (2) In response controlled Go task, the normal children showed activations in right insula, cingulate gyrus and left frontal gyrus, while the ADHD children showed lower power of response in the right middle frontal gyrus.(3) In NoGo task, right middle frontal gyrus was the dominant activated regions, and left anterior cingulate, left middle frontal gyrus and right thalamus also had some activations in normal children, while the activations of right prefrontal decreased and the thalamus increased in ADHD boys. Conclusion: In children with ADHD, some dysfunctional brain areas, mainly the prefrontal lobe and anterior cingulate gyrus were found. Thalamus was also involved according to the brain activation map

  10. Functional MRI studies in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhang; Zhen, Jin; Yawei, Zeng; Yan, Wang [fMRI Center, Lab of Cognition Science and Learning, National Education Ministry and Department of Radiology, 306 Hospital of PLA, Beijing (China); Yufeng, Zang

    2004-06-01

    Objective: To investigate the brain activation map during Go-NoGo tasks in children with attention deficit hyperactivity disorder (ADHD) and matched controls using functional MRI. Methods: Block designed BOLD functional MRI scan covering the whole brain was performed on 10 boys having ADHD and 11 healthy boys. The 2 groups were matched by age, sex, and handedness. Executing advanced inhibitory Go-NoGo tasks served as stimuli for all subjects. The fMRI data was analyzed by SPM99 (Statistical Parametric Mapping) software with statistic t-test to generate the activation map. Results: (1) The normal children showed significant activations in left thalamus and right cingulate gyrus and fewer activations in right middle frontal gyrus during stimulate controlled Go task, but the children with ADHD showed less activations in left thalamus. (2) In response controlled Go task, the normal children showed activations in right insula, cingulate gyrus and left frontal gyrus, while the ADHD children showed lower power of response in the right middle frontal gyrus.(3) In NoGo task, right middle frontal gyrus was the dominant activated regions, and left anterior cingulate, left middle frontal gyrus and right thalamus also had some activations in normal children, while the activations of right prefrontal decreased and the thalamus increased in ADHD boys. Conclusion: In children with ADHD, some dysfunctional brain areas, mainly the prefrontal lobe and anterior cingulate gyrus were found. Thalamus was also involved according to the brain activation map.

  11. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    Science.gov (United States)

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Clinical applications of functional MRI at 1.0 T: motor and language studies in healthy subjects and patients

    International Nuclear Information System (INIS)

    Papke, K.; Hellmann, T.; Renger, B.; Schuierer, G.; Reimer, P.; Morgenroth, C.; Knecht, S.

    1999-01-01

    In this article we describe clinical applications of functional MRI (fMRI) at 1.0 T. All experiments were performed on a commercially available 1.0-T system (Magnetom Impact Expert, Siemens AG, Erlangen, Germany) using a blood oxygen level-dependent (BOLD)-sensitive multi-slice EPI technique (TE 66 ms, 4 mm slice thickness, 210 mm field of view, 64 x 64 acquisition matrix). Different paradigms for localization of the motor cortex and for language lateralization were tested in healthy subjects and patients. Methodological considerations concerning the development of the paradigms are also described. In all healthy subjects, motor activation elicited BOLD signal changes in the sensorimotor cortex, permitting identification of primary motor and sensory cortical areas. Furthermore, focal activation of different cortical areas by a language task was possible in 6 of 10 subjects. Nineteen motor studies were performed in 18 patients with supratentorial lesions, in most cases prior to neurosurgical procedures. In 14 studies, fMRI results demonstrated the localization of the motor hand areas relative to the lesion. The results proved valuable for preoperative planning and contributed to therapeutical decisions. We conclude that functional MRI for clinically relevant applications, such as localization of motor and language function, is feasible even at a field strength of 1.0 T without dedicated equipment. (orig.)

  13. Practical Introduction to Cerebral Functional Magnetic Resonance (fMRI)

    International Nuclear Information System (INIS)

    Delgado, Jorge Andres; Rascovsky Simon; Sanz, Alexander; Castrillon, Juan Gabriel

    2008-01-01

    Magnetic resonance (MR ) imaging holds a privileged position within neuroimaging techniques owing to its high anatomic detail and its capacity to study many physiological processes. The appearance of functional magnetic resonance (fMR I) brings more relevance to MR , turning it into a powerful tool with the ability to group, in a single exam, high-resolution anatomy and cerebral function. In this article we describe the principles and some advantages of fMRI compared to other neuro functional imaging modalities. In addition, we present the site wide and analysis requisites for the performance and post-processing of the most common neuro functional experiments in clinical practice. We also include neuro functional images obtained at Instituto de Alta Tecnologia Medica of Antioquia (IATM ) on a healthy volunteer group and two pathological cases. Lastly, we mention some of the practical indications of this technique which is still in an intense development, research and validation phase.

  14. Visual grading of 2D and 3D functional MRI compared with image-based descriptive measures

    Energy Technology Data Exchange (ETDEWEB)

    Ragnehed, Mattias [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences, Division of Radiological Sciences/Radiology, Faculty of Health Sciences, Linkoeping (Sweden); Leinhard, Olof Dahlqvist; Pihlsgaard, Johan; Lundberg, Peter [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Division of Radiological Sciences, Radiation Physics, IMH, Linkoeping (Sweden); Wirell, Staffan [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Soekjer, Hannibal; Faegerstam, Patrik [Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Jiang, Bo [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Smedby, Oerjan; Engstroem, Maria [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden)

    2010-03-15

    A prerequisite for successful clinical use of functional magnetic resonance imaging (fMRI) is the selection of an appropriate imaging sequence. The aim of this study was to compare 2D and 3D fMRI sequences using different image quality assessment methods. Descriptive image measures, such as activation volume and temporal signal-to-noise ratio (TSNR), were compared with results from visual grading characteristics (VGC) analysis of the fMRI results. Significant differences in activation volume and TSNR were not directly reflected by differences in VGC scores. The results suggest that better performance on descriptive image measures is not always an indicator of improved diagnostic quality of the fMRI results. In addition to descriptive image measures, it is important to include measures of diagnostic quality when comparing different fMRI data acquisition methods. (orig.)

  15. Methodology for functional MRI of simulated driving.

    Science.gov (United States)

    Kan, Karen; Schweizer, Tom A; Tam, Fred; Graham, Simon J

    2013-01-01

    The developed world faces major socioeconomic and medical challenges associated with motor vehicle accidents caused by risky driving. Functional magnetic resonance imaging (fMRI) of individuals using virtual reality driving simulators may provide an important research tool to assess driving safety, based on brain activity and behavior. A fMRI-compatible driving simulator was developed and evaluated in the context of straight driving, turning, and stopping in 16 young healthy adults. Robust maps of brain activity were obtained, including activation of the primary motor cortex, cerebellum, visual cortex, and parietal lobe, with limited head motion (driving is a feasible undertaking.

  16. Cognitive function and MRI findings in very low birth weight infants

    International Nuclear Information System (INIS)

    Imamura, Atsuko; Takagishi, Yuka; Takada, Satoru; Uetani, Yoshiyuki; Nakamura, Toru; Nakamura, Hajime; Inagaki, Yuko.

    1996-01-01

    Twenty-two very low birth weight infants at preschool ages of 5-6 years were studied to clarify the correlation between cognitive function and MRI findings. Cognitive function was evaluated by the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Frostig developmental test of visual perception. Ventricular enlargement, assessed by the bioccipital index (B.I.) measured on MRI, was correlated to cognitive disorders. Children with periventricular high intensity areas (T 2 -weighted images) extending from the posterior periventricular region to the parietal lobe tend to highly suffer from cerebral palsy and visuoperceptual impairment. These results indicate that the disorders of cognitive function in very low birth weight infants were caused by a damage of association fibers in periventricular areas which was detectable by MRI. (author)

  17. Functional MRI for planning in neurosurgery; Funktionelle MR-Bildgebung fuer die neurochirurgische Operationsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Saur, R. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Augenklinik des Universitaetsklinikums Tuebingen (Germany); Klinik fuer Psychiatrie und Psychotherapie des Universitaetsklinikums Tuebingen (Germany)

    2007-07-01

    Beside structural images from CT and MR, functional data about localization of brain activations with different tasks becomes more and more important for presurgical planning. With this method, it's possible to depict mainly primary sensory and motoric areas, but also higher functions like speech and memory. To judge this information adequately, one has to be aware of the variability of activation pattern dependent on chosen threshold. Especially, the absence of such activation at a given location does not necessary mean that this area has no function. The reliability of a measurement strongly depends on efficiency of experimental design and cooperation of the patient. Therefore, short and easy tasks which can be performed in a block design should be preferred. Information about localization of functions determined by fMRI can mainly be used for presurgical planning. Intraoperative usage in the navigation system is problematic due to the brain shift. Therefore, intraoperative imaging together with dynamic adaptation using nonlinear deformation algorithms may improve the value of fMRI in the future. (orig.)

  18. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Krestin, G.P.; Fischbach, R.; Vorreuther, R.; Schulthess, G.K. von

    1993-01-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  19. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Krestin, G.P. [Dept. of Medical Radiology, University Hospital Zurich (Switzerland); Fischbach, R. [Dept. of Radiology, Univ. of Cologne (Germany); Vorreuther, R. [Dept. of Urology, Univ. of Cologne (Germany); Schulthess, G.K. von [Dept. of Medical Radiology, University Hospital Zurich (Switzerland)

    1993-06-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  20. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  1. A novel passive paradigm for functional magnetic resonance imaging (fMRI) to localize brain functions

    International Nuclear Information System (INIS)

    Gasser, T.; Sandalcioglu, I.E.; Skwarek, V.; Gizewski, E.; Stolke, D.; Hans, V.

    2003-01-01

    The design of a shielded stimulation-device for electrical stimulation of peripheral nerves in the MRI-environment as passive fMRI-paradigm is content of this study. Especially the technical aspects and selection criteria of the stimulation-parameters are discussed. The clinical value for neurosurgical patients is outlined by supplying data from clinical studies, evaluating this novel paradigm. Thus neurosurgeons are supplied with superior information about functional anatomy, therefore being able to preserve functionally relevant brain-structures. (orig.) [de

  2. Pharmaco fMRI: Determining the functional anatomy of the effects of medication.

    Science.gov (United States)

    Wandschneider, Britta; Koepp, Matthias J

    2016-01-01

    Functional MRI studies have helped to elucidate underlying mechanisms in complex neurological and neuropsychiatric disorders. Disease processes often involve complex large-scale network interactions, extending beyond the presumed main disease focus. Given both the complexity of the clinical phenotype and the underlying dysfunctional brain circuits, so called pharmaco-fMRI (ph-MRI) studies probe pharmacological effects on functional neuro-anatomy, and can help to determine early treatment response, mechanisms of drug efficacy and side effects, and potentially advance CNS drug development. In this review, we discuss recent ph-MRI research in three major neuropsychiatric and neurological disorders and associated network alterations, namely selective serotonin and noradrenergic reuptake inhibitors in affective disorders and emotional processing circuits; antiepileptic drugs in epilepsy and cognitive networks; and stimulants in attention-deficit/hyperactivity disorder and networks of attention control. We conclude that ph-MRI studies show consistent and reproducible changes on disease relevant networks, and prove sensitive to early pharmacological effects on functional anatomy associated with disease. Further CNS drug research and development would benefit greatly from improved disease phenotyping, or biomarkers, using advanced imaging techniques.

  3. Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?

    Science.gov (United States)

    Cecchin, Diego; Palombit, Alessandro; Castellaro, Marco; Silvestri, Erica; Bui, Franco; Barthel, Henryk; Sabri, Osama; Corbetta, Maurizio; Bertoldo, Alessandra

    2017-12-01

    In the last 20 years growing attention has been devoted to multimodal imaging. The recent literature is rich of clinical and research studies that have been performed using different imaging modalities on both separate and integrated positron emission tomography (PET) and magnetic resonance (MR) scanners. However, today, hybrid PET/MR systems measure signals related to brain structure, metabolism, neurochemistry, perfusion, and neuronal activity simultaneously, i.e. in the same physiological conditions. A frequently raised question at meeting and symposia is: "Do we really need a hybrid PET/MR system? Are there any advantages over acquiring sequential and separate PET and MR scans?" The present paper is an attempt to answer these questions specifically in relation to PET combined with functional magnetic resonance imaging (fMRI) and arterial spin labeling. We searched (last update: June 2017) the databases PubMed, PMC, Google Scholar and Medline. We also included additional studies if they were cited in the selected articles. No language restriction was applied to the search, but the reviewed articles were all in English. Among all the retrieved articles, we selected only those performed using a hybrid PET/MR system. We found a total of 17 papers that were selected and discussed in three main groups according to the main radiopharmaceutical used: 18F-fluorodeoxyglucose (18F-FDG) (N.=8), 15O-water (15O-H2O) (N.=3) and neuroreceptors (N.=6). Concerning studies using 18F-FDG, simultaneous PET/fMRI revealed that global aspects of functional organization (e.g. graph properties of functional connections) are partially associated with energy consumption. There are remarkable spatial and functional similarities across modalities, but also discrepant findings. More work is needed on this point. There are only a handful of papers comparing blood flow measurements with PET 15O-H2O and MR arterial spin label (ASL) measures, and they show significant regional CBF differences

  4. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2018-03-01

    Full Text Available Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG, parahippocampal gyrus (PHG, precuneus and inferior parietal lobule (IPL as well as increased neural activity in the middle frontal gyrus (MFG, cuneus and postcentral gyrus (PoCG. A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  5. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI.

    Science.gov (United States)

    Chen, Yu-Chen; Chen, Huiyou; Jiang, Liang; Bo, Fan; Xu, Jin-Jing; Mao, Cun-Nan; Salvi, Richard; Yin, Xindao; Lu, Guangming; Gu, Jian-Ping

    2018-01-01

    Purpose : Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods : Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results : Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions : Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the

  6. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    International Nuclear Information System (INIS)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-01-01

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm 3 achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm 3 voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm 3 to 0.43 × 0.43 × 2 mm 3 has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain

  7. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  8. Cognitive function and MRI findings in very low birth weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Atsuko; Takagishi, Yuka; Takada, Satoru; Uetani, Yoshiyuki; Nakamura, Toru; Nakamura, Hajime [Kobe Univ. (Japan). School of Medicine; Inagaki, Yuko

    1996-07-01

    Twenty-two very low birth weight infants at preschool ages of 5-6 years were studied to clarify the correlation between cognitive function and MRI findings. Cognitive function was evaluated by the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Frostig developmental test of visual perception. Ventricular enlargement, assessed by the bioccipital index (B.I.) measured on MRI, was correlated to cognitive disorders. Children with periventricular high intensity areas (T{sub 2}-weighted images) extending from the posterior periventricular region to the parietal lobe tend to highly suffer from cerebral palsy and visuoperceptual impairment. These results indicate that the disorders of cognitive function in very low birth weight infants were caused by a damage of association fibers in periventricular areas which was detectable by MRI. (author)

  9. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  10. Simultaneous functional imaging using fPET and fMRI

    International Nuclear Information System (INIS)

    Villien, Marjorie

    2015-01-01

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  11. Functional MRI studies of the neural mechanisms of human brain attentional networks

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Chen Qi; Wang Yan; Peng Xiaozhe; Zhou Xiaolin

    2005-01-01

    Objective: To identify the neural mechanisms of the anterior attention network (AAN) and posterior attention network (PAN) , investigate the possible interaction between them with event-related functional MRI(ER-fMRI). Methods: Eight right-handed healthy volunteers participated in the experiment designed with inhibition of return in visual orienting and Stroop color-word interference effect. The fMRI data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by AFNI to generate the activation map. Results: The data sets from 6 of 8 subjects were used in the study. The functional localizations of the Stroop and IOR, which manifest the function of the AAN and PAN respectively, were consistent with previous imaging researches. On cued locations, left inferior parietal lobule (IPL), area MT/V5, right dorsolateral prefrontal cortex (DLPFC) and left anterior cingulated cortex (ACC) were significantly activated. On uncued locations, right superior parietal lobule (SPL) and bilateral area MT/V5 were significantly activated. Conclusion: The AAN exerts control over the PAN, while its function can be in turn modulated by the PAN. There are interaction between the AAN and PAN. In addition, it is also proved that ER-fMRI is a feasible method to revise preexisting cognitive model and theory. (authors)

  12. An iterative two-threshold analysis for single-subject functional MRI of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Tibor; Schweizer, Renate; Frahm, Jens [Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut fuer Biophysikalische Chemie, Goettingen (Germany)

    2011-11-15

    Current thresholding strategies for the analysis of functional MRI (fMRI) datasets may suffer from specific limitations (e.g. with respect to the required smoothness) or lead to reduced performance for a low signal-to-noise ratio (SNR). Although a previously proposed two-threshold (TT) method offers a promising solution to these problems, the use of preset settings limits its performance. This work presents an optimised TT approach that estimates the required parameters in an iterative manner. The iterative TT (iTT) method is compared with the original TT method, as well as other established voxel-based and cluster-based thresholding approaches and spatial mixture modelling (SMM) for both simulated data and fMRI of a hometown walking task at different experimental settings (spatial resolution, filtering and SNR). In general, the iTT method presents with remarkable sensitivity and good specificity that outperforms all conventional approaches tested except for SMM in a few cases. This also holds true for challenging conditions such as high spatial resolution, the absence of filtering, high noise level, or a low number of task repetitions. Thus, iTT emerges as a good candidate for both scientific fMRI studies at high spatial resolution and more routine applications for clinical purposes. (orig.)

  13. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  14. Visualization and quantification of large bowel motility with functional cine-MRI

    International Nuclear Information System (INIS)

    Buhmann, S.; Wielage, C.; Fischer, T.; Reiser, M.; Lienemann, A.; Kirchhoff, C.; Mussack, T.

    2005-01-01

    Purpose: to develop and evaluate a method to visualize and quantify large bowel motility using functional cine MRI. Methods: fifteen healthy individuals (8males, 7 females, 20 to 45 years old) with no history or present symptoms of bowel disorders were enrolled in a functional cine MRI examination at 6 a. m. after a starving phase for at least eight hours before and after oral administration of Senna tea (mild stimulating purgative). Two consecutive sets of repeated measurements of the entire abdomen were performed using a 1.5T MRI system with coronal T2-weighted HASTE sequences anatomically adjusted to the course of the large bowel. A navigator technique was used for respiratory gating at the level of the right dorsal diaphragm. The changes in diameter (given in cm) were measured at 5 different locations of the ascending (AC), transverse (TC) and descending colon (DC), and assessed as parameters for the bowel motility. Results: the mean values as a statistical measure for large bowel relaxation were determined. Before ingestion of Senna tea, the mean diameter measured 3.41 cm (ascending colon), 3 cm (transverse colon) and 2.67 cm (descending colon). After the ingestion of Senna tea, the mean diameter increased to 3.69 cm (ascending colon) to 3.4 cm (transverse colon) and to 2.9 cm (descending colon). A statistically significant difference was demonstrated with the Wilcoxon test (level of confidence 0.05). For the determination of dynamic increase, the changes of the statistical scatter amplitude to the mean value were expressed as percentage before and after the ingestion of Senna tea. Thereby, an increase in variation and dynamic range was detected for the AC (112.9%) and DC (100%), but a decrease in the dynamics for the TC (69%). Conclusion: a non-invasive method for the assessment of bowel motility was developed for the first time. The use of functional cine MRI utilizing a prokinetic stimulus allowed visualisation and quantification of large bowel motility

  15. Functional resonance magnetic imaging (fMRI) in adolescents with idiopathic musculoskeletal pain: a paradigm of experimental pain

    OpenAIRE

    Molina, Juliana; Amaro, Edson; da Rocha, Liana Guerra Sanches; Jorge, Liliana; Santos, Flavia Heloisa; Len, Claudio A.

    2017-01-01

    Background Studies on functional magnetic resonance imaging (fMRI) have shown that adults with musculoskeletal pain syndromes tolerate smaller amount of pressure (pain) as well as differences in brain activation patterns in areas related to pain.The objective of this study was to evaluate, through fMRI, the brain activation in adolescents with idiopathic musculoskeletal pain (IMP) while performing an experimental paradigm of pain. Methods The study included 10 consecutive adolescents with idi...

  16. Partially Adaptive STAP Algorithm Approaches to functional MRI

    OpenAIRE

    Huang, Lejian; Thompson, Elizabeth A.; Schmithorst, Vincent; Holland, Scott K.; Talavage, Thomas M.

    2008-01-01

    In this work, the architectures of three partially adaptive STAP algorithms are introduced, one of which is explored in detail, that reduce dimensionality and improve tractability over fully adaptive STAP when used in construction of brain activation maps in fMRI. Computer simulations incorporating actual MRI noise and human data analysis indicate that element space partially adaptive STAP can attain close to the performance of fully adaptive STAP while significantly decreasing processing tim...

  17. Functional MRI of the cervical spine after distortion injury; MR-Funktionsdiagnostik der Halswirbelsaeule nach Schleudertrauma

    Energy Technology Data Exchange (ETDEWEB)

    Schnarkowski, P. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Weidenmaier, W. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Heuck, A. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik; Reiser, M.F. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik

    1995-04-01

    50 patients with a history of distortion injury of the cervical spine were examined with static and functional MRI. Functional MRI consisted of different patient`s positions from maximal extension to maximal flexion (30 , 0 , 25 , 40 , 50 ). T{sub 2}*-weighted gradient echo sequences were performed in a sagittal view for the different positions. Ligamentous instabilities and disc protrusions were seen only in functional MRI in 17 patients. These findings correlated with the neurological symptoms. Two patients were treated by operative fusion because of these findings. (orig.) [Deutsch] Bei 50 Patienten mit einem Schleudertrauma der Halswirbelsaeule wurden zu den statischen Magnetresonanztomogrammen der Halswirbelsaeule MR-Funktionsaufnahmen durchgefuehrt. Diese Funktionsaufnahmen erfolgten in 5 verschiedenen Flexionsgraden von maximaler Reklination bis zur maximalen Inklination (30 , 0 , 25 , 40 , 50 ). T{sub 2}*-gewichtete Gradienten-Echo-Sequenzen in sagittaler Schnittfuehrung wurden fuer jeden Flexionsgrad angefertigt. Bandinstabilitaeten und Bandscheibenvorwoelbungen konnten bei 17 Patienten nur in bestimmten Flexionsgraden erfasst werden. Diese 17 Patienten zeigten eine umschriebene neurologische Symptomatik, die von ihrer Lokalisation mit den in der MR-Funktionsdiagnostik erhobenen Befunden korrelierten. Zwei Patienten wurden aufgrund diese Befunde mit einer operativen Fusion therapiert. (orig.)

  18. Cardiac MRI in patients with complex CHD following primary or secondary implantation of MRI-conditional pacemaker system.

    Science.gov (United States)

    Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern

    2016-02-01

    In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.

  19. Functional MRI in schizophrenia. Diagnostics and therapy monitoring of cognitive deficits of schizophrenic patients by functional MRI

    International Nuclear Information System (INIS)

    Furtner, J.; Prayer, D.; Sachs, G.

    2010-01-01

    Cognitive impairments are core psychopathological components of the symptomatic of schizophrenic patients. These dysfunctions are generally related to attention, executive functions and memory. This report provides information on the importance of using functional magnetic resonance imaging (fMRI) for the diagnostics and therapy monitoring of the different subtypes of cognitive dysfunctions. Furthermore, it describes the typical differences in the activation of individual brain regions between schizophrenic patients and healthy control persons. This information should be helpful in identifying the deficit profile of each patient and create an individual therapy plan. (orig.) [de

  20. Pharmaco fMRI: Determining the functional anatomy of the effects of medication

    Directory of Open Access Journals (Sweden)

    Britta Wandschneider

    2016-01-01

    Full Text Available Functional MRI studies have helped to elucidate underlying mechanisms in complex neurological and neuropsychiatric disorders. Disease processes often involve complex large-scale network interactions, extending beyond the presumed main disease focus. Given both the complexity of the clinical phenotype and the underlying dysfunctional brain circuits, so called pharmaco-fMRI (ph-MRI studies probe pharmacological effects on functional neuro-anatomy, and can help to determine early treatment response, mechanisms of drug efficacy and side effects, and potentially advance CNS drug development. In this review, we discuss recent ph-MRI research in three major neuropsychiatric and neurological disorders and associated network alterations, namely selective serotonin and noradrenergic reuptake inhibitors in affective disorders and emotional processing circuits; antiepileptic drugs in epilepsy and cognitive networks; and stimulants in attention-deficit/hyperactivity disorder and networks of attention control. We conclude that ph-MRI studies show consistent and reproducible changes on disease relevant networks, and prove sensitive to early pharmacological effects on functional anatomy associated with disease. Further CNS drug research and development would benefit greatly from improved disease phenotyping, or biomarkers, using advanced imaging techniques.

  1. BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.

    Science.gov (United States)

    Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K

    2014-02-15

    Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Exploring structure and function of sensory cortex with 7T MRI.

    Science.gov (United States)

    Schluppeck, Denis; Sanchez-Panchuelo, Rosa-Maria; Francis, Susan T

    2018-01-01

    In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI

    International Nuclear Information System (INIS)

    Pinker, K.; Marino, M.A.; Meyer-Baese, A.; Helbich, T.H.

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ( 1 H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ( 23 Na MRI), phosphorus spectroscopy ( 31 P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [de

  4. Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function

    International Nuclear Information System (INIS)

    Jacques, Audrey E.T.; Sahdev, Anju; Sandrasagara, Madrika; Rockall, Andrea G.; Reznek, Rodney H.; Goldstein, Rick; Chew, Shern; Berney, Daniel

    2008-01-01

    The purpose of this study was to describe the range of appearances of adrenal phaeochromocytomas on T2-weighted MRI, correlate appearances with histopathology, and quantify the incidence of the previously described hyperintense appearance. The appearance and MR characteristics of 44 phaeochromocytomas were reviewed retrospectively. T2-weighted appearances were grouped: (1) 'classical', homogeneous, high signal intensity, isointense to CSF; (2) homogeneous, isointense or minimally hyperintense to spleen, hypointense to CSF; (3) heterogeneous, marbled appearance; (4) heterogeneous, multiple high signal intensity pockets. All 44 adrenal phaeochromocytomas were well circumscribed, 1.2-15 cm in maximum diameter, with no visual or quantitative signal loss on chemical shift imaging. On T2-weighted MRI 5/44 (11%) had group 1 appearance; 15/44 (34%) group 2, 7/44 (16%) group 3; and 17/44 (39%) group 4. Homogeneous group 1 and 2 lesions were smaller (mean 4.5 cm) than heterogeneous group 3 and 4 lesions (mean 6.3 cm). Increasing MRI heterogeneity correlated pathologically with increasing amounts of haemorrhage, necrosis and fibrosis. No MRI features were predictive of malignancy. Non-functioning phaeochromocytomas were larger than functioning lesions. No size difference was seen between syndrome and sporadic lesions. In this large series we report a wide range of appearances of adrenal phaeochromocytomas on T2-weighted MRI. The previously described classical hyperintense phaeochromocytoma is relatively uncommon. (orig.)

  5. Study on cerebral activation areas during repetition with functional MRI in normal adults

    International Nuclear Information System (INIS)

    Koseki, Yohju

    2009-01-01

    For cerebral activation of speech areas in functional MRI (f-MRI) study, the usefulness of an optical microphone, which made it possible to perform task repetition at real time during scanning, was examined. Subjects were 25 healthy adults (mean age, 27.1±5.6 years), who consisted of 15 right-handed and 10 left-handed or ambidextrous persons. Tasks comprised repetition of monosyllables, non-words, words and sentences. The repetition tasks were covertly performed during scanning of f-MRI by using an optical microphone. In both the right-handed and non-right-handed groups, activations in the left superior temporal gyrus (sensory speech area) were most frequently observed during all of the tasks. In the right-handed group, activations in the left inferior frontal (motor speech area) and superior temporal gyri were significantly more often observed than those in the right inferior frontal and superior temporal gyri. From an assessment of the laterality index (LI), left-side dominant activation was frequently seen in most of the cerebral regions including sensory and motor speech areas, although right-side and bilateral dominant activations were observed in a few cases. In both groups, activations in regions associated with sensory speech were significantly more often seen than those in regions associated with motor speech. The present predominant activations in regions involved in sensory speech indicate that the optical microphone is useful in f-MRI studies using task repetition. (author)

  6. Altered Structural and Functional Connectivity of Juvenile Myoclonic Epilepsy: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Chengqing Zhong

    2018-01-01

    Full Text Available The aim of this study was to investigate the structural and functional connectivity (FC of juvenile myoclonic epilepsy (JME using resting state functional magnetic resonance imaging (rs-fMRI. High-resolution T1-weighted magnetic resonance imaging (MRI and rs-fMRI data were collected in 25 patients with JME and in 24 control subjects. A FC analysis was subsequently performed, with seeding at the regions that demonstrated between-group differences in gray matter volume (GMV. Then, the observed structural and FCs were associated with the clinical manifestations. The decreased GMV regions were found in the bilateral anterior cerebellum, the right orbital superior frontal gyrus, the left middle temporal gyrus, the left putamen, the right hippocampus, the bilateral caudate, and the right thalamus. The changed FCs were mainly observed in the motor-related areas and the cognitive-related areas. The significant findings of this study revealed an important role for the cerebellum in motor control and cognitive regulation in JME patients, which also have an effect on the activity of the occipital lobe. In addition, the changed FCs were related to the clinical features of JME patients. The current observations may contribute to the understanding of the pathogenesis of JME.

  7. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    Directory of Open Access Journals (Sweden)

    Roland N Boubela

    2014-02-01

    Full Text Available Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to true neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.. From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  8. Incidental MRI Findings in Patients with Impaired Cognitive Function

    International Nuclear Information System (INIS)

    Hwang, Yoon Joon

    2013-01-01

    This study aims to evaluate the incidental findings on brain MRI of patients with cognitive function impairments. We analyzed magnetic resonance (MR) findings of 236 patients with decreased cognitive function. MR protocols include conventional T2 weighted axial images, fluid attenuated inversion recovery axial images, T1 weighted coronal 3-dimensional magnetization-prepared rapid acquisition of gradient echo and diffusion tensor images. We retrospectively evaluated the signal changes that suggest acute/subacute infarction and space occupying lesions which show mass effect. Incidental MR findings were seen in 16 patients. Nine patients (3.8%) showed increased signal intensity on trace map of diffusion tensor images suggesting acute/subacute infarctions. Space occupying lesions were detected in 7 patients, and 3 lesions (1.27%) had mass effect and edema and were considered clinically significant lesions that diminish cognitive functions. Several incidental MR findings were detected in patients with decreased cognitive function, and the incidence of aucte/subacute infarctions were higher. Proper evaluations of MRI in patients with impaired cognitive functions will be helpful in early detection and management of ischemic lesions and space occupying lesions.

  9. The potential of multiparametric MRI of the breast

    Science.gov (United States)

    Pinker, Katja; Helbich, Thomas H

    2017-01-01

    MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423

  10. Simultaneous pressure-volume measurements using optical sensors and MRI for left ventricle function assessment during animal experiment.

    Science.gov (United States)

    Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie

    2015-01-01

    Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Comparative diagnostic performance of multidetector computed tomography and MRI for characterization of pancreatic cystic lesions

    International Nuclear Information System (INIS)

    Moon, Sung Min; Shin, Sang Soo; Park, Jin Gyoon; Jeong, Yong Yeon

    2015-01-01

    To compare the diagnostic performance of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) in characterization of pancreatic cystic lesions. We conducted a retrospective study on 34 patients with histopathologically proven cystic pancreatic lesions who underwent both preoperative MDCT and MRI. CT and MRI were independently evaluated for differentiating mucinous vs. non-mucinous lesions, differentiating aggressive vs. non-aggressive lesion, analyzing morphological features, and evaluating specific leading diagnoses. Sensitivity, specificity, and accuracy were determined. Competency assessment of lesional morphology analysis was performed using the kappa values of the 2 tests. The sensitivity, specificity, and accuracy of MRI for differentiating mucinous vs. non-mucinous lesions were higher than CT (p = 0.03). For differentiating aggressiveness, the sensitivity of MRI was better than CT, but the specificity of CT was better than MRI. In evaluation of morphologic features, MRI showed better performance in characterization of septa and wall. Otherwise, the 2 modalities showed similarly good performance. MRI was better than CT in determining a specific diagnosis (58.8% vs. 47.2%, respectively). CT and MRI are reasonable diagnostic methods for characterization of pancreatic cystic lesions. However, MRI enables more confident assessment than CT in differentiating mucinous vs. non-mucinous lesions and characterization of the septa and wall

  12. To see bruxism: a functional MRI study.

    Science.gov (United States)

    Yılmaz, S

    2015-01-01

    Since the pathophysiology of bruxism is not clearly understood, there exists no possible treatment. The aim of this study is to investigate the cerebral activation differences between healthy subjects and patients with bruxism on behalf of possible aetiological factors. 12 healthy subjects and 12 patients with bruxism, a total of 24 right-handed female subjects (aged 20-27 years) were examined using functional MRI during tooth-clenching and resting tasks. Imaging was performed with 3.0-T MRI scanner with a 32-channel head coil. Differences in regional brain activity between patients with bruxism and healthy subjects (control group) were observed with BrainVoyager QX 2.8 (Brain Innovation, Maastricht, Netherlands) statistical data analysis program. Activation maps were created using the general linear model: single study and multistudy multisubject for statistical group analysis. This protocol was approved by the ethics committee of medical faculty of Kirikkale University, Turkey (02/04), based on the guidelines set forth in the Declaration of Helsinki. The group analysis revealed a statistically significant increase in blood oxygenation level-dependent signal of three clusters in the control group (pbruxism. Our findings indicate that there was a decrease of cortical activation pattern in patients with bruxism in clenching tasks. This indicates decreased blood flow and activation in regional neuronal activity. Bruxism, as an oral motor disorder concerns dentistry, neurology and psychiatry. These results might improve the understanding and physiological handling of sleep bruxism.

  13. Assessing language and visuospatial functions with one task: a "dual use" approach to performing fMRI in children.

    Science.gov (United States)

    Ebner, Kathina; Lidzba, Karen; Hauser, Till-Karsten; Wilke, Marko

    2011-10-01

    In order to increase the rate of successful functional MR studies in children it is helpful to shorten the time spent in the scanner. To this effect, assessing two cognitive functions with one task seems to be a promising approach. The hypothesis of this study was that the control condition of an established language task (vowel identification task, VIT) requires visuospatial processing and that the control condition (VIT(CC)) therefore may also be applicable to localize visuospatial functions. As a reference task, a visual search task (VST, previously established for use in children) was employed. To test this hypothesis, 43 children (19 f, 24 m; 12.0±2.6, range 7.9 to 17.8 years) were recruited and scanned using both tasks. Second-level random effects group analyses showed activation of left inferior-frontal cortex in the active condition of the VIT, as in previous studies. Additionally, analysis of the VIT(CC) demonstrated activation in right-dominant superior parietal and high-frontal brain regions, classically associated with visuospatial functions; activation seen in the VST was similar with a substantial overlap. However, lateralization in the parietal lobe was significantly more bilateral in the VST than in the VIT(CC). This suggests that the VIT can not only be applied to assess language functions (using the active>control contrast), but also that the control>active condition is useful for assessing visuospatial functions. Future task design may benefit from such a "dual use" approach to performing fMRI not only, but also particularly in children. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Performance of Ultrafast DCE-MRI for Diagnosis of Prostate Cancer.

    Science.gov (United States)

    Chatterjee, Aritrick; He, Dianning; Fan, Xiaobing; Wang, Shiyang; Szasz, Teodora; Yousuf, Ambereen; Pineda, Federico; Antic, Tatjana; Mathew, Melvy; Karczmar, Gregory S; Oto, Aytekin

    2018-03-01

    This study aimed to test high temporal resolution dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for different zones of the prostate and evaluate its performance in the diagnosis of prostate cancer (PCa). Determine whether the addition of ultrafast DCE-MRI improves the performance of multiparametric MRI. Patients (n = 20) with pathologically confirmed PCa underwent preoperative 3T MRI with T2-weighted, diffusion-weighted, and high temporal resolution (~2.2 seconds) DCE-MRI using gadoterate meglumine (Guerbet, Bloomington, IN) without an endorectal coil. DCE-MRI data were analyzed by fitting signal intensity with an empirical mathematical model to obtain parameters: percent signal enhancement, enhancement rate (α), washout rate (β), initial enhancement slope, and enhancement start time along with apparent diffusion coefficient (ADC) and T2 values. Regions of interests were placed on sites of prostatectomy verified malignancy (n = 46) and normal tissue (n = 71) from different zones. Cancer (α = 6.45 ± 4.71 s -1 , β = 0.067 ± 0.042 s -1 , slope = 3.78 ± 1.90 s -1 ) showed significantly (P <.05) faster signal enhancement and washout rates than normal tissue (α = 3.0 ± 2.1 s -1 , β = 0.034 ± 0.050 s -1 , slope = 1.9 ± 1.4 s -1 ), but showed similar percentage signal enhancement and enhancement start time. Receiver operating characteristic analysis showed area under the curve for DCE parameters was comparable to ADC and T2 in the peripheral (DCE 0.67-0.82, ADC 0.80, T2 0.89) and transition zones (DCE 0.61-0.72, ADC 0.69, T2 0.75), but higher in the central zone (DCE 0.79-0.88, ADC 0.45, T2 0.45) and anterior fibromuscular stroma (DCE 0.86-0.89, ADC 0.35, T2 0.12). Importantly, combining DCE with ADC and T2 increased area under the curve by ~30%, further improving the diagnostic accuracy of PCa detection. Quantitative parameters from empirical mathematical model fits to ultrafast

  15. Morphologic and functional scoring of cystic fibrosis lung disease using MRI

    International Nuclear Information System (INIS)

    Eichinger, Monika; Optazaite, Daiva-Elzbieta; Kopp-Schneider, Annette; Hintze, Christian; Biederer, Jürgen; Niemann, Anne; Mall, Marcus A.; Wielpütz, Mark O.; Kauczor, Hans-Ulrich; Puderbach, Michael

    2012-01-01

    Magnetic resonance imaging (MRI) gains increasing importance in the assessment of cystic fibrosis (CF) lung disease. The aim of this study was to develop a morpho-functional MR-scoring-system and to evaluate its intra- and inter-observer reproducibility and clinical practicability to monitor CF lung disease over a broad severity range from infancy to adulthood. 35 CF patients with broad age range (mean 15.3 years; range 0.5–42) were examined by morphological and functional MRI. Lobe based analysis was performed for parameters bronchiectasis/bronchial-wall-thickening, mucus plugging, abscesses/sacculations, consolidations, special findings and perfusion defects. The maximum global score was 72. Two experienced radiologists scored the images at two time points (interval 10 weeks). Upper and lower limits of agreement, concordance correlation coefficients (CCC), total deviation index and coverage probability were calculated for global, morphology, function, component and lobar scores. Global scores ranged from 6 to 47. Intra- and inter-reader agreement for global scores were good (CCC: 0.98 (R1), 0.94 (R2), 0.97 (R1/R2)) and were comparable between high and low scores. Our results indicate that the proposed morpho-functional MR-scoring-system is reproducible and applicable for semi-quantitative evaluation of a large spectrum of CF lung disease severity. This scoring-system can be applied for the routine assessment of CF lung disease and maybe as endpoint for clinical trials.

  16. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2013-03-01

    Full Text Available This study used functional magnetic resonance imaging (fMRI to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ minutes of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control.

  17. Acquisition and analysis strategies in functional MRI at high fields

    International Nuclear Information System (INIS)

    Windischberger, C.

    2001-08-01

    Functional magnetic resonance imaging represents a non-invasive technique to examine neuronal activity in the brain. It applies radio waves to excite nuclear spins, using the emitted signal during relaxation for image generation. Signal modulations from local blood flow and oxygenation level changes caused by neuronal activity are the basis for calculating functional brain maps with high spatial resolution. The present work discusses concepts for improving the spatial and temporal resolution, as well as sophisticated analysis approaches. Besides an exhaustive description of image reconstruction algorithms, computational simulations on echo-shifting in echo-planar imaging are presented and effects on spatial resolution are quantified. The results demonstrate that echo-shifting causes only minimal resolution losses for high signal-to-noise data, but leads to severe resolution degradation (up to 30 %) in images with low signal-to-noise ratios. After an overview of the mechanisms that cause fMRI signal changes subsequent to neuronal activity, explorative analysis algorithms like Fuzzy Cluster Analysis, as well as parametric approaches are described and discussed. In the context of fMRI artifacts, effects of respiratory motion are examined. For the first time, well-defined breathing patterns are used to quantify the influences on fMRI signal intensity. Also, the variability of fMRI activation in a mental rotation paradigm are investigated, using single-trial analysis. Such, intra-subject activation consistency was determined successfully. Finally, in a second study on mental rotation explorative data analysis was applied to retrieve neuro-functional hypotheses. (author)

  18. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.

    Science.gov (United States)

    Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek

    2010-01-01

    Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.

  19. Comparative studies of brain activation with MEG and functional MRI

    International Nuclear Information System (INIS)

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-01-01

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework

  20. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    Science.gov (United States)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TRstudied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  1. Proposed biopsy performance benchmarks for MRI based on an audit of a large academic center.

    Science.gov (United States)

    Sedora Román, Neda I; Mehta, Tejas S; Sharpe, Richard E; Slanetz, Priscilla J; Venkataraman, Shambhavi; Fein-Zachary, Valerie; Dialani, Vandana

    2018-05-01

    Performance benchmarks exist for mammography (MG); however, performance benchmarks for magnetic resonance imaging (MRI) are not yet fully developed. The purpose of our study was to perform an MRI audit based on established MG and screening MRI benchmarks and to review whether these benchmarks can be applied to an MRI practice. An IRB approved retrospective review of breast MRIs was performed at our center from 1/1/2011 through 12/31/13. For patients with biopsy recommendation, core biopsy and surgical pathology results were reviewed. The data were used to derive mean performance parameter values, including abnormal interpretation rate (AIR), positive predictive value (PPV), cancer detection rate (CDR), percentage of minimal cancers and axillary node negative cancers and compared with MG and screening MRI benchmarks. MRIs were also divided by screening and diagnostic indications to assess for differences in performance benchmarks amongst these two groups. Of the 2455 MRIs performed over 3-years, 1563 were performed for screening indications and 892 for diagnostic indications. With the exception of PPV2 for screening breast MRIs from 2011 to 2013, PPVs were met for our screening and diagnostic populations when compared to the MRI screening benchmarks established by the Breast Imaging Reporting and Data System (BI-RADS) 5 Atlas ® . AIR and CDR were lower for screening indications as compared to diagnostic indications. New MRI screening benchmarks can be used for screening MRI audits while the American College of Radiology (ACR) desirable goals for diagnostic MG can be used for diagnostic MRI audits. Our study corroborates established findings regarding differences in AIR and CDR amongst screening versus diagnostic indications. © 2017 Wiley Periodicals, Inc.

  2. Preliminary study on the mechanism of reading recovery in a pure alexia by using functional MRI

    International Nuclear Information System (INIS)

    Ma Lin; Li Dejun; Weng Xuchu; Tang Yiyuan; Zhang Wutian; Sun Weijian; Feng Shiwen

    2004-01-01

    Objective: To observe the changes of the brain function during reading recovery by using functional MRI (fMRI), and to provide the experimental data in elucidating the mechanism on the recovery of reading and language function. Methods: fMRI was performed in a native Chinese patient with pure alexia on the 45 th and 130 th day after the onset, respectively. Three kinds of Chinese characters were presented during the scan and the patient was asked to make the judgement weather he could recognize the characters or not. The brain activation maps were acquired after postprocessing, and the activated location and volume were compared between the first and second experiments. Results: In both experiments, Broca area, Wernicke area, and the right extrastriate were significantly activated, while the left extrastriate around the lesion was markedly activated only in the second experiment, and the volume of activation in the right extrastriate in the second experiment was about 3 times as large as that in the first experiment. Conclusion: The left extrastriate cortex is one of the key areas responsible for reading function in the brain. The recovery of reading function can be compensated in contralateral corresponding cortical area, or it can be the result of reorganization in ipsilateral peri-lesion cortex. Both mechanisms may simultaneously play important roles in reading recovery

  3. Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Caulo, M; Van Hecke, J; Toma, L; Ferretti, A; Tartaro, A; Colosimo, C; Romani, G L; Uncini, A

    2005-07-01

    Anterograde amnesia in Wernicke-Korsakoff syndrome is associated with diencephalic lesions, mainly in the anterior thalamic nuclei. Whether diencephalic and temporal lobe amnesias are distinct entities is still not clear. We investigated episodic memory for faces using functional MRI (fMRI) in eight controls and in a 34-year-old man with Wernicke-Korsakoff syndrome and diencephalic lesions but without medial temporal lobe (MTL) involvement at MRI. fMRI was performed with a 1.5 tesla unit. Three dual-choice tasks were employed: (i) face encoding (18 faces were randomly presented three times and subjects were asked to memorize the faces); (ii) face perception (subjects indicated which of two faces matched a third face); and (iii) face recognition (subjects indicated which of two faces belonged to the group they had been asked to memorize during encoding). All activation was greater in the right hemisphere. In controls both the encoding and recognition tasks activated two hippocampal regions (anterior and posterior). The anterior hippocampal region was more activated during recognition. Activation in the prefrontal cortex was greater during recognition. In the subject with Wernicke-Korsakoff syndrome, fMRI did not show hippocampal activation during either encoding or recognition. During recognition, although behavioural data showed defective retrieval, the prefrontal regions were activated as in controls, except for the ventrolateral prefrontal cortex. fMRI activation of the visual cortices and the behavioural score on the perception task indicated that the subject with Wernicke-Korsakoff syndrome perceived the faces, paid attention to the task and demonstrated accurate judgement. In the subject with Wernicke-Korsakoff syndrome, although the anatomical damage does not involve the MTL, the hippocampal memory encoding has been lost, possibly as a consequence of the hippocampal-anterior thalamic axis involvement. Anterograde amnesia could therefore be the expression of

  4. Evaluation of renal function with dynamic MRI-T2-weighted gradient echo technique

    International Nuclear Information System (INIS)

    Kato, Katsuya

    1995-01-01

    To evaluate the usefulness of dynamic MRI of kidneys in healthy volunteers and patients with different 24-hour creatinine clearance (Ccr) levels, a dynamic study that employed the T2 weighted gradient echo technique (FLASH: TR/TE=34/25 msec, flip angle= 20 degrees) with single images during breathhold was performed on 10 healthy volunteers and 35 patients, all examined for the Ccr and suspected of having renal parenchymal disease after a phantom study. T1-weighted and dynamic MR imagings were obtained with a 1.5T imager. I analyzed the time-intensity curve of renal cortex and medulla, and defined a cortex decreased ratio (CDR) and medulla decreased ratio (MDR) in comparison with the Ccr. The cortico-medullary difference ratio (CMDR) of T1WI was also compared with the Ccr. The parameters of the T2 dynamic MRI study (CDR, MDR) better correlated with the Ccr than CMDR. Renal function can be quantitatively evaluated with the T2 dynamic MRI and there is a possibility that we can qualitatively evaluate the renal dysfunction and estimate its cause. (author)

  5. Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis.

    Science.gov (United States)

    Pinter, Daniela; Khalil, Michael; Pichler, Alexander; Langkammer, Christian; Ropele, Stefan; Marschik, Peter B; Fuchs, Siegrid; Fazekas, Franz; Enzinger, Christian

    2015-01-01

    While many studies correlated cognitive function with changes in brain morphology in multiple sclerosis (MS), few of them used a multi-parametric approach in a single dataset so far. We thus here assessed the predictive value of different conventional and quantitative MRI-parameters both for overall and domain-specific cognitive performance in MS patients from a single center. 69 patients (17 clinically isolated syndrome, 47 relapsing-remitting MS, 5 secondary-progressive MS) underwent the "Brief Repeatable Battery of Neuropsychological Tests" assessing overall cognition, cognitive efficiency and memory function as well as MRI at 3 Tesla to obtain T2-lesion load (T2-LL), normalized brain volume (global brain volume loss), normalized cortical volume (NCV), normalized thalamic volume (NTV), normalized hippocampal volume (NHV), normalized caudate nuclei volume (NCNV), basal ganglia R2* values (iron deposition) and magnetization transfer ratios (MTRs) for cortex and normal appearing brain tissue (NABT). Regression models including clinical, demographic variables and MRI-parameters explained 22-27% of variance of overall cognition, 17-26% of cognitive efficiency and 22-23% of memory. NCV, T2-LL and MTR of NABT were the strongest predictors of overall cognitive function. Cognitive efficiency was best predicted by NCV, T2-LL and iron deposition in the basal ganglia. NTV was the strongest predictor for memory function and NHV was particularly related to memory function. The predictive value of distinct MRI-parameters differs for specific domains of cognitive function, with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive function, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (micro)structural correlates of different cognitive constructs.

  6. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function

    International Nuclear Information System (INIS)

    Bladowska, J.; Sokolska, V.; Sasiadek, M.; Sozanski, T.; Bednarek-Tupikowska, G.

    2010-01-01

    Background: Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. Material/Methods: 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. Results: The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. Conclusions: MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy. (authors)

  7. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers.

    Science.gov (United States)

    Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo

    2017-10-01

    Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  8. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    Science.gov (United States)

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  9. Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability.

    Directory of Open Access Journals (Sweden)

    Bertram J Jobst

    Full Text Available Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lung MRI protocol in COPD.20 prospectively enrolled COPD patients (GOLD I-IV underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging, consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed.Median global scores [10(Q1:8.00;Q3:16.00 vs.11(Q1:6.00;Q3:15.00] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (ĸ = 0.86, 95%CI = 0.81-0.91. Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (ĸ = 0.64-1.00, whereas the agreement for the diagnosis of dystelectasis/effusion (ĸ = 0.42, 95%CI = 0.00-0.93 was "moderate" and of tracheal abnormalities (ĸ = 0.21, 95%CI = 0.00-0.75 "fair". Most MRI acquisitions showed at least diagnostic quality at

  10. Functional MRI and CT biomarkers in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, J.M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Imaging Centre at the Institute of Cancer Research, Sutton (United Kingdom); Institute of Cancer Research and Royal Marsden Hospital, MRI Unit, Sutton (United Kingdom); Payne, G.S.; DeSouza, N.M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Imaging Centre at the Institute of Cancer Research, Sutton (United Kingdom)

    2015-04-01

    Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T{sub 1} relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R{sub 2}*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives. (orig.)

  11. Preliminary evaluation of MRI-derived input function for quantitative measurement of glucose metabolism in an integrated PET-MRI

    International Nuclear Information System (INIS)

    Anazodo, Udunna; Kewin, Matthew; Finger, Elizabeth; Thiessen, Jonathan; Hadway, Jennifer; Butler, John; Pavlosky, William; Prato, Frank; Thompson, Terry; St Lawrence, Keith

    2015-01-01

    PET semi-quantitative methods such as relative uptake value can be robust but offer no biological information and do not account for intra-subject variability in tracer administration or clearance. Simultaneous multimodal measurements that combine PET and MRI not only permit crucial multiparametric measurements, it provides means of applying tracer kinetic modelling without the need for serial arterial blood sampling. In this study we adapted an image-derived input function (IDIF) method to improve characterization of glucose metabolism in an ongoing dementia study. Here we present preliminary results in a small group of frontotemporal dementia patients and controls. IDIF was obtained directly from dynamic PET data guided by regions of interest drawn on carotid vessels on high resolution T1-weighted MR Images. IDIF was corrected for contamination of non-arterial voxels. A validation of the method was performed in a porcine model in a PET-CT scanner comparing IDIF to direct arterial blood samples. Metabolic rate of glucose (CMRglc) was measured voxel-by-voxel in gray matter producing maps that were compared between groups. Net influx rate (Ki) and global mean CMRglc are reported. A good correlation (r = 0.9 p<0.0001) was found between corrected IDIF and input function measured from direct arterial blood sampling in the validation study. In 3 FTD and 3 controls, a trend towards hypometabolism was found in frontal, temporal and parietal lobes similar to significant differences previously reported by other groups. The global mean CMRglc and Ki observed in control subjects are in line with previous reports. In general, kinetic modelling of PET-FDG using an MR-IDIF can improve characterization of glucose metabolism in dementia. This method is feasible in multimodal studies that aim to combine PET molecular imaging with MRI as dynamic PET can be acquired along with multiple MRI measurements.

  12. Preliminary evaluation of MRI-derived input function for quantitative measurement of glucose metabolism in an integrated PET-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Anazodo, Udunna; Kewin, Matthew [Lawson Health Research Institute, Department of Medical Biophysics, Western University, London, Ontario (Canada); Finger, Elizabeth [Department of Clinical Neurological Sciences, Western University, London, Ontario (Canada); Thiessen, Jonathan; Hadway, Jennifer; Butler, John [Lawson Health Research Institute, Department of Medical Biophysics, Western University, London, Ontario (Canada); Pavlosky, William [Diagnostic Imaging, St Joseph' s Health Care, London, Ontario (Canada); Prato, Frank; Thompson, Terry; St Lawrence, Keith [Lawson Health Research Institute, Department of Medical Biophysics, Western University, London, Ontario (Canada)

    2015-05-18

    PET semi-quantitative methods such as relative uptake value can be robust but offer no biological information and do not account for intra-subject variability in tracer administration or clearance. Simultaneous multimodal measurements that combine PET and MRI not only permit crucial multiparametric measurements, it provides means of applying tracer kinetic modelling without the need for serial arterial blood sampling. In this study we adapted an image-derived input function (IDIF) method to improve characterization of glucose metabolism in an ongoing dementia study. Here we present preliminary results in a small group of frontotemporal dementia patients and controls. IDIF was obtained directly from dynamic PET data guided by regions of interest drawn on carotid vessels on high resolution T1-weighted MR Images. IDIF was corrected for contamination of non-arterial voxels. A validation of the method was performed in a porcine model in a PET-CT scanner comparing IDIF to direct arterial blood samples. Metabolic rate of glucose (CMRglc) was measured voxel-by-voxel in gray matter producing maps that were compared between groups. Net influx rate (Ki) and global mean CMRglc are reported. A good correlation (r = 0.9 p<0.0001) was found between corrected IDIF and input function measured from direct arterial blood sampling in the validation study. In 3 FTD and 3 controls, a trend towards hypometabolism was found in frontal, temporal and parietal lobes similar to significant differences previously reported by other groups. The global mean CMRglc and Ki observed in control subjects are in line with previous reports. In general, kinetic modelling of PET-FDG using an MR-IDIF can improve characterization of glucose metabolism in dementia. This method is feasible in multimodal studies that aim to combine PET molecular imaging with MRI as dynamic PET can be acquired along with multiple MRI measurements.

  13. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback

    Directory of Open Access Journals (Sweden)

    Brian D Berman

    2013-10-01

    Full Text Available The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI to modulate brain activity within their anterior right insular cortex (RIC localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-ROI was functionally localized using a blink suppression task, and BOLD signal changes within RIC-ROI used to create a constantly updating display fed back to the subject in the scanner. Subjects were instructed to use emotional imagery to try and increase activity within RIC-ROI during four feedback training runs (FB1–FB4. A ‘control’ run (CNTRL before training and a ‘transfer’ run (XSFR after training were performed without feedback to assess for baseline abilities and learning effects. Fourteen participants completed all neurofeedback training runs. At the group level, increased BOLD activity was seen in the anterior RIC during all the FB runs, but a significant increase in the functionally defined RIC-ROI was only attained during FB2. In atlas-defined insular cortex ROIs, significant increases were seen bilaterally during the CNTRL, FB1, FB2, and FB4 runs. Increased activity within the insular cortices did not show lateralization. Training did, however, result in a significant increase in functional connectivity between the RIC-ROI and the medial frontal gyrus when comparing FB4 to FB1. Since neurofeedback training did not lead to an increase in BOLD signal across all feedback runs, we suggest that learning to control one’s brain activity in this fashion may require longer or repeated rtfMRI training sessions.

  14. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    Science.gov (United States)

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  15. Cerebral activation during Chinese semantic associative task in Xinjiang' Uyghurs: a functional MRI study

    International Nuclear Information System (INIS)

    Yang Lixia; Jia Wenxiao; Tang Weijun; Wang Hong; Ding Shuang; Wang Hao

    2010-01-01

    Objective: To explore the cerebral activation in Xinjiang' Uyghurs when performing a Chinese word tasks by the functional magnetic resonance image (fMRI). Methods: Twenty-one healthy Xinjiang' Uyghurs and 11 healthy Hans were scanned using functional magnetic resonance imaging (fMRI) on a 1.5 T MRI scanner with a single run. Different Chinese words were displayed in each block to avoid any practice effect. SPM5.0 software was used for image data processing. To evaluate the inter subject consistency of brain activations associated with Chinese character and word reading, we created penetrance maps by combining binary individual functional maps. Results: For Uyghur-Chinese bilingual subjects, activations related to generated a word that was semantically related to each stimulus. The results indicated that reading Chinese is characterized by extensive activity of the neural systems. Peak activations occurred in the left middle frontal cortex at Brodmann Areas (BA9 and BA47). The left temporal (BA37) cortices were also strongly activated. Other important activated areas included bilateral visual systems (BA17-19) and cerebellum. The location of peak activation in the left frontal regions was similar in Native Uyghurs and Hans. But the active areas in Uyghurs are more extensive than that of Hans. Conclusions: The location of peak activation in the left frontal regions was similar in Native Uyghurs and Hans. More brain areas were needed for Xinjiang' Uyghur speakers during processing Chinese words. (authors)

  16. Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice.

    Science.gov (United States)

    Sherwood, Matthew S; Kane, Jessica H; Weisend, Michael P; Parker, Jason G

    2016-01-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback can be used to train localized, conscious regulation of blood oxygen level-dependent (BOLD) signals. As a therapeutic technique, rt-fMRI neurofeedback reduces the symptoms of a variety of neurologic disorders. To date, few studies have investigated the use of self-regulation training using rt-fMRI neurofeedback to enhance cognitive performance. This work investigates the utility of rt-fMRI neurofeedback as a tool to enhance human cognition by training healthy individuals to consciously control activity in the left dorsolateral prefrontal cortex (DLPFC). A cohort of 18 healthy participants in the experimental group underwent rt-fMRI neurofeedback from the left DLPFC in five training sessions across two weeks while 7 participants in the control group underwent similar training outside the MRI and without rt-fMRI neurofeedback. Working memory (WM) performance was evaluated on two testing days separated by the five rt-fMRI neurofeedback sessions using two computerized tests. We investigated the ability to control the BOLD signal across training sessions and WM performance across the two testing days. The group with rt-fMRI neurofeedback demonstrated a significant increase in the ability to self-regulate the BOLD signal in the left DLPFC across sessions. WM performance showed differential improvement between testing days one and two across the groups with the highest increases observed in the rt-fMRI neurofeedback group. These results provide evidence that individuals can quickly gain the ability to consciously control the left DLPFC, and this training results in improvements of WM performance beyond that of training alone. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    Science.gov (United States)

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  18. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.

    Science.gov (United States)

    Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek

    2016-01-01

    Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  19. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    Science.gov (United States)

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  20. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  1. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  2. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  3. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Dutoit, Julie C.; Verstraete, Koenraad L. [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2017-06-15

    Magnetic resonance imaging (MRI) is the most sensitive imaging technique for the detection of bone marrow infiltration, and has therefore recently been included in the new diagnostic myeloma criteria, as proposed by the International Myeloma Working Group. Nevertheless, conventional MRI only provides anatomical information and is therefore only of limited use in the response assessment of patients with multiple myeloma. The additional information from functional MRI techniques, such as diffusion-weighted imaging and dynamic contrast-enhanced MRI, can improve the detection rate of bone marrow infiltration and the assessment of response. This can further enhance the sensitivity and specificity of MRI in the staging of multiple myeloma patients. This article provides an overview of the technical aspects of conventional and functional MRI techniques with practical recommendations. It reviews the diagnostic performance, prognostic value, and role in therapy assessment in multiple myeloma and its precursor stages. (orig.)

  4. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent

    International Nuclear Information System (INIS)

    Yazdani, Farshad; Fattahi, Bahare; Azizi, Najmodin

    2016-01-01

    The aim of this research was the preparation of functionalized magnetite nanoparticles to use as a liver targeting contrast agent in magnetic resonance imaging (MRI). For this purpose, Fe_3O_4 nanoparticles were synthesized via the co-precipitation method. The synthesized nanoparticles were coated with silica via the Stober method and finally the coated nanoparticles were functionalized with mebrofenin. Formation of crystalline magnetite particles was confirmed by X-ray diffraction (XRD) analysis. The Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analyzer (EDX) of the final product showed that silica had been effectively bonded onto the surface of the magnetite nanoparticles and the coated nanoparticles functionalized with mebrofenin. The magnetic resonance imaging of the functional nanoparticles showed that the Fe_3O_4–SiO_2-mebrofenin composite is an effective MRI contrast agent for liver targeting. - Highlights: • Superparamagnetic magnetite nanoparticles have been synthesized by simple and economical method. • Preperation of functional MNPs as a MRI contrast agent for liver targeting. • Gaining a good r_2 relaxivity of the coated functional nanoparticles.

  5. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

    Science.gov (United States)

    Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A

    2007-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.

  6. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    Science.gov (United States)

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  7. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    Science.gov (United States)

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  8. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    Science.gov (United States)

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  9. A functional MRI study of the brain in stroke patients with upper-limb paralysis treated with constraint-induced movement therapy

    International Nuclear Information System (INIS)

    Wen Bo; Ma Lin; Weng Changshui; Zheng Zhixin; Sun Tong

    2009-01-01

    Objective: To investigate and compare the activation patterns of stroke patients with upper-limb paralysis using functional MRI before and after treatment with constraint-induced movement therapy (CIMT) so as to explore the mechanism of CIMT. Methods: Six patients in chronic stage of brain infarction who have functional disturbance in right upper-limb and 9 normal controls were entered into the study. All of the patients were asked to perform the thumb-to-index finger tapping task and underwent functional MRI before and two weeks after CIMT. The controls underwent fMRI of same protocol once. The patients' upper-limb function scores before and after CIMT were analyzed with SPSS 11.5 by paired t test. The fMRI data were analyzed with analysis of functional neurolmages (AFNI) software. The percentage of blood oxygenation level dependent (BOLD) signal change for the normal control was analyzed by one-sample t test to indentify the activated brain regions. The percentage change of BOLD signal for the patients before and after CIMT was compared to control's data by independent-samples t test. The percentage change of BOLD signal for the patients before and after CIMT was analyzed by paired-samples t test. The significant difference level was set P<0.05. Results: The fMRI showed the patients' activated brain regions before CIMT were similar to that of the controls', while the activation level was lower. There were wide areas activated to compensate the impaired function especially for the fight upper-limb. Before CIMT, the patients' score for fight upper-limb on the action research arm test was 27±4. After CIMT, the patients' score was 40±3, and the difference was significant (t=14.626, P<0.05), which indicated the improved function. These subjects also displayed cortical reorganization after CIMT on fMRI. The areas responsible for the right hand movement showed increased activation and the activation level at bilateral corpora striata thalami, and cerebella increased

  10. Functional MRI of human hypothalamic responses following glucose ingestion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Grond, J. van der

    2005-01-01

    The hypothalamus is intimately involved in the regulation of food intake, integrating multiple neural and hormonal signals. Several hypothalamic nuclei contain glucose-sensitive neurons, which play a crucial role in energy homeostasis. Although a few functional magnetic resonance imaging (fMRI)

  11. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  12. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    International Nuclear Information System (INIS)

    Chaudhary, Kapil; Kumaran, S Senthil; Chandra, Sarat P; Wadhawan, Ashima Nehra; Tripathi, Manjari

    2014-01-01

    Functional magnetic resonance imaging (fMRI), a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD) contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery). In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and superior temporal gyrus (STG), during semantic lexical, judgment, comprehension, and semantic memory tasks. Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease

  13. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    Directory of Open Access Journals (Sweden)

    Kapil Chaudhary

    2014-01-01

    Full Text Available Background: Functional magnetic resonance imaging (fMRI, a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. Purpose: fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. Materials and Methods: After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery. Results: In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG, middle frontal gyrus (MFG, and superior temporal gyrus (STG, during semantic lexical, judgment, comprehension, and semantic memory tasks. Conclusion: Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease.

  14. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    Science.gov (United States)

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  15. Performance evaluation of cardiac MRI image denoising techniques

    NARCIS (Netherlands)

    AlAttar, M.A.; Mohamed, A.G.A.; Osman, N.F.; Fahmy, A.S.

    2008-01-01

    Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification

  16. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis.

    Science.gov (United States)

    Madzak, Adnan; Olesen, Søren Schou; Haldorsen, Ingfrid Salvesen; Drewes, Asbjørn Mohr; Frøkjær, Jens Brøndum

    Chronic pancreatitis (CP) is characterized by abnormal pancreatic morphology and impaired endocrine and exocrine function. However, little is known about the relationship between pancreatic morphology and function, and also the association with the etiology and clinical manifestations of CP. The aim was to explore pancreatic morphology and function with advanced MRI in patients with CP and healthy controls (HC) METHODS: Eighty-two patients with CP and 22 HC were enrolled in the study. Morphological imaging parameters included pancreatic main duct diameter, gland volume, fat signal fraction and apparent diffusion coefficient (ADC) values. Functional secretin-stimulated MRI (s-MRI) parameters included pancreatic secretion (bowel fluid volume) and changes in pancreatic ADC value before and after secretin stimulation. Patients were classified according to the modified Cambridge and M-ANNHEIM classification system and fecal elastase was collected. All imaging parameters differentiated CP patients from HC; however, correlations between morphological and functional parameters in CP were weak. Patients with alcoholic and non-alcoholic etiology had comparable s-MRI findings. Fecal elastase was positively correlated to pancreatic gland volume (r = 0.68, P = 0.0016) and negatively correlated to Cambridge classification (r = -0.35, P pancreatic gland volume was significantly decreased in the severe stages of CP (P = 0.001). S-MRI provides detailed information about pancreatic morphology and function and represents a promising non-invasive imaging method to characterize pancreatic pathophysiology and may enable monitoring of disease progression in patients with CP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  17. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI

    Directory of Open Access Journals (Sweden)

    Ryan V. Raut

    2016-01-01

    Full Text Available Functional MRI (fMRI is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR, which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (<10 days from stroke; N = 22 to address this question. These estimates were compared with those from both age-matched (N = 22 and younger (N = 22 healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  18. Functional Magnetic Resonance Imaging Correlates of First-Episode Psychoses during Attentional and Memory Task Performance.

    Science.gov (United States)

    Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Sorice, Serena; Girardi, Nicoletta; Ferracuti, Stefano; Girardi, Paolo

    2016-01-01

    The nature of the alteration of the response to cognitive tasks in first-episode psychosis (FEP) still awaits clarification. We used activation likelihood estimation, an increasingly used method in evaluating normal and pathological brain function, to identify activation changes in functional magnetic resonance imaging (fMRI) studies of FEP during attentional and memory tasks. We included 11 peer-reviewed fMRI studies assessing FEP patients versus healthy controls (HCs) during performance of attentional and memory tasks. Our database comprised 290 patients with FEP, matched with 316 HCs. Between-group analyses showed that HCs, compared to FEP patients, exhibited hyperactivation of the right middle frontal gyrus (Brodmann area, BA, 9), right inferior parietal lobule (BA 40), and right insula (BA 13) during attentional task performances and hyperactivation of the left insula (BA 13) during memory task performances. Right frontal, parietal, and insular dysfunction during attentional task performance and left insular dysfunction during memory task performance are significant neural functional FEP correlates. © 2016 S. Karger AG, Basel.

  19. Relationship between brain function (aEEG) and brain structure (MRI) and their predictive value for neurodevelopmental outcome of preterm infants.

    Science.gov (United States)

    Hüning, Britta; Storbeck, Tobias; Bruns, Nora; Dransfeld, Frauke; Hobrecht, Julia; Karpienski, Julia; Sirin, Selma; Schweiger, Bernd; Weiss, Christel; Felderhoff-Müser, Ursula; Müller, Hanna

    2018-05-22

    To improve the prediction of neurodevelopmental outcome in very preterm infants, this study used the combination of amplitude-integrated electroencephalography (aEEG) within the first 72 h of life and cranial magnetic resonance imaging (MRI) at term equivalent age. A single-center cohort of 38 infants born before 32 weeks of gestation was subjected to both investigations. Structural measurements were performed on MRI. Multiple regression analysis was used to identify independent factors including functional and structural brain measurements associated with outcome at a corrected age of 24 months. aEEG parameters significantly correlated with MRI measurements. Reduced deep gray matter volume was associated with low Burdjalov Score on day 3 (p neurodevelopmental outcome: intraventricular hemorrhage (p = 0.0060) and interhemispheric distance (p = 0.0052) for mental developmental index; Burdjalov Score day 1 (p = 0.0201) and interhemispheric distance (p = 0.0142) for psychomotor developmental index. Functional aEEG parameters were associated with altered brain maturation on MRI. The combination of aEEG and MRI contributes to the prediction of outcome at 24 months. What is Known: • Prematurity remains a risk factor for impaired neurodevelopment. • aEEG is used to measure brain activity in preterm infants and cranial MRI is performed to identify structural gray and white matter abnormalities with impact on neurodevelopmental outcome. What is New: • aEEG parameters observed within the first 72 h of life were associated with altered deep gray matter volumes, biparietal width, and transcerebellar diameter at term equivalent age. • The combination of aEEG and MRI contributes to the prediction of neurodevelopmental outcome at 2 years of corrected age in very preterm infants.

  20. Association between penile dynamic contrast-enhanced MRI-derived quantitative parameters and self-reported sexual function in patients with newly diagnosed prostate cancer.

    Science.gov (United States)

    Vargas, Hebert Alberto; Donati, Olivio F; Wibmer, Andreas; Goldman, Debra A; Mulhall, John P; Sala, Evis; Hricak, Hedvig

    2014-10-01

    The high incidence of prostate cancer, coupled with excellent prostate cancer control rates, has resulted in growing interest in nononcological survivorship issues such as sexual function. Multiparametric magnetic resonance imaging (MRI) is increasingly being performed for local staging of prostate cancer, and due to the close anatomical relationship to the prostate, penile enhancement is often depicted in prostate MRI. To evaluate the associations between quantitative perfusion-related parameters derived from dynamic contrast-enhanced (DCE)-MRI of the penis and self-reported sexual function in patients with newly diagnosed prostate cancer. This retrospective study included 50 patients who underwent DCE-MRI for prostate cancer staging before prostatectomy. The following perfusion-related parameters were calculated: volume transfer constant (K(trans)), rate constant (k(ep)), extracellular-extravascular volume fraction (v(e)), contrast enhancement ratio (CER), area under the gadolinium curve after 180 seconds (AUC180), and slope of the time/signal intensity curve of the corpora cavernosa. Associations between perfusion-related parameters and self-reported sexual function were evaluated using the Wilcoxon Rank-Sum test. Patient responses to the sexual function domain of the Prostate Quality of Life survey. Five of the six DCE-MRI parameters (K(trans), v(e), CER, AUC180, and slope) were significantly associated with the overall score from the sexual domain of the survey (P = 0.0020-0.0252). CER, AUC180, and slope were significantly associated with the answers to all six questions (P = 0.0020-0.0483), ve was significantly associated with the answers to five of six questions (P = 0.0036-0.1029), and K(trans) was significantly associated with the answers to three of six questions (P = 0.0252-0.1023). k(ep) was not significantly associated with the overall survey score (P = 0.7665) or the answers to any individual questions (P = 0

  1. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    Science.gov (United States)

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  2. Preoperative functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS)

    DEFF Research Database (Denmark)

    Hartwigsen, G.; Siebner, Hartwig R.; Stippich, C.

    2010-01-01

    Neurosurgical resection of brain lesions aims to maximize excision while minimizing the risk of permanent injury to the surrounding intact brain tissue and resulting neurological deficits. While direct electrical cortical stimulation at the time of surgery allows the precise identification...... of essential cortex, it cannot provide information preoperatively for surgical planning.Brain imaging techniques such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS) are increasingly being used to localize functionally critical cortical......, if the stimulated cortex makes a critical contribution to the brain functions subserving the task. While the relationship between task and functional activation as revealed by fMRI is correlative in nature, the neurodisruptive effect of TMS reflects a causal effect on brain activity.The use of preoperative f...

  3. On the Averaging of Cardiac Diffusion Tensor MRI Data: The Effect of Distance Function Selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) Metrics were judged by quantitative –rather than qualitative– criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the “swelling effect” occurrence following Euclidean averaging was found to be too unimportant to be worth consideration. PMID:27754986

  4. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  5. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function

    NARCIS (Netherlands)

    Coolen, Bram F.; Abdurrachim, Desiree; Motaal, Abdallah G.; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2013-01-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered

  6. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study.

    Science.gov (United States)

    Guo, Lili; Bai, Genji; Zhang, Hui; Lu, Daoyan; Zheng, Jiyong; Xu, Gang

    2017-12-01

    We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal

  7. Advances in MRI diagnosis of prostate cancer

    International Nuclear Information System (INIS)

    Zhang Longmin; Liu Ailian

    2014-01-01

    Prostate cancer is the second most common cancer in the world, and the incidence of prostate cancer in China shows an upward trend. MRI has high soft tissue resolution and multi-dimensional imaging advantages, and it can better show the anatomy of the prostate and adjacent tissue structures. With the development of MR technique, it plays a more and more important role in prostate cancer diagnosis. This review starts from the imaging performance of routine MRI sequence of prostate cancer, and a variety of functional MRI applications in the diagnosis and differential diagnosis of prostate cancer are described in detail, such as MR perfusion-weighted imaging, MR spectroscopy, MR diffusion-weighted imaging, MR diffusion tensor imaging, intravoxel incoherent motion diffusion-weighted imaging, MR susceptibility-weighted imaging. Meanwhile this review introduces that functional MRI has more advantages and can provide more image information than routine MRI sequence. According to a series of semi-quantitative and quantitative data, functional MRI can further provide the blood perfusion of prostate cancer, water molecule diffusion and microcirculation state, metabolism and biochemical composition change information. (authors)

  8. Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study

    International Nuclear Information System (INIS)

    Deblaere, K.; Vandemaele, P.; Achten, E.; Backes, W.H.; Hofman, P.; Wilmink, J.; Boon, P.A.; Vonck, K.; Boon, P.; Troost, J.; Vermeulen, J.; Aldenkamp, A.

    2002-01-01

    Our aim was to put together and test a comprehensive functional MRI (fMRI) protocol which could compete with the intracarotid amytal (IAT) or Wada test for the localisation of language and memory function in patients with intractable temporal lobe epilepsy. The protocol was designed to be performed in under 1 h on a standard 1.5 tesla imager. We used five paradigms to test nine healthy right-handed subjects: complex scene-encoding, picture-naming, reading, word-generation and semantic-decision tasks. The combination of these tasks generated two activation maps related to memory in the mesial temporal lobes, and three language-related maps of activation in a major part of the known language network. The functional maps from the encoding and naming tasks showed typical and symmetrical posterior mesial temporal lobe activation related to memory in all subjects. Only four of nine subjects also showed symmetrical anterior hippocampal activation. Language lateralisation was best with the word generation and reading paradigms and proved possible in all subjects. The reading paradigm enables localisation of language function in the left anterior temporal pole and middle temporal gyrus, areas typically resected during epilepsy surgery. The combined results of this comprehensive f MRI protocol are adequate for a comparative study with the IAT in patients with epilepsy being assessed for surgery. (orig.)

  9. Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Deblaere, K.; Vandemaele, P.; Achten, E. [MRI Department -1 K12, Department of Radiology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Backes, W.H.; Hofman, P.; Wilmink, J. [Department of Neuroradiology, University Hospital Maastricht, Postbus 5800, 6202 AZ Maastricht (Netherlands); Boon, P.A.; Vonck, K. [Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Boon, P. [Department of Medical Psychology, University Hospital Maastricht (Netherlands); Troost, J. [Department of Neurology, University Hospital Maastricht (Netherlands); Vermeulen, J. [S.E.I.N Heemstede, Psychological Laboratory, Achterweg 5, 2103 SW Heemstede (Netherlands); Aldenkamp, A. [Epilepsy Center ' Kempenhaeghe' , Postbus 61, 5900 AB Heeze (Netherlands)

    2002-08-01

    Our aim was to put together and test a comprehensive functional MRI (fMRI) protocol which could compete with the intracarotid amytal (IAT) or Wada test for the localisation of language and memory function in patients with intractable temporal lobe epilepsy. The protocol was designed to be performed in under 1 h on a standard 1.5 tesla imager. We used five paradigms to test nine healthy right-handed subjects: complex scene-encoding, picture-naming, reading, word-generation and semantic-decision tasks. The combination of these tasks generated two activation maps related to memory in the mesial temporal lobes, and three language-related maps of activation in a major part of the known language network. The functional maps from the encoding and naming tasks showed typical and symmetrical posterior mesial temporal lobe activation related to memory in all subjects. Only four of nine subjects also showed symmetrical anterior hippocampal activation. Language lateralisation was best with the word generation and reading paradigms and proved possible in all subjects. The reading paradigm enables localisation of language function in the left anterior temporal pole and middle temporal gyrus, areas typically resected during epilepsy surgery. The combined results of this comprehensive f MRI protocol are adequate for a comparative study with the IAT in patients with epilepsy being assessed for surgery. (orig.)

  10. Functional versus Nonfunctional Rehabilitation in Chronic Ischemic Stroke: Evidences from a Randomized Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Maristela C. X. Pelicioni

    2016-01-01

    Full Text Available Motor rehabilitation of stroke survivors may include functional and/or nonfunctional strategy. The present study aimed to compare the effect of these two rehabilitation strategies by means of clinical scales and functional Magnetic Resonance Imaging (fMRI. Twelve hemiparetic chronic stroke patients were selected. Patients were randomly assigned a nonfunctional (NFS or functional (FS rehabilitation scheme. Clinical scales (Fugl-Meyer, ARA test, and modified Barthel and fMRI were applied at four moments: before rehabilitation (P1 and immediately after (P2, 1 month after (P3, and three months after (P4 the end of rehabilitation. The NFS group improved significantly and exclusively their Fugl-Meyer scores at P2, P3, and P4, when compared to P1. On the other hand, the FS group increased significantly in Fugl-Meyer at P2, when compared to P1, and also in their ARA and Barthel scores. fMRI inspection at the individual level revealed that both rehabilitation schemes most often led to decreased activation sparseness, decreased activity of contralesional M1, increased asymmetry of M1 activity to the ipsilesional side, decreased perilesional activity, and decreased SMA activity. Increased M1 asymmetry with rehabilitation was also confirmed by Lateralization Indexes. Our clinical analysis revealed subtle differences between FS and NFS.

  11. Functional brain segmentation using inter-subject correlation in fMRI.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Pajula, Juha; Niemi, Jari; Hari, Riitta; Tohka, Jussi

    2017-05-01

    The human brain continuously processes massive amounts of rich sensory information. To better understand such highly complex brain processes, modern neuroimaging studies are increasingly utilizing experimental setups that better mimic daily-life situations. A new exploratory data-analysis approach, functional segmentation inter-subject correlation analysis (FuSeISC), was proposed to facilitate the analysis of functional magnetic resonance (fMRI) data sets collected in these experiments. The method provides a new type of functional segmentation of brain areas, not only characterizing areas that display similar processing across subjects but also areas in which processing across subjects is highly variable. FuSeISC was tested using fMRI data sets collected during traditional block-design stimuli (37 subjects) as well as naturalistic auditory narratives (19 subjects). The method identified spatially local and/or bilaterally symmetric clusters in several cortical areas, many of which are known to be processing the types of stimuli used in the experiments. The method is not only useful for spatial exploration of large fMRI data sets obtained using naturalistic stimuli, but also has other potential applications, such as generation of a functional brain atlases including both lower- and higher-order processing areas. Finally, as a part of FuSeISC, a criterion-based sparsification of the shared nearest-neighbor graph was proposed for detecting clusters in noisy data. In the tests with synthetic data, this technique was superior to well-known clustering methods, such as Ward's method, affinity propagation, and K-means ++. Hum Brain Mapp 38:2643-2665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Directory of Open Access Journals (Sweden)

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  13. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    Science.gov (United States)

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Identification and functional characterization of HIV-associated neurocognitive disorders with large-scale Granger causality analysis on resting-state functional MRI

    Science.gov (United States)

    Chockanathan, Udaysankar; DSouza, Adora M.; Abidin, Anas Z.; Schifitto, Giovanni; Wismüller, Axel

    2018-02-01

    Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND). Functional brain network models were constructed from rs-fMRI data collected from a cohort of HIV+ and HIV- subjects. Graph theoretic properties of the resulting networks were then used to train a support vector machine (SVM) model to predict clinically relevant parameters, such as HIV status and neuropsychometric (NP) scores. For the HIV+/- classification task, lsGC, which yielded a peak area under the receiver operating characteristic curve (AUC) of 0.83, significantly outperformed cGC, which yielded a peak AUC of 0.61, at all parameter settings tested. For the NP score regression task, lsGC, with a minimum mean squared error (MSE) of 0.75, significantly outperformed cGC, with a minimum MSE of 0.84 (p < 0.001, one-tailed paired t-test). These results show that, at optimal parameter settings, lsGC is better able to capture functional brain connectivity correlates of HAND than cGC. However, given the substantial variation in the performance of the two methods at different parameter settings, particularly for the regression task, improved parameter selection criteria are necessary and constitute an area for future research.

  15. Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

    OpenAIRE

    Fabri, Mara; Polonara, Gabriele

    2013-01-01

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and moto...

  16. The effect of breakfast versus no breakfast on brain activity in adolescents when performing cognitive tasks, as assessed by fMRI.

    Science.gov (United States)

    Fulford, Jonathan; Varley-Campbell, Joanna L; Williams, Craig A

    2016-01-01

    The study examined the feasibility of utilizing functional magnetic resonance imaging (fMRI) with a group of adolescent boys and girls to assess modifications in cognitive function, dependent upon the nutritional state of the participants. Twenty children aged 12-14 years completed two cognitive trials, in a randomized counterbalanced order, one under fasting condition, one after consuming breakfast, during which continuous fMRI data were acquired. Although no statistically significant (P > 0.05) improvement in task performance was determined, significantly higher activation was recorded in the frontal, premotor, and primary visual cortex areas in the breakfast trial relative to the fasting condition. Such a finding may have important implications in the examination of the role of diet, and specifically breakfast, in determining children's performance within the school environment.

  17. The potential of functional MRI as a biomarker in early Alzheimer’s disease

    OpenAIRE

    Sperling, Reisa

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is a relative newcomer in the field of biomarkers for Alzheimer’s disease (AD). fMRI has several potential advantages, particularly for clinical trials, as it is a non-invasive imaging technique that does not require the injection of contrast agent or radiation exposure and thus can be repeated many times during a longitudinal study. fMRI has relatively high spatial and reasonable temporal resolution, and can be acquired in the same session as stru...

  18. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    Science.gov (United States)

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  19. Proton MRI appearance of cystic fibrosis: Comparison to CT

    International Nuclear Information System (INIS)

    Puderbach, Michael; Eichinger, Monika; Kauczor, Hans-Ulrich; Gahr, Julie; Mueller, Frank-Michael; Ley, Sebastian; Tuengerthal, Siegfried; Schmaehl, Astrid; Fink, Christian; Plathow, Christian; Wiebel, Matthias

    2007-01-01

    Cystic fibrosis (CF) is the most frequent inherited disorder leading to premature death in the Caucasian population. As life expectancy is limited by pulmonary complications, repeated imaging [chest X-ray, multislice high-resolution computed tomography (MS-HRCT)] is required in the follow-up. Magnetic resonance imaging (MRI) of the lung parenchyma is a promising new diagnostic tool. Its value for imaging lung changes caused by CF compared with CT is demonstrated. MRI performs well when compared with CT, which serves as the gold standard. Its lack in spatial resolution is obvious, but advantages in contrast and functional assessment compensate for this limitation. Thus, MRI is a reasonable alternative for imaging the CF lung and should be introduced as a radiation-free modality for follow-up studies in CF patients. For further evaluation of the impact of MRI, systematic studies comparing MRI and conventional imaging modalities are necessary. Furthermore, the value of the additional functional MRI (fMRI) information has to be studied, and a scoring system for the morphological and functional aspect of MRI has to be established. (orig.)

  20. Integration of fMRI, NIROT and ERP for studies of human brain function.

    Science.gov (United States)

    Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel

    2006-05-01

    Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.

  1. Thalamo-Sensorimotor Functional Connectivity Correlates with World Ranking of Olympic, Elite, and High Performance Athletes

    Directory of Open Access Journals (Sweden)

    Zirui Huang

    2017-01-01

    Full Text Available Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers (n=30. Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1–35. Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers’ motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.

  2. Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy.

    Science.gov (United States)

    Roy, Catherine; Foudi, Fatah; Charton, Jeanne; Jung, Michel; Lang, Hervé; Saussine, Christian; Jacqmin, Didier

    2013-04-01

    The aim of this retrospective study was to determine the respective accuracies of three types of functional MRI sequences-diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, and 3D (1)H-MR spectroscopy (MRS)-in the depiction of local prostate cancer recurrence after two different initial therapy options. From a cohort of 83 patients with suspicion of local recurrence based on prostate-specific antigen (PSA) kinetics who were imaged on a 3-T MRI unit using an identical protocol including the three functional sequences with an endorectal coil, we selected 60 patients (group A, 28 patients who underwent radical prostatectomy; group B, 32 patients who underwent external-beam radiation) who had local recurrence ascertained on the basis of a transrectal ultrasound-guided biopsy results and a reduction in PSA level after salvage therapy. All patients presented with a local relapse. Sensitivity with T2-weighted MRI and 3D (1)H-MRS sequences was 57% and 53%, respectively, for group A and 71% and 78%, respectively, for group B. DCE-MRI alone showed a sensitivity of 100% and 96%, respectively, for groups A and B. DWI alone had a higher sensitivity for group B (96%) than for group A (71%). The combination of T2-weighted imaging plus DWI plus DCE-MRI provided a sensitivity as high as 100% in group B. The performance of functional imaging sequences for detecting recurrence is different after radical prostatectomy and external-beam radiotherapy. DCE-MRI is a valid and efficient tool to detect prostate cancer recurrence in radical prostatectomy as well as in external-beam radiotherapy. The combination of DCE-MRI and DWI is highly efficient after radiation therapy. Three-dimensional (1)H-MRS needs to be improved. Even though it is not accurate enough, T2-weighted imaging remains essential for the morphologic analysis of the area.

  3. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  4. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    Directory of Open Access Journals (Sweden)

    Moisés Mera Iglesias

    2015-01-01

    Full Text Available Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets.

  5. Study of physiology of visual cortex activated by rotating grating with functional MRI

    International Nuclear Information System (INIS)

    Liang Ping; Shao Qing; Zhang Zhiqiang; Lu Guangming

    2004-01-01

    Objective: To research the physiology of visual cortex activated by rotating grating with functional-MRI (fMRI), and to identify the components of the activation. Methods: Functional MRI was performed in 9 healthy volunteers by using GRE-EPI sequences on a 1.5 T MR scanner. In the block designing, rotating grating, static grating, and luminance were plotted as task states, while static grating, luminance, and darkness were set as control states. The stimuli tasks included six steps. Imaging processing and statistical analysis was carried out off-line using SPM99 in single-subject method. Results: Some respective areas of visual cortex were activated by the various stimuli information supplied by rotating grating. The strong activation in the middle of occipital lobe located at primary vision area was related to the stimuli of white luminance. Its average maximum points were at 13, -98, -2 and 11, -100, -41 The bilateral activations of Brodmann 19th area located at MT area were related to visual motion perception. Its average maximum points were at 46, -72, -2 and -44, -74, 0. The mild activation in the middle of occipital lobe was related to form perception. Its average maximum points were at -12, -98, -6 and -16, -96, -6. Conclusion: The plotting of control state is important in bock design. The effective visual information of rotating grating includes components of luminance, visual motion perception, and form perception. FMRI has potential as a tool for studying the basic physiology of visual cortex. (authors)

  6. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somato-motor cortex of healthy subjects

    Directory of Open Access Journals (Sweden)

    Tibor eAuer

    2015-10-01

    Full Text Available This study investigated the level of self-regulation of the somato-motor cortices (SMC attained by an extended functional MRI (fMRI neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging (rt-fMRI neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line GLM analysis determining the fMRI percent signal changes in the somato-motor cortex (SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e. the neurofeedback paradigm without the presentation of the feedback signal. Group results show a distinct increase in feedback performance in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the feedback performance showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left and right hand imagery, with a slight indication of more ipsilateral deactivation in the early right hand trainings.

  7. Portable MRI

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A. [Los Alamos National Laboratory

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  8. Portable MRI

    International Nuclear Information System (INIS)

    Espy, Michelle A.

    2012-01-01

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  9. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity.

    Science.gov (United States)

    Chan, Russell W; Leong, Alex T L; Ho, Leon C; Gao, Patrick P; Wong, Eddie C; Dong, Celia M; Wang, Xunda; He, Jufang; Chan, Ying-Shing; Lim, Lee Wei; Wu, Ed X

    2017-08-15

    The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.

  10. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    Science.gov (United States)

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  11. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    Science.gov (United States)

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  12. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  13. Functional MRI studies of acupuncture analgesia modulating within the human brain

    International Nuclear Information System (INIS)

    Hou Jinwen; Huang Weihao; Wang Qing; Feng Jingwei; Pu Yonglin; Gao Jiahong

    2002-01-01

    Objective: To evaluate the correlation between acupuncture analgesia and specific functional areas of the brain using functional magnetic resonance imaging (fMRI). Methods: Acupuncture stimulation was induced by manipulating acupuncture needle at the acupuncture point, large intestine 4 (LI 4, Hegu) on the right (dominant) hand of 8 healthy subjects. Functional MRI data were obtained from scanning the whole brain. A block-design paradigm was applied. Functional responses were established by students' group t-test analysis. Results: The data sets from 6 of 8 subjects were used in the study. Signal increases and signal decreases elicited by acupuncture stimulating were demonstrated in multiple brain regions. Signal increases in periaqueductal gray matter and ventral posterior nucleus of the left thalamus, and signal decreases in bilateral anterior cingulate cortex and bilateral occipital lobes were considered as the response to the acupuncture modulating within the human brain. Conclusion: The therapeutic effect of acupuncture analgesia was probably produced by the interaction of multiple brain structures of functional connectivity rather than through the activation of a single brain region

  14. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.

    Science.gov (United States)

    Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis

    2017-12-01

    Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Physiological and technical limitations of functional magnetic resonance imaging (fMRI) - consequences for clinical use

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Jordan, K.; Giesel, F.L.; Villringer, A.

    2003-01-01

    Functional magnetic resonance imaging (fMRI) is the most common noninvasive technique in functional neuroanatomy. The capabilities and limitations of the method will be discussed based on a short review of the current knowledge about the neurovascular relationship. The focus of this article is on current methodical and technical problems regarding fMRI-based detection and localization of neuronal activity. Main error sources and their influence on the reliability and validity of fMRI-methods are presented. Appropriate solution strategies will be proposed and evaluated. Finally, the clinical relevance of MR-based diagnostic methods are discussed. (orig.) [de

  16. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  17. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    International Nuclear Information System (INIS)

    Eide, Per Kristian; Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain

  18. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    Science.gov (United States)

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  19. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    OpenAIRE

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI image...

  20. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study.

    Science.gov (United States)

    Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi

    2016-12-07

    Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (Psedation and early-recovery sessions (Psedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.

  1. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Hou L

    2015-07-01

    Full Text Available Lin Hou,* Huijuan Zhang,* Yating Wang, Lili Wang, Xiaomin Yang, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: A tumor-targeting carrier, hyaluronic acid (HA-functionalized single-walled carbon nanotubes (SWCNTs, was explored to deliver magnetic resonance imaging (MRI contrast agents (CAs targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.Keywords: gadolinium, magnetic resonance, SWCNTs, hyaluronic acid, contrast agent

  2. Quantifying functional connectivity in multi-subject fMRI data using component models

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Churchill, Nathan William; Mørup, Morten

    2017-01-01

    of functional connectivity, evaluated on both simulated and experimental resting-state fMRI data. It was demonstrated that highly flexible subject-specific component subspaces, as well as very constrained average models, are poor predictors of whole-brain functional connectivity, whereas the best...

  3. SPECT and MRI in the diagnosis of epilepsy

    International Nuclear Information System (INIS)

    Gruenwald, F.; Biersack, H.J.; Bockisch, A.; Elger, C.E.; Durwen, H.F.; Penin, H.

    1989-01-01

    This study presents the results obtained using SPECT and MRI in epilepsy - mainly based on presurgical investigation in therapy-resistant cases of temporal lobe epilepsy. MRI was positive in 61% of 102 examined patients, SPECT was positive in 84%. In 46 patients with temporal lobe epilepsy subjected to partial temporal lobectomy was performed later on there was agreement of the results obtained with regard to the lateralisation in 74%. Although MRI, due to its sensitivity is superior to CT in diagnosis of epilepsy, CT should be performed in any case because some morphological changes - especially small arteriovenous malformations - are only seen in CT. MRI and SPECT should be considered as two complementary methods in epilepsy diagnosis, serving to evaluate morphology and function. A definite statement as to the predictive value of both methods remains to be made depending on a comparison of the results with the postoperative outcome referring to seizure frequency and cognitive function. (orig.) [de

  4. Evaluation of a pre-surgical functional MRI workflow: From data acquisition to reporting.

    Science.gov (United States)

    Pernet, Cyril R; Gorgolewski, Krzysztof J; Job, Dominic; Rodriguez, David; Storkey, Amos; Whittle, Ian; Wardlaw, Joanna

    2016-02-01

    Present and assess clinical protocols and associated automated workflow for pre-surgical functional magnetic resonance imaging in brain tumor patients. Protocols were validated using a single-subject reliability approach based on 10 healthy control subjects. Results from the automated workflow were evaluated in 9 patients with brain tumors, comparing fMRI results to direct electrical stimulation (DES) of the cortex. Using a new approach to compute single-subject fMRI reliability in controls, we show that not all tasks are suitable in the clinical context, even if they show meaningful results at the group level. Comparison of the fMRI results from patients to DES showed good correspondence between techniques (odds ratio 36). Providing that validated and reliable fMRI protocols are used, fMRI can accurately delineate eloquent areas, thus providing an aid to medical decision regarding brain tumor surgery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla

    NARCIS (Netherlands)

    Siero, J.C.W.

    2013-01-01

    The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse

  6. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind

    Science.gov (United States)

    Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239

  7. Chronotype Modulates Language Processing-Related Cerebral Activity during Functional MRI (fMRI.

    Directory of Open Access Journals (Sweden)

    Jessica Rosenberg

    Full Text Available Based on individual daily physiological cycles, humans can be classified as early (EC, late (LC and intermediate (IC chronotypes. Recent studies have verified that chronotype-specificity relates to performance on cognitive tasks: participants perform more efficiently when tested in the chronotype-specific optimal time of day than when tested in their non-optimal time. Surprisingly, imaging studies focussing on the underlying neural mechanisms of potential chronotype-specificities are sparse. Moreover, chronotype-specific alterations of language-related semantic processing have been neglected so far.16 male, healthy ECs, 16 ICs and 16 LCs participated in a fast event-related functional Magnetic Resonance Imaging (fMRI paradigm probing semantic priming. Subjects read two subsequently presented words (prime, target and were requested to determine whether the target word was an existing word or a non-word. Subjects were tested during their individual evening hours when homeostatic sleep pressure and circadian alertness levels are high to ensure equal entrainment.Chronotype-specificity is associated with task-performance and brain activation. First, ECs exhibited slower reaction times than LCs. Second, ECs showed attenuated BOLD responses in several language-related brain areas, e.g. in the left postcentral gyrus, left and right precentral gyrus and in the right superior frontal gyrus. Additionally, increased BOLD responses were revealed for LCs as compared to ICs in task-related areas, e.g. in the right inferior parietal lobule and in the right postcentral gyrus.These findings reveal that even basic language processes are associated with chronotype-specific neuronal mechanisms. Consequently, results might change the way we schedule patient evaluations and/or healthy subjects in e.g. experimental research and adding "chronotype" as a statistical covariate.

  8. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness

    DEFF Research Database (Denmark)

    Stender, Johan; Gosseries, Olivia; Bruno, Marie-Aurélie

    2014-01-01

    a validation study of two neuroimaging-based diagnostic methods: PET imaging and functional MRI (fMRI). METHODS: For this clinical validation study, we included patients referred to the University Hospital of Liège, Belgium, between January, 2008, and June, 2012, who were diagnosed by our unit...... with unresponsive wakefulness syndrome, locked-in syndrome, or minimally conscious state with traumatic or non-traumatic causes. We did repeated standardised clinical assessments with the Coma Recovery Scale-Revised (CRS-R), cerebral (18)F-fluorodeoxyglucose (FDG) PET, and fMRI during mental activation tasks. We...... state (48=traumatic, 78=non-traumatic; 110=chronic, 16=subacute). (18)F-FDG PET had high sensitivity for identification of patients in a minimally conscious state (93%, 95% CI 85-98) and high congruence (85%, 77-90) with behavioural CRS-R scores. The active fMRI method was less sensitive at diagnosis...

  9. PET/MRI: Technical challenges and recent advances

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Im, Ki Chun

    2016-01-01

    Integrated positron emission tomography (PET)/magnetic resonance imaging (MRI), which can provide complementary functional and anatomical information about a specific organ or body system at the molecular level, has become a powerful imaging modality to understand the molecular biology details, disease mechanisms, and pharmacokinetics in animals and humans. Although the first experiment on the PET/MRI was performed in the early 1990s, its clinical application was accomplished in recent years because there were various technical challenges in integrating PET and MRI in a single system with minimum mutual interference between PET and MRI. This paper presents the technical challenges and recent advances in combining PET and MRI along with several approaches for improving PET image quality of the PET/MRI hybrid imaging system

  10. A protocol for patients with cardiovascular implantable devices undergoing magnetic resonance imaging (MRI): should defibrillation threshold testing be performed post-(MRI).

    Science.gov (United States)

    Burke, Peter Thomas; Ghanbari, Hamid; Alexander, Patrick B; Shaw, Michael K; Daccarett, Marcos; Machado, Christian

    2010-06-01

    Magnetic resonance imaging (MRI) in patients with Cardiovascular Implantable Electronic Devices (CIED) has not been approved by the Food and Drug Administration. Recent data suggests MRI as a relative rather than absolute contraindication in CIED patients. Recently, the American Heart Association has recommended defibrillation threshold testing (DFTT) in implantable cardioverter defibrillator (ICD) patients undergoing MRI. We evaluated the feasibility and safety of a protocol for MRI in CIED patients, incorporating the new recommendations on DFTT. Consecutive patients with CIED undergoing MRI were included. The protocol consisted of continuous monitoring during imaging, device interrogation pre- and post-MRI, reprogramming of the pacemaker to an asynchronous mode in pacemaker-dependent (PMD) patients and a non-tracking/sensing mode for non-PMD patients. All tachyarrhythmia therapies were disabled. Devices were interrogated for lead impedance, battery life, pacing, and sensing thresholds. All patients with ICD underwent DFTT/defibrillator safety margin testing (DSMT) post-MRI. A total of 92 MRI's at 1.5 Tesla were performed in 38 patients. A total of 13 PMD patients, ten ICD patients, four cardiac resynchronization therapy with defibrillator (CRT-D) patients, and 11 non-PMD patients were scanned from four major manufacturers. No device circuitry damage, programming alterations, inappropriate shocks, failure to pace, or changes in sensing, pacing, or defibrillator thresholds were found on single or multiple MRI sessions. Our protocol for MRI in CIED patients appears safe, feasible, and reproducible. This is irrespective of the type of CIED, pacemaker dependancy or multiple 24-h scanning sessions. Our protocol addresses early detection of potential complications and establishes a response system for potential device-related complications. Our observation suggests that routine DFTT/DSMT post-MRI may not be necessary.

  11. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves

    Directory of Open Access Journals (Sweden)

    André Salles Cunha Peres

    Full Text Available Abstract Introduction Functional magnetic resonance imaging (fMRI is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number; thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.

  13. The Use of Functional MRI to Study Appetite Control in the CNS

    Directory of Open Access Journals (Sweden)

    Akila De Silva

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI has provided the opportunity to safely investigate the workings of the human brain. This paper focuses on its use in the field of human appetitive behaviour and its impact in obesity research. In the present absence of any safe or effective centrally acting appetite suppressants, a better understanding of how appetite is controlled is vital for the development of new antiobesity pharmacotherapies. Early functional imaging techniques revealed an attenuation of brain reward area activity in response to visual food stimuli when humans are fed—in other words, the physiological state of hunger somehow increases the appeal value of food. Later studies have investigated the action of appetite modulating hormones on the fMRI signal, showing how the attenuation of brain reward region activity that follows feeding can be recreated in the fasted state by the administration of anorectic gut hormones. Furthermore, differences in brain activity between obese and lean individuals have provided clues about the possible aetiology of overeating. The hypothalamus acts as a central gateway modulating homeostatic and nonhomeostatic drives to eat. As fMRI techniques constantly improve, functional data regarding the role of this small but hugely important structure in appetite control is emerging.

  14. Manipulating motor performance and memory through real-time fMRI neurofeedback

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  15. Quantitative evaluation of the reticuloendothelial system function with dynamic MRI.

    Directory of Open Access Journals (Sweden)

    Ting Liu

    Full Text Available To evaluate the reticuloendothelial system (RES function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO using dynamic magnetic resonance imaging (MRI with two-compartment pharmacokinetic modeling.Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg. Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density.The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03. A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005.Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level.

  16. Effect of bread gluten content on gastrointestinal function: a crossover MRI study on healthy humans.

    Science.gov (United States)

    Coletta, Marina; Gates, Fred K; Marciani, Luca; Shiwani, Henna; Major, Giles; Hoad, Caroline L; Chaddock, Gemma; Gowland, Penny A; Spiller, Robin C

    2016-01-14

    Gluten is a crucial functional component of bread, but the effect of increasing gluten content on gastrointestinal (GI) function remains uncertain. Our aim was to investigate the effect of increasing gluten content on GI function and symptoms in healthy participants using the unique capabilities of MRI. A total of twelve healthy participants completed this randomised, mechanistic, open-label, three-way crossover study. On days 1 and 2 they consumed either gluten-free bread (GFB), or normal gluten content bread (NGCB) or added gluten content bread (AGCB). The same bread was consumed on day 3, and MRI scans were performed every 60 min from fasting baseline up to 360 min after eating. The appearance of the gastric chime in the images was assessed using a visual heterogeneity score. Gastric volumes, the small bowel water content (SBWC), colonic volumes and colonic gas content and GI symptoms were measured. Fasting transverse colonic volume after the 2-d preload was significantly higher after GFB compared with NGCB and AGCB with a dose-dependent response (289 (SEM 96) v. 212 (SEM 74) v. 179 (SEM 87) ml, respectively; P=0·02). The intragastric chyme heterogeneity score was higher for the bread with increased gluten (AGCB 6 (interquartile range (IQR) 0·5) compared with GFB 3 (IQR 0·5); P=0·003). However, gastric half-emptying time was not different between breads nor were study day GI symptoms, postprandial SBWC, colonic volume and gas content. This MRI study showed novel mechanistic insights in the GI responses to different breads, which are poorly understood notwithstanding the importance of this staple food.

  17. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Takashi [Division of Neuroimaging Research, HIABCD, Himeji, Hyogo (Japan); Kobe University Graduate School of Medicine, Department of Psychiatry, Kobe, Hyogo (Japan); Ishii, Kazunari; Mori, Tetsuya [Division of Neuroimaging Research, HIABCD, Himeji, Hyogo (Japan); Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Sakamoto, Setsu; Sasaki, Masahiro [Division of Neuroimaging Research, HIABCD, Himeji, Hyogo (Japan); Yamashita, Fumio; Matsuda, Hiroshi [National Center Hospital for Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, Department of Radiology, Kodaira, Tokyo (Japan); Mori, Etsuro [Institute for Aging Brain and Cognitive Disorders, Hyogo Brain and Heart Center, Himeji, Hyogo (Japan)

    2006-07-15

    The aim of this study was to compare the diagnostic performance of{sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and voxel-based morphometry (VBM) on magnetic resonance imaging (MRI) in the same group of patients with very mild Alzheimer's disease (AD). Thirty patients with very mild AD (age 67.0{+-}5.8 years; MMSE score 25.5{+-}1.2, range 24-28), 32 patients with mild AD (age 67.0{+-}4.5 years, MMSE score 22.1{+-}0.8, range 21-23) and 60 age- and sex-matched normal volunteers underwent both FDG-PET and three-dimensional spoiled gradient echo MRI. Statistical parametric mapping was used to conduct voxel by voxel analysis and Z score mapping. First, the region of interest (ROI) maps of significant reductions in glucose metabolism and grey matter density in the mild AD patients were defined. Secondly, analysis of receiver operating characteristic (ROC) curves for Z scores in the ROI maps discriminating very mild AD patients and normal controls was performed. In mild AD patients, FDG-PET indicated significant reductions in glucose metabolism in the bilateral posterior cingulate gyri and the right parietotemporal area, while VBM analysis showed a significant decrease in grey matter volume density in the bilateral amygdala/hippocampus complex, compared with the normal control group. ROC analysis showed that in very mild AD patients the accuracy of FDG-PET diagnosis was 89% and that of VBM-MRI diagnosis was 83%. The accuracy of the combination of FDG-PET and VBM-MRI diagnosis was 94%. In very mild AD, both FDG-PET and VBM-MRI had high accuracy for diagnosis, but FDG-PET showed slightly higher accuracy than VBM-MRI. Combination of the two techniques will yield a higher diagnostic accuracy in very mild AD by making full use of functional and morphological images. (orig.)

  18. Total Cerebral Small Vessel Disease MRI Score Is Associated With Cognitive Decline In Executive Function In Patients With Hypertension

    Directory of Open Access Journals (Sweden)

    Renske Uiterwijk

    2016-12-01

    Full Text Available Objectives: Hypertension is a major risk factor for white matter hyperintensities, lacunes, cerebral microbleeds and perivascular spaces, which are MRI markers of cerebral small vessel disease (SVD. Studies have shown associations between these individual MRI markers and cognitive functioning and decline. Recently, a total SVD score was proposed in which the different MRI markers were combined into one measure of SVD, to capture total SVD-related brain damage. We investigated if this SVD score was associated with cognitive decline over 4 years in patients with hypertension. Methods: In this longitudinal cohort study, 130 hypertensive patients (91 patients with uncomplicated hypertension and 39 hypertensive patients with a lacunar stroke were included. They underwent a neuropsychological assessment at baseline and after 4 years. The presence of white matter hyperintensities, lacunes, cerebral microbleeds, and perivascular spaces were rated on baseline MRI. Presence of each individual marker was added to calculate the total SVD score (range 0-4 in each patient. Results: Uncorrected linear regression analyses showed associations between SVD score and decline in overall cognition (p=0.017, executive functioning (p<0.001 and information processing speed (p=0.037, but not with memory (p=0.911. The association between SVD score and decline in overall cognition and executive function remained significant after adjustment for age, sex, education, anxiety and depression score, potential vascular risk factors, patient group and baseline cognitive performance.Conclusions: Our study shows that a total SVD score can predict cognitive decline, specifically in executive function, over 4 years in hypertensive patients. This emphasizes the importance of considering total brain damage due to SVD.

  19. MRI of the Chest

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will be necessary to perform a blood test to determine whether the kidneys are functioning adequately. Women should always inform their physician or technologist if ...

  20. Optimizing MRI Logistics: Prospective Analysis of Performance, Efficiency, and Patient Throughput.

    Science.gov (United States)

    Beker, Kevin; Garces-Descovich, Alejandro; Mangosing, Jason; Cabral-Goncalves, Ines; Hallett, Donna; Mortele, Koenraad J

    2017-10-01

    The objective of this study is to optimize MRI logistics through evaluation of MRI workflow and analysis of performance, efficiency, and patient throughput in a tertiary care academic center. For 2 weeks, workflow data from two outpatient MRI scanners were prospectively collected and stratified by value added to the process (i.e., value-added time, business value-added time, or non-value-added time). Two separate time cycles were measured: the actual MRI process cycle as well as the complete length of patient stay in the department. In addition, the impact and frequency of delays across all observations were measured. A total of 305 MRI examinations were evaluated, including body (34.1%), neurologic (28.9%), musculoskeletal (21.0%), and breast examinations (16.1%). The MRI process cycle lasted a mean of 50.97 ± 24.4 (SD) minutes per examination; the mean non-value-added time was 13.21 ± 18.77 minutes (25.87% of the total process cycle time). The mean length-of-stay cycle was 83.51 ± 33.63 minutes; the mean non-value-added time was 24.33 ± 24.84 minutes (29.14% of the total patient stay). The delay with the highest frequency (5.57%) was IV or port placement, which had a mean delay of 22.82 minutes. The delay with the greatest impact on time was MRI arthrography for which joint injection of contrast medium was necessary but was not accounted for in the schedule (mean delay, 42.2 minutes; frequency, 1.64%). Of 305 patients, 34 (11.15%) did not arrive at or before their scheduled time. Non-value-added time represents approximately one-third of the total MRI process cycle and patient length of stay. Identifying specific delays may expedite the application of targeted improvement strategies, potentially increasing revenue, efficiency, and overall patient satisfaction.

  1. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  2. Assessment of cardiac morphology and ventricular function in healthy Chinese individuals using MRI

    International Nuclear Information System (INIS)

    Lu Minjie; Zhao Shihua; Jiang Shiliang

    2011-01-01

    Objective: To investigate reproducibility of cardiac MRI for assessment of cardiac morphology and ventricular function in selected normal Chinese Han population. Methods: Two hundred and sixty-nine normal volunteers underwent cardiac MRI using a 1.5 T MR system. HASTE and steady state free precession imaging were performed with long and short axis images and cine mode through the ventricle with wireless vector cardiac gating. The images were reviewed by two independent observers. The dimensions of cardiac chambers and ventricular function including ejection fraction (EF), end diastolic volume (EDV) , end systolic volume (ESV) and myocardial mass were evaluated. The data between male and female were compared by using two-tailed unpaired t test. Results: Total imaging time was (15±3) min. The anteroposterior diameter of the left atrium was (2.87±0.77) cm, the right atrial diameter perpendicular to the atrial septum was (3.61±0.57) cm, the end diastolic diameter of the left ventricle was (4.97± 0.52) cm, the end diastolic diameter of the right ventricle was (2.65±0.48) cm. On the left ventricle, EF was (60.62±7.08)%, EDV was (115.37±26.71) ml, ESV was (46.02±15.72) ml and LV mass was (82.97±24.03) g. On the right ventricle, EF was (47.73±6.50)%, EDV was (128.27±32.16) ml, ESV was (67.7±21.07) ml and RV mass was (48.24±13.42) g. There were no statistically significant differences in LVESV (P=0.144), LVEDV index (P=0.714), LVESV index (P=0.113), LVCI (P=0.199), RVEF (P=0.296) and RV mass (P=0.093), and statistically significant differences in other cardiac parameters between male and female. Conclusion: Cardiac MRI can provide useful information about cardiac function and morphology with a high level of reproducibility in normal Chinese Han population. (authors)

  3. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    Science.gov (United States)

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.

  4. PreSurgMapp: a MATLAB Toolbox for Presurgical Mapping of Eloquent Functional Areas Based on Task-Related and Resting-State Functional MRI.

    Science.gov (United States)

    Huang, Huiyuan; Ding, Zhongxiang; Mao, Dewang; Yuan, Jianhua; Zhu, Fangmei; Chen, Shuda; Xu, Yan; Lou, Lin; Feng, Xiaoyan; Qi, Le; Qiu, Wusi; Zhang, Han; Zang, Yu-Feng

    2016-10-01

    The main goal of brain tumor surgery is to maximize tumor resection while minimizing the risk of irreversible postoperative functional sequelae. Eloquent functional areas should be delineated preoperatively, particularly for patients with tumors near eloquent areas. Functional magnetic resonance imaging (fMRI) is a noninvasive technique that demonstrates great promise for presurgical planning. However, specialized data processing toolkits for presurgical planning remain lacking. Based on several functions in open-source software such as Statistical Parametric Mapping (SPM), Resting-State fMRI Data Analysis Toolkit (REST), Data Processing Assistant for Resting-State fMRI (DPARSF) and Multiple Independent Component Analysis (MICA), here, we introduce an open-source MATLAB toolbox named PreSurgMapp. This toolbox can reveal eloquent areas using comprehensive methods and various complementary fMRI modalities. For example, PreSurgMapp supports both model-based (general linear model, GLM, and seed correlation) and data-driven (independent component analysis, ICA) methods and processes both task-based and resting-state fMRI data. PreSurgMapp is designed for highly automatic and individualized functional mapping with a user-friendly graphical user interface (GUI) for time-saving pipeline processing. For example, sensorimotor and language-related components can be automatically identified without human input interference using an effective, accurate component identification algorithm using discriminability index. All the results generated can be further evaluated and compared by neuro-radiologists or neurosurgeons. This software has substantial value for clinical neuro-radiology and neuro-oncology, including application to patients with low- and high-grade brain tumors and those with epilepsy foci in the dominant language hemisphere who are planning to undergo a temporal lobectomy.

  5. An Introduction to Normalization and Calibration Methods in Functional MRI

    Science.gov (United States)

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  6. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation.

    Science.gov (United States)

    Fallenberg, Eva M; Schmitzberger, Florian F; Amer, Heba; Ingold-Heppner, Barbara; Balleyguier, Corinne; Diekmann, Felix; Engelken, Florian; Mann, Ritse M; Renz, Diane M; Bick, Ulrich; Hamm, Bernd; Dromain, Clarisse

    2017-07-01

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. • CESM has comparable diagnostic performance (ROC-AUC) to MRI for breast cancer diagnostics. • CESM in combination with MG does not improve diagnostic performance. • CESM has lower sensitivity but higher specificity than MRI. • Sensitivity differences are more pronounced in dense and not significant in non-dense breasts. • CESM and MRI are significantly superior to MG, particularly in dense breasts.

  7. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven; Wetzel, Stephan G. [University Hospital Basel, Institute of Radiology, Department of Neuroradiology, Basel (Switzerland); Luetschg, Juerg [University Children' s Hospital (UKBB), Basel (Switzerland)

    2008-05-15

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  8. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    International Nuclear Information System (INIS)

    Haller, Sven; Wetzel, Stephan G.; Luetschg, Juerg

    2008-01-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  9. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis.

    Science.gov (United States)

    Haller, Sven; Wetzel, Stephan G; Lütschg, Jürg

    2008-05-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network.

  10. Analyzing functional, structural, and anatomical correlation of hemispheric language lateralization in healthy subjects using functional MRI, diffusion tensor imaging, and voxel-based morphometry.

    Science.gov (United States)

    James, Jija S; Kumari, Sheela R; Sreedharan, Ruma Madhu; Thomas, Bejoy; Radhkrishnan, Ashalatha; Kesavadas, Chandrasekharan

    2015-01-01

    To evaluate the efficacy of diffusion fiber tractography (DFT) and voxel-based morphometry (VBM) for lateralizing language in comparison with functional magnetic resonance imaging (fMRI) to noninvasively assess hemispheric language lateralization in normal healthy volunteers. The aim of the present study is to evaluate the concordance of language lateralization obtained by diffusion tensor imaging (DTI) and VBM to fMRI, and thus to see whether there exists an anatomical correlate for language lateralization result obtained using fMRI. This is an advanced neuroimaging study conducted in normal healthy volunteers. Fifty-seven normal healthy subjects (39 males and 18 females; age range: 15-40 years) underwent language fMRI and 30 underwent direction DTI. fMRI language laterality index (LI), fiber tract asymmetry index (AI), and tract-based statistics of dorsal and ventral language pathways were calculated. The combined results were correlated with VBM-based volumetry of Heschl's gyrus (HG), planum temporale (PT), and insula for lateralization of language function. A linear regression analysis was done to study the correlation between fMRI, DTI, and VBM measurements. A good agreement was found between language fMRI LI and fiber tract AI, more specifically for arcuate fasciculus (ArcF) and inferior longitudinal fasciculus (ILF). The study demonstrated significant correlations (P based statistics, and PT and HG volumetry for determining language lateralization. A strong one-to-one correlation between fMRI, laterality index, DTI tractography measures, and VBM-based volumetry measures for determining language lateralization exists.

  11. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences.

    Science.gov (United States)

    Finkenstaedt, Tim; Del Grande, Filippo; Bolog, Nicolae; Ulrich, Nils; Tok, Sina; Kolokythas, Orpheus; Steurer, Johann; Andreisek, Gustav; Winklhofer, Sebastian

    2018-02-01

     To assess the performance of fat-suppressed fluid-sensitive MRI sequences compared to T1-weighted (T1w) / T2w sequences for the detection of Modic 1 end-plate changes on lumbar spine MRI.  Sagittal T1w, T2w, and fat-suppressed fluid-sensitive MRI images of 100 consecutive patients (consequently 500 vertebral segments; 52 female, mean age 74 ± 7.4 years; 48 male, mean age 71 ± 6.3 years) were retrospectively evaluated. We recorded the presence (yes/no) and extension (i. e., Likert-scale of height, volume, and end-plate extension) of Modic I changes in T1w/T2w sequences and compared the results to fat-suppressed fluid-sensitive sequences (McNemar/Wilcoxon-signed-rank test).  Fat-suppressed fluid-sensitive sequences revealed significantly more Modic I changes compared to T1w/T2w sequences (156 vs. 93 segments, respectively; p definition of Modic I changes is not fully applicable anymore.. · Fat-suppressed fluid-sensitive MRI sequences revealed more/greater extent of Modic I changes.. · Finkenstaedt T, Del Grande F, Bolog N et al. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences. Fortschr Röntgenstr 2018; 190: 152 - 160. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  13. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S. [Dept. of Neurology D4, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan); Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N. [Dept. of Radiology, Osaka Univ. Graduate School of Medicine, Suita City, Osaka (Japan)

    2003-03-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  14. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum

    International Nuclear Information System (INIS)

    Takanashi, M.; Abe, K.; Yanagihara, T.; Sakoda, S.; Tanaka, H.; Hirabuki, N.; Nakamura, H.; Fujita, N.

    2003-01-01

    Somatotopic representation in the cerebral cortex of somatosensory stimulation has been widely reported, but that in the cerebellum has not. We investigated the latter in the human cerebellum by functional MRI (fMRI). Using a 1.5 tesla imager, we obtained multislice blood oxygen level-dependent fMRI with single-shot gradient-echo echoplanar imaging in seven right-handed volunteers during electrical stimulation of the left index finger and big toe. In the anterior and posterior cerebellum, activated pixels for the index finger were separate from those for the toe. This suggests that somatosensory stimulation of different parts of the body may involve distinct areas of in the cerebellum as well as the cerebral cortex. (orig.)

  15. Post-anoxic quantitative MRI changes may predict emergence from coma and functional outcomes at discharge.

    Science.gov (United States)

    Reynolds, Alexandra S; Guo, Xiaotao; Matthews, Elizabeth; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Elkind, Mitchell S V; Zhao, Binsheng; Agarwal, Sachin

    2017-08-01

    Traditional predictors of neurological prognosis after cardiac arrest are unreliable after targeted temperature management. Absence of pupillary reflexes remains a reliable predictor of poor outcome. Diffusion-weighted imaging has emerged as a potential predictor of recovery, and here we compare imaging characteristics to pupillary exam. We identified 69 patients who had MRIs within seven days of arrest and used a semi-automated algorithm to perform quantitative volumetric analysis of apparent diffusion coefficient (ADC) sequences at various thresholds. Area under receiver operating characteristic curves (ROC-AUC) were estimated to compare predictive values of quantitative MRI with pupillary exam at days 3, 5 and 7 post-arrest, for persistence of coma and functional outcomes at discharge. Cerebral Performance Category scores of 3-4 were considered poor outcome. Excluding patients where life support was withdrawn, ≥2.8% diffusion restriction of the entire brain at an ADC of ≤650×10 -6 m 2 /s was 100% specific and 68% sensitive for failure to wake up from coma before discharge. The ROC-AUC of ADC changes at ≤450×10 -6 mm 2 /s and ≤650×10 -6 mm 2 /s were significantly superior in predicting failure to wake up from coma compared to bilateral absence of pupillary reflexes. Among survivors, >0.01% of diffusion restriction of the entire brain at an ADC ≤450×10 -6 m 2 /s was 100% specific and 46% sensitive for poor functional outcome at discharge. The ROC curve predicting poor functional outcome at ADC ≤450×10 -6 mm 2 /s had an AUC of 0.737 (0.574-0.899, p=0.04). Post-anoxic diffusion changes using quantitative brain MRI may aid in predicting persistent coma and poor functional outcomes at hospital discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identification by functional MRI of human cerebral region activated by taste stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Naoya [Osaka Univ. (Japan). Faculty of Dentistry

    2000-09-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  17. Identification by functional MRI of human cerebral region activated by taste stimulation

    International Nuclear Information System (INIS)

    Kakimoto, Naoya

    2000-01-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  18. Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study.

    Science.gov (United States)

    Schulte, Tilman; Müller-Oehring, Eva M; Chanraud, Sandra; Rosenbloom, Margaret J; Pfefferbaum, Adolf; Sullivan, Edith V

    2011-11-01

    Aging has readily observable effects on the ability to resolve conflict between competing stimulus attributes that are likely related to selective structural and functional brain changes. To identify age-related differences in neural circuits subserving conflict processing, we combined structural and functional MRI and a Stroop Match-to-Sample task involving perceptual cueing and repetition to modulate resources in healthy young and older adults. In our Stroop Match-to-Sample task, older adults handled conflict by activating a frontoparietal attention system more than young adults and engaged a visuomotor network more than young adults when processing repetitive conflict and when processing conflict following valid perceptual cueing. By contrast, young adults activated frontal regions more than older adults when processing conflict with perceptual cueing. These differential activation patterns were not correlated with regional gray matter volume despite smaller volumes in older than young adults. Given comparable performance in speed and accuracy of responding between both groups, these data suggest that successful aging is associated with functional reorganization of neural systems to accommodate functionally increasing task demands on perceptual and attentional operations. Copyright © 2009 Elsevier Inc. All rights reserved.

  19. Functional MRI Assessment of Task-Induced Deactivation of the Default Mode Network in Alzheimer’s Disease and At-Risk Older Individuals

    Directory of Open Access Journals (Sweden)

    Maija Pihlajamäki

    2009-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in old age, and is characterized by prominent impairment of episodic memory. Recent functional imaging studies in AD have demonstrated alterations in a distributed network of brain regions supporting memory function, including regions of the default mode network. Previous positron emission tomography studies of older individuals at risk for AD have revealed hypometabolism of association cortical regions similar to the metabolic abnormalities seen in AD patients. In recent functional magnetic resonance imaging (fMRI studies of AD, corresponding brain default mode regions have also been found to demonstrate an abnormal fMRI task-induced deactivation response pattern. That is, the relative decreases in fMRI signal normally observed in the default mode regions in healthy subjects performing a cognitive task are not seen in AD patients, or may even be reversed to a paradoxical activation response. Our recent studies have revealed alterations in the pattern of deactivation also in elderly individuals at risk for AD by virtue of their APOE e4 genotype, or evidence of mild cognitive impairment (MCI. In agreement with recent reports from other groups, these studies demonstrate that the pattern of fMRI task-induced deactivation is progressively disrupted along the continuum from normal aging to MCI and to clinical AD and more impaired in e4 carriers compared to non-carriers. These findings will be discussed in the context of current literature regarding functional imaging of the default network in AD and at-risk populations.

  20. Effects of anesthesia on renal function and metabolism in rats assessed by hyperpolarized MRI

    DEFF Research Database (Denmark)

    Qi, Haiyun; Mariager, Christian Østergaard; Lindhardt, Jakob

    2018-01-01

    . In the present study, we aimed to investigate the renal functional and metabolic consequences of 3 typical rodent anesthetics used in preclinical MRI: sevoflurane, inaction, and a mixture of fentanyl, fluanisone, and midazolam (FFM). METHODS: The renal effects of 3 different classes of anesthetics (inactin......, servoflurane, and FFM) were investigated using functional and metabolic MRI. The renal glucose metabolism and hemodynamics was characterized with hyperpolarized [1-13C]pyruvate MRI and by DCE imaging. RESULTS: Rats receiving sevoflurane or FFM had blood glucose levels that were 1.3-fold to 1.4-fold higher than...... rats receiving inactin. A 2.9-fold and 4.8-fold increased13C-lactate/13C-pyruvate ratio was found in the FFM mixture anesthetized group compared with the sevoflurane and the inactin anesthetized groups. The FFM anesthesia resulted in a 50% lower renal plasma flow compared with the sevoflurane...

  1. Diagnostic performance of CT and MRI on the detection of symptomatic intracranial dural arteriovenous fistula: a meta-analysis with indirect comparison

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yen-Heng [National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei (China); National Taiwan University Hospital in Taipei and Yuan-Lin Branch, Department of Medical Imaging and Radiology, Hospital and Medical College, Taipei (China); Lin, Hsien-Ho [National Taiwan University, Institute of Epidemiology and Preventive Medicine, Taipei (China); Liu, Hon-Man; Lee, Chung-Wei; Chen, Ya-Fang [National Taiwan University Hospital in Taipei and Yuan-Lin Branch, Department of Medical Imaging and Radiology, Hospital and Medical College, Taipei (China)

    2016-08-15

    This study aims to review the diagnostic performance of computed tomography (CT) and magnetic resonance imaging (MRI) in symptomatic dural arteriovenous fistula (DAVF). EMBASE, PubMed, and Cochrane Library were searched until April 2015 for studies which compared CT, MRI, or both with angiography for the detection of DAVF. The diagnostic performances of MRI and CT were indirectly compared using modality as a covariate in the analysis. Thirteen studies met our inclusion criteria. MRI had a sensitivity of 0.90 (95 % confidence interval (CI) = 0.83-0.94) and specificity of 0.94 (95 % CI = 0.90-0.96). CT had a sensitivity of 0.80 (95 % CI = 0.62-0.90) and specificity of 0.87 (95 % CI = 0.74-0.94). MRI showed better diagnostic performance than CT (p = 0.02). Contrast medium use and time-resolved MR angiography did not improve MRI diagnostic performance (p = 0.31 and 0.44, respectively). Both CT and MRI had good diagnostic performance. MRI was better than CT on the detection of symptomatic intracranial dural arteriovenous fistula in the indirect comparison. (orig.)

  2. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects.

    Science.gov (United States)

    Geist, Barbara K; Baltzer, Pascal; Fueger, Barbara; Hamboeck, Martina; Nakuz, Thomas; Papp, Laszlo; Rasul, Sazan; Sundar, Lalith Kumar Shiyam; Hacker, Marcus; Staudenherz, Anton

    2018-05-09

    A method was developed to assess the kidney parameters glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) from 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) concentration behavior in kidneys, measured with positron emission tomography (PET) scans. Twenty-four healthy adult subjects prospectively underwent dynamic simultaneous PET/magnetic resonance imaging (MRI) examination. Time activity curves (TACs) were obtained from the dynamic PET series, with the guidance of MR information. Patlak analysis was performed to determine the GFR, and based on integrals, ERPF was calculated. Results were compared to intra-individually obtained reference values determined from venous blood samples. Total kidney GFR and ERPF as estimated by dynamic PET/MRI were highly correlated to their reference values (r = 0.88/p dynamic FDG PET/MRI scans in healthy kidneys. This has advantages for patients getting a routine scan, where additional examinations for kidney function estimation could be avoided. Further studies are required for transferring this PET/MRI method to PET/CT applications.

  3. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance

    Directory of Open Access Journals (Sweden)

    Arnold Bakker

    2015-01-01

    Full Text Available Studies of individuals with amnestic mild cognitive impairment (aMCI have detected hyperactivity in the hippocampus during task-related functional magnetic resonance imaging (fMRI. Such elevated activation has been localized to the hippocampal dentate gyrus/CA3 (DG/CA3 during performance of a task designed to detect the computational contributions of those hippocampal circuits to episodic memory. The current investigation was conducted to test the hypothesis that greater hippocampal activation in aMCI represents a dysfunctional shift in the normal computational balance of the DG/CA3 regions, augmenting CA3-driven pattern completion at the expense of pattern separation mediated by the dentate gyrus. We tested this hypothesis using an intervention based on animal research demonstrating a beneficial effect on cognition by reducing excess hippocampal neural activity with low doses of the atypical anti-epileptic levetiracetam. In a within-subject design we assessed the effects of levetiracetam in three cohorts of aMCI participants, each receiving a different dose of levetiracetam. Elevated activation in the DG/CA3 region, together with impaired task performance, was detected in each aMCI cohort relative to an aged control group. We observed significant improvement in memory task performance under drug treatment relative to placebo in the aMCI cohorts at the 62.5 and 125 mg BID doses of levetiracetam. Drug treatment in those cohorts increased accuracy dependent on pattern separation processes and reduced errors attributable to an over-riding effect of pattern completion while normalizing fMRI activation in the DG/CA3 and entorhinal cortex. Similar to findings in animal studies, higher dosing at 250 mg BID had no significant benefit on either task performance or fMRI activation. Consistent with predictions based on the computational functions of the DG/CA3 elucidated in basic animal research, these data support a dysfunctional encoding mechanism

  4. Functional MRI of Multilingual Subjects

    International Nuclear Information System (INIS)

    Cho, Jae Min; Ryoo, Jae Wook; Choi, Dae Seob; Shin, Tae Beom; Chung, Sung Hoon; Kim, Ji Eun; Han, Heon; Kim, Sam Soo; Jeon, Yong Hwan

    2009-01-01

    To evaluate brain activation areas during the processing of languages in multilingual volunteers by functional MRI and to examine the differences between the mother and foreign languages. Nine multilingual (Korean, French, and English speaking) Korean individuals were enrolled in this study. Functional images were acquired during a lexical decision task (LDT) and picture naming task (PNT) in each of the Korean, French and English languages. The areas activated were analyzed topographically in each language and task, and compared between languages. Activation was noted in Broca's area, supramarginal gyrus, fusiform gyrus during the LDT. During the PNT, activation was noted in Broca's area, left prefrontal area, cerebellum, right extrastriated cortex. While Broca's area activation was observed for all languages during LDT, there was more activation in Broca's area and additional activation in the right prefrontal area with foreign languages. During the PNT, there was more activation in the left prefrontal area with foreign languages. Broca's area, which is known as a major language region, was activated by all languages and tasks. The brain activation areas were largely overlapping with the mother and foreign languages. However, there were wider areas of activation and additional different activation areas with foreign languages. These results suggest more cerebral effort during foreign language processing

  5. Encoding and immediate retrieval tasks in patients with epilepsy: A functional MRI study of verbal and visual memory.

    Science.gov (United States)

    Saddiki, Najat; Hennion, Sophie; Viard, Romain; Ramdane, Nassima; Lopes, Renaud; Baroncini, Marc; Szurhaj, William; Reyns, Nicolas; Pruvo, Jean Pierre; Delmaire, Christine

    2018-05-01

    Medial lobe temporal structures and more specifically the hippocampus play a decisive role in episodic memory. Most of the memory functional magnetic resonance imaging (fMRI) studies evaluate the encoding phase; the retrieval phase being performed outside the MRI. We aimed to determine the ability to reveal greater hippocampal fMRI activations during retrieval phase. Thirty-five epileptic patients underwent a two-step memory fMRI. During encoding phase, subjects were requested to identify the feminine or masculine gender of faces and words presented, in order to encourage stimulus encoding. One hour after, during retrieval phase, subjects had to recognize the word and face. We used an event-related design to identify hippocampal activations. There was no significant difference between patients with left temporal lobe epilepsy, patients with right temporal lobe epilepsy and patients with extratemporal lobe epilepsy on verbal and visual learning task. For words, patients demonstrated significantly more bilateral hippocampal activation for retrieval task than encoding task and when the tasks were associated than during encoding alone. Significant difference was seen between face-encoding alone and face retrieval alone. This study demonstrates the essential contribution of the retrieval task during a fMRI memory task but the number of patients with hippocampal activations was greater when the two tasks were taken into account. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Atlas of regional anatomy of the brain using MRI. With functional correlations

    International Nuclear Information System (INIS)

    Tamraz, J.C.

    2006-01-01

    The volume provides a unique review of the essential topographical anatomy of the brain from an MRI perspective, correlating high-quality anatomical plates with the corresponding high-resolution MRI images. The book includes a historical review of brain mapping and an analysis of the essential reference planes used for the study of the human brain. Subsequent chapters provide a detailed review of the sulcal and the gyral anatomy of the human cortex, guiding the reader through an interpretation of the individual brain atlas provided by high-resolution MRI. The relationship between brain structure and function is approached in a topographical fashion with analysis of the necessary imaging methodology and displayed anatomy. The central, perisylvian, mesial temporal and occipital areas receive special attention. Imaging of the core brain structures is included. An extensive coronal atlas concludes the book. (orig.)

  7. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function.

    Science.gov (United States)

    Liu, Jing; Feng, Li; Shen, Hsin-Wei; Zhu, Chengcheng; Wang, Yan; Mukai, Kanae; Brooks, Gabriel C; Ordovas, Karen; Saloner, David

    2017-08-01

    This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.

  8. Comparison of neurite density measured by MRI and histology after TBI.

    Directory of Open Access Journals (Sweden)

    Shiyang Wang

    Full Text Available Functional recovery after brain injury in animals is improved by marrow stromal cells (MSC which stimulate neurite reorganization. However, MRI measurement of neurite density changes after injury has not been performed. In this study, we investigate the feasibility of MRI measurement of neurite density in an animal model of traumatic brain injury (TBI with and without MSC treatment.Fifteen male Wistar rats, were treated with saline (n = 6 or MSCs (n = 9 and were sacrificed at 6 weeks after controlled cortical impact (CCI. Healthy non-CCI rats (n = 5, were also employed. Ex-vivo MRI scans were performed two days after the rats were sacrificed. Multiple-shell hybrid diffusion imaging encoding scheme and spherical harmonic expansion of a two-compartment water diffusion displacement model were used to extract neurite related parameters. Bielshowski and Luxol Fast blue was used for staining axons and myelin, respectively. Modified Morris water maze and neurological severity score (mNSS test were performed for functional evaluation. The treatment effects, the correlations between neurite densities measured by MRI and histology, and the correlations between MRI and functional variables were calculated by repeated measures analysis of variance, the regression correlation analysis tests, and spearman correlation coefficients.Neurite densities exhibited a significant correlation (R(2>0.80, p<1E-20 between MRI and immuno-histochemistry measurements with 95% lower bound of the intra-correlation coefficient (ICC as 0.86. The conventional fractional anisotropy (FA correlated moderately with histological neurite density (R(2 = 0.59, P<1E-5 with 95% lower bound of ICC as 0.76. MRI data revealed increased neurite reorganization with MSC treatment compared with saline treatment, confirmed by histological data from the same animals. mNSS were significantly correlated with MRI neurite density in the hippocampus region.The present studies

  9. Manipulating motor performance and memory through real-time fMRI neurofeedback.

    Science.gov (United States)

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-05-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Value of functional MRI in evaluation of patients with suspected prostate cancer

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed Mostafa Elian

    2015-12-01

    Conclusion: Functional MRI provided a highly sensitive method in diagnosing and localizing prostate cancer. Being noninvasive, highly sensitive with wider spectrum in nearby pelvic organs assessment in one imaging session, it may totally replace TRUS-guided biopsy.

  11. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  12. Functional MRI of Language Processing and Recovery

    NARCIS (Netherlands)

    C. Méndez Orellana (Carolina)

    2015-01-01

    markdownabstract__Abstract__ My thesis describe the utility of implementing fMRI to investigate how the language system is reorganized in brain damaged patients. Specifically for aphasia research fMRI allows to show how specific language treatment methods have the potential to enhance language

  13. Imaging of the myocardium using {sup 18}F-FDG-PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiří, E-mail: ferda@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Hromádka, Milan, E-mail: hromadkam@fnplzen.cz [Department of Cardiology, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Baxa, Jan, E-mail: baxaj@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic)

    2016-10-15

    Highlights: • The natural combination of the metabolic and structural information is the most important strenghtof myocardial PET/MRI. • Metabolic conversion to glycolysis is needed in the assesment ov the viable myocardium. • Metabolic conversion to the fatty acid metabolism is the crucial in the assesment of the ischemic memory and myocardial inflammation. - Abstract: The introduction of the integrated hybrid PET/MRI equipment creates the possibility to perform PET and MRI simultaneously. Depending on the clinical question, the metabolic conversion to glycolytic activity or beta-oxidation is performed before the application of FDG. Since FDG aids to evaluate the energetic metabolism of the myocytes and myocardial MRI reaches the imaging capabilities of perfusion and tissue characterization in the daily routine, FDG-PET/MRI looks to be a promising method of PET/MRI exploitation in cardiac imaging. When myocardial FDG uptake should be evaluated in association with the perfusion distribution, the cross-evaluation of FDG accumulation distribution and perfusion distribution pattern is necessary. The different scenarios may be used in the assessment of myocardium, the conversion to glycolytic activity is used in the imaging of the viable myocardium, but the glycolytic activity suppression might be used in the indications of the identification of injured myocardium by ischemia or inflammation. FDG-PET/MRI might aid to answer the clinical tasks according to the structure, current function and possibilities to improve the function in ischemic heart disease or to display the extent or activity of myocardial inflammation in sarcoidosis. The tight coupling between metabolism, perfusion and contractile function offers an opportunity for the simultaneous assessment of cardiac performance using one imaging modality.

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will be necessary to perform a blood test to determine whether the kidneys are functioning adequately. Women should always inform their physician or technologist if ...

  15. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    International Nuclear Information System (INIS)

    Smits, Marion; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan

    2007-01-01

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  16. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  17. Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional 1H-MRI and 23Na-MRI

    International Nuclear Information System (INIS)

    Haneder, S.; Michaely, H.J.; Schoenberg, S.O.; Konstandin, S.; Schad, L.R.; Siebenlist, K.; Wertz, H.; Wenz, F.; Lohr, F.; Boda-Heggemann, J.

    2012-01-01

    Purpose: Adjuvant radiochemotherapy (RCHT) improves survival of patients with locally advanced gastric cancer. Conventional three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to a significant amount of the left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) provides excellent target coverage with improved kidney sparing. Few long-term results on IMRT for gastric cancer, however, have been published. Functional magnetic resonance imaging (fMRI) at 3.0 T including blood oxygenation-level dependent (BOLD) imaging, diffusion-weighted imaging (DWI) and, for the first time, 23 Na imaging was used to evaluate renal status after radiotherapy with 3D-CRT or IG-IMRT. Patients and methods Four disease-free patients (2 after 3D-CRT and 2 after IMRT; FU for all patients > 5 years) were included in this feasibility study. Morphological sequences, axial DWI images, 2D-gradient echo (GRE)-BOLD images, and 23 Na images were acquired. Mean values/standard deviations for ( 23 Na), the apparent diffusion coefficient (ADC), and R2 * values were calculated for the upper/middle/lower parts of both kidneys. Corticomedullary 23 Na-concentration gradients were determined. Results: Surprisingly, IG-IMRT patients showed no morphological alterations and no statistically significant differences of ADC and R2 * values in all renal parts. Values for mean corticomedullary 23 Na-concentration matched those for healthy volunteers. Results were similar in 3D-CRT patients, except for the cranial part of the left kidney. This was atrophic and presented significantly reduced functional parameters (p = 0.001 - p = 0.033). Reduced ADC values indicated reduced cell density and reduced extracellular space. Cortical and medullary R2 * values of the left cranial kidney in the 3D-CRT group were higher, indicating more deoxygenated hemoglobin due to reduced blood flow/oxygenation. ( 23 Na) of the renal cranial parts in the 3D-CRT group was significantly reduced

  18. Neuroticism related differences in the functional neuroanatomical correlates of multitasking. An fMRI study.

    Science.gov (United States)

    Szameitat, Andre J; Saylik, Rahmi; Parton, Andrew

    2016-12-02

    It is known that neuroticism impairs cognitive performance mostly in difficult tasks, but not so much in easier tasks. One pervasive situation of this type is multitasking, in which the combination of two simple tasks creates a highly demanding dual-task, and consequently high neurotics show higher dual-task costs than low neurotics. However, the functional neuroanatomical correlates of these additional performance impairments in high neurotics are unknown. To test for this, we assessed brain activity by means of functional magnetic resonance imaging (fMRI) in 17 low and 15 high neurotics while they were performing a demanding dual-task and the less demanding component tasks as single-tasks. Behavioural results showed that performance (response times and error rates) was lower in the dual-task than in the single-tasks (dual-task costs), and that these dual-task costs were significantly higher in high neurotics. Imaging data showed that high neurotics showed less dual-task specific activation in lateral (mainly middle frontal gyrus) and medial prefrontal cortices. We conclude that high levels of neuroticism impair behavioural performance in demanding tasks, and that this impairment is accompanied by reduced activation of the task-associated brain areas. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Gierman, S; Schmerge, J [SLAC National Accelerator Laboratory, Palo Alto, CA (United States); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Fahrig, R [Stanford University, Stanford, CA (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modelling (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise

  20. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Zambri, Brian

    2015-11-05

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology. © 2015 IEEE.

  1. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology. © 2015 IEEE.

  2. Assessment of left ventricular function with single breath-hold highly accelerated cine MRI combined with guide-point modeling

    International Nuclear Information System (INIS)

    Heilmaier, Christina; Nassenstein, Kai; Nielles-Vallespin, Sonia; Zuehlsdorff, Sven; Hunold, Peter; Barkhausen, Joerg

    2010-01-01

    Purpose: To prospectively assess the performance of highly accelerated cine MRI in multi-orientations combined with a new guide-point modeling post-processing technique (GPM approach) for assessment of left ventricular (LV) function compared to the standard summation of slices method based on a stack of short axis views (SoS approach). Materials and methods: 33 consecutive patients were examined on a 1.5 T scanner with a standard steady state free precession (SSFP) sequence (TR, 3.0 ms; TE, 1.5 m; flip angle (FA), 60 o ; acceleration factor (AF), 2) analyzed with the SoS method and a highly accelerated, single breath-hold temporal parallel acquisition SSFP sequence (TR, 4.6 ms; TE, 1.1 ms; AF, 3) post-processed with the GPM method. LV function values were measured by two independent readers with different experience in cardiac MRI and compared by using the paired t-test and F-test. Inter- and intraobserver agreements were calculated using Bland-Altman-Plots. Results: Mean acquisition and post-processing time was significantly shorter with the GPM approach (15 s/3 min versus 360 s/6 min). For all LV function parameters interobserver agreement between the experienced and non-experienced reader was significantly improved when the GPM approach was used. However, end-diastolic and end-systolic volumes were larger for the GPM technique when compared to the SoS method (P 0.121). In both readers and for all parameters variances did not differ significantly (P ≥ 0.409) and the two approaches showed an excellent linear correlation (r > 0.951). Conclusion: Due to its accurate, fast and reproducible assessment of LV function parameters highly accelerated MRI combined with the GPM technique may become the technique of first choice for assessment of LV function in clinical routine.

  3. The Neural Basis of Typewriting: A Functional MRI Study.

    Science.gov (United States)

    Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki

    2015-01-01

    To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  4. The Neural Basis of Typewriting: A Functional MRI Study.

    Directory of Open Access Journals (Sweden)

    Yuichi Higashiyama

    Full Text Available To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.

  5. Usefulness and limitation of functional MRI with echo planar imaging using clinical MR apparatus

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Zenke, Kiichiro; Saito, Masahiro; Sadamoto, Kazuhiko; Ohue, Shiro; Sakaki, Saburo; Kumon, Yoshiaki; Kabasawa, Hiroyuki; Nagasawa, Kiyoshi

    1998-01-01

    We studied blood oxygen level-dependent (BOLD) functional MRI (fMRI) with EPI sequence in 21 normal volunteers and 8 presurgical clinical patients using a 1.5 T clinical MRI apparatus. To optimize the imaging parameters, we compared the fMRI images obtained by GFE-EPI and by SE-EPI in normal volunteers while each squeezed a sponge ball. We identified the motor cortex in 85.7% of normal volunteers by GFE-EPI in contrast to only 28.6% by SE-EPI. In addition, our clinical MR apparatus, using optimized parameters, maximally provides 15 slices per 5 seconds. In patients with brain tumor close to the sensorimotor cortex, we attempted to identify the motor cortex preoperatively by this procedure and found a significant increase of signal intensity in the motor cortex in 5 of 8 patients. In conclusion, fMRI using EPI may be useful for identifying the motor cortex preoperatively. However, further development of the apparatus is needed to obtain better temporal and spatial resolution for clinical applications. (author)

  6. Relationship between DCE-MRI morphological and functional features and histopathological characteristics of breast cancer

    International Nuclear Information System (INIS)

    Montemurro, Filippo; Redana, Stefania; Aglietta, Massimo; Martincich, Laura; Bertotto, Ilaria; Cellini, Lisa; Sarotto, Ivana; Ponzone, Riccardo; Sismondi, Piero; Regge, Daniele

    2007-01-01

    We studied whether dynamic contrast-enhanced MRI (DCE-MRI) could identify histopathological characteristics of breast cancer. Seventy-five patients with breast cancer underwent DCE-MRI followed by core biopsy. DCE-MRI findings were evaluated following the scoring system published by Fischer in 1999. In this scoring system, five DCE-MRI features, three morphological (shape, margins, enhancement kinetic) and two functional (initial peak of signal intensity (SI) increase and behavior of signal intensity curve), are defined by 14 parameters. Each parameter is assigned points ranging from 0 to 1 or 0 to 2, with higher points for those that are more likely to be associated with malignancy. The sum of all the points defines the degree of suspicion of malignancy, with a score 0 representing the lowest and 8 the highest degree of suspicion. Associations between DCE-MRI features and tumor histopathological characteristics assessed on core biopsies (histological type, grading, estrogen and progesterone receptor status, Ki67 and HER2 status) were studied by contingency tables and logistic regression analysis. We found a significant inverse association between the Fischer's score and HER2-overexpression (odds ratio-OR 0.608, p = 0.02). Based on our results, we suggest that lesions with intermediate-low suspicious DCE-MRI parameters may represent a subset of tumor with poor histopathological characteristics. (orig.)

  7. Quantitative Assessment of Left Ventricular Function and Myocardial Mass: A Comparison of Coronary CT Angiography with Cardiac MRI and Echocardiography

    International Nuclear Information System (INIS)

    Kara, Bedia; Nayman, Alaaddin; Guler, Ibrahim; Gul, Enes Elvin; Koplay, Mustafa; Paksoy, Yahya

    2016-01-01

    The purpose of this study was to compare the left ventricular parameters obtained from multi-detector row computed tomography (MDCT) studies with two-dimensional echocardiography (2DE), and magnetic resonance imaging (MRI), which is accepted as the gold standard in the evaluation of left ventricular functions. The study also aimed to evaluate whether or not there is a relationship between the MR-Argus and CMR tools software programs which are used in post-process calculations of data obtained by MRI. Forty patients with an average age of 51.4±14.9 years who had been scanned with cardiac MDCT were evaluated with cardiac MRI and 2DE. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), cardiac output (CO), and myocardial mass values calculated by MDCT, MRI, and 2DE were compared with each other. Two different MR software programs were used to compare left ventricular functions. The CMR tools LV tutorials method is accepted as the gold standard because it can be used in three-dimensional functional evaluation. The Pearson Correlation and Bland-Altman analysis were performed to compare the results from the two MR methods (MR-Argus and CMR tools) and the results from both the MDCT and the 2DE with the CMR tools results. Strong positive correlations for EF values were found between the MDCT and CMR tools (r=0.702 p<0.001), and between the MR-Argus and CMR tools (r=0.746 p<0.001). The correlation between the 2DE and CMR tools (r=0.449 p<0.004), however, was only moderate. Similar results were obtained for the other parameters. The strongest correlation for ESV, EDV, and EF was between the two MR software programs. The correlation coefficient between the MDCT and CMR tools is close to the correlation coefficient between the two software programs. While the correlation between 2DE and CMR tools was satisfactory for ESV, EDV, and CO values, it was at a moderate level for the other parameters. Left ventricular functional analysis

  8. Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Daniela Pinter

    2015-01-01

    Conclusions: The predictive value of distinct MRI-parameters differs for specific domains of cognitive function, with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive function, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (microstructural correlates of different cognitive constructs.

  9. New MRI technologies. Diffusion MRI and its application to functional neuroimaging and analyses of white matter integrity

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo

    2010-01-01

    Described is the technological aspect of MRI, MR diffusion-weighted imaging (MR-DWI), principles of its measurement and application for imaging the cerebral function and for aiding the quantitative diagnosis of brain diseases. The author explains the principle of MR imaging process; diffusion properties of water molecules, MR-DWI based on them and DW-fMRI of the brain; MR-diffusion tensor imaging (MR-DTI), its analysis and color acquisition, and tracking of white matter nerve fibers; analysis of white matter lesions by the tracking; and the new tracking method at the chiasm of nerve fascicles. The usual fMRI reflects the blood oxygen level depending (BOLD) signals whereas recently attracted DW-fMRI, the volume changes of nerve cells concomitant to nerve activation accompanying apparent changes of water diffusion coefficients in and out of cells which occur faster than BOLD signs, resulting in higher resolution of time and space. However, DWI requires the higher intensity of static magnetic field like 3T. MR-DTI acquires the anisotropic diffusion of water molecules using MR-DWI technique with application of 6 or more motion probing gradients, thus makes it possible to track the running directions of nerve fibers and capillary vessels, and is proposed to be a useful mean of specific fiber tracking in the white matter when displayed by 3 different colors exhibiting the directions like the right/left (x axis, red), anterior/posterior (y, green) and upper/lower (z, blue) sides of head. Recently, MR-DWI and MR-DTI have been found usable for pathogenic studies of brain diseases such as dementia. Tensor anisotropy is apparently lowered at the chiasm of nerve fascicles, the cause of tracking error, for which authors have developed a new method using the similarity of directional vector, not of tensor, before and behind the chiasm. As exemplified, MRI technology is further advancing even at present. (T.T.)

  10. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    Science.gov (United States)

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    Science.gov (United States)

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  13. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    International Nuclear Information System (INIS)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis; Peck, Kyung K.; Hsu, Meier; Holodny, Andrei

    2010-01-01

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p ≤ 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  14. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    Energy Technology Data Exchange (ETDEWEB)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis [Memorial Sloan-Kettering Cancer Center, Head and Neck Surgery, New York, NY (United States); Peck, Kyung K. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Medical Physics, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Medical Physics and Radiology, New York, NY (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Holodny, Andrei [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2010-12-15

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p {<=} 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  15. Cognition and brain abnormalities on MRI in pituitary patients

    International Nuclear Information System (INIS)

    Brummelman, Pauline; Sattler, Margriet G.A.; Meiners, Linda C.; Berg, Gerrit van den; Klauw, Melanie M. van der; Elderson, Martin F.; Dullaart, Robin P.F.; Koerts, Janneke; Werumeus Buning, Jorien; Tucha, Oliver; Wolffenbuttel, Bruce H.R.; Bergh, Alfons C.M. van den; Beek, André P. van

    2015-01-01

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  16. Cognition and brain abnormalities on MRI in pituitary patients

    Energy Technology Data Exchange (ETDEWEB)

    Brummelman, Pauline [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Sattler, Margriet G.A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Department of Radiation Oncology, Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Meiners, Linda C. [Department of Radiology, University of Groningen, University Medical Center Groningen (Netherlands); Berg, Gerrit van den; Klauw, Melanie M. van der [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Elderson, Martin F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Dullaart, Robin P.F. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Koerts, Janneke [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Werumeus Buning, Jorien, E-mail: j.werumeus.buning@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); Tucha, Oliver [Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen (Netherlands); Wolffenbuttel, Bruce H.R. [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands); LifeLines Cohort Study and Biobank, University of Groningen, University Medical Center Groningen (Netherlands); Bergh, Alfons C.M. van den [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen (Netherlands); Beek, André P. van, E-mail: a.p.van.beek@umcg.nl [Department of Endocrinology, University of Groningen, University Medical Center Groningen (Netherlands)

    2015-02-15

    Highlights: • Cognitive impairments are frequently observed in treated NFA patients. • NFA patients with cognitive impairments do not show brain abnormalities on MRI more frequently than patients without cognitive impairments. • The absence of brain abnormalities on brain MRI does not exclude impairments of cognition. - Abstract: Purpose: The extent to which cognitive dysfunction is related to specific brain abnormalities in patients treated for pituitary macroadenoma is unclear. Therefore, we compared brain abnormalities seen on Magnetic Resonance Imaging (MRI) in patients treated for nonfunctioning pituitary macroadenoma (NFA) with or without impairments in cognitive functioning. Methods: In this cross-sectional design, a cohort of 43 NFA patients was studied at the University Medical Center Groningen. White matter lesions (WMLs), cerebral atrophy, (silent) brain infarcts and abnormalities of the temporal lobes and hippocampi were assessed on pre-treatment and post-treatment MRI scans. Post-treatment cognitive examinations were performed using a verbal memory and executive functioning test. We compared our patient cohort with large reference populations representative of the Dutch population. Results: One or more impairments on both cognitive tests were frequently observed in treated NFA patients. No treatment effects were found with regard to the comparison between patients with and without impairments in executive functioning. Interestingly, in patients with one or more impairments on verbal memory function, treatment with radiotherapy had been given more frequently (74% in the impaired group versus 40% in the unimpaired group, P = 0.025). Patients with or without any brain abnormality on MRI did not differ in verbal memory or executive functioning. Conclusions: Brain abnormalities on MRI are not observed more frequently in treated NFA patients with impairments compared to NFA patients without impairments in verbal memory or executive functioning

  17. Function connectivity MRI to evaluate the changes of the motorial nerve net in patients with brain tumors adjacent to the central sulcus occurred with reorganization of motor function

    International Nuclear Information System (INIS)

    Han Tong; Liu Meili; Cui Shimin; Liu Li; Jin Song; Lei Jing; Liu Hui; Guo Jun; Hao Nina; Guo Ying; Xiang Huadong; Weng Xuchu

    2008-01-01

    Objective: We investigated the changes of the motorial network in patients suffered from brain tumors adjacent to the central sulcus occurred with reorganization of motor function using function connectivity MRI (fcMRI) technique in order to provide the new evidence for the compensational hypothesis of the reorganization caused by focal lesions. Methods: Using 1.5 T MRI unit, 14 patients with brain tumors in the vicinity of the central sulcus occurred with reorganization of motor function and 6 normal volunteers were examined with fcMRI technique while the subjects performed no task. By selecting seed voxels (region of interest) in the regions showing the most activation in Mi area on the activated map and cross correlating with every, voxel within the brain, the fcMRI maps based on unilateral primary motor (M1) area were calculated. The location, extent and volume of the region showing significant connectivity to the several seed voxel, such as left/right M1 area in the health group and affected/unaffected Mlarea in the patient group were evaluated on the fcMRI map. Results: In healthy group, the extent and volume of the region showing significant connectivity to the left Mlarea [(9514.17±186.92)mm 3 ] were almost similar to those to the right M1 area [(9364.67±382.75) mm 3 ]. There showed no significant difference in motor connectivity between the two groups (P>0.05). In the tumor group, the volume of regions showing significant connectivity to the M1 area located in the affected hemisphere [(11193.14 ± 811.29) mm 3 ] was obviously higher than that of regions based on the seed voxel in the unaffected side [(6549.86± 400.94) mm 3 ] (t=20.383, P<0.01). The volume was significantly different among the regions showing high connectivity to the M1 of the affected side in patient group, those showing significant connectivity to the left M1 and right M1 in health group (P<0.01), the former was the biggest (P<0.01). The extent of the regions showing connectivity to

  18. Value of Gd-EOB-DTPA-enhanced MRI in assessing liver function

    Directory of Open Access Journals (Sweden)

    WANG Lili

    2015-05-01

    Full Text Available ObjectiveTo explore the value of magnetic resonance imaging (MRI specifically enhanced with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA in assessing the liver function in general population. MethodsUpper abdominal MRI images and Gd-EOB-DTPA-enhanced images, as well as some clinical information, were collected from 41 cases meeting the inclusion and exclusion criteria. Taking the spleen as the control organ, liver-spleen signal intensity contrast (SIliver/spleen and relative liver enhancement (RLE were calculated at 10 min and 20 min after injecting Gd-EOB-DTPA. Differences were evaluated using the independent-samples t-test or Mann-Whitney U test. Corrections were analyzed via Spearman’s rank correlation. ResultsBoth SIliver/spleen at 10 min and 20 min after injection of contrast agent were correlated with Child classification (P<0.05. SIliver/spleen at 20 min had a greater correlation coefficient (r=-0.526 than that at 10 min. The SIliver/spleen with plain scan had no significant correlation with Child classification (P>0.05. RLE at 20 min, but not at 10 min, was correlated with Child classification (r=-0.362, P=0049. Between the cirrhotic and non-cirrhotic groups, SIliver/spleen showed no significant difference (P>0.05. However, SIliver/spleen at 10 min and 20 min, as well as RLE20 min, showed significant differences between the cirrhotic and non-cirrhotic groups (P<0.05. SIliver/spleen at 20 min also exhibited a significant difference between the elevated and normal ALT and TBil groups (both P<0.05. ConclusionGd-EOB-DTPA-enhanced MRI can monitor liver function changes, and SIliver/spleen at 20 min may have an important value in assessing the liver function in general population.

  19. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  20. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo [Third Military Medical University, Department of Medical Imaging, College of Biomedical Engineering, Chongqing (China); Liu, Hongliang; Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Yang, Jun; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China)

    2016-05-15

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  1. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    International Nuclear Information System (INIS)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo; Liu, Hongliang; Yan, Rubing; Yang, Jun; Wang, Jian

    2016-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  2. Assessment of the right ventricular function in patients with chronic obstructive pulmonary disease using MRI

    International Nuclear Information System (INIS)

    Gao Yan; Du Xiangying; Qin Wen; Li Kuncheng

    2011-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is often associated with changes of the structure and the function of the right ventricle (RV). Therefore, the assessment of right ventricular function and myocardial mass (MM) is clinically important for the evaluation of the severity of COPD, which may provide an objective basis for therapeutic strategy. Purpose: To assess the right ventricular function and RV MM in patients with mild to severe COPD using magnetic resonance imaging (MRI). Material and Methods: We prospectively studied 49 COPD patients determined by the pulmonary function test (PFT). Using the Global Initiative for COPD classification, the COPD patients were divided into three groups according to the severity of the disease: group I = mild (n = 18); group II = moderate (n = 16); and group III = severe (n = 15). The patient groups were compared to a control group consisting of 30 age-matched, healthy, non-smoking subjects. The RV function and RV MM were obtained by 1.5T cardiac MRI in all of the four groups. The results were compared among the four groups using the ANOVA. Pearson's correlation was used to evaluate the relationship between the right ventricular ejection fraction (RVEF) and MM with the PFT results in COPD patients. Results: The RVEF was significantly lower in group III than in the other groups (P < 0.01). The RV MM differed significantly among all groups (P < 0.01) and gradually increased with the severity of COPD (P < 0.01). The correlation was significant between the MRI results and forced expiratory volume in 1 s (r = 0.860 for RVEF, r = -0.838 for RV MM) in COPD patients. Conclusion: The RVEF and RV MM measured by MRI correlate significantly with the severity of disease as determined by PFT in patients with COPD

  3. Assessment of the right ventricular function in patients with chronic obstructive pulmonary disease using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yan; Du Xiangying; Qin Wen; Li Kuncheng (Dept. of Radiology, Xuanwu Hospital of Capital Medical Univ., Beijing (China)), email: kuncheng.li@gmail.com

    2011-09-15

    Background: Chronic obstructive pulmonary disease (COPD) is often associated with changes of the structure and the function of the right ventricle (RV). Therefore, the assessment of right ventricular function and myocardial mass (MM) is clinically important for the evaluation of the severity of COPD, which may provide an objective basis for therapeutic strategy. Purpose: To assess the right ventricular function and RV MM in patients with mild to severe COPD using magnetic resonance imaging (MRI). Material and Methods: We prospectively studied 49 COPD patients determined by the pulmonary function test (PFT). Using the Global Initiative for COPD classification, the COPD patients were divided into three groups according to the severity of the disease: group I = mild (n = 18); group II = moderate (n = 16); and group III = severe (n = 15). The patient groups were compared to a control group consisting of 30 age-matched, healthy, non-smoking subjects. The RV function and RV MM were obtained by 1.5T cardiac MRI in all of the four groups. The results were compared among the four groups using the ANOVA. Pearson's correlation was used to evaluate the relationship between the right ventricular ejection fraction (RVEF) and MM with the PFT results in COPD patients. Results: The RVEF was significantly lower in group III than in the other groups (P < 0.01). The RV MM differed significantly among all groups (P < 0.01) and gradually increased with the severity of COPD (P < 0.01). The correlation was significant between the MRI results and forced expiratory volume in 1 s (r = 0.860 for RVEF, r = -0.838 for RV MM) in COPD patients. Conclusion: The RVEF and RV MM measured by MRI correlate significantly with the severity of disease as determined by PFT in patients with COPD

  4. Structural and functional abnormalities of default mode network in minimal hepatic encephalopathy: a study combining DTI and fMRI.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND AND PURPOSE: Live failure can cause brain edema and aberrant brain function in cirrhotic patients. In particular, decreased functional connectivity within the brain default-mode network (DMN has been recently reported in overt hepatic encephalopathy (HE patients. However, so far, little is known about the connectivity among the DMN in the minimal HE (MHE, the mildest form of HE. Here, we combined diffusion tensor imaging (DTI and resting-state functional MRI (rs-fMRI to test our hypothesis that both structural and functional connectivity within the DMN were disturbed in MHE. MATERIALS AND METHODS: Twenty MHE patients and 20 healthy controls participated in the study. We explored the changes of structural (path length, tracts count, fractional anisotropy [FA] and mean diffusivity [MD] derived from DTI tractography and functional (temporal correlation coefficient derived from rs-fMRI connectivity of the DMN in MHE patients. Pearson correlation analysis was performed between the structural/functional indices and venous blood ammonia levels/neuropsychological tests scores of patients. All thresholds were set at P<0.05, Bonferroni corrected. RESULTS: Compared to the healthy controls, MHE patients showed both decreased FA and increased MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN to left parahippocampal gyrus (PHG, and decreased functional connectivity between the PCC/PCUN and left PHG, and medial prefrontal cortex (MPFC. MD values of the tract connecting PCC/PCUN to the left PHG positively correlated to the ammonia levels, the temporal correlation coefficients between the PCC/PCUN and the MPFC showed positive correlation to the digital symbol tests scores of patients. CONCLUSION: MHE patients have both disturbed structural and functional connectivity within the DMN. The decreased functional connectivity was also detected between some regions without abnormal structural connectivity, suggesting that the

  5. Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke.

    Directory of Open Access Journals (Sweden)

    Jianfang Zhu

    Full Text Available Resting-state functional magnetic resonance imaging (R-fMRI has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has examined a frequency effect on such regional properties in stroke patients, although this effect has been shown to play important roles in both normal brain functioning and functional abnormalities. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo, two major methods for characterizing the regional properties of R-fMRI, in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.73 Hz; and typical band: 0.01-0.1 Hz in 19 stroke patients and 15 healthy controls. Both the ALFF and ReHo analyses revealed changes in brain activity in a number of brain regions, particularly the parietal cortex, in stroke patients compared with healthy controls. Remarkably, the regions with changed activity as detected by the slow-5 band data were more extensive, and this finding was true for both the ALFF and ReHo analyses. These results not only confirm previous studies showing abnormality in the parietal cortex in patients with stroke, but also suggest that R-fMRI studies of stroke should take frequency effects into account when measuring intrinsic brain activity.

  6. High-resolution functional MRI of the human amygdala at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Sladky, Ronald, E-mail: ronald.sladky@meduniwien.ac.at [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Baldinger, Pia; Kranz, Georg S. [Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Tröstl, Jasmin [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Höflich, Anna; Lanzenberger, Rupert [Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Moser, Ewald [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Windischberger, Christian, E-mail: christian.windischberger@meduniwien.ac.at [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria)

    2013-05-15

    Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas.

  7. High-resolution functional MRI of the human amygdala at 7 T

    International Nuclear Information System (INIS)

    Sladky, Ronald; Baldinger, Pia; Kranz, Georg S.; Tröstl, Jasmin; Höflich, Anna; Lanzenberger, Rupert; Moser, Ewald; Windischberger, Christian

    2013-01-01

    Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas

  8. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.

    Science.gov (United States)

    Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate

    2018-05-15

    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information

  9. Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Paluš, Milan; Vejmelka, Martin; Mantini, D.; Corbetta, M.

    2011-01-01

    Roč. 54, č. 3 (2011), s. 2218-2225 ISSN 1053-8119 R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : fMRI * functional connectivity * Gaussianity * nonlinearity * correlation * mutual information Subject RIV: FH - Neurology Impact factor: 5.895, year: 2011

  10. Functional brain imaging in irritable bowel syndrome with rectal balloon-distention by using fMRI.

    Science.gov (United States)

    Yuan, Yao-Zong; Tao, Ran-Jun; Xu, Bin; Sun, Jing; Chen, Ke-Min; Miao, Fei; Zhang, Zhong-Wei; Xu, Jia-Yu

    2003-06-01

    Irritable bowel syndrome (IBS) is characterized by abdominal pain and changes in stool habits. Visceral hypersensitivity is a key factor in the pathophysiology of IBS. The aim of this study was to examine the effect of rectal balloon-distention stimulus by blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) in visceral pain center and to compare the distribution, extent, and intensity of activated areas between IBS patients and normal controls. Twenty-six patients with IBS and eleven normal controls were tested for rectal sensation, and the subjective pain intensity at 90 ml and 120 ml rectal balloon-distention was reported by using Visual Analogue Scale. Then, BOLD-fMRI was performed at 30 ml, 60 ml, 90 ml, and 120 ml rectal balloon-distention in all subjects. Rectal distention stimulation increased the activity of anterior cingulate cortex (35/37), insular cortex (37/37), prefrontal cortex (37/37), and thalamus (35/37) in most cases. At 120 ml of rectal balloon-distention, the activation area and percentage change in MR signal intensity of the regions of interest (ROI) at IC, PFC, and THAL were significantly greater in patients with IBS than that in controls. Score of pain sensation at 90 ml and 120 ml rectal balloon-distention was significantly higher in patients with IBS than that in controls. Using fMRI, some patients with IBS can be detected having visceral hypersensitivity in response to painful rectal balloon-distention. fMRI is an objective brain imaging technique to measure the change in regional cerebral activation more precisely. In this study, IC and PFC of the IBS patients were the major loci of the CNS processing of visceral perception.

  11. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  12. Functional network centrality in obesity: A resting-state and task fMRI study.

    Science.gov (United States)

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Alternation learning in pathological gamblers: an fMRI Study.

    Science.gov (United States)

    Dannon, Pinhas N; Kushnir, Tammar; Aizer, Anat; Gross-Isseroff, Ruth; Kotler, Moshe; Manor, David

    2011-03-01

    We have previously reported that pathological gamblers have impaired performance on the Stroop color word naming task, go-no-go task and speed accuracy tradeoff performance, tasks used to assess executive function and interference control. The aim of the present neuroimaging study was to explore the relationship between frontal cortex function and gambling severity in pathological gamblers. Functional MRI (fMRI) was used to estimate brain activity of ten male medication-free pathological gamblers during performance of an alternation learning task. Performance of this task has been shown to depend on the function of regions in the frontal cortex. The executive functions needed to perform the alternation learning task were expressed as brain activation in lateral and medial frontal as well as parietal and occipital regions. By correlating the level of local brain activation to task performance, parietal regions and lateral frontal and orbitofrontal regions were demonstrated. A higher score in SOGS was associated with intrusion on the task-specific activation in the left hemisphere, to some extant in parietal regions and even more pronouncedly in left frontal and orbitofrontal regions. Our preliminary data suggests that pathological gambling may be characterized by specific neuro-cognitive changes related to the frontal cortex.

  14. Diagnostic performance of MRI and MR myelography in infants with a brachial plexus birth injury

    International Nuclear Information System (INIS)

    Medina, L.S.; Yaylali, Ilker; Zurakowski, David; Ruiz, Jennifer; Altman, Nolan R.; Grossman, John A.I.

    2006-01-01

    Detailed evaluation of a brachial plexus birth injury is important for treatment planning. To determine the diagnostic performance of MRI and MR myelography in infants with a brachial plexus birth injury. Included in the study were 31 children with perinatal brachial plexus injury who underwent surgical intervention. All patients had cervical and brachial plexus MRI. The standard of reference was the combination of intraoperative (1) surgical evaluation and (2) electrophysiological studies (motor evoked potentials, MEP, and somatosensory evoked potentials, SSEP), and (3) the evaluation of histopathological neuronal loss. MRI findings of cord lesion, pseudomeningocele, and post-traumatic neuroma were correlated with the standard of reference. Diagnostic performance characteristics including sensitivity and specificity were determined. From June 2001 to March 2004, 31 children (mean age 7.3 months, standard deviation 1.6 months, range 4.8-12.1 months; 19 male, 12 female) with a brachial plexus birth injury who underwent surgical intervention were enrolled. Sensitivity and specificity of an MRI finding of post-traumatic neuroma were 97% (30/31) and 100% (31/31), respectively, using the contralateral normal brachial plexus as the control. However, MRI could not determine the exact anatomic area (i.e. trunk or division) of the post-traumatic brachial plexus neuroma injury. Sensitivity and specificity for an MRI finding of pseudomeningocele in determining exiting nerve injury were 50% and 100%, respectively, using MEP, and 44% and 80%, respectively, using SSEP as the standard of reference. MRI in infants could not image well the exiting nerve roots to determine consistently the presence or absence of definite avulsion. In children younger than 18 months with brachial plexus injury, the MRI finding of pseudomeningocele has a low sensitivity and a high specificity for nerve root avulsion. MRI and MR myelography cannot image well the exiting nerve roots to determine

  15. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    Science.gov (United States)

    Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709

  16. A new operational method of functional neurosurgery combining micro-recording and MRI stereotaxy for the treatment of Parkinson's disease

    International Nuclear Information System (INIS)

    Nishimura, Hiroyuki; Hirai, Tatsuo.

    1993-01-01

    We have developed a new operational method for stereotactic functional neurosurgery using MRI stereotaxy combined with microelectrode recording. MRI stereotaxy shows us the individual variations of thalamic configurations. The tentative target points were determined using the MRI stereotaxy assisted software system which revised the distortion of MRI images. Consequently, the accuracy and safety of the microelectrode recording were increased. This, in turn, increased the accuracy and stereotactic thalamotomy while producing encouraging operational outcomes. The effectiveness of stereotactic thalamotomy for Parkinson's disease was confirmed by these excellent operative results. The symptoms improved and the dosage of medications, including L-DOPA, decreased. Furthermore, our results indicate that the distributing area of deep sensory neurons in the thalamus extended more posteriorly and upward than previously expected. Therefore, the functional and anatomical similarity between the human and monkey thalamus was reaffirmed. In this report, based on the above data, we reevaluated the neural mechanism of tremor and the role of stereotactic functional neurosurgery for Parkinson's disease. (author)

  17. A new operational method of functional neurosurgery combining micro-recording and MRI stereotaxy for the treatment of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiroyuki [Kochi Medical School, Nankoku (Japan); Hirai, Tatsuo

    1993-02-01

    We have developed a new operational method for stereotactic functional neurosurgery using MRI stereotaxy combined with microelectrode recording. MRI stereotaxy shows us the individual variations of thalamic configurations. The tentative target points were determined using the MRI stereotaxy assisted software system which revised the distortion of MRI images. Consequently, the accuracy and safety of the microelectrode recording were increased. This, in turn, increased the accuracy and stereotactic thalamotomy while producing encouraging operational outcomes. The effectiveness of stereotactic thalamotomy for Parkinson's disease was confirmed by these excellent operative results. The symptoms improved and the dosage of medications, including L-DOPA, decreased. Furthermore, our results indicate that the distributing area of deep sensory neurons in the thalamus extended more posteriorly and upward than previously expected. Therefore, the functional and anatomical similarity between the human and monkey thalamus was reaffirmed. In this report, based on the above data, we reevaluated the neural mechanism of tremor and the role of stereotactic functional neurosurgery for Parkinson's disease. (author).

  18. Whole-body bone segmentation from MRI for PET/MRI attenuation correction using shape-based averaging

    DEFF Research Database (Denmark)

    Arabi, Hossein; Zaidi, H.

    2016-01-01

    Purpose: The authors evaluate the performance of shape-based averaging (SBA) technique for whole-body bone segmentation from MRI in the context of MRI-guided attenuation correction (MRAC) in hybrid PET/MRI. To enhance the performance of the SBA scheme, the authors propose to combine it with stati......Purpose: The authors evaluate the performance of shape-based averaging (SBA) technique for whole-body bone segmentation from MRI in the context of MRI-guided attenuation correction (MRAC) in hybrid PET/MRI. To enhance the performance of the SBA scheme, the authors propose to combine...... it with statistical atlas fusion techniques. Moreover, a fast and efficient shape comparisonbased atlas selection scheme was developed and incorporated into the SBA method. Methods: Clinical studies consisting of PET/CT and MR images of 21 patients were used to assess the performance of the SBA method. In addition...... voting (MV) atlas fusion scheme was also evaluated as a conventional and commonly used method. MRI-guided attenuation maps were generated using the different segmentation methods. Thereafter, quantitative analysis of PET attenuation correction was performed using CT-based attenuation correction...

  19. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus.

    Science.gov (United States)

    Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R

    2016-11-01

    We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Clinical Utility and Diagnostic Performance of MRI for Identification of Early and Advanced Knee Osteoarthritis: A Systematic Review

    Science.gov (United States)

    Quatman, Carmen E.; Hettrich, Carolyn M.; Schmitt, Laura C.; Spindler, Kurt P.

    2013-01-01

    Background Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of non-invasive interventions. Purpose Systematically review the literature relative to the following questions: (1) Is MRI a valid, sensitive, specific, accurate and reliable instrument to identify knee articular cartilage abnormalities compared to arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Study Design Systematic Review Methods A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), and SCOPUS (from 1996) databases. Results Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared to arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26–96%. Specificity and accuracy was reported between 50–100% and 49–94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0–86%, 48–95%, and 5–94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. Conclusions There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Due to heterogeneity of MRI sequences it is not possible to make definitive

  1. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    Science.gov (United States)

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  2. Multivoxel Pattern Analysis for fMRI Data: A Review

    Directory of Open Access Journals (Sweden)

    Abdelhak Mahmoudi

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI exploits blood-oxygen-level-dependent (BOLD contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs. In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC curves.

  3. Multivoxel Pattern Analysis for fMRI Data: A Review

    Science.gov (United States)

    Takerkart, Sylvain; Regragui, Fakhita; Boussaoud, Driss; Brovelli, Andrea

    2012-01-01

    Functional magnetic resonance imaging (fMRI) exploits blood-oxygen-level-dependent (BOLD) contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM) approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA) represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs). In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC) curves. PMID:23401720

  4. Altered brain functions in HIV positive patients free of HIV- associated neurocognitive disorders: A MRI study during unilateral hand movements

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-03-01

    Full Text Available This paper aimed to investigate the brain activity of human immunodeficiency virus (HIV positive patients with normal cognition during unilateral hand movement and whether highly active antiretroviral therapy (HAART could affect the brain function. Functional magnetic resonance imaging (fMRI was performed for 60 HIV positive (HIV+ subjects and −42 healthy age-matched right-handed control subjects. Each subject was evaluated by the neuropsychological test and examined with fMRI during left and right hand movement tasks. HIV+ subjects showed greater activation in anterior cingulum, precuneus, occipital lobes, ipsilateral postcentral gyrus and contralateral cerebellum compared with control group during right hand movement task. However, during left hand movement no statistically significant difference was detected between these two groups. HAART medication for HIV+ subjects lowered the increased activity to normal level. Meanwhile patients receiving the regimen of zidovudine, lamivudine and efavirenz showed lower activity at bilateral caudate and ipsilateral inferior frontal gyrus in comparison with subjects receiving other HAART regimens. Therefore, HIV+ subjects demonstrated brain asymmetry in motor cortex, with increased activity present during right hand movement but absent during left hand movement. HAART proves effective in HIV+ subjects even with normal cognition and the specific regimen of HAART could prevent cerebral abnormal functions. Meanwhile, this study validates that during motor tasks, fMRI can detect the brain signal changes prior to the occurrences of other HIV- associated dysfunctions.

  5. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    Science.gov (United States)

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  6. Neural loss aversion differences between depression patients and healthy individuals: A functional MRI investigation.

    Science.gov (United States)

    Chandrasekhar Pammi, V S; Pillai Geethabhavan Rajesh, Purushothaman; Kesavadas, Chandrasekharan; Rappai Mary, Paramban; Seema, Satish; Radhakrishnan, Ashalatha; Sitaram, Ranganatha

    2015-04-01

    Neuroeconomics employs neuroscience techniques to explain decision-making behaviours. Prospect theory, a prominent model of decision-making, features a value function with parameters for risk and loss aversion. Recent work with normal participants identified activation related to loss aversion in brain regions including the amygdala, ventral striatum, and ventromedial prefrontal cortex. However, the brain network for loss aversion in pathologies such as depression has yet to be identified. The aim of the current study is to employ the value function from prospect theory to examine behavioural and neural manifestations of loss aversion in depressed and healthy individuals to identify the neurobiological markers of loss aversion in economic behaviour. We acquired behavioural data and fMRI scans while healthy controls and patients with depression performed an economic decision-making task. Behavioural loss aversion was higher in patients with depression than in healthy controls. fMRI results revealed that the two groups shared a brain network for value function including right ventral striatum, ventromedial prefrontal cortex, and right amygdala. However, the neural loss aversion results revealed greater activations in the right dorsal striatum and the right anterior insula for controls compared with patients with depression, and higher activations in the midbrain region ventral tegmental area for patients with depression compared with controls. These results suggest that while the brain network for loss aversion is shared between depressed and healthy individuals, some differences exist with respect to differential activation of additional areas. Our findings are relevant to identifying neurobiological markers for altered decision-making in the depressed. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Diagnosing and staging of cystic echinococcosis: how do CT and MRI perform in comparison to ultrasound?

    Directory of Open Access Journals (Sweden)

    Marija Stojkovic

    Full Text Available BACKGROUND: Imaging plays the key role in diagnosing and staging of CE. The description of CE-specific imaging features and the WHO CE cyst classification is based on ultrasound. The reproducibility of the ultrasound-defined features of CE cysts is variable in MR- and CT-imaging. This is of particular importance for cysts that are not accessible by US and because of the increasing availability and overuse of CT and MR imaging. METHODOLOGY/PRINCIPAL FINDINGS: Retrospective analysis of patients with abdominal CE cysts of an interdisciplinary CE clinic who had CT and/or MRI scans performed additionally to US imaging. All images were read and interpreted by the same senior radiologist experienced in the diagnosis of CE. US, CT and MR images were staged according to the WHO classification criteria. The agreement beyond chance was quantified by kappa coefficients (κ. 107 patients with 187 CE cysts met the inclusion criteria. All cysts were assessed by US, 138 by CT, and 125 by MRI. The level of agreement beyond chance of the individual CE stages 1-4 was clearly lower for CT, with κ ranging from 0.62 to 0.72, compared to MRI with values of κ between 0.83 and 1.0. For CE5 cysts CT (κ = 0.95 performed better than MRI (κ = 0.65. CONCLUSIONS: Ultrasound remains the corner stone of diagnosis, staging and follow up of CE cysts. MRI reproduces the ultrasound-defined features of CE better than CT. If US cannot be performed due to cyst location or patient-specific reasons MRI with heavily T2-weighted series is preferable to CT.

  8. Preclinical study of diagnostic performances of contrast-enhanced spectral mammography versus MRI for breast diseases in China.

    Science.gov (United States)

    Wang, Qingguo; Li, Kangan; Wang, Lihui; Zhang, Jianbing; Zhou, Zhiguo; Feng, Yan

    2016-01-01

    To evaluate diagnostic performances of CESM for breast diseases with comparison to breast MRI in China. Sixty-eight patients with 77 breast lesions underwent MR and CESM. Two radiologists interpreted either MRI or CESM images, separately and independently. BI-RADS 1-3 and BI-RADS 4-5 were classified into the suspicious benign and suspicious malignant groups. Diagnostic accuracy parameters were calculated. Receiver operating characteristic (ROC) curves were constructed for the two modalities. The agreement and correlation between maximum lesion diameter based on CESM and MRI, or CESM and pathology were analyzed. Diagnostic accuracy parameters for CESM were sensitivity 95.8 %, specificity 65.5 %, PPV 82.1 %, NPV 90.5 % and accuracy 84.4 %. The diagnostic accuracy parameters for breast MRI were sensitivity 93.8 %, specificity 82.8 %, PPV 88.2 %, NPV 92.3 %and accuracy 89.6 %. Area under the curve (AUC) of ROC was 0.96 for breast MRI and 0.88 for CESM. The Bland-Altman plots showed a mean difference of 0.7 mm with 95 % limits of agreement of 11.4 mm in tumor diameter measured using CESM and breast MRI. The differences of size measurement between CESM and breast MRI were significant, whereas no difference was observed between CESM and pathology as well as between breast MRI and pathology. The better correlation with pathological results was found in CESM than breast MRI. Our study demonstrates that CESM possesses better diagnostic performances than breast MRI in terms of diagnostic sensitivity and lesion size assessment. And CESM is a good alternative method of screening breast cancer in high-risk people.

  9. Role of New Functional MRI Techniques in the Diagnosis, Staging, and Followup of Gynecological Cancer: Comparison with PET-CT

    Directory of Open Access Journals (Sweden)

    Elena Alvarez Moreno

    2012-01-01

    Full Text Available Recent developments in diagnostic imaging techniques have magnified the role and potential of both MRI and PET-CT in female pelvic imaging. This article reviews the techniques and clinical applications of new functional MRI (fMRI including diffusion-weighted MRI (DWI, dynamic contrast-enhanced (DCE-MRI, comparing with PET-CT. These new emerging provide not only anatomic but also functional imaging, allowing detection of small volumes of active tumor at diagnosis and early disease relapse, which may not result in detectable morphological changes at conventional imaging. This information is useful in distinguishing between recurrent/residual tumor and post-treatment changes and assessing treatment response, with a clear impact on patient management. Both PET-CT and now fMRI have proved to be very valuable tools for evaluation of gynecologic tumors. Most papers try to compare these techniques, but in our experience both are complementary in management of these patients. Meanwhile PET-CT is superior in diagnosis of ganglionar disease; fMRI presents higher accuracy in local preoperative staging. Both techniques can be used as biomarkers of tumor response and present high accuracy in diagnosis of local recurrence and peritoneal dissemination, with complementary roles depending on histological type, anatomic location and tumoral volume.

  10. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: Evidence from resting-state fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: will.zhang.1111@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Liu, Xianjun, E-mail: xianjun6.liu@gmail.com [Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Zhang, Yi, E-mail: yi.zhang.0833@gmail.com [Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Song, Lingheng, E-mail: songlh1023@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Hou, Jingming, E-mail: jingminghou@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Chen, Bing, E-mail: chenbing3@medmail.com.cn [Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); He, Mei, E-mail: sunnusunny0105@gmail.com [Department of Clinical Psychology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cai, Ping, E-mail: pingc_ddd@sina.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Lii, Haitao, E-mail: haitaolii023@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2014-10-15

    Objective: The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Methods: Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Results: Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Conclusion: Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism.

  11. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: Evidence from resting-state fMRI

    International Nuclear Information System (INIS)

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-01-01

    Objective: The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Methods: Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Results: Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Conclusion: Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism

  12. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    Science.gov (United States)

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators

    International Nuclear Information System (INIS)

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Goldschmidt, Benjamin; Schulz, Volkmar; Gebhardt, Pierre; Salomon, Andre; Kiessling, Fabian

    2015-01-01

    We evaluate the MR compatibility of the Hyperion-II D positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five 22 Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2–4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and

  14. PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators

    Science.gov (United States)

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Salomon, Andre; Kiessling, Fabian; Schulz, Volkmar

    2015-09-01

    We evaluate the MR compatibility of the Hyperion-IID positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five 22Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2-4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and the

  15. Analyzing the association between functional connectivity of the brain and intellectual performance

    Science.gov (United States)

    Pamplona, Gustavo S. P.; Santos Neto, Gérson S.; Rosset, Sara R. E.; Rogers, Baxter P.; Salmon, Carlos E. G.

    2015-01-01

    Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding. PMID:25713528

  16. Analyzing the association between functional connectivity of the brain and intellectual performance

    Directory of Open Access Journals (Sweden)

    Gustavo Santo Pedro Pamplona

    2015-02-01

    Full Text Available Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  17. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    Science.gov (United States)

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  18. Activation of Visuomotor Systems during Visually Guided Movements: A Functional MRI Study

    Science.gov (United States)

    Ellermann, Jutta M.; Siegal, Joel D.; Strupp, John P.; Ebner, Timothy J.; Ugurbil, Kâmil

    1998-04-01

    The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico

  19. Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.

    Science.gov (United States)

    Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G

    2016-06-01

    This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (Phamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (Phamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Cerebral networks of sustained attention and working memory: a functional magnetic resonance imaging study based on the Continuous Performance Test.

    Science.gov (United States)

    Bartés-Serrallonga, M; Adan, A; Solé-Casals, J; Caldú, X; Falcón, C; Pérez-Pàmies, M; Bargalló, N; Serra-Grabulosa, J M

    2014-04-01

    One of the most used paradigms in the study of attention is the Continuous Performance Test (CPT). The identical pairs version (CPT-IP) has been widely used to evaluate attention deficits in developmental, neurological and psychiatric disorders. However, the specific locations and the relative distribution of brain activation in networks identified with functional imaging, varies significantly with differences in task design. To design a task to evaluate sustained attention using functional magnetic resonance imaging (fMRI), and thus to provide data for research concerned with the role of these functions. Forty right-handed, healthy students (50% women; age range: 18-25 years) were recruited. A CPT-IP implemented as a block design was used to assess sustained attention during the fMRI session. The behavioural results from the CPT-IP task showed a good performance in all subjects, higher than 80% of hits. fMRI results showed that the used CPT-IP task activates a network of frontal, parietal and occipital areas, and that these are related to executive and attentional functions. In relation to the use of the CPT to study of attention and working memory, this task provides normative data in healthy adults, and it could be useful to evaluate disorders which have attentional and working memory deficits.

  1. Infinite Relational Modeling of Functional Connectivity in Resting State fMRI

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer H.; Dogonowski, Anne Marie

    2010-01-01

    Functional magnetic resonance imaging (fMRI) can be applied to study the functional connectivity of the neural elements which form complex network at a whole brain level. Most analyses of functional resting state networks (RSN) have been based on the analysis of correlation between the temporal...... dynamics of various regions of the brain. While these models can identify coherently behaving groups in terms of correlation they give little insight into how these groups interact. In this paper we take a different view on the analysis of functional resting state networks. Starting from the definition...... of resting state as functional coherent groups we search for functional units of the brain that communicate with other parts of the brain in a coherent manner as measured by mutual information. We use the infinite relational model (IRM) to quantify functional coherent groups of resting state networks...

  2. Evaluation of muscle MRI in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Baba, Yuri; Kuroiwa, Yoshiyuki

    2005-01-01

    Various objective measurements can be used to diagnose amyotrophic lateral sclerosis (ALS). T2-weighted brain MRI images revealed high signal areas at the posterior limb of the internal capsules in ALS patients. Recently, muscle MRI proved useful to evaluate abnormalities of the muscle in myositis patients. Therefore, in the present study, we examined muscle MRI of leg muscles in ALS patients, and correlated MRI with functional measurements, such as muscle strength, and compound muscle action potential amplitude of the tibialis anterior (TA) after stimulation of the peroneal nerve. The subjects consisted of 10 ALS patients (7 males and 3 females), ranging in age from 49 to 87. Neurologic symptoms at the onset of ALS consisted of bulbar dysfunction in one patient, upper extremity involvement in three patients, and lower extremity involvement in six patients. Muscle MRI of the legs was performed in 9 (ALS patients. A peripheral nerve conduction study was performed on the peroneal nerve, with the recording electrode over the TA. The T2-weighted muscle MRI images revealed high signal aeras in the muscle in six ALS patients, whose muscle weakness existed predominantly in the lower extremities. Extracellular fluid accumulation has been proposed to be responsible for the signal increase of denervated muscles on T2-weighted muscle MRI images. We assume that muscle MRI is useful to demonstrate the distribution of muscle involvement in ALS patients and to assess the disease's stage. (author)

  3. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

    Science.gov (United States)

    Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod

    2017-07-15

    There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal

  4. Study of human brain functions by functional magnetic resonance imaging (fMRI) and spectroscopy (fMRS)

    International Nuclear Information System (INIS)

    Jagannathan, N.R.

    1998-01-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool in the detection and assessment of cerebral pathophysiology and the regional mapping and characterization of cognitive processes such as motor skills, vision, language and memory. The results of the effect of motor cortex stimulation during repetitive hand squeezing task activation using in-vivo single voxel NMR spectroscopy carried out on normal volunteer subjects are presented

  5. Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task

    International Nuclear Information System (INIS)

    Aso, Toshihiko; Urayama, Shin-ichi; Fukuyama, Hidenao; Le Bihan, Denis

    2013-01-01

    Diffusion-weighted functional MRI (DfMRI) has been reported to have a different response pattern in the visual cortex than that of BOLD-fMRI. Especially, the DfMRI signal shows a constantly faster response at both onset and offset of the stimulus, suggesting that the DfMRI signal might be more directly linked to neuronal events than the hemodynamic response. However, because the DfMRI response also contains a residual sensitivity to BOLD this hypothesis has been challenged. Using a verbal working memory task we show that the DfMRI time-course features are preserved outside visual cortices, but also less liable to between-subject/between-regional variation than the BOLD response. The overall findings not only support the feasibility of DfMRI as an approach for functional brain imaging, but also strengthen the uniqueness of the DfMRI signal origin. (authors)

  6. MRI of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Kauczor, Hans-Ulrich (ed.) [University Clinic Heidelberg (Germany). Diagnostic and Interventional Radiology

    2009-07-01

    For a long time, only chest X-ray and CT were used to image lung structure, while nuclear medicine was employed to assess lung function. During the past decade significant developments have been achieved in the field of magnetic resonance imaging (MRI), enabling MRI to enter the clinical arena of chest imaging. Standard protocols can now be implemented on up-to-date scanners, allowing MRI to be used as a first-line imaging modality for various lung diseases, including cystic fibrosis, pulmonary hypertension and even lung cancer. The diagnostic benefits stem from the ability of MRI to visualize changes in lung structure while simultaneously imaging different aspects of lung function, such as perfusion, respiratory motion, ventilation and gas exchange. On this basis, novel quantitative surrogates for lung function can be obtained. This book provides a comprehensive overview of how to use MRI for imaging of lung disease. Special emphasis is placed on benign diseases requiring regular monitoring, given that it is patients with these diseases who derive the greatest benefit from the avoidance of ionizing radiation. (orig.)

  7. Association between MRI-defined osteoarthritis, pain, function and strength 3-10 years following knee joint injury in youth sport.

    Science.gov (United States)

    Whittaker, Jackie L; Toomey, Clodagh M; Woodhouse, Linda J; Jaremko, Jacob L; Nettel-Aguirre, Alberto; Emery, Carolyn A

    2017-10-10

    Youth and young adults who participate in sport have an increased risk of knee injury and subsequent osteoarthritis. Improved understanding of the relationship between structural and clinical outcomes postinjury could inform targeted osteoarthritis prevention interventions. This secondary analysis examines the association between MRI-defined osteoarthritis and self-reported and functional outcomes, 3-10 years following youth sport-related knee injury in comparison to healthy controls. Participants included a subsample (n=146) of the Alberta Youth Prevention of Early Osteoarthritis cohort: specifically, 73 individuals with 3-10 years history of sport-related intra-articular knee injury and 73 age-matched, sex-matched and sport-matched controls with completed MRI studies. Outcomes included: MRI-defined osteoarthritis, radiographic osteoarthritis, Knee Injury and Osteoarthritis Outcome Score, Intermittent and Constant Osteoarthritis Pain, knee extensor/flexor strength, triple-hop and Y-balance test. Descriptive statistics and univariate logistic regression were used to compare those with and without MRI-defined osteoarthritis. Associations between MRI-defined osteoarthritis and each outcome were assessed using multivariable linear regression considering the influence of injury history, sex, body mass index and time since injury. Participant median age was 23 years (range 15-27), and 63% were female. MRI-defined osteoarthritis varied by injury history, injury type and surgical history and was not isolated to participants with ACL and/or meniscal injuries. Those with a previous knee injury had 10-fold (95% CI 2.3 to 42.8) greater odds of MRI-defined osteoarthritis than uninjured participants. MRI-defined osteoarthritis was independently significantly associated with quality of life, but not symptoms, strength or function. MRI-detected structural changes 3-10 years following youth sport-related knee injury may not dictate clinical symptomatology, strength or function

  8. Update on the MRI Core of the Alzheimer's Disease Neuroimaging Initiative

    Science.gov (United States)

    Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; DeCarli, Charles S; Dale, Anders M; Weiner, Michael W

    2010-01-01

    Functions of the ADNI MRI core fall into three categories: (1) those of the central MRI core lab at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data, and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2”, if funded) MRI protocol will be to maintain MRI methodological consistency in previously enrolled “ADNI-1” subjects who are followed longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor specific pilot sub-studies of arterial spin labeling perfusion, resting state functional connectivity and diffusion tensor imaging. One each of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multi-center (but single vendor) setting for these three emerging MRI applications. PMID:20451869

  9. Assessment of muscle function using hybrid PET/MRI

    DEFF Research Database (Denmark)

    Haddock, Bryan; Holm, Søren; Poulsen, Jákup M.

    2017-01-01

    -FDG while activating the quadriceps of one leg with repeated knee extension exercises followed by hand-grip exercises for one arm. Immediately following the exercises, the subjects were scanned simultaneously with 18F-FDG PET/MRI and muscle groups were evaluated for increases in 18F-FDG uptake and MRI T2......Purpose: The aim of this study was to determine the relationship between relative glucose uptake and MRI T2 changes in skeletal muscles following resistance exercise using simultaneous PET/MRI scans. Methods: Ten young healthy recreationally active men (age 21 – 28 years) were injected with 18F...... values. Results: A significant linear correlation between 18F-FDG uptake and changes in muscle T2 (R2 = 0.71) was found. for both small and large muscles and in voxel to voxel comparisons. Despite large intersubject differences in muscle recruitment, the linear correlation between 18F-FDG uptake...

  10. MRI of plants and foods

    Science.gov (United States)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  11. FDG whole-body PET/MRI in oncology: A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Woo [Dept. of Nuclear Medicine, Soonchunhyang University Hospital, Cheonan (Korea, Republic of); Becker, Ann-Katharina [Rheinisch Westfalische Technische Hochschule Aachen University, Aachen (Germany); Goo, Jin Mo; Cheon, Gi Jeong [Seoul National University, College of Medicine,Seoul (Korea, Republic of)

    2017-03-15

    The recent advance in hybrid imaging techniques enables offering simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) in various clinical fields. 18F-fluorodeoxyglucose (FDG) PET has been widely used for diagnosis and evaluation of oncologic patients. The growing evidence from research and clinical experiences demonstrated that PET/MRI with FDG can provide comparable or superior diagnostic performance more than conventional radiological imaging such as computed tomography (CT), MRI or PET/CT in various cancers. Combined analysis using structural information and functional/molecular information of tumors can draw additional diagnostic information based on PET/MRI. Further studies including determination of the diagnostic efficacy, optimizing the examination protocol, and analysis of the hybrid imaging results is necessary for extending the FDG PET/MRI application in clinical oncology.

  12. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training.

    Science.gov (United States)

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-Ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8-10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.

  13. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training

    Directory of Open Access Journals (Sweden)

    Masako Yoshida

    2014-01-01

    Full Text Available To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP who acquired improved reading capability by eye-movement training (EMT, we performed functional magnetic resonance imaging (fMRI before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8–10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning, visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05. After EMT, increased activity was observed in the frontal eye fields (FEFs of all patients; however, increases in the activity of the parietal eye fields (PEFs were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.

  14. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS

  15. Performance of gadofosveset-enhanced MRI for staging rectal cancer nodes: can the initial promising results be reproduced?

    Energy Technology Data Exchange (ETDEWEB)

    Heijnen, Luc A.; Martens, Milou H. [Maastricht University Medical Center, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University Medical Center, Department of Surgery, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Lambregts, Doenja M.J.; Maas, Monique; Bakers, Frans C.H. [Maastricht University Medical Center, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Cappendijk, Vincent C. [Jeroen Bosch Ziekenhuis, Department of Radiology, ' s Hertogenbosch (Netherlands); Oliveira, Pedro [Instituto Portugues de Oncologia do Porto Francisco Gentil, Department of Radiology, Porto (Portugal); Lammering, Guido [Maastro Clinic, Radiation Oncology, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Riedl, Robert G. [Maastricht University Medical Center, Department of Pathology, Maastricht (Netherlands); Beets, Geerard L. [Maastricht University Medical Center, Department of Surgery, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Beets-Tan, Regina G.H. [Maastricht University Medical Center, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands)

    2014-02-15

    A previous study showed promising results for gadofosveset-trisodium as a lymph node magnetic resonance imaging (MRI) contrast agent in rectal cancer. The aim of this study was to prospectively confirm the diagnostic performance of gadofosveset MRI for nodal (re)staging in rectal cancer in a second patient cohort. Seventy-one rectal cancer patients were prospectively included, of whom 13 (group I) underwent a primary staging gadofosveset MRI (1.5-T) followed by surgery (± preoperative 5 x 5 Gy) and 58 (group II) underwent both primary staging and restaging gadofosveset MRI after a long course of chemoradiotherapy followed by surgery. Nodal status was scored as (y)cN0 or (y)cN+ by two independent readers (R1, R2) with different experience levels. Results were correlated with histology on a node-by-node basis. Sensitivity, specificity and area under the receiver operating characteristics curve (AUC) were 94 %, 79 % and 0.89 for the more experienced R1 and 50 %, 83 % and 0.74 for the non-experienced R2. R2's performance improved considerably after a learning curve, to an AUC of 0.83. Misinterpretations mainly occurred in nodes located in the superior mesorectum, nodes located in between vessels and nodes containing micrometastases. This prospective study confirms the good diagnostic performance of gadofosveset MRI for nodal (re)staging in rectal cancer. (orig.)

  16. MRI in ischemic heart disease

    International Nuclear Information System (INIS)

    Hazirolan, T.

    2012-01-01

    Full text: The role of magnetic resonance imaging in the evaluation of ischemic heart disease has increased over the last years. Cardiac MRI is the only imaging modality that provides 'one stop shop' assessment. Information about ventricular function, myocardial ischemia and myocardial viability can be obtained in a single cardiac MRI session. Additionally, Cardiac MRI has become a gold standard method in evaluation of myocardial viability and in assessment of ventricular mass and function. As a result, cardiac MRI enable radiologist to comprehensively assess ischemic heart disease. The aim of this presentation is to provide the reader a state-of-the art on how the newest cardiac MRI techniques can be used to study ischemic heart disease patients.

  17. Altered Long- and Short-Range Functional Connectivity in Patients with Betel Quid Dependence: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2016-12-01

    Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.

  18. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    Science.gov (United States)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  19. Presurgical mapping with functional MRI. Comparative study with transcranial magnetic stimulation and intraoperative mapping

    Energy Technology Data Exchange (ETDEWEB)

    Kaminogo, Makio; Morikawa, Minoru; Ishimaru, Hideki; Ochi, Makoto; Onizuka, Masanori; Shirakawa, Yasushi; Takahashi, Haruki; Shibata, Shobu [Nagasaki Univ. (Japan). School of Medicine

    1999-05-01

    The thumb movement was evoked by transcranical magnetic stimulation (TCS) for the mapping of the motor cortex. After the placement of the marker determined by TCS on the scalp, fMRI under motor tasks consisting of repetitive grasping was performed. For motor cortex activation, an axial oblique plane to maximize gray matter sampling in the rolandic cortex was employed in order to compare these different mapping techniques more precisely. Sixteen patients with brain tumors were included in this study. In nine patients, fMRI disclosed activation in one restricted gyrus or in the localized area around one restricted sulcus. Of these nine patients, preoperative TCS mapping corresponded closely with fMRI in six, while in the remaining three, the TCS marker fell between 1 and 2 cm apart from the fMRI-activated area. However, in these three patients, intraoperative electrocortical stimulation corresponded with the preoperative mapping with fMRI. In six patients, contiguous two gyri were activated by motor tasks. The TCS marker was disclosed on one of the two activated gyri. Of these six patients, the position of the TCS marker and fMRI-activated site corresponded with each other in four cases. They were found on the same gyrus but there was 1.0-2.0 cm distance between them in two cases. Intraoperative somatosensory evoked potential was monitored in two of these six cases. They corresponded well with the mapping by fMRI and TCS together. In only one patient, no significant activation area was obtained by fMRI because of excessive head motion during motor tasks. The TCS maker in this patients was identical with intraoperative electro-cortical stimulation mapping. (K.H.)

  20. Presurgical mapping with functional MRI. Comparative study with transcranial magnetic stimulation and intraoperative mapping

    International Nuclear Information System (INIS)

    Kaminogo, Makio; Morikawa, Minoru; Ishimaru, Hideki; Ochi, Makoto; Onizuka, Masanori; Shirakawa, Yasushi; Takahashi, Haruki; Shibata, Shobu

    1999-01-01

    The thumb movement was evoked by transcranical magnetic stimulation (TCS) for the mapping of the motor cortex. After the placement of the marker determined by TCS on the scalp, fMRI under motor tasks consisting of repetitive grasping was performed. For motor cortex activation, an axial oblique plane to maximize gray matter sampling in the rolandic cortex was employed in order to compare these different mapping techniques more precisely. Sixteen patients with brain tumors were included in this study. In nine patients, fMRI disclosed activation in one restricted gyrus or in the localized area around one restricted sulcus. Of these nine patients, preoperative TCS mapping corresponded closely with fMRI in six, while in the remaining three, the TCS marker fell between 1 and 2 cm apart from the fMRI-activated area. However, in these three patients, intraoperative electrocortical stimulation corresponded with the preoperative mapping with fMRI. In six patients, contiguous two gyri were activated by motor tasks. The TCS marker was disclosed on one of the two activated gyri. Of these six patients, the position of the TCS marker and fMRI-activated site corresponded with each other in four cases. They were found on the same gyrus but there was 1.0-2.0 cm distance between them in two cases. Intraoperative somatosensory evoked potential was monitored in two of these six cases. They corresponded well with the mapping by fMRI and TCS together. In only one patient, no significant activation area was obtained by fMRI because of excessive head motion during motor tasks. The TCS maker in this patients was identical with intraoperative electro-cortical stimulation mapping. (K.H.)

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  2. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    Science.gov (United States)

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  3. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    Science.gov (United States)

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p laterality in children with a high degree of correlation between the two imaging modalities.

  4. Imaging-based evaluation of liver function: comparison of {sup 99m}Tc-mebrofenin hepatobiliary scintigraphy and Gd-EOB-DTPA-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Gebauer, Bernhard [Charite Campus Virchow-Klinikum, Department of Diagnostic and Interventional Radiology, Berlin (Germany); Luedemann, Lutz [Essen University Hospital, Department of Medical Physics, Essen (Germany); Froeling, Vera; Denecke, Timm [Charite Campus Virchow-Klinikum, Department of Diagnostic and Interventional Radiology, Berlin (Germany); Charite Campus Virchow-Klinikum, Department of Nuclear Medicine, Berlin (Germany); Malinowski, Maciej; Stockmann, Martin; Baron, Annekathrin; Seehofer, Daniel [Charite Campus Virchow-Klinikum, Department of General, Visceral and Thoracic Surgery, Berlin (Germany); Prasad, Vikas [Charite Campus Virchow-Klinikum, Department of Nuclear Medicine, Berlin (Germany)

    2015-05-01

    To compare Gd-EOB-enhanced MRI and {sup 99m}Tc-mebrofenin hepatobiliary scintigraphy (HBS) as imaging-based liver function tests for separate evaluation of right (RLL) and left liver lobe (LLL) function. Fourteen patients underwent Gd-EOB-enhanced MRI and {sup 99m}Tc-mebrofenin HBS after portal vein embolization within 24 h. Relative enhancement (RE) and hepatic uptake index (HUI) were determined from MRI; and T{sub max}, T{sub 1/2} and mebrofenin uptake were determined from HBS, all values separately for RLL and LLL. Mebrofenin uptake correlated significantly with HUI and RE for both liver lobes. There was strong correlation of mebrofenin uptake with HUI for RLL (r{sup 2} = 0.802, p = 0.001) and RE for LLL (r{sup 2} = 0.704, p = 0.005) and moderate correlation with HUI for LLL (r{sup 2} = 0.560, p = 0.037) and RE for RLL (r{sup 2} = 0.620, p = 0.018). Correlating the percentage share of RLL function derived from MRI (with HUI) with the percentage of RLL function derived from mebrofenin uptake revealed a strong correlation (r{sup 2} = 0.775, p = 0.002). Both RE and HUI correlate with mebrofenin uptake in HBS. The results suggest that Gd-EOB-enhanced MRI and {sup 99m}Tc-mebrofenin HBS may equally be used to separately determine right and left liver lobe function. (orig.)

  5. Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Tomohide; Fukukura, Yoshihiko; Kamimura, Kiyohisa; Takumi, Koji; Umanodan, Aya; Nakajo, Masayuki [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima City (Japan); Ueno, Shinichi [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Surgical Oncology and Digestive Surgery, Kagoshima City (Japan)

    2014-04-15

    We aimed to develop and assess the efficacy of a liver function index that combines liver enhancement and liver volume to standard liver volume (LV/SLV) ratio on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. In all, 111 patients underwent a Gd-EOB-DTPA-enhanced MRI, including T1 mapping, before and 20 min after Gd-EOB-DTPA administration. We calculated the following Gd-EOB-DTPA-enhanced MRI-based liver function indices: relative enhancement of the liver, corrected enhancement of the liver-to-spleen ratio, LSC{sub N}20, increase rate of the liver-to-muscle ratio, reduction rate of T1 relaxation time of the liver, ΔR1 of the liver and K{sub Hep}; the indices were multiplied by the LV/SLV ratio. We calculated the correlations between an indocyanine green (ICG) clearance and the Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio, by using Pearson correlation analysis. There were significant correlations between all Gd-EOB-DTPA-enhanced MRI-based liver function indices and ICG clearance (r = -0.354 to -0.574, P < 0.001). All Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio (r = -0.394 to -0.700, P < 0.001) were more strongly correlated with the ICG clearance than those without multiplication by the LV/SLV ratio. Gd-EOB-DTPA-enhanced MRI-based liver function indices that combine liver enhancement and the LV/SLV ratio may more reliably estimate liver function. (orig.)

  6. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Noorman, Nils; de Graaf, Wolter L.; Hoerr, Verena; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously

  7. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  8. Self-gated golden angle spiral cine MRI for coronary endothelial function assessment.

    Science.gov (United States)

    Bonanno, Gabriele; Hays, Allison G; Weiss, Robert G; Schär, Michael

    2018-08-01

    Depressed coronary endothelial function (CEF) is a marker for atherosclerotic disease, an independent predictor of cardiovascular events, and can be quantified non-invasively with ECG-triggered spiral cine MRI combined with isometric handgrip exercise (IHE). However, MRI-CEF measures can be hindered by faulty ECG-triggering, leading to prolonged breath-holds and degraded image quality. Here, a self-gated golden angle spiral method (SG-GA) is proposed to eliminate the need for ECG during cine MRI. SG-GA was tested against retrospectively ECG-gated golden angle spiral MRI (ECG-GA) and gold-standard ECG-triggered spiral cine MRI (ECG-STD) in 10 healthy volunteers. CEF data were obtained from cross-sectional images of the proximal right and left coronary arteries in a 3T scanner. Self-gating heart rates were compared to those from simultaneous ECG-gating. Coronary vessel sharpness and cross-sectional area (CSA) change with IHE were compared among the 3 methods. Self-gating precision, accuracy, and correlation-coefficient were 7.7 ± 0.5 ms, 9.1 ± 0.7 ms, and 0.93 ± 0.01, respectively (mean ± standard error). Vessel sharpness by SG-GA was equal or higher than ECG-STD (rest: 63.0 ± 1.7% vs. 61.3 ± 1.3%; exercise: 62.6 ± 1.3% vs. 56.7 ± 1.6%, P < 0.05). CSA changes were in agreement among the 3 methods (ECG-STD = 8.7 ± 4.0%, ECG-GA = 9.6 ± 3.1%, SG-GA = 9.1 ± 3.5%, P = not significant). CEF measures can be obtained with the proposed self-gated high-quality cine MRI method even when ECG is faulty or not available. Magn Reson Med 80:560-570, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Morphological and functional imaging in COPD with CT and MRI: present and future

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Kauczor, Hans-Ulrich

    2008-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. COPD is defined by irreversible airflow obstruction. It is a heterogeneous disease affecting the airways (i.e. chronic bronchitis, airway collapse), the parenchyma (i.e. hyperinflation, air trapping and emphysematous destruction) as well as the vasculature (i.e. hypoxic vasoconstriction, rarefication and pulmonary arterial hypertension) with different severity during the course of the disease. These different aspects of COPD can be best addressed by imaging using a combination of morphological and functional techniques. Three-dimensional high-resolution computed tomography (3D-HRCT) is the technique of choice for morphological imaging of the lung parenchyma and airways. This morphological information is to be accomplished by functional information about perfusion, regional lung mechanics, and ventilation mainly provided by MRI. The comprehensive diagnostic possibilities of CT complemented by MRI will allow for a more sensitive detection, phenotype-driven characterization and dedicated therapy monitoring of COPD as presented in this review. (orig.)

  10. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    Science.gov (United States)

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  11. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Catalano, Onofrio Antonio; Daye, Dania; Signore, Alberto; Iannace, Carlo; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Filomena, Mazzeo; Mansi, Luigi; Soricelli, Andrea; Salvatore, Marco; Fuin, Niccolo; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-07-01

    The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.

  12. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI.

    Science.gov (United States)

    Liu, Wenyu; An, Dongmei; Tong, Xin; Niu, Running; Gong, Qiyong; Zhou, Dong

    2017-10-01

    Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Advance MRI for pediatric brain tumors with emphasis on clinical benefits

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Ra, Young Shin [Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of)

    2017-01-15

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

  14. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    Science.gov (United States)

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  15. Functional MRI study of the brain with malformations of cortical development

    International Nuclear Information System (INIS)

    Zhang Lei; Zhou Wenjing; Jin Zhen; Li Ke; Zhang Chaoli

    2012-01-01

    Objective: To explore the patterns of motor and linguistic activation in cortical and its correlations with abnormal gray matter in patients with malformations of cortical development (MCD) and epilepsy. Methods: Seven MCD patients with epilepsy (2 patients with focal cortical dysplasia, 2 heterotopia, 2 schizencephaly, and 1 polymicrogyria) underwent blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) in a 3 T MR scanner when practicing bilateral fingers tapping,toes twisting, verb generation, and picture naming.Functional images were post-processed by using SPM 5 software based on a general linear model (GLM) to generate activations above a uniform threshold with the cluster size (≥30 voxels, P<0.001 corrected). The activations were recognized and classified by two experienced neuroradiologists, and then compared with that in abnormal gray matter. Results: The clusters and intensities of motor activations were mainly located in the sensormotor cortex (SMC) and premotor area (PMA). In linguistic tasks, activations produced by verb generation were found in language-associated cortical regions and PMA with higher activation in Wernicke area, picture naming significantly in the visual cortex, and language in Broca area. Combination of the two linguistic tasks produced significant clusters and intensities in language cortex. For MCD patients with abnormal cortical abnormalities, motor and language task could produce neuronal activities within normal as well as abnormal cortex regions. In 6 patients who underwent respective surgery, epileptic seizures decreased significantly, and the follow-up images demonstrated no new neurological dysfunctions and cognitive impairments. Conclusions: fMRI can visualize neuronal activities in patients with MCD and epilepsy and demonstrate the motor and linguistic activations occurring in normal and abnormal gray matter. It should be cautious for surgery in patient with MCD and epilepsy. (authors)

  16. Evaluation of highly accelerated real-time cardiac cine MRI in tachycardia.

    Science.gov (United States)

    Bassett, Elwin C; Kholmovski, Eugene G; Wilson, Brent D; DiBella, Edward V R; Dosdall, Derek J; Ranjan, Ravi; McGann, Christopher J; Kim, Daniel

    2014-02-01

    Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI

  17. Priming Hand Motor Training with Repetitive Stimulation of the Fingertips; Performance Gain and Functional Imaging of Training Effects.

    Science.gov (United States)

    Lotze, Martin; Ladda, Aija Marie; Roschka, Sybille; Platz, Thomas; Dinse, Hubert R

    Application of repetitive electrical stimulation (rES) of the fingers has been shown to improve tactile perception and sensorimotor performance in healthy individuals. To increase motor performance by priming the effects of active motor training (arm ability training; AAT) using rES. We compared the performance gain for the training increase of the averaged AAT tasks of both hands in two groups of strongly right-handed healthy volunteers. Functional Magnetic Resonance Imaging (fMRI) before and after AAT was assessed using three tasks for each hand separately: finger sequence tapping, visually guided grip force modulation, and writing. Performance during fMRI was controlled for preciseness and frequency. A total of 30 participants underwent a two-week unilateral left hand AAT, 15 participants with 20 minutes of rES priming of all fingertips of the trained hand, and 15 participants without rES priming. rES-primed AAT improved the trained left-hand performance across all training tasks on average by 32.9%, non-primed AAT improved by 29.5%. This gain in AAT performance with rES priming was predominantly driven by an increased finger tapping velocity. Functional imaging showed comparable changes for both training groups over time. Across all participants, improved AAT performance was associated with a higher contralateral primary somatosensory cortex (S1) fMRI activation magnitude during the grip force modulation task. This study highlights the importance of S1 for hand motor training gain. In addition, it suggests the usage of rES of the fingertips for priming active hand motor training. Copyright © 2016 Elsevier Inc. All rights reserved.