WorldWideScience

Sample records for performance instrument pt-cpi

  1. Proses Pengolahan dan Kualitas Air Minum di Kompleks Perumahan Karyawan PT. Chevron Pacific Indonesia (PT. CPI) Duri-Riau Tahun 2014

    OpenAIRE

    Yulianty, Mia; naria, evi; dharma, surya

    2014-01-01

    Water is one of the important matter after the air, nobody can life without drinking until 4-5 days. Drinking water which is not qualified, can resulting disease or even death. Water treatment can prevents disease and resulting qualified drinking water. PT. Chevron Pacific Indonesia (PT. CPI) is one of the companies which has a water treating plant to makes drinking water from raw water The purpose of this research is to know the process of water treatment, the quality of raw water after trea...

  2. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  3. Instrument performance evaluation

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program

  4. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  5. Performing instrumentation and controls upgrades

    International Nuclear Information System (INIS)

    Kessler, F. M.; Connell, T. J.; Ryan, M. P.

    1992-01-01

    I and C upgrades are comprised of a varying range of content, complexity, expansiveness, and criticality. There are common threads in all upgrades which can be simplified by the development of a long term I and C upgrade plan. The development of a such a plan can establish effective ground rules for upgrades, large and small. It can be the basis from which to begin an upgrade evaluation and the standard which is used to compare the degree of compliance of any upgrade regarding the plan or to define the differences from the plan and an individual upgrade. Primary motivation for I and C upgrades are obsolescence and unavailability of spare parts. Numerous other areas of consideration are also involved in an upgrade. Today's technology results in most upgrades largely or totally utilizing digital equipment. The use of digital equipment is fairly new in many I and C applications and requires an elaborate evaluation from functional, qualification, operational, and licensing perspectives as well as others. A well defined upgrade plan developed as a basis for I and C upgrades is a significant start to ensuring an effective upgrade process. Properly developed and implemented, the plan will support I and C upgrade efforts to ensure that the intricacies associated with such tasks eliminate the existing problems which require the upgrade to be performed. The upgrade plan also results in ensuring the maximum benefit from all perspectives of the plant enhancements being carried out and considered for future implementation. Instrumentation and controls aging and replacement are issues of growing importance due to the potential for significant impact on plant operation and efficiency. Obsolescence and unavailability of spare parts are major drivers towards evaluating the cost benefits of upgrading current equipment. In addition to these two primary factors, the advantages of utilizing digital equipment have also become of prime importance when evaluating instrumentation and

  6. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  7. Performance of BATAN-SANS instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Abarrul; Insani, Andon [National Nuclear Energy Agency, P and D Centre for Materials Science and Technology, Serpong (Indonesia)

    2003-03-01

    SANS data from some standard samples have been obtained using BATAN-SANS instrument in Serpong. The experiments were performed for various experimental set-ups that involve different detector positions and collimator lengths. This paper describes the BATAN-SANS instrument briefly as well as the data taken from those experiments and followed with discussion of the results concerning the performance and calibration of the instrument. The standard samples utilized in these experiments include porous silica, polystyrene-poly isoprene, silver behenate, poly ball and polystyrene-poly (ethylene-alt-propylene). Even though the results show that BATAN-SANS instrument is in good shape, but rooms for improvements are still widely open especially for the velocity selector and its control system. (author)

  8. PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION

    International Nuclear Information System (INIS)

    N.T. Raczka

    2000-01-01

    The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring

  9. Cassini radar: Instrument description and performance status

    Science.gov (United States)

    Johnson, W. T. K.; Im, E.; Borgarelli, L.; ZampoliniFaustini, E.

    1995-01-01

    The spacecraft of the Cassini mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the most relevant mission requirements.

  10. Instrumentation Performance during the TMI-2 Accident

    International Nuclear Information System (INIS)

    Rempe, Joy L.; Knudson, Darrell L.

    2013-06-01

    The accident at the Three Mile Island Unit 2 (TMI- 2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focused upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this paper. As noted within this paper, several techniques were invoked in the TMI-2 post-accident program to evaluate sensor survivability status and data qualification, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this paper provides recommendations related to sensor survivability and the data evaluation process that could be implemented in upcoming Fukushima Daiichi recovery efforts. (authors)

  11. Applying neural networks to optimize instrumentation performance

    Energy Technology Data Exchange (ETDEWEB)

    Start, S.E.; Peters, G.G.

    1995-06-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate.

  12. Applying neural networks to optimize instrumentation performance

    International Nuclear Information System (INIS)

    Start, S.E.; Peters, G.G.

    1995-01-01

    Well calibrated instrumentation is essential in providing meaningful information about the status of a plant. Signals from plant instrumentation frequently have inherent non-linearities, may be affected by environmental conditions and can therefore cause calibration difficulties for the people who maintain them. Two neural network approaches are described in this paper for improving the accuracy of a non-linear, temperature sensitive level probe ised in Expermental Breeder Reactor II (EBR-II) that was difficult to calibrate

  13. Counselor Competence, Performance Assessment, and Program Evaluation: Using Psychometric Instruments

    Science.gov (United States)

    Tate, Kevin A.; Bloom, Margaret L.; Tassara, Marcel H.; Caperton, William

    2014-01-01

    Psychometric instruments have been underutilized by counselor educators in performance assessment and program evaluation efforts. As such, we conducted a review of the literature that revealed 41 instruments fit for such efforts. We described and critiqued these instruments along four dimensions--"Target Domain," "Format,"…

  14. High-Performance Operational and Instrumentation Amplifiers

    NARCIS (Netherlands)

    Shahi, B.

    2015-01-01

    This thesis describes techniques to reduce the offset error in precision instrumentation and operational amplifiers. The offset error which is considered a major error source associated with gain blocks, together with other errors are reviewed. Conventional and newer approaches to remove offset and

  15. Practical implications of neutron survey instrument performance

    International Nuclear Information System (INIS)

    Tanner, R. J.; Bartlett, D. T.; Hager, I. G.; Jones, I. N.; Molinos, C.; Roberts, N. J.; Taylor, G. C.; Thomas, D. J.

    2004-01-01

    Improvements have been made to the Monte Carlo modelling used to calculate the response of the neutron survey instruments most commonly used in the UK, for neutron energies up to 20 MeV. The improved modelling of the devices includes the electronics and battery pack, allowing better calculations of both the energy and angle dependence of response. These data are used to calculate the response of the instruments in rotationally and fully isotropic, as well as unidirectional fields. Experimental measurements with radionuclide sources and monoenergetic neutron fields have been, and continue to be made, to test the calculated response characteristics. The enhancements to the calculations have involved simulation of the sensitivity of the response to variations in instrument manufacture, and will include the influence of the user and floor during measurements. The practical implications of the energy and angle dependence of response, variations in manufacture, and the influence of the user are assessed by folding the response characteristics with workplace energy and direction distributions. (authors)

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  17. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  18. Balanced Scorecard: Organizational performance management instrument

    Directory of Open Access Journals (Sweden)

    Nicoleta CONSTANDACHE

    2015-11-01

    Full Text Available In order to have a successful strategy, a company must set clear strategic objectives, such as: the desired financial performances, a description of its customers, of the internal processes within the company, and of the employees’ abilities, knowledge and competences. To outline a general image of the organizational performance evaluation, we proposed the implementation of the Balanced Scorecard model, which includes five development directions. By implementing this management model within one organization, we can test the effect of some decisions before their implementation by managing some performance and risk key indicators. All these indicators categories pursue the integrated feature through the insurance the companies’ long-term success, both at global and individual level, which supposes both the vertical and horizontal integration.

  19. MODERN INSTRUMENTS FOR MEASURING ORGANIZATIONAL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    RADU CATALINA

    2010-12-01

    Full Text Available Any significant management action can be assessed both in terms of success of immediate goals and as effect of the organization ability to embrace change. Market competition intensifies with the development of Romanian society and its needs. Companies that offer different products and services need to impose certain advantages and to increase their performances. The paper will present modern tools for measuring and evaluating organizational performance, namely: Balanced Scorecard, Deming model and Baldrige model. We also present an example for Balance Scorecard, of an organizations belonging to the cosmetics industry.

  20. Performance and quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Paras, P.

    1981-01-01

    The status and the recent developments of nuclear medicine instrumentation performance, with an emphasis on gamma-camera performance, are discussed as the basis for quality control. New phantoms and techniques for the measurement of gamma-camera performance parameters are introduced and their usefulness for quality control is discussed. Tests and procedures for dose calibrator quality control are included. Also, the principles of quality control, tests, equipment and procedures for each type of instrument are reviewed, and minimum requirements for an effective quality assurance programme for nuclear medicine instrumentation are suggested. (author)

  1. Performance evaluation methods and instrumentation for mine ventilation fans

    Institute of Scientific and Technical Information of China (English)

    LI Man; WANG Xue-rong

    2009-01-01

    Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production, we instituted a research project on the measurement methods of key performance parameters such as wind pressure, amount of ventilation and power. At the end a virtual instrument for mine ventilation fans performance evaluation was developed using a USB interface. The practical perform-ance and analytical results of our experiments show that it is feasible, reliable and effective to use the proposed instrumentation for mine ventilation performance evaluation.

  2. Instrumental performance of an etude after three methods of practice.

    Science.gov (United States)

    Vanden Ark, S

    1997-12-01

    For 80 fifth-grade students three practice conditions (mental, mental with physical simulation, and physical with singing) produced significant mean differences in instrumental performance of an etude. No significant differences were found for traditional, physical practice.

  3. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  4. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  5. Study of the performance of diagnostic radiology instruments during calibration

    International Nuclear Information System (INIS)

    Freitas, Rodrigo N. de; Vivolo, Vitor; Potiens, Maria da Penha A.

    2008-01-01

    Full text: The instruments used in diagnostic radiology measurements represent 8 % of the tested instruments by the calibration laboratory of IPEN annually (approximately 1600 in 2007). Considering that the calibration of this kind of instrument is performed biannually it is possible to conclude that almost 300 instruments are being used to measure the air kerma in diagnostic radiology clinics to determine the in beam values (in front of the patient), attenuated measurements (behind the patient) and scattered radiation. This work presents the results of the calibration of the instruments used in mammography, computed tomography, dental and conventional diagnostic radiology dosimetry, performed during the period of 2005 to 2007. Their performances during the calibrations measurements were evaluated. Although at the calibration laboratory there are three available series of radiation quality to this type of calibration (RQR, N and M, according to standards IEC 61267 and ISO 4037-1.), the applications can be assorted (general radiology, computed tomography, mammography, radiation protection and fluoroscopy). Depending on its design and behaviour , one kind of instrument can be used for one or more type of applications. The instruments normally used for diagnostic radiology measurements are ionization chambers with volumes varying from 3 to 1800 cm 3 , and can be cylindrical, spherical or plane parallel plates kind. They usually are sensitive to photon particles, with energies greater than 15 keV and can be used up to 1200 keV. In this work they were tested in X radiation fields from 25 to 150 kV, in specific qualities depending on the utilization of the instrument. The calibration results of 390 instruments received from 2005 to 2007 were analyzed. About 20 instruments were not able to be calibrated due to bad functioning. The calibration coefficients obtained were between 0.88 and 1.24. The uncertainties were always less than ± 3.6% to instruments used in scattered

  6. Instrument performance and simulation verification of the POLAR detector

    Science.gov (United States)

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.

    2017-11-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.

  7. Assessment of Work Performance (AWP)--development of an instrument.

    Science.gov (United States)

    Sandqvist, Jan L; Törnquist, Kristina B; Henriksson, Chris M

    2006-01-01

    Adequate work assessments are a matter of importance both for individuals and society [5,29,31,38,40,46,52]. However, there is a lack of adequate and reliable instruments for use in work rehabilitation [14,15,20,21,31,44]. The purpose of this study was to develop and evaluate an observation instrument for assessing work performance, the AWP (Assessment of Work Performance). The purpose of the 14-item instrument is to assess the individual's observable working skills in three different areas: motor skills, process skills, and communication and interaction skills. This article describes the development and results of preliminary testing of the AWP. The testing indicates a satisfactory face validity and utility for the AWP and supports further research and testing of the instrument.

  8. Performance tests for instruments measuring radon activity concentration

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Schmidt, V.

    2009-01-01

    Performance tests of electronic instruments measuring the activity concentration of 222 Rn have been carried out with respect to the standard IEC 61577-2. In total, 9 types of instrument operating with ionization chambers or electrostatic collection have been tested for the influence of different climatic and radiological factors on the measurement characteristics. It is concluded that all types of instrument, which are commercially available, are suitable for indoor radon measurements. Because of the dependence on climatic conditions, the outdoor use is partly limited.

  9. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  10. Aversive pavlovian responses affect human instrumental motor performance.

    Science.gov (United States)

    Rigoli, Francesco; Pavone, Enea Francesco; Pezzulo, Giovanni

    2012-01-01

    IN NEUROSCIENCE AND PSYCHOLOGY, AN INFLUENTIAL PERSPECTIVE DISTINGUISHES BETWEEN TWO KINDS OF BEHAVIORAL CONTROL: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology.

  11. Aversive Pavlovian responses affect human instrumental motor performance

    Directory of Open Access Journals (Sweden)

    Francesco eRigoli

    2012-10-01

    Full Text Available In neuroscience and psychology, an influential perspective distinguishes between two kinds of behavioural control: instrumental (habitual and goal-directed and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm, have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioural experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behaviour, and psychopathology.

  12. Development and Validation of the Basketball Offensive Game Performance Instrument

    Science.gov (United States)

    Chen, Weiyun; Hendricks, Kristin; Zhu, Weimo

    2013-01-01

    The purpose of this study was to design and validate the Basketball Offensive Game Performance Instrument (BOGPI) that assesses an individual player's offensive game performance competency in basketball. Twelve physical education teacher education (PETE) students playing two 10-minute, 3 vs. 3 basketball games were videotaped at end of a…

  13. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  14. Efficiency of lung ventilation for people performing wind instruments.

    Science.gov (United States)

    Brzęk, Anna; Famuła, Anna; Kowalczyk, Anna; Plinta, Ryszard

    Wind instruments musicians are particularly prone to excessive respiratory efforts. Prolonged wind instruments performing may lead to changes in respiratory tracts and thus to respiratory muscles overload. It may result in decreasing lung tissue pliability and, as a consequence, in emphysema. Aim of the research has been to describe basic spirometric parameters for wind players and causes of potential changes. Slow and forced spirometry with the use of Micro Lab Viasys (Micro Medical, Great Britain) was conducted on 31 wind musicians (group A). A survey concerning playing time and frequency, weight of instruments, and education on diaphragmatic breathing was conducted. The control group included 34 healthy persons at similar age (group B). The results were statistically described using Excel and Statistica programmes. The respiratory parameters were within the range of physiological norms and forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) exceeded in both groups the values of 100%. Forced vital capacity and expiratory vital capacity (EVC) values were significantly lower in the group of musicians than in the control group (p wind instrument. Spirometric parameters relative to standards may prove a good respiratory capacity. Peak expiratory flow (PEF) and FEV1 may indicate that a proper technique of respiration during performance was acquired. The length of time when performing wind instrument may influence parameters of dynamic spirometry. Med Pr 2016;67(4):427-433. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Multi-Institutional Development of a Mastoidectomy Performance Evaluation Instrument.

    Science.gov (United States)

    Kerwin, Thomas; Hittle, Brad; Stredney, Don; De Boeck, Paul; Wiet, Gregory

    A method for rating surgical performance of a mastoidectomy procedure that is shown to apply universally across teaching institutions has not yet been devised. This work describes the development of a rating instrument created from a multi-institutional consortium. Using a participatory design and a modified Delphi approach, a multi-institutional group of expert otologists constructed a 15-element task-based checklist for evaluating mastoidectomy performance. This instrument was further refined into a 14-element checklist focusing on the concept of safety after using it to rate a large and varied population of performances. Twelve otolaryngological surgical training programs in the United States. A total of 14 surgeons from 12 different institutions took part in the construction of the instrument. By using 14 experts from 12 different institutions and a literature review, individual metrics were identified, rated as to the level of importance and operationally defined to create a rating scale for mastoidectomy performance. Initial use of the rating scale showed modest rater agreement. The operational definitions of individual metrics were modified to emphasize "safe" as opposed to "proper" technique. A second rating instrument was developed based on this feedback. Using a consensus-building approach with multiple rounds of communication between experts is a feasible way to construct a rating instrument for mastoidectomy. Expert opinion alone using a Delphi method provides face and content validity evidence, however, this is not sufficient to develop a universally acceptable rating instrument. A continued process of development and experimentation to demonstrate evidence for reliability and validity making use of a large population of raters and performances is necessary to achieve universal acceptance. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  16. Cassini Radar EQM Model: Instrument Description and Performance Status

    Science.gov (United States)

    Borgarelli, L.; Faustini, E. Zampolini; Im, E.; Johnson, W. T. K.

    1996-01-01

    The spaeccraft of the Cassini Mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the relevant mission requirements.

  17. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  18. DEVELOPING OF INDIVIDUAL INSTRUMENT PERFORMANCE ANXIETY SCALE: VALIDITY - RELIABILITY STUDY

    Directory of Open Access Journals (Sweden)

    Esra DALKIRAN

    2014-07-01

    Full Text Available The purpose of this study is to develop a scale unique to our culture, concerning  individual instrument performance anxiety of the students  who are getting instrument training  in the Department of Music Education. In the study, the descriptive research model is used and qualitative research techniques are utilized. The study population consists of the students attending the 23 universities which has Music Education Department. The sample of the study consists of 438 girls and 312 boys, totally 750 students  who are studying in the Department of Music Education of randomly selected 10 universities. As a result of the explanatory and confirmatory factor analyses that were performed, a one-dimensional structure consisting of 14 items was obtained. Also, t-scores and  the coefficient scores of total item correlation concerning the distinguishing power of the items, the difference in the scores of the set of lower and upper 27% was calculated, and it was observed that the items are distinguishing as a result of both analyses. Of the scale, Cronbach's alpha coefficient of internal consistency was calculated as .94, and test-retest reliability coefficient was calculated as .93. As a result, a valid and reliable assessment and evaluation instrument that measures the exam performance anxiety of the students studying in the Department of Music Education, has been developed.Extended AbstractsIntroductionAnxiety is a universal phenomenon which people experience once or a few times during lives. It was accepted as concern for the future or as an unpleasant emotional experience regarding probable hitches of the events (Di Tomasso & Gosch, 2002.In general, the occasions on which negative feelings are experienced cause anxiety to arise (Baltaş and Baltaş, 2000. People also feel anxious in dangerous situations. Anxiety may lead a person to be creative, while it may have hindering characteristics. Anxiety is that an individual considers him

  19. Sentinel-5 instrument: status of design, performance, and development

    Science.gov (United States)

    Gühne, T.; Keim, C.; Bartsch, P.; Weiß, S.; Melf, M.; Seefelder, W.

    2017-09-01

    The Sentinel-5 instrument is currently under development by a consortium led by Airbus Defence and Space in the frame of the European Union Copernicus program. It is a customer furnished item to the MetOp Second Generation satellite platform, which will provide operational meteorological data for the coming decades. Mission objective of the Sentinel-5 is to monitor the composition of the Earth atmosphere for Copernicus Atmosphere Services by taking measurements of trace gases and aerosols impacting air quality and climate with high resolution and daily global coverage. Therefore the Sentinel-5 provides five dispersive spectrometers covering the UV-VIS (270…500 nm), NIR (685 …773 nm) and SWIR (1590…1675 and 2305…2385 nm) spectral bands with resolutions <=1nm. Spatially the Sentinel-5 provides a 108° field of view with a ground sampling of 7.5 x 7 km2 at Nadir. The development program is post PDR and the build-up of the industrial team is finalised. We report on the instrument architecture and design derived from the driving requirements, the predicted instrument performance, and the general status of the program.

  20. The new rosetta targets observations, simulations and instrument performances

    CERN Document Server

    Epifani, Elena; Palumbo, Pasquale

    2004-01-01

    The Rosetta mission was successfully launched on March 2nd, 2004 for a rendezvous with the short period comet 67PChuryumov-Gerasimenko in 2014 The new baseline mission foresees also a double fly-by with asteroids 21 Lutetia and 2867 Steins, on the way towards the primary target This volume collects papers presented at the workshop on "The NEW Rosetta targets Observations, simulations and instrument performances", held in Capri on October 13-15, 2003 The papers cover the fields of observations of the new Rosetta targets, laboratory experiments and theoretical simulation of cometary processes, and the expected performances of Rosetta experiments Until real operations around 67PChuryumov-Gerasimenko will start in 10 years from now, new astronomical observations, laboratory experiments and theoretical models are required The goals are to increase knowledge about physics and chemistry of comets and to prepare to exploit at best Rosetta data

  1. The BaBar instrumented flux return performance: lessons learned

    CERN Document Server

    Anulli, F; Baldini, R; Band, H R; Bionta, R; Brau, J E; Brigljevic, V; Buzzo, A; Calcaterra, A; Carpinelli, M; Cartaro, C; Cavallo, N; Crosetti, G; De Nardo, Gallieno; De Sangro, R; Eichenbaum, A; Fabozzi, F; Falciai, D; Ferrarotto, F; Ferroni, F; Finocchiaro, G; Forti, F; Frey, R; Gatto, C; Graug; Iakovlev, N I; Iwasaki, M; Johnson, J R; Lange, D J; Lista, L; Lo Vetere, M; Lü, C; Macri, M; Messner, R; Moore, T B; Morganti, S; Neal, H; Neri, N; Palano, A; Paoloni, E; Paolucci, P; Passaggio, S; Pastore, F C; Patteri, P; Peruzzi, I; Piccolo, D; Piccolo, M; Piredda, G; Robutti, E; Roodman, A; Santroni, A; Sciacca, C; Sinev, N B; Soha, A; Strom, D; Tosi, S; Vavra, J; Wisniewski, W J; Wright, D M; Xie, Y; Zallo, A

    2002-01-01

    The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000 m sup 2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.

  2. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  3. pODI at WIYN: Instrument Performance and Upgrade Path

    Science.gov (United States)

    Harbeck, Daniel R.; Boroson, T. A.; Rajagopal, J.; ODI Team; PPA Team

    2013-06-01

    A preliminary version of the WIYN One Degree Imager (ODI) has been commissioned throughout the semester 2012B, and has been put into scientific operation February 2013. ODI was devised to take advantage of the excellent image quality and wide field of view of the WIYN 3.5m telescope. To further improve delivered image quality, ODI uses Orthogonal Transfer Array (OTA) detectors that have the capability to electronically correct for image motion in the detectors during an exposure. The partial ODI (pODI) populates 13 out of the 64 OTAs in the focal plane, and coherent image motion correction is enabled. The 13 OTAs are configured as a 24 x 24 arcminute central “science field”, plus 4 outer OTAs, allowing the sampling of all radii within the one square degree field. Guide star signals from the outer detectors are either directed to the telescope only, or additionally used to calculate a global, coherent shift correction that is sent to the OTAs. The performance of pODI is excellent. Image quality is site seeing limited, and, on good seeing nights, we can achieve images around 0.4 arcsec FWHM over the entire field. We are still in the process of characterizing the gains from active image motion correction, but the detectors perform well in this mode. Data are immediately transferred to an archive at Indiana University, where they are pipeline-processed to remove instrumental signature. In this poster we summarize the current performance of the pODI instrument and outline a path towards a future, expanded version of ODI with a 6x6 central detector array, or a field of view of 48 x 48 arcminutes.

  4. How does Architecture Sound for Different Musical Instrument Performances?

    DEFF Research Database (Denmark)

    Saher, Konca; Rindel, Jens Holger

    2006-01-01

    This paper discusses how consideration of sound _in particular a specific musical instrument_ impacts the design of a room. Properly designed architectural acoustics is fundamental to improve the listening experience of an instrument in rooms in a conservatory. Six discrete instruments (violin, c...... different instruments and the choir experience that could fit into same category of room. For all calculations and the auralizations, a computational model is used: ODEON 7.0....

  5. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  6. Safeguarding the functions and performance of instrumentation and control systems

    International Nuclear Information System (INIS)

    Koehler, M.; Schoerner, O.

    1996-01-01

    Based on an analysis of the existing nuclear power plant control technology, the necessity of providing in the medium-term advanced and future-oriented, digital control system, both for normal operation and for safety-relevant tasks of the reactor and safety control systems. Siemens KWU has been promoting the development, review and marketing of the digital instrumentation and control systems called TELEPERM XS and TELEPERM XP in addition to the measures taken for safeguarding the functions of existing, wired systems. The paper briefly explains the performance and advantages of digital systems and the progress in approval and pioneering of the TELEPERM XS safety control system. Many examples discussed show the diversity of applications of the systems both in new reactor plants and as retrofitting measures, for KWU power plants and those of other manufacturers. (orig.) [de

  7. Performance of the future MOMA GC-ITMS instrument

    Science.gov (United States)

    Grand, Noel; Buch, Arnaud; Veronica, Pinnick; Szopa, Cyril; Danell, Ryan; Van Amerom, Friso H. W.; Glavin, Daniel P.; Freissinet, Caroline; Arevalo, Ricardo; Stalport, Fabien; Getty, Stephanie; Coll, Patrice; Steinninger, Harald; Brinckerhoff, William; Mahaffy, Paul; Goesmann, Fred; Raulin, F.; Goetz, Walter; MOMA Team

    2016-10-01

    The Mars Organic Molecule Analyzer (MOMA) experiment aboard the future ExoMars mission will be the continuation of the SAM expirement aboard the Curiosity rover, with the search for the organic composition of the Mars surface. With ExoMars the sample will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatiles compounds) of the Martian soil MOMA is composed with an UV laser desorption / ionization (LDI) and a pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyze refractory organic compounds and chirality samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]).To optimize and test the performance of the GC-ITMS instrument we have performed several coupling tests campaigns between the GC, providing by the French team (LISA, LATMOS, CentraleSupelec), and the MS, providing by the US team (NASA, GSFC). Last campaign has been done with the ETU models which is similar to the flight model and which include the oven and the taping station providing by the German team (MPS).The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation.

  8. Instrument performance in bone density testing at five Australian centres

    Energy Technology Data Exchange (ETDEWEB)

    Khan, K M; Saul, A; Wark, J D [Royal Melbourne Hospital, Parkville, VIC (Australia). Department of Medicine; Henzell, S L [Charles Gairdner Hospital, Perth, WA (Australia). Department of Endocrinology and Diabetes; Broderick, C [University of NSW, Sydney, NSW (Australia); Prince, R L [University of Western Australia, Perth, WA. (Australia). Department of Medicine; Lomman, J [Bone Densitometry Technologist, Ashford, SA (Australia)

    1997-10-01

    Using a multicentre reliability study the accuracy and short- and long-term precision of dual-energy X-ray absorptiometry (DXA) in vitro was compared on five instruments. Measures were performed using pencil beam mode on four Hologic QDR- 2000 densitometers and one Hologic QDR-1000/W (Hologic Inc, Waltham, MA). Short-term precision of bone mineral density measurement was less than 0.5% for spine phantoms (n= 10 for each centre, mean intrasite coefficient of variation [CV] 0.39{+-}0.09% [SD]) and for hip phantoms (n=10 for each centre, mean intrasite coefficient of variation [CV] 0.34{+-}0.10% [SD]). Between-centre measurement (n=10 for each phantom) of a single spine phantom and a single hip phantom (specified mineral contents - 58.5 g and 38.6 g, respectively) revealed ranges of bone mineral content of 57.7-58.1 g (all-point CV=0.52%) and 37.1-37.8 g (all-point CV=0.70%), respectively. When results from pairs of machines were compared there were statistically different mean BMD results for the majority of the ten possible pairings for both spine and hip measurements. Each study centre measured in vitro stability of phantom BMD measurements over a one year period (n=45-283, median 157 for spine; and n=0-262, median 38, for hip); CVs ranged from 0.38 % to 0.53% for the spine measurements and from 0.38 % to 0.54% for the hip measurements. The mean all-point accuracy of the spine phantom measurements was 99.1% and the hip phantom measurements was 96.7%. It is concluded that across a number of instruments assessed in this study, DXA demonstrates in vitro all-point precision of 0.5% for the spine phantom and 0.7% for the hip phantom. The instrument demonstrates accuracy of greater than 99% at the spine and 96% at the hip (authors). 14 refs., 3 tabs., 4 figs.

  9. Performance specifications for health physics instrumentation: portable instrumentation for use in normal work environments. Part 2. Test results

    International Nuclear Information System (INIS)

    Kenoyer, J.L.; Swinth, K.L.; Stoetzel, G.A.; Selby, J.M.

    1986-09-01

    The Pacific Northwest Laboratory evaluated a draft American National Standards Institute Standard N42.17 (ANSI N42.17) on performance specifications for health physics instrumentation through a project jointly funded by the US Department of Energy and the US Nuclear Regulatory Commission. The evaluation involved testing a representative cross section of instruments against criteria in the standard. This report presents results of the testing program. A brief history of the project is included in the introduction. The instrumentation tested is described in general terms (i.e., types, ranges); however, no direct relationship between the results and a specific instrument model is made in this report. Testing requirements in ANSI N42.17D4, Revision 1 (May 1985) are summarized and the methods by which the tests are performed are discussed. Brief descriptions of the testing equipment are included in the methods section of the report. More detailed information about the draft standard, testing requirements and procedures, and the test equipment is included in ''Performance Specifications for Health Physics Instrumentation - Portable Instrumentation for Use in Normal Work Environments, Part 1: Manual of Testing Procedures.'' Results of testing are given in two formats: test-by-test and instrument-by-instrument. Discussion is included on significant and interesting findings, on comparisons of results from the same type of instruments from same and different manufacturers, and on data grouped by manufacturer. Conclusions are made on the applicability and practicality of the proposed standard and on instrument performance. Changes that have been made to the proposed standard based on findings of the testing program are listed and discussed. 22 refs., 11 figs., 77 tabs

  10. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  11. Verifax: Biometric instruments measuring neuromuscular disorders/performance impairments

    Science.gov (United States)

    Morgenthaler, George W.; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    VeriFax, founded in 1990 by Dr. Ruth Shrairman and Mr. Alex Landau, began operations with the aim of developing a biometric tool for the verification of signatures from a distance. In the course of developing this VeriFax Autograph technology, two other related applications for the technologies under development at VeriFax became apparent. The first application was in the use of biometric measurements as clinical monitoring tools for physicians investigating neuromuscular diseases (embodied in VeriFax's Neuroskill technology). The second application was to evaluate persons with critical skills (e.g., airline pilots, bus drivers) for physical and mental performance impairments caused by stress, physiological disorders, alcohol, drug abuse, etc. (represented by VeriFax's Impairoscope prototype instrument). This last application raised the possibility of using a space-qualified Impairoscope variant to evaluate astronaut performance with respect to the impacts of stress, fatigue, excessive workload, build-up of toxic chemicals within the space habitat, etc. The three applications of VeriFax's patented technology are accomplished by application-specific modifications of the customized VeriFax software. Strong commercial market potentials exist for all three VeriFax technology applications, and market progress will be presented in more detail below.

  12. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  13. Gamma thermometer longevity test: Laguna Verde 2 instruments recent performance

    International Nuclear Information System (INIS)

    Cuevas V, G.; Avila N, A.; Calleros M, G.

    2013-10-01

    This paper is informative of the General Electric Hitachi and Global Nuclear Fuel - Americas are collaboration with Comision Federal de Electricidad in a longevity test of thermocouples as power monitoring devices. The test conclusions will serve for final engineering design in detailing the Automated Fixed In-core Probes for calibration of the Local Power Range Monitors (LPRMs) of the Economic Simplified Boiling Water Reactor. This paper introduces the collaboration description and some recent performance evaluation of the thermocouples that are sensitive to gamma radiation and are known generically as Gamma Thermometers (G T). The G Ts in Laguna Verde 2 are radially located inside six instrumentation tubes in the core and consist of seven thermocouples, four are aligned with the LPRM heights and three are axially located between LPRM heights. The Laguna Verde 2 G T test has become the longest test of thermocouples as power monitoring devices in a BWR industry history and confirms their reliability in terms of time-dependent small noise under steady state reactor conditions and good agreement against Traversing In-core Probes power measurements. (Author)

  14. Gamma thermometer longevity test: Laguna Verde 2 instruments recent performance

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G. [Global Nuclear Fuel, Americas, 3901 Castle Hayne Road, Wilmington, North Carolina (United States); Avila N, A.; Calleros M, G., E-mail: Gabriel.Cuevas-Vivas@gnf.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verda, Carretera Veracruz-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    This paper is informative of the General Electric Hitachi and Global Nuclear Fuel - Americas are collaboration with Comision Federal de Electricidad in a longevity test of thermocouples as power monitoring devices. The test conclusions will serve for final engineering design in detailing the Automated Fixed In-core Probes for calibration of the Local Power Range Monitors (LPRMs) of the Economic Simplified Boiling Water Reactor. This paper introduces the collaboration description and some recent performance evaluation of the thermocouples that are sensitive to gamma radiation and are known generically as Gamma Thermometers (G T). The G Ts in Laguna Verde 2 are radially located inside six instrumentation tubes in the core and consist of seven thermocouples, four are aligned with the LPRM heights and three are axially located between LPRM heights. The Laguna Verde 2 G T test has become the longest test of thermocouples as power monitoring devices in a BWR industry history and confirms their reliability in terms of time-dependent small noise under steady state reactor conditions and good agreement against Traversing In-core Probes power measurements. (Author)

  15. A Universal Motor Performance Test System Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-09-01

    Full Text Available With the development of technology universal motors play a more and more important role in daily life and production, they have been used in increasingly wide field and the requirements increase gradually. How to control the speed and monitor the real-time temperature of motors are key issues. The cost of motor testing system based on traditional technology platform is very high in many reasons. In the paper a universal motor performance test system which based on virtual instrument is provided. The system achieves the precise control of the current motor speed and completes the measurement of real-time temperature of motor bearing support in order to realize the testing of general-purpose motor property. Experimental result shows that the system can work stability in controlling the speed and monitoring the real-time temperature. It has advantages that traditional using of SCM cannot match in speed, stability, cost and accuracy aspects. Besides it is easy to expand and reconfigure.

  16. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  17. Training With Curved Laparoscopic Instruments in Single-Port Setting Improves Performance Using Straight Instruments: A Prospective Randomized Simulation Study.

    Science.gov (United States)

    Lukovich, Peter; Sionov, Valery Ben; Kakucs, Timea

    2016-01-01

    Lately single-port surgery is becoming a widespread procedure, but it is more difficult than conventional laparoscopy owing to the lack of triangulation. Although, these operations are also possible with standard laparoscopic instruments, curved instruments are being developed. The aims of the study were to identify the effect of training on a box trainer in single-port setting on the quality of acquired skills, and transferred with the straight and curved instruments for the basic laparoscopic tasks, and highlight the importance of a special laparoscopic training curriculum. A prospective study on a box trainer in single-port setting was conducted using 2 groups. Each group performed 2 tasks on the box trainer in single-port setting. Group-S used conventional straight laparoscopic instruments, and Group-C used curved laparoscopic instruments. Learning curves were obtained by daily measurements recorded in 7-day sessions. On the last day, the 2 groups changed instruments between each other. 1st Department of Surgery, Semmelweis University of Medicine from Budapest, Hungary, a university teaching hospital. In all, 20 fifth-year medical students were randomized into 2 groups. None of them had any laparoscopic or endoscopic experience. Participation was voluntary. Although Group-S performed all tasks significantly faster than Group-C on the first day, the difference proved to be nonsignificant on the last day. All participants achieved significantly shorter task completion time on the last day than on the first day, regardless of the instrument they used. Group-S showed improvement of 63.5%, and Group-C 69.0% improvement by the end of the session. After swapping the instruments, Group-S reached significantly higher task completion time with curved instruments, whereas Group-C showed further progression of 8.9% with straight instruments. Training with curved instruments in a single-port setting allows for a better acquisition of skills in a shorter period. For this

  18. Authentic Performance in the Instrumental Analysis Laboratory: Building a Visible Spectrophotometer Prototype

    Science.gov (United States)

    Wilson, Mark V.; Wilson, Erin

    2017-01-01

    In this work we describe an authentic performance project for Instrumental Analysis in which students designed, built, and tested spectrophotometers made from simple components. The project addressed basic course content such as instrument design principles, UV-vis spectroscopy, and spectroscopic instrument components as well as skills such as…

  19. Measuring Instruments Control Methodology Performance for Analog Electronics Remote Labs

    Directory of Open Access Journals (Sweden)

    Unai Hernandez-Jayo

    2012-12-01

    Full Text Available This paper presents the work that has been developed in parallel to the VISIR project. The objective of this paper is to present the results of the validations processes that have been carried out to check the control methodology. This method has been developed with the aim of being independent of the instruments of the labs.

  20. Innovation and organisational performance: A critical review of the instruments used to measure organisational performance

    Directory of Open Access Journals (Sweden)

    Tebogo Sethibe

    2016-10-01

    Full Text Available Background: Innovation is recognised as one of the most important determinant of organisational performance. Yet, the results of studies that investigate the relationship between innovation and organisational performance are inconclusive. The inconsistency has been attributed to a number of factors, which include, among others, the measures used to evaluate organisational performance. Aim: This study was set out to identify, categorise and critically analyse the instruments used to assess organisational performance when investigating the relationship between innovation and organisational performance. Setting: The study focuses on all scientific publications reporting on organisational performance, inclusive of both financial and non-financial indicators of performance, and are not limited to any specific country or industry. Methods: The systematic literature review methodology was used to identify studies which investigated the relationship between innovation and organisational performance. Once identified, articles were analysed on the way organisational performance was measured. Classification was done with reference to financial and non-financial indicators, accounting and market-based, as well as objective and subjective measures. Results: The findings show that profitability, sales growth and return on assets (ROA are the most preferred accounting-based financial measures of organisation performance. In addition, Tobin’s Q was found to be the most favoured market-based financial measure of organisational performance. The study further reveals that market share, customer satisfaction and productivity are the most popular non-financial-based measures of organisational performance. Conclusion: The use of measures of organisational performance is often left to the discussion of the researcher, which is not implicitly wrong, but does little to contribute to the body of knowledge on this important topic. Researchers are firstly urged to

  1. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  2. Instrument Performance and Simulation Verification of the POLAR Detector

    OpenAIRE

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.

    2017-01-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induce...

  3. Analysis instruments for the performance of Advanced Practice Nursing.

    Science.gov (United States)

    Sevilla-Guerra, Sonia; Zabalegui, Adelaida

    2017-11-29

    Advanced Practice Nursing has been a reality in the international context for several decades and recently new nursing profiles have been developed in Spain as well that follow this model. The consolidation of these advanced practice roles has also led to of the creation of tools that attempt to define and evaluate their functions. This study aims to identify and explore the existing instruments that enable the domains of Advanced Practice Nursing to be defined. A review of existing international questionnaires and instruments was undertaken, including an analysis of the design process, the domains/dimensions defined, the main results and an exploration of clinimetric properties. Seven studies were analysed but not all proved to be valid, stable or reliable tools. One included tool was able to differentiate between the functions of the general nurse and the advanced practice nurse by the level of activities undertaken within the five domains described. These tools are necessary to evaluate the scope of advanced practice in new nursing roles that correspond to other international models of competencies and practice domains. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  4. Measuring Medical Housestaff Teamwork Performance Using Multiple Direct Observation Instruments: Comparing Apples and Apples.

    Science.gov (United States)

    Weingart, Saul N; Yaghi, Omar; Wetherell, Matthew; Sweeney, Megan

    2018-04-10

    To examine the composition and concordance of existing instruments used to assess medical teams' performance. A trained observer joined 20 internal medicine housestaff teams for morning work rounds at Tufts Medical Center, a 415-bed Boston teaching hospital, from October through December 2015. The observer rated each team's performance using 9 teamwork observation instruments that examined domains including team structure, leadership, situation monitoring, mutual support, and communication. Observations recorded on paper forms were stored electronically. Scores were normalized from 1 (low) to 5 (high) to account for different rating scales. Overall mean scores were calculated and graphed; weighted scores adjusted for the number of items in each teamwork domain. Teamwork scores were analyzed using t-tests, pair-wise correlations, and the Kruskal-Wallis statistic, and team performance was compared across instruments by domain. The 9 tools incorporated 5 major domains, with 5-35 items per instrument for a total of 161 items per observation session. In weighted and unweighted analyses, the overall teamwork performance score for a given team on a given day varied by instrument. While all of the tools identified the same low outlier, high performers on some instruments were low performers on others. Inconsistent scores for a given team across instruments persisted in domain-level analyses. There was substantial variation in the rating of individual teams assessed concurrently by a single observer using multiple instruments. Since existing teamwork observation tools do not yield concordant assessments, researchers should create better tools for measuring teamwork performance.

  5. Development of an instrument for the evaluation of advanced life support performance.

    Science.gov (United States)

    Peltonen, L-M; Peltonen, V; Salanterä, S; Tommila, M

    2017-10-01

    Assessing advanced life support (ALS) competence requires validated instruments. Existing instruments include aspects of technical skills (TS), non-technical skills (NTS) or both, but one instrument for detailed assessment that suits all resuscitation situations is lacking. This study aimed to develop an instrument for the evaluation of the overall ALS performance of the whole team. This instrument development study had four phases. First, we reviewed literature and resuscitation guidelines to explore items to include in the instrument. Thereafter, we interviewed resuscitation team professionals (n = 66), using the critical incident technique, to determine possible additional aspects associated with the performance of ALS. Second, we developed an instrument based on the findings. Third, we used an expert panel (n = 20) to assess the validity of the developed instrument. Finally, we revised the instrument based on the experts' comments and tested it with six experts who evaluated 22 video recorded resuscitations. The final version of the developed instrument had 69 items divided into adherence to guidelines (28 items), clinical decision-making (5 items), workload management (12 items), team behaviour (8 items), information management (6 items), patient integrity and consideration of laymen (4 items) and work routines (6 items). The Cronbach's α values were good, and strong correlations between the overall performance and the instrument were observed. The instrument may be useful for detailed assessment of the team's overall performance, but the numerous items make the use demanding. The instrument is still under development, and more research is needed to determine its psychometric properties. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  7. An Instrumented Glove for Control Audiovisual Elements in Performing Arts

    Directory of Open Access Journals (Sweden)

    Rafael Tavares

    2018-02-01

    Full Text Available The use of cutting-edge technologies such as wearable devices to control reactive audiovisual systems are rarely applied in more conventional stage performances, such as opera performances. This work reports a cross-disciplinary approach for the research and development of the WMTSensorGlove, a data-glove used in an opera performance to control audiovisual elements on stage through gestural movements. A system architecture of the interaction between the wireless wearable device and the different audiovisual systems is presented, taking advantage of the Open Sound Control (OSC protocol. The developed wearable system was used as audiovisual controller in “As sete mulheres de Jeremias Epicentro”, a portuguese opera by Quarteto Contratempus, which was premiered in September 2017.

  8. High-performance instruments in neutron arena of JHP. Preliminary version

    International Nuclear Information System (INIS)

    Furusaka, M.; Itoh, S.; Otomo, T.; Arai, M.

    1996-05-01

    This report is a preliminary report of high-performance instruments in neutron arena of JHP (Japan Hadron Project). This report consists of as follows; neutron intensity of neutron arena, development of neutron sources in neutron arena, experimental devices and instrumentation. (J.P.N.)

  9. The Role of Accompaniment Quality in the Evaluation of Solo Instrumental Performance

    Science.gov (United States)

    Springer, D. Gregory; Silvey, Brian A.

    2018-01-01

    The purpose of this study was to examine the effect of accompaniment quality on the evaluation of solo instrumental performance. Undergraduate instrumental music education majors (N = 71) listened to and evaluated the accuracy and expressivity of six excerpts of Haydn's "Concerto for Trumpet in E-Flat Major," which we created by…

  10. Geostationary Coastal and Air Pollution Events (GEO CAPE) Instrument Performance Study

    Science.gov (United States)

    Mannino, Antonio; Hartman, Kathy R.

    2014-01-01

    The Ultimate objective of the GEO-CAPE 2014 study: Quantify the cost impact of very specific changes in instrument performance! The customer has defined 4 instrument types they are notionally interested in:! FR: Filter Radiometer! WAS: Wide Angle Spectrometer! MSS: Multi Slit Spectrometer! SSS: Single Slit Spectrometer.

  11. Sharp or broad pulse peak for high resolution instruments? Choice of moderator performance

    International Nuclear Information System (INIS)

    Arai, M.; Watanabe, N.; Teshigawara, M.

    2001-01-01

    We demonstrate a concept how we should choose moderator performance to realize required performance for instruments. Neutron burst pulse can be characterized with peak intensity, peak width and tail. Those can be controllable by designing moderator, i.e. material, temperature, shape, decoupling, poisoning and having premoderator. Hence there are large number of variable parameters to be determined. Here we discuss the required moderator performance for some typical examples, i.e. high resolution powder instrument, chopper instrument, high resolution back scattering machine. (author)

  12. Performance of MarSite Multi parameter Borehole Instrumentation

    Science.gov (United States)

    Guralp, Cansun; Tunc, Suleyman; Ozel, Oguz; Meral Ozel, Nurcan; Necmioglu, Ocal

    2017-04-01

    In this paper we present two year results obtained from the integrated multiparameter borehole system at Marsite. The very broad band (VBB) system have been operating since installation in November 2014; one year in a water filled borehole and one year in a dry Borehole. from January 2016. The real time data has been available to the community. The two Borehole environments are compared showing the superior performance of dry borehole environ- ment compared to water filled for a very broad band (VBB) seismometer. The practical considerations applied in both borehole installations are compared and the best borehole practical installation techniques are presented and discussed. The data is also compared with a surface 120 second broad band sensor and the seismic arrays with in MarSite region. The very long term performance, (one year data in a dry hole) of the VBB Borehole seismometer and the Dilatometer will be presented The high frequency performance of the VBB seismometer which extends to 150 Hz and the dilatometer are compared characterizing the results from the dilatometer.

  13. An instrument to perform automated quality assurance and patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Chapple, C.-L.; Faulkner, K.

    1992-01-01

    A computerised method of automatically monitoring tube and generator parameters to perform on-line quality assurance and patient dosimetry has been developed. A microcomputer has been interfaced to a microprocessor controlled X ray generator and dose-area product meter. The instrument prompts the operator to enter details of the examination and projection before an examination is made. The field size and dose-area product are monitored by the instrument. These data, together with information on the tube potential are used to deduce the patient entrance dose and energy imparted. Organ doses are estimated using normalised organ dose data. The accuracy and reproducibility of the instrument were investigated. Doses measured in a Rando phantom were compared with calculations made by the instrument. The instrument will compare various measured quality assurance parameters against their nominal values. The implications of this instrument for both patient dosimetry studies and effective continuous quality assurance are discussed. (author)

  14. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  15. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  16. Reliability and Validity of the Turkish Version of the Job Performance Scale Instrument.

    Science.gov (United States)

    Harmanci Seren, Arzu Kader; Tuna, Rujnan; Eskin Bacaksiz, Feride

    2018-02-01

    Objective measurement of the job performance of nursing staff using valid and reliable instruments is important in the evaluation of healthcare quality. A current, valid, and reliable instrument that specifically measures the performance of nurses is required for this purpose. The aim of this study was to determine the validity and reliability of the Turkish version of the Job Performance Instrument. This study used a methodological design and a sample of 240 nurses working at different units in four hospitals in Istanbul, Turkey. A descriptive data form, the Job Performance Scale, and the Employee Performance Scale were used to collect data. Data were analyzed using IBM SPSS Statistics Version 21.0 and LISREL Version 8.51. On the basis of the data analysis, the instrument was revised. Some items were deleted, and subscales were combined. The Turkish version of the Job Performance Instrument was determined to be valid and reliable to measure the performance of nurses. The instrument is suitable for evaluating current nursing roles.

  17. Assessing the performance of renewable electricity support instruments

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2012-01-01

    The performance of feed-in tariffs and tradable certificates is assessed on criteria of efficacy, efficiency, equity and institutional feasibility. In the early stage of transition to an energy system based entirely on renewable energy supplies, renewable electricity can only thrive if support takes into account the specific technical, economic and political problems which result from embedding this electricity in conventional power systems whose technology, organizational structure, environmental responsibility and general mission differ profoundly from the emerging, renewable-based system. Support schemes need to capture the diversity of power supplies, the variable nature of some renewable supplies, and their different attributes for the purposes of public policy. They must take into account the variety of generators – including small, decentralized generation – emerging in a renewable-based system, and the new relationships between generators and customers. Renewable energy policies need a clear point of reference: because the incumbent power systems are not sustainable they must adapt to the requirements of the renewable ones, not the other way round. Incumbent systems carry the responsibility of paying the transition, something that corresponds best with the polluter pays principle. - Highlights: ► Present power systems must adapt to the requirements of growing renewable ones, not the opposite. ► Well performing support systems capture the diversity of renewable sources and technologies. ► Feed-in Tariffs are superior in addressing the renewables' diversity and in promoting innovation. ► Feed-in Tariffs put transition burdens on incumbents and stimulate independent producers.

  18. A summary of the performance of exposure rate and dose rate instruments contained in instrument evaluation reports NRPB-IE1 to NRPB-IE13

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1979-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report provides a concise summary of measurements of the more important performance characteristics of radiation protection dose rate or exposure rate survey instruments which have been assessed by NRPB as part

  19. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  20. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Directory of Open Access Journals (Sweden)

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  1. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  2. Evaluation of a draft standard on performance specifications for health physics instrumentation: results for environmental tests

    International Nuclear Information System (INIS)

    Kenoyer, J.L.; Swinth, K.L.; Mashburn, K.R.; Selby, J.M.

    1984-06-01

    Draft ANSI Standard N42.17 on performance specifications for health physics instrumentation is currently being evaluated by the Pacific Northwest Laboratory. Evaluation is performed by testing a cross-section of currently available instruments with testing procedures based on specifications of the standard and then determining the degree of conformance to the various elements of the proposed standard. Data will be presented on the performance of a cross-section of beta-gamma survey instruments under various environmental tests. Test results that will be presented include temperature effects, humidity effects, radio frequency (r.f.) susceptibility, ambient pressure effects, vibration effects, and shock effects. Tests performed to date show that most instruments will meet the temperature, humidity, and ambient pressure tests. A large variability is noted among instruments from the same or different vendors. Preliminary r.f. susceptibility tests have shown large artificial responses at some frequencies for specific instruments. The presentation will also include a discussion of procedures used in the testing and weaknesses identified in the proposed standard

  3. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  4. DEVELOPMENT OF PERFORMANCE ASSESSMENT INSTRUMENT FOR NURSES BASED ON WEB IN INPATIENT UNIT

    Directory of Open Access Journals (Sweden)

    Aprilia Nuryanti

    2017-06-01

    Full Text Available Introduction: Performance assessment instrument will be problematic when it is not representative in describing the competency because it is not obvious indicators and inappropriate performance standard to nursing’s task. The purpose of this study is to develop nurses’ performance assessment instrument based on the web from multi sources assessment inpatient unit at SMC Hospital. Methods: This study had two phases. The first phase was an explanatory overview of the performance assessment system using questionnaires completed by 53 respondents of nurses, selected by purposive sampling. Instrument development based on FGD with six decision makers in the hospital. Validity was tested by Pearson Product Moment Correlation and reliability of instrument’s was tested by alpha Cronbach. The second phase was socialization and instrument test to observe the quality of instrument using a questionnaire by 47 respondents and recommendations made by 8 participants of FGD. The samples were selected by purposive sampling technique. Performance assessment system was moderate at 58.49%. All questions which aimed to measure the performance of nurses were valid and reliable. The quality of nurses’ performance assessment instruments based on the web was a good category, which was functionality: 81.60; reliability: 78.16; efficiency: 80.85; usability: 81.70 and portability: 81.70. Results: The result was a web-based assessment format, scoring with Likert scale, resource assessment by the direct supervisor which was a multisource evaluator, the development of performance graph, and confidentiality of data on the database server. Discussion: Recommendations for hospital is to make policy based on the final value of the performance assessment by the supervisor which was multisource feedback and it needs a global writing on a form of performance assessment result.

  5. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    Science.gov (United States)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  6. Measuring Principal Performance: How Rigorous Are Commonly Used Principal Performance Assessment Instruments? A Quality School Leadership Issue Brief

    Science.gov (United States)

    Condon, Christopher; Clifford, Matthew

    2010-01-01

    This brief reviews the publicly available principal assessments and points superintendents and policy makers toward strong instruments to measure principal performance. Specifically, the measures included in this review are expressly intended to evaluate principal performance and have varying degrees of publicly available evidence of psychometric…

  7. Monitoring student attendance, participation, and performance improvement: an instrument and forms.

    Science.gov (United States)

    Kosta, Joanne

    2012-01-01

    When students receive consistent and fair feedback about their behavior, program liability decreases. To help students to have a clearer understanding of minimum program standards and the consequences of substandard performance, the author developed attendance and participation monitoring and performance improvement instruments. The author discusses the tools that address absenteeism, tardiness, unprofessional, and unsafe clinical behaviors among students.

  8. Performance assessment instrument to assess the senior high students' psychomotor for the salt hydrolysis material

    Science.gov (United States)

    Nahadi, Firman, Harry; Yulina, Erlis

    2016-02-01

    The purposes of this study were to develop a performance assessment instrument for assessing the competence of psychomotor high school students on salt hydrolysis concepts. The design used in this study was the Research & Development which consists of three phases: development, testing and application of instruments. Subjects in this study were high school students in class XI science, which amounts to 93 students. In the development phase, seven validators validated 17 tasks instrument. In the test phase, we divided 19 students into three-part different times to conduct performance test in salt hydrolysis lab work and observed by six raters. The first, the second, and the third groups recpectively consist of five, six, and eight students. In the application phase, two raters observed the performance of 74 students in the salt hydrolysis lab work in several times. The results showed that 16 of 17 tasks of performance assessment instrument developed can be stated to be valid with CVR value of 1,00 and 0,714. While, the rest was not valid with CVR value was 0.429, below the critical value (0.622). In the test phase, reliability value of instrument obtained were 0,951 for the five-student group, 0,806 for the six-student group and 0,743 for the eight-student group. From the interviews, teachers strongly agree with the performance instrument developed. They stated that the instrument was feasible to use for maximum number of students were six in a single observation.

  9. Policy Instruments to Improve Energy Performance of Existing Owner Occupied Dwellings

    Directory of Open Access Journals (Sweden)

    Lorraine Colette Murphy

    2016-11-01

    Full Text Available The aim of this thesis is to add knowledge to the role and impact of policy instruments in meeting energy performance ambition in the existing owner occupied housing stock. The focus was instruments available in the Netherlands in 2011 and 2012. These instruments represented the ‘on the ground’ efforts to meet climate change targets and many continue to do so today in the same or slightly altered forms. At international level there is a recognized need to keep global temperatures within the range of 1.5 - 2°C above pre-industrial levels (Carrington, 2016. At European level, the 2020 package contains a series of binding legislation to help the EU meet its more immediate climate and energy targets. 2020 targets include 20% reduction in greenhouse gas emission, 20% of EU energy obtained from renewable sources and 20% improvement in energy efficiency. 2020 targets for the Netherlands are a 20% reduction in greenhouse gas emissions and a 14% increase in energy generation from renewable sources (Vringer et al., 2014. A raft of policies has been produced over the last number of decades from international to local level to orientate action towards targets. At European level the Energy Performance of Buildings Directive (EPBD drives efforts at reducing energy among one of the biggest players, the building sector. By requiring a mandatory certificate at the point of sale and rent of buildings and making regulatory demands on existing buildings the EPBD upped the ante of what could be expected from the building sector, but especially the existing dwelling stock. National governments have already been tackling existing dwellings for decades propelled by the energy crisis and later by climate change policy. Information campaigns, subsidies, energy taxes, energy loans and tailored advice are among the instruments that have been available to homeowners to carry out works on their dwellings to reduce energy consumption. In recent years, the pace of efforts

  10. On-Line Monitoring of Instrument Channel Performance in Nuclear Power Plant Using PEANO

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Hoffmann, Mario; Shankar, Ramesh; Davis, Eddie L.

    2002-01-01

    On-Line monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Industry and EPRI experience at several plants has shown this overall approach to be very effective in identifying instrument channels that are exhibiting degrading or inconsistent performance characteristics. On-Line monitoring of instrument channels provides information about the condition of the monitored channels through accurate, more frequent monitoring of each channel's performance over time. This type of performance monitoring is a methodology that offers an alternate approach to traditional time-directed calibration. On-line monitoring of these channels can provide an assessment of instrument performance and provide a basis for determining when adjustments are necessary. Elimination or reduction of unnecessary field calibrations can reduce associated labor costs, reduce personnel radiation exposure and reduce the potential for miss-calibration. PEANO is a system for on-line calibration monitoring developed in the years 1995-2000 at the Institutt for energiteknikk (IFE), Norway, which makes use of Artificial Intelligence techniques for its purpose. The system has been tested successfully in Europe in off-line tests with EDF (France), Tecnatom (Spain) and ENEA (Italy). PEANO is currently installed and used for on-line monitoring at the HBWR reactor in Halden. This paper describes the results of performance tests on PEANO with real data from a US PWR plant, in the framework of a co-operation among IFE, EPRI and Edan Engineering, to evaluate the potentials of PEANO for future installations in US nuclear plants. (authors)

  11. Flux Gain for Next-Generation Neutron-Scattering Instruments Resulting From Improved Supermirror Performance

    International Nuclear Information System (INIS)

    Rehm, C.

    2001-01-01

    Next-generation spallation neutron source facilities will offer instruments with unprecedented capabilities through simultaneous enhancement of source power and usage of advanced optical components. The Spallation Neutron Source (SNS), already under construction at Oak Ridge National Laboratory and scheduled to be completed by 2006, will provide greater than an order of magnitude more effective source flux than current state-of-the-art facilities, including the most advanced research reactors. An additional order of magnitude gain is expected through the use of new optical devices and instrumentation concepts. Many instrument designs require supermirror (SM) neutron guides with very high critical angles for total reflection. In this contribution, they discuss how the performance of modern neutron scattering instruments depends on the efficiency of these supermirrors. They outline ideas for enhancing the performance of the SM coatings, particularly for improving the reflectivity at the position of the critical wave vector transfer. A simulation program has been developed which allows different approaches for SM designs to be studied. Possible instrument performance gains are calculated for the example of the SNS reflectometer

  12. Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial

    Science.gov (United States)

    Leproux, Anaïs; O'Sullivan, Thomas D.; Cerussi, Albert; Durkin, Amanda; Hill, Brian; Hylton, Nola; Yodh, Arjun G.; Carp, Stefan A.; Boas, David; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian; Roblyer, Darren; Yang, Wei; Tromberg, Bruce J.

    2017-12-01

    We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm-1 (10.3%) and 0.06 mm-1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.

  13. The Effects of Altering Environmental and Instrumental Context on the Performance of Memorized Music

    Science.gov (United States)

    Mishra, Jennifer; Backlin, William

    2007-01-01

    Three experiments investigated whether musical memory was context dependent. Instrumental musicians memorized music in one context and recalled in either the same or a different context. Contexts included atypical performing environments (Experiment 1: lobby/conference room) or commonly encountered environments (Experiment 2: practice room,…

  14. Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance

    DEFF Research Database (Denmark)

    Poutanen, T.; Lähteenmäki, A.; León-Tavares, J.

    2011-01-01

    The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white noise sensitivity, and noise properties. A preliminary evaluation of the impact of the main...

  15. Draft American National Standard N42.17A: performance specifications for health physics instrumentation

    International Nuclear Information System (INIS)

    Selby, J.M.

    1984-07-01

    The report describes the history of the development of the N42.17 standard on instrument performance, describes the standard itself and its relationship to other standards, and discusses ways the standards might be used on either a voluntary or semi-voluntary basis

  16. Teachers' Pedagogical Management and Instrumental Performance in Students of an Artistic Higher Education School

    Science.gov (United States)

    De La Cruz Bautista, Edwin

    2017-01-01

    This research aims to know the relationship between the variables teachers' pedagogical management and instrumental performance in students from an Artistic Higher Education School. It is a descriptive and correlational research that seeks to find the relationship between both variables. The sample of the study consisted of 30 students of the…

  17. Exploring the Effects of Changes in Future Time Perspective and Perceived Instrumentality on Graded Performance

    Science.gov (United States)

    Eren, Altay

    2009-01-01

    Introduction: This study aimed to explore the possible changes in the Future Time Perspective (FTP) and Perceived Instrumentality (PI) over time as long as one academic semester, as well as to explore whether those changes in FTP and PI explained students' Graded Performance (GP) with regard to a specific course; educational psychology. Method: A…

  18. Verbal and Operant Responses of Young Children to Vocal Versus Instrumental Song Performances.

    Science.gov (United States)

    Sims, Wendy L.; Cassidy, Jane W.

    1997-01-01

    Reports on a study that investigated the effects of the presence or absence of lyrics in children's musical selections on young children's responses to music. The children responded to either recorded lullabies performed by a women singing, or a solo instrument, or separate pieces with and without lyrics. (MJP)

  19. Identification of the Predictive Power of Five Factor Personality Traits for Individual Instrument Performance Anxiety

    Science.gov (United States)

    Özdemir, Gökhan; Dalkiran, Esra

    2017-01-01

    This study, with the aim of identifying the predictive power of the five-factor personality traits of music teacher candidates on individual instrument performance anxiety, was designed according to the relational screening model. The study population was students attending the Music Education branch of Fine Arts Education Departments in…

  20. The Effect of Instrument-Specific Rater Training on Interrater Reliability and Counseling Skills Performance Differentiation

    Science.gov (United States)

    Meacham, Paul Douglas, Jr.

    2013-01-01

    The purpose of this study was to explore the effect of instrument-specific rater training on interrater reliability (IRR) and counseling skills performance differentiation. Strong IRR is of primary concern to effective program evaluation (McCullough, Kuhn, Andrews, Valen, Hatch, & Osimo, 2003; Schanche, Nielsen, McCullough, Valen, &…

  1. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  2. The Relationship between Pre-Service Music Teachers' Self-Efficacy Belief in Musical Instrument Performance and Personality Traits

    Science.gov (United States)

    Girgin, Demet

    2017-01-01

    Purpose: Strong self-efficacy bring achievement in instrument education as in other disciplines. Achievement will increase the quality of instrument education, and it will be reflected in the professional lives of pre-service teachers and their students. This suggests that research on belief in musical instrument performance is necessary.…

  3. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  4. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  5. Physiology, anatomy, and plasticity of the cerebral cortex in relation to musical instrument performance

    Science.gov (United States)

    Tramo, Mark Jude

    2004-05-01

    The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.

  6. Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems

    Science.gov (United States)

    Wallis, Eric; Griffin, Todd M.; Popkie, Norm, Jr.; Eagan, Michael A.; McAtee, Robert F.; Vrazel, Danet; McKinly, Jim

    2005-05-01

    Ion Mobility Spectroscopy (IMS) is the most widespread detection technique in use by the military for the detection of chemical warfare agents, explosives, and other threat agents. Moreover, its role in homeland security and force protection has expanded due, in part, to its good sensitivity, low power, lightweight, and reasonable cost. With the increased use of IMS systems as continuous monitors, it becomes necessary to develop tools and methodologies to ensure optimal performance over a wide range of conditions and extended periods of time. Namely, instrument calibration is needed to ensure proper sensitivity and to correct for matrix or environmental effects. We have developed methodologies to deal with the semi-quantitative nature of IMS and allow us to generate response curves that allow a gauge of instrument performance and maintenance requirements. This instrumentation communicates to the IMS systems via a software interface that was developed in-house. The software measures system response, logs information to a database, and generates the response curves. This paper will discuss the instrumentation, software, data collected, and initial results from fielded systems.

  7. Update on Instrumentations for Cholecystectomies Performed via Transvaginal Route: State of the Art and Future Prospectives

    Directory of Open Access Journals (Sweden)

    Elia Pulvirenti

    2010-01-01

    Full Text Available Natural Orifice Transluminal Endoscopic Surgery (NOTES is an innovative approach in which a flexible endoscope enters the abdominal cavity via the transesophageal, transgastric, transcolonic, transvaginal or transvescical route, combining the technique of minimally invasive surgery with flexible endoscopy. Several groups have described different modifications by using flexible endoscopes with different levels of laparoscopic assistance. Transvaginal cholecystectomy (TVC consists in accessing the abdominal cavity through a posterior colpotomy and using the vaginal incision as a visual or operative port. An increasing interest has arisen around the TVC; nevertheless, the most common and highlighted concern is about the lack of specific instruments dedicated to the vaginal access route. TVC should be distinguished between “pure”, in which the entire operation is performed through the transvaginal route, and “hybrid”, in which the colpotomy represents only a support to introduce instruments and the operation is performed mainly by the classic transabdominal-introduced instruments. Although this new technique seems very appealing for patients, on the other hand it is very challenging for the surgeon because of the difficulties related to the mode of access, the limited technology currently available and the risk of complications related to the organ utilized for access. In this brief review all the most recent advancements in the field of TVC's techniques and instrumentations are listed and discussed.

  8. Evaluation of a draft standard on performance specifications for health physics instrumentation - program overview

    International Nuclear Information System (INIS)

    Kathren, R.L.; Selby, J.M.; Kenoyer, J.L.; Swinth, K.L.

    1983-01-01

    The draft ANSI Standard N42.17 on performance specifications for health physics instrumentation was written in 1981 by a task group that included both manufacturers and users of these instruments as well as representation from the regulatory bodies; the second draft of this standard is currently being evaluated by Pacific Northwest Laboratory. Objectives of this project include the evaluation of the applicability and practicality of the proposed standard and the determination of the degree of conformance of a cross-section of currently available commercial instruments to the proposed standard. This standard is being tested against such instruments as ionization chambers. G.M. detectors, alpha survey meters, and neutron dose equivalent survey meters. Radiological, electrical, mechanical, safety, and environmental performance criteria are specified and tests to evaluate conformance are detailed. Specific criteria which are discussed in this draft standard include inspection tests (e.g., readout units, scaling and zero set, decontamination, moisture protection, alarm threshold, battery status indication), AC and battery power requirements, alarm reset, stability, geotropism, response time, accuracy, precision, IER, beta, and neutron energy dependence, radiation overloads, angular dependence, extracameral response, nonionizing electromagnetic radiations, magnetic fields, interfering ionizing radiations, and effect of temperature, humidity, ambient pressure, shock, and vibration. The testing procedures were developed with emphasis on the requirements found in ANSI N42.17 with additional criteria from other draft and current ANSI and IEC standards

  9. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  10. The Nursing Performance Instrument: Exploratory and Confirmatory Factor Analyses in Registered Nurses.

    Science.gov (United States)

    Sagherian, Knar; Steege, Linsey M; Geiger-Brown, Jeanne; Harrington, Donna

    2018-04-01

    The optimal performance of nurses in healthcare settings plays a critical role in care quality and patient safety. Despite this importance, few measures are provided in the literature that evaluate nursing performance as an independent construct from competencies. The nine-item Nursing Performance Instrument (NPI) was developed to fill this gap. The aim of this study was to examine and confirm the underlying factor structure of the NPI in registered nurses. The design was cross-sectional, using secondary data collected between February 2008 and April 2009 for the "Fatigue in Nursing Survey" (N = 797). The sample was predominantly dayshift female nurses working in acute care settings. Using Mplus software, exploratory and confirmatory factor analyses were applied to the NPI data, which were divided into two equal subsamples. Multiple fit indices were used to evaluate the fit of the alternative models. The three-factor model was determined to fit the data adequately. The factors that were labeled as "physical/mental decrements," "consistent practice," and "behavioral change" were moderately to strongly intercorrelated, indicating good convergent validity. The reliability coefficients for the subscales were acceptable. The NPI consists of three latent constructs. This instrument has the potentialto be used as a self-monitoring instrument that addressesnurses' perceptions of performance while providing patient care.

  11. Evaluation of physicians' professional performance: An iterative development and validation study of multisource feedback instruments

    Directory of Open Access Journals (Sweden)

    Overeem Karlijn

    2012-03-01

    Full Text Available Abstract Background There is a global need to assess physicians' professional performance in actual clinical practice. Valid and reliable instruments are necessary to support these efforts. This study focuses on the reliability and validity, the influences of some sociodemographic biasing factors, associations between self and other evaluations, and the number of evaluations needed for reliable assessment of a physician based on the three instruments used for the multisource assessment of physicians' professional performance in the Netherlands. Methods This observational validation study of three instruments underlying multisource feedback (MSF was set in 26 non-academic hospitals in the Netherlands. In total, 146 hospital-based physicians took part in the study. Each physician's professional performance was assessed by peers (physician colleagues, co-workers (including nurses, secretary assistants and other healthcare professionals and patients. Physicians also completed a self-evaluation. Ratings of 864 peers, 894 co-workers and 1960 patients on MSF were available. We used principal components analysis and methods of classical test theory to evaluate the factor structure, reliability and validity of instruments. We used Pearson's correlation coefficient and linear mixed models to address other objectives. Results The peer, co-worker and patient instruments respectively had six factors, three factors and one factor with high internal consistencies (Cronbach's alpha 0.95 - 0.96. It appeared that only 2 percent of variance in the mean ratings could be attributed to biasing factors. Self-ratings were not correlated with peer, co-worker or patient ratings. However, ratings of peers, co-workers and patients were correlated. Five peer evaluations, five co-worker evaluations and 11 patient evaluations are required to achieve reliable results (reliability coefficient ≥ 0.70. Conclusions The study demonstrated that the three MSF instruments produced

  12. Reference Proteome Extracts for Mass Spec Instrument Performance Validation and Method Development

    Science.gov (United States)

    Rosenblatt, Mike; Urh, Marjeta; Saveliev, Sergei

    2014-01-01

    Biological samples of high complexity are required to test protein mass spec sample preparation procedures and validate mass spec instrument performance. Total cell protein extracts provide the needed sample complexity. However, to be compatible with mass spec applications, such extracts should meet a number of design requirements: compatibility with LC/MS (free of detergents, etc.)high protein integrity (minimal level of protein degradation and non-biological PTMs)compatibility with common sample preparation methods such as proteolysis, PTM enrichment and mass-tag labelingLot-to-lot reproducibility Here we describe total protein extracts from yeast and human cells that meet the above criteria. Two extract formats have been developed: Intact protein extracts with primary use for sample preparation method development and optimizationPre-digested extracts (peptides) with primary use for instrument validation and performance monitoring

  13. Long Term Analysis of Adaptive Low-Power Instrument Platform Power and Battery Performance

    Science.gov (United States)

    Edwards, T.; Bowman, J. R.; Clauer, C. R.

    2017-12-01

    Operation of the Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) by the Magnetosphere-Ionosphere Science Team (MIST) at Virginia Tech has been ongoing for about 10 years. These instrument platforms are deployed on the East Antarctic Plateau in remote locations that are difficult to access regularly. The systems have been designed to operate unattended for at least 5 years. During the Austral summer, the systems charge batteries using solar panels and power is provided by the batteries during the winter months. If the voltage goes below a critical level, the systems go into hibernation and wait for voltage from the solar panels to initiate a restart sequence to begin operation and battery charging. Our first system was deployed on the East Antarctic Plateau in 2008 and we report here on an analysis of the power and battery performance over multiple years and provide an estimate for how long these systems can operate before major battery maintenance must be performed.

  14. [An instrument in Spanish to evaluate the performance of clinical teachers by students].

    Science.gov (United States)

    Bitran, Marcela; Mena, Beltrán; Riquelme, Arnoldo; Padilla, Oslando; Sánchez, Ignacio; Moreno, Rodrigo

    2010-06-01

    The modernization of clinical teaching has called for the creation of faculty development programs, and the design of suitable instruments to evaluate clinical teachers' performance. To report the development and validation of an instrument in Spanish designed to measure the students' perceptions of their clinical teachers' performance and to provide them with feedback to improve their teaching practices. In a process that included the active participation of authorities, professors in charge of courses and internships, clinical teachers, students and medical education experts, we developed a 30-item questionnaire called MEDUC30 to evaluate the performance of clinical teachers by their students. The internal validity was assessed by factor analysis of 5214 evaluations of 265 teachers, gathered from 2004 to 2007. The reliability was measured with the Cronbach's alpha coefficient and the generalizability coefficient (g). MEDUC30 had good content and construct validity. Its internal structure was compatible with four factors: patient-centered teaching, teaching skills, assessment skills and learning climate, and it proved to be consistent with the structure anticipated by the theory. The scores were highly reliable (Cronbach's alpha: 0.97); five evaluations per teacher were sufficient to reach a reliability coefficient (g) of 0.8. MEDUC30 is a valid, reliable and useful instrument to evaluate the performance of clinical teachers. To our knowledge, this is the first instrument in Spanish for which solid validity and reliability evidences have been reported. We hope that MEDUC30 will be used to improve medical education in Spanish-speaking medical schools, providing teachers a specific feedback upon which to improve their pedagogical practice, and authorities with valuable information for the assessment of their faculty.

  15. Performance Evaluation Factors: Designing an Instrument for National Health Network in Iran

    Directory of Open Access Journals (Sweden)

    Sassan Ghorbani-Kalkhajeh

    2016-04-01

    Full Text Available As a systematic process for gathering and analyzing data, performance evaluation could be used as a valid method to highlight levels of success and to identify strength and weakness of ongoing programs. The aim of the present study was to develop an instrument for evaluating rural health centers in Iran. Based on related literature and experts’ views, eight crucial fields of performance evaluation, and a questionnaire including 100 items were formed. The participants of the study were 525 people having health related jobs in rural or urban health centers. Reliability and validity requirements were checked; exploratory and confirmatory factor analyses were used. Factor analysis identified 11 components which embraced 60 items. Components were named as planning, control, coordination, structure, setting and facilities, education, customers’ satisfaction, staff’s job satisfaction, disease surveillance, mother-child care, and effectiveness which are presented as a model for performance evaluation. The obtained instrument embraces all required factors suggested by experts and literature hence it can be used as an evaluation instrument in both rural and urban health centers.

  16. Developing of Individual Instrument Performance Anxiety Scale: ValidityReliability Study

    Directory of Open Access Journals (Sweden)

    Esra DALKIRAN

    2016-07-01

    Full Text Available In this study, it is intended to develop a scale unique to our culture, concerning individual instrument performance anxiety of the students who are getting instrument training in the Department of Music Education. In the study, the descriptive research model is used and qualitative research techniques are utilized. The study population consists of the students attending the 23 universities which has Music Education Department. The sample of the study consists of 438 girls and 312 boys, totally 750 students who are studying in the Department of Music Education of randomly selected 10 universities. As a result of the explanatory and confirmatory factor analyses that were performed, a onedimensional structure consisting of 14 items was obtained. Also, t-scores and the coefficient scores of total item correlation concerning the distinguishing power of the items, the difference in the scores of the set of lower and upper 27% was calculated, and it was observed that the items are distinguishing as a result of both analyses. Of the scale, Cronbach's alpha coefficient of internal consistency was calculated as .94, and test-retest reliability coefficient was calculated as .93. As a result, a valid and reliable assessment and evaluation instrument that measures the exam performance anxiety of the students studying in the Department of Music Education, has been developed.

  17. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    Science.gov (United States)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  18. MONITORING OF THE PERFORMANCE EFFICIENCY OF THE EQUIPMENT AT THE ENTERPRISES OF AVIATION INSTRUMENTATION

    Directory of Open Access Journals (Sweden)

    Petr P. Dobrov

    2016-01-01

    Full Text Available The article elaborates the proposals to improve the systems for monitoring performance of the equipment at the enterprises of aviation instrument. The relevance of the study due to the fact that the aviation instrument-making industry of the Russian Federation can play a role as a key factor in enhancing the competitiveness of the national economy. Currently, the global aviation market is fairly saturated, it competition is not between individual companies and between the aviation powers. The role of an efficient industrial production is largely dependent on the amount, structure, technical condition and the level of utilization of fixed assets. Specificity of high-tech high-tech production presupposes the existence of a specific fleet of expensive and unique equipment; a high degree of novelty products, single or small-scale type of production that determines the high cost of production of a unit of production; high demands on the staff . The paper noted that the production capacity is an essential tool for production planning process, which allows to determine the optimal work shifts Park main technological equipment and production program to justify the enterprises of sphere of aviation instrument. On the basis of the modification of OEE method, a stochastic model is proposed, which allows to display the efficiency of the productive capacity of the high-tech enterprises of sphere of aviation instrument in the form of multi-dimensional size and much more accurately identify the relationship between its elements.

  19. Developing and testing an instrument for identifying performance incentives in the Greek health care sector

    Directory of Open Access Journals (Sweden)

    Paleologou Victoria

    2006-09-01

    Full Text Available Abstract Background In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. Methods A methodological exploratory design was employed in three phases: a content development and assessment, which resulted in a 28-item instrument, b pilot testing (N = 74 and c field testing (N = 353. Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. Results Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. Conclusion Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger

  20. Developing and testing an instrument for identifying performance incentives in the Greek health care sector.

    Science.gov (United States)

    Paleologou, Victoria; Kontodimopoulos, Nick; Stamouli, Aggeliki; Aletras, Vassilis; Niakas, Dimitris

    2006-09-13

    In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in the Greek healthcare system.

  1. A performance improvement program applied to the Perry Nuclear Power Plant instrumentation and control section

    International Nuclear Information System (INIS)

    Anderson, G.R.

    1987-01-01

    The management at Cleveland Electric Illuminating Company sought to avoid problems typically encountered in the start-up of new nuclear generating units. In response to early indications that such problems may have been developing at their Perry Nuclear Power Plant, several performance improvement initiatives were undertaken. One of these initiatives was a performance improvement evaluation (PIE) for the instrumentation and control (IandC) section at Perry. The IandC PIE, which used a method designed to be adaptable to other disciplines as well, had important results that are applicable to other nuclear power plants

  2. Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance

    Science.gov (United States)

    Ratnayake, Nalin A.

    2009-01-01

    Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of

  3. Assessment and evaluation of the performance of nuclear medicine and ultrasound imaging instrumentation

    International Nuclear Information System (INIS)

    Bergmann, Helmar; Kollmann, Christian

    1996-01-01

    The purpose of this work has been to assess the quality of instrumentation used for the collection of representative patient images during the coordinated research program entitled ''Evaluation of Imaging Procedures for the Diagnosis of Liver Diseases''. Previous work carried out during earlier phases of the project was concerned with the establishment of methods for comparison of the quality of such instrumentation. In this stage the quality of both gamma cameras and ultrasound scanners were assessed using the previously established methods. The evaluation was partly used to validate acceptable working conditions of the equipment during the collection of patient studies, partly to obtain basic data in order to be able to characterize the imaging quality of the devices. This would permit to both identify equipment unsuitable to be used in the study and to take into account the imaging quality token performing the ROC analysis of the evaluation of the patient images

  4. Influence of videogames and musical instruments on performances at a simulator for robotic surgery.

    Science.gov (United States)

    Moglia, Andrea; Perrone, Vittorio; Ferrari, Vincenzo; Morelli, Luca; Boggi, Ugo; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2017-06-01

    To assess if exposure to videogames, musical instrument playing, or both influence the psychomotor skills level, assessed by a virtual reality simulator for robot-assisted surgery (RAS). A cohort of 57 medical students were recruited: playing musical instruments (group 1), videogames (group 2), both (group 3), and no activity (group 4); all students executed four exercises on a virtual simulator for RAS. Subjects from group 3 achieved the best performances on overall score: 527.09 ± 130.54 vs. 493.73 ± 108.88 (group 2), 472.72 ± 85.31 (group 1), and 403.13 ± 99.83 (group 4). Statistically significant differences (p videogames is higher than that in those practicing either one alone. The effect of videogames appears negligible in individuals playing the piano.

  5. Validation of Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL), a Performance- Based Measurement of Instrumental Activities of Daily Living for Patients with Vascular Cognitive Impairment.

    Science.gov (United States)

    Chen, Hui-Mei; Lin, Hsiu-Fen; Huang, Mei-Feng; Chang, Chun-Wei; Yeh, Yi-Chun; Lo, Yi-Ching; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2016-01-01

    Patients with cerebrovascular diseases often presented both cognitive and physical impairment. Disability in everyday functioning involving cognitive impairment among patients may be hard to completely rely on informants' reports, as their reports may be confounded with physical impairment. The aim of this study was to validate a performance-based measure of functional assessment, the Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL), for vascular cognitive impairment (VCI) by examining its psychometric properties and diagnostic accuracy. Ninety-seven patients with cerebrovascular diseases, including 30 with vascular dementia (VaD), 28 with mild cognitive impairment and 39 with no cognitive impairment, and 49 healthy control adults were recruited during study period. The TPIADL, as well as the Mini Mental State Examination (MMSE), Lawton-IADL and Barthel Index (BI), were performed. The internal consistency, convergent and criteria validity of the TPIADL were examined. Cronbach's alpha of the TPIADL test was 0.84. The TPIADL scores were significantly correlated with the Lawton IADL (r = -0.587, p cognitive domain of Lawton IADL (r = -0.663) than with physical domain of Lawton IADL (r = -0.541). The area under the relative operating characteristic curve was 0.888 (95% CI = 0.812-0.965) to differentiate VaD from other groups. The optimal cut-off point of the TPIADL for detecting VaD was 6/7, which gives a sensitivity of 73.3% and a specificity of 84.5%. The TPIADL is a brief and sensitive tool for the detection of IADL impairment in patients with VaD.

  6. Validation of Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL, a Performance- Based Measurement of Instrumental Activities of Daily Living for Patients with Vascular Cognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Hui-Mei Chen

    Full Text Available Patients with cerebrovascular diseases often presented both cognitive and physical impairment. Disability in everyday functioning involving cognitive impairment among patients may be hard to completely rely on informants' reports, as their reports may be confounded with physical impairment. The aim of this study was to validate a performance-based measure of functional assessment, the Taiwan Performance-Based Instrumental Activities of Daily Living (TPIADL, for vascular cognitive impairment (VCI by examining its psychometric properties and diagnostic accuracy.Ninety-seven patients with cerebrovascular diseases, including 30 with vascular dementia (VaD, 28 with mild cognitive impairment and 39 with no cognitive impairment, and 49 healthy control adults were recruited during study period. The TPIADL, as well as the Mini Mental State Examination (MMSE, Lawton-IADL and Barthel Index (BI, were performed. The internal consistency, convergent and criteria validity of the TPIADL were examined.Cronbach's alpha of the TPIADL test was 0.84. The TPIADL scores were significantly correlated with the Lawton IADL (r = -0.587, p <0.01. Notably, the TPIADL had a higher correlation coefficient with the cognitive domain of Lawton IADL (r = -0.663 than with physical domain of Lawton IADL (r = -0.541. The area under the relative operating characteristic curve was 0.888 (95% CI = 0.812-0.965 to differentiate VaD from other groups. The optimal cut-off point of the TPIADL for detecting VaD was 6/7, which gives a sensitivity of 73.3% and a specificity of 84.5%.The TPIADL is a brief and sensitive tool for the detection of IADL impairment in patients with VaD.

  7. Experience Playing a Musical Instrument and Overnight Sleep Enhance Performance on a Sequential Typing Task.

    Science.gov (United States)

    Tucker, Matthew A; Nguyen, Nam; Stickgold, Robert

    2016-01-01

    The smooth, coordinated fine motor movements required to play a musical instrument are not only highly valued in our society; they also predict academic success in areas that generalize beyond the motor domain, including reading and math readiness, and verbal abilities. Interestingly, motor skills that overlap with those required to play a musical instrument (e.g., sequential finger tapping) markedly improve (get faster) over a night of sleep, but not after a day spent awake. Here we studied whether individuals who play musical instruments that require fine finger motor skill are better able to learn and consolidate a simple motor skill task compared to those who do not play an instrument, and whether sleep-specific motor skill benefits interact with those imparted by musical experience. We used the motor sequence task (MST), which taps into a core skill learned and used by musicians, namely, the repetition of learned sequences of key presses. Not surprisingly, we found that musicians were faster than non-musicians throughout the learning session, typing more correct sequences per 30-sec trial. In the 12hrs that followed learning we found that sleep and musical experience both led to greater improvement in performance. Surprisingly, musicians retested after a day of wake performed slightly better than non-musicians who had slept between training and retest, suggesting that musicians have the capacity to consolidate a motor skill across waking hours, while non-musicians appear to lack this capacity. These findings suggest that the musically trained brain is optimized for motor skill consolidation across both wake and sleep, and that sleep may simply promote a more effective use of this machinery. In sum, there may be something special about musicians, perhaps a neurophysiological advantage, that leads to both the expected-greater motor speed at learning-and the surprising-greater motor skill improvement over time.

  8. Experience Playing a Musical Instrument and Overnight Sleep Enhance Performance on a Sequential Typing Task.

    Directory of Open Access Journals (Sweden)

    Matthew A Tucker

    Full Text Available The smooth, coordinated fine motor movements required to play a musical instrument are not only highly valued in our society; they also predict academic success in areas that generalize beyond the motor domain, including reading and math readiness, and verbal abilities. Interestingly, motor skills that overlap with those required to play a musical instrument (e.g., sequential finger tapping markedly improve (get faster over a night of sleep, but not after a day spent awake. Here we studied whether individuals who play musical instruments that require fine finger motor skill are better able to learn and consolidate a simple motor skill task compared to those who do not play an instrument, and whether sleep-specific motor skill benefits interact with those imparted by musical experience. We used the motor sequence task (MST, which taps into a core skill learned and used by musicians, namely, the repetition of learned sequences of key presses. Not surprisingly, we found that musicians were faster than non-musicians throughout the learning session, typing more correct sequences per 30-sec trial. In the 12hrs that followed learning we found that sleep and musical experience both led to greater improvement in performance. Surprisingly, musicians retested after a day of wake performed slightly better than non-musicians who had slept between training and retest, suggesting that musicians have the capacity to consolidate a motor skill across waking hours, while non-musicians appear to lack this capacity. These findings suggest that the musically trained brain is optimized for motor skill consolidation across both wake and sleep, and that sleep may simply promote a more effective use of this machinery. In sum, there may be something special about musicians, perhaps a neurophysiological advantage, that leads to both the expected-greater motor speed at learning-and the surprising-greater motor skill improvement over time.

  9. MODELLING THE FUTURE MUSIC TEACHERS’ READINESS TO PERFORMING AND INTERPRETIVE ACTIVITY DURING INSTRUMENTAL TRAINING

    Directory of Open Access Journals (Sweden)

    Chenj Bo

    2016-11-01

    Full Text Available One of the main fields of training future music teachers in Ukrainian system of higher education is instrumental music one, such as skills of performing and interpretive activities. The aim of the article is to design a model of the future music teachers’ readiness to performing and interpretive activities in musical and instrumental training. The process of modelling is based on several interrelated scientific approaches, including systemic, personality-centered, reflective, competence, active and creative ones. While designing a model of music future teachers’ readinesses to musical interpretive activities, its philosophical, informative, interactive, hedonistic, creative functions are taken into account. Important theoretical and methodological factors are thought to be principles of musical and pedagogical education: culture correspondence and reflection; unity of emotional and conscious, artistic and technical items in musical education; purposeful interrelations and art and pedagogical communication between teachers and students; intensification of music and creative activity. Above-mentioned pedagogical phenomenon is subdivided into four components: motivation-oriented, cognitive-evaluating, performance-independent, creative and productive. For each component relevant criteria and indicators are identified. The stages of future music teachers’ readiness to performing interpretative activity are highlighted: information searching one, which contributes to the implementation of complex diagnostic methods (surveys, questionnaires, testing; regulative and performing one, which is characterized by future music teachers’ immersion into music performing and interpretative activities; operational and reflective stage, which involves activation of mechanisms of future music teachers’ self-knowledge, self-realization, formation of skills of independent artistic and expressive various music genres and styles interpretation; projective and

  10. Enhanced performance of aged rats in contingency degradation and instrumental extinction tasks.

    Science.gov (United States)

    Samson, Rachel D; Venkatesh, Anu; Patel, Dhara H; Lipa, Peter; Barnes, Carol A

    2014-04-01

    Normal aging in rats affects behavioral performance on a variety of associative learning tasks under Pavlovian conditions. There is little information, however, on whether aging also impacts performance of instrumental tasks. Young (9-12 months) and aged (24-27 months) Fisher 344 rats were trained to press distinct levers associated with either maltodextrin or sucrose. The rats in both age groups increased their lever press frequency at a similar rate, suggesting that the initial acquisition of this instrumental task is not affected by aging. Using a contingency degradation procedure, we then addressed whether aged rats could adapt their behavior to changes in action-outcome contingencies. We found that young and aged rats do adapt, but that a different schedule of reinforcement is necessary to optimize performance in each age group. Finally, we also addressed whether aged rats can extinguish a lever press action as well as young rats, using 2 40-min extinction sessions on consecutive days. While extinction profiles were similar in young and aged rats on the first day of training, aged rats were faster to extinguish their lever presses on the second day, in spite of their performance levels being similar at the beginning of the session. Together these data support the finding that acquisition of instrumental lever press behaviors is preserved in aged rats and suggest that they have a different threshold for switching strategies in response to changes in action-outcome associations. This pattern of result implies that age-related changes in the brain are heterogeneous and widespread across structures.

  11. The Effect of Birth Weight on Academic Performance: Instrumental Variable Analysis.

    Science.gov (United States)

    Lin, Shi Lin; Leung, Gabriel Matthew; Schooling, C Mary

    2017-05-01

    Observationally, lower birth weight is usually associated with poorer academic performance; whether this association is causal or the result of confounding is unknown. To investigate this question, we obtained an effect estimate, which can have a causal interpretation under specific assumptions, of birth weight on educational attainment using instrumental variable analysis based on single nucleotide polymorphisms determining birth weight combined with results from the Social Science Genetic Association Consortium study of 126,559 Caucasians. We similarly obtained an estimate of the effect of birth weight on academic performance in 4,067 adolescents from Hong Kong's (Chinese) Children of 1997 birth cohort (1997-2016), using twin status as an instrumental variable. Birth weight was not associated with years of schooling (per 100-g increase in birth weight, -0.006 years, 95% confidence interval (CI): -0.02, 0.01) or college completion (odds ratio = 1.00, 95% CI: 0.96, 1.03). Birth weight was also unrelated to academic performance in adolescents (per 100-g increase in birth weight, -0.004 grade, 95% CI: -0.04, 0.04) using instrumental variable analysis, although conventional regression gave a small positive association (0.02 higher grade, 95% CI: 0.01, 0.03). Observed associations of birth weight with academic performance may not be causal, suggesting that interventions should focus on the contextual factors generating this correlation. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    a focus on the driving thermal design challenges for the instrument. It is shown through both analysis and early testing that the REXIS instrument can perform successfully through all phases of its mission.

  13. The manometric sorptomat—an innovative volumetric instrument for sorption measurements performed under isobaric conditions

    International Nuclear Information System (INIS)

    Kudasik, Mateusz

    2016-01-01

    The present paper discusses the concept of measuring the process of sorption by means of the volumetric method, developed in such a way as to allow measurements performed under isobaric conditions. On the basis of the concept in question, a prototype of a sorption instrument was built: the manometric sorptomat. The paper provides a detailed description of the idea of the instrument, and of the way it works. In order to evaluate the usefulness of the device in sorption measurements carried out under laboratory conditions, comparative studies were conducted, during which the results of sorption measurements obtained with the developed instrument were compared with the results Mateusz obtained with a reference device. The objects of comparison were the sorption capacities of hard coal samples, calculated on the basis of the established courses of the methane sorption process. The results were regarded as compatible if the compared values fell within the range of the measurement uncertainty of the two devices. For the sake of the comparative studies, fifteen granular samples of hard coal—representing the 0.20–0.25 mm grain fraction and coming from various mines of the Upper Silesian Coal Basin—were used. After comparing the results obtained with the original manometric sorptomat with the results obtained with the gravimetric reference device, it was observed that the compatibility of measurements of sorption capacities was over 90%, based on the defined criterion of the measurement compatibility. (paper)

  14. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Computer and Information Science; Wolf, Felix G. [Wilhelm-Johnen-Strasse, Julich (Germany). Forschungszentrum Julich GmbH

    2014-01-31

    The growing number of cores provided by today’s high-­end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-­performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-­fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to

  15. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Department of Computer and Information Science, University of Oregon; Wolf, Felix G. [Juelich Supercomputing Centre, Forschungszentrum Juelich

    2014-01-31

    The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish

  16. Development of a monitoring instrument to assess the performance of the Swiss primary care system.

    Science.gov (United States)

    Ebert, Sonja T; Pittet, Valérie; Cornuz, Jacques; Senn, Nicolas

    2017-11-29

    The Swiss health system is customer-driven with fee-for-service paiement scheme and universal coverage. It is highly performing but expensive and health information systems are scarcely implemented. The Swiss Primary Care Active Monitoring (SPAM) program aims to develop an instrument able to describe the performance and effectiveness of the Swiss PC system. Based on a Literature review we developed a conceptual framework and selected indicators according to their ability to reflect the Swiss PC system. A two round modified RAND method with 24 inter-/national experts took place to select primary/secondary indicators (validity, clarity, agreement). A limited set of priority indicators was selected (importance, priority) in a third round. A conceptual framework covering three domains (structure, process, outcome) subdivided into twelve sections (funding, access, organisation/ workflow of resources, (Para-)Medical training, management of knowledge, clinical-/interpersonal care, health status, satisfaction of PC providers/ consumers, equity) was generated. 365 indicators were pre-selected and 335 were finally retained. 56 were kept as priority indicators.- Among the remaining, 199 were identified as primary and 80 as secondary indicators. All domains and sections are represented. The development of the SPAM program allowed the construction of a consensual instrument in a traditionally unregulated health system through a modified RAND method. The selected 56 priority indicators render the SPAM instrument a comprehensive tool supporting a better understanding of the Swiss PC system's performance and effectiveness as well as in identifying potential ways to improve quality of care. Further challenges will be to update indicators regularly and to assess validity and sensitivity-to-change over time.

  17. A qualitative evaluation of policy instruments used to improve energy performance of existing private dwellings in the Netherlands

    International Nuclear Information System (INIS)

    Murphy, Lorraine; Meijer, Frits; Visscher, Henk

    2012-01-01

    Climate change policies in the Netherlands recognise the importance of existing dwellings. Efforts to gain these energy savings are led at national level by policy instruments such as the Energy Performance Certificate, covenants, economic and information tools. These instruments reflect a policy style described as consensus based and incentivising. However, this approach has been subject to criticism with suggestions that alternatives are required. As a first step towards conceptualising alternatives previous evaluations and stakeholder interviews are used to assess instruments. Elements from the theory based evaluation method combined with concepts from policy instrument and energy policy literature form an evaluation framework. Results demonstrate weak impact of some key instruments. Underlying theories associated with instruments are often lost during implementation or remain unsubstantiated. Policy instrument and energy policy concepts are evident but are far from pervasive. Results show that current instruments are poorly equipped to forge a long-term energy saving strategy for existing dwellings. It is further demonstrated that complexity with existing dwellings is not only limited to frequently cited barriers but to the intricacies of designing and operating a well-orchestrated instrument mix. - Highlights: ► Instruments are evaluated using the theory based method and normative concepts. ► Lack of monitoring and evaluation data affects impact assessment. ► Impact and normative concepts are reflected in part in individual instruments. ► A coherent strategy that demonstrates impact and reflects concepts is absent. ► Results form a first step from which to conceptualise alternatives.

  18. New earth system model for optical performance evaluation of space instruments.

    Science.gov (United States)

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  19. Instrumental concept and preliminary performances of SIFTI: static infrared fourier transform interferometer

    Science.gov (United States)

    Hébert, Philippe-Jean; Cansot, E.; Pierangelo, C.; Buil, C.; Bernard, F.; Loesel, J.; Trémas, T.; Perrin, L.; Courau, E.; Casteras, C.; Maussang, I.; Simeoni, D.

    2017-11-01

    The SIFTI (Static Infrared Fourier Transform Interferometer) instrument aims at supporting an important part in a mission for atmospheric pollution sounding from space, by providing high spectral resolution and high Signal to Noise Ratio spectra of the atmosphere. They will allow to resolve tropospheric profiles of ozone (03) and carbon monoxide (C0), especially down to the planetary boundary layer (PBL), an altitude region of very high interest, though poorly monitored to date, for air quality and pollution monitoring. The retrieved profile of ozone, resp. C0, will contain 5 to 7, resp. 2.5 to 4, independent pieces of information. The French space agency CNES (Centre National d'Etudes Spatiales) has proposed and is studying an instrument concept for SIFTI based on a static interferometer, where the needed optical path are generated by a pair of crossed staircase fixed mirrors (replacing the moving reflector of dynamic Fourier transform interferometers like IASI or MIPAS). With the SIFTI design, a very high spectral resolution ( 0.1 cm-1 apodised) is achieved in a very compact optical setup, allowing a large throughput, hence a high SNR. The measurements are performed in the 9.5 μm band for 03 and in the 4.6 μm band for C0. The science return of the sounder can be further increased if an "intelligent pointing" process is implemented. This consists in combining the TIR sounder with a companion TIR imager, providing information on the cloud coverage in the next observed scene. 0nboard, real-time analysis of the IR image is used to command the sounder staring mirror to cloud free areas, which will maximize the probability for probing down to the surface. After the first part of the phase A, the architecture of SIFTI was studied as a trade-off between performance and resource budget. We review the main architecture and functional choices, and their advantages. The preliminary instrument concept is then presented in its main aspects and in terms of main subsystem

  20. Can hip arthroscopy be performed with conventional knee-length instrumentation?

    Science.gov (United States)

    Pascual-Garrido, Cecilia; McConkey, Mark O; Young, David A; Bravman, Jonathan T; Mei-Dan, Omer

    2014-12-01

    The purpose of this study was to determine whether hip arthroscopy can be performed using conventional knee-length arthroscopy instrumentation. We included 116 consecutive hip arthroscopies (104 patients) in this study. Age, side of surgery, height (in inches), weight (in pounds), body mass index (BMI), and a subjective assessment of body type (1, muscular; 2, somewhat overweight; 3, overweight; 4, thin; and 5, normal weight) were recorded. The depth from the skin at 2 portal sites to 3 commonly accessed positions (12 o'clock, 3 o'clock, and acetabular fossa) was assessed using a guide with marked notches (in millimeters). Subgroup analysis was performed according to BMI and subjective biotype for each patient. We included 104 patients with a mean age of 35 years (range, 14 to 55 years). As categorized by BMI, 60% of patients were normal weight, 22% were overweight, 16% were obese, and 2% were underweight. All but 8 procedures were performed with conventional knee-length arthroscopic shavers and burrs. The 8 procedures that needed additional hip instrumentation were performed in patients who required ligamentum teres debridement or those with iliopsoas tenotomy. Overall, the distance from skin to socket was less than 11 cm at the 12-o'clock and 3-o'clock positions from both the anterolateral and anterior portals. Obese and overweight patients had statistically longer distances from skin to socket at all 3 measurement points compared with underweight and normal-weight patients. Considering biotype, the distances from skin to socket in underweight, normal-weight, and muscular patients were all equal to or less than 10 cm. The distance from skin to socket at the 12- and 3-o'clock positions is less than 11 cm, suggesting that hip arthroscopy can be performed with conventional knee-length instrumentation devices. In obese and overweight patients and patients requiring ligamentum teres debridement or iliopsoas tendon release, specific hip arthroscopic tools should

  1. An automated performance budget estimator: a process for use in instrumentation

    Science.gov (United States)

    Laporte, Philippe; Schnetler, Hermine; Rees, Phil

    2016-08-01

    Current day astronomy projects continue to increase in size and are increasingly becoming more complex, regardless of the wavelength domain, while risks in terms of safety, cost and operability have to be reduced to ensure an affordable total cost of ownership. All of these drivers have to be considered carefully during the development process of an astronomy project at the same time as there is a big drive to shorten the development life-cycle. From the systems engineering point of view, this evolution is a significant challenge. Big instruments imply management of interfaces within large consortia and dealing with tight design phase schedules which necessitate efficient and rapid interactions between all the stakeholders to firstly ensure that the system is defined correctly and secondly that the designs will meet all the requirements. It is essential that team members respond quickly such that the time available for the design team is maximised. In this context, performance prediction tools can be very helpful during the concept phase of a project to help selecting the best design solution. In the first section of this paper we present the development of such a prediction tool that can be used by the system engineer to determine the overall performance of the system and to evaluate the impact on the science based on the proposed design. This tool can also be used in "what-if" design analysis to assess the impact on the overall performance of the system based on the simulated numbers calculated by the automated system performance prediction tool. Having such a tool available from the beginning of a project can allow firstly for a faster turn-around between the design engineers and the systems engineer and secondly, between the systems engineer and the instrument scientist. Following the first section we described the process for constructing a performance estimator tool, followed by describing three projects in which such a tool has been utilised to illustrate

  2. Thalamocortical integration of instrumental learning and performance and their disintegration in addiction.

    Science.gov (United States)

    Balleine, Bernard W; Morris, Richard W; Leung, Beatrice K

    2015-12-02

    A recent focus of addiction research has been on the effect of drug exposure on the neural processes that mediate the acquisition and performance of goal-directed instrumental actions. Deficits in goal-directed control and a consequent dysregulation of habit learning processes have been described as resulting in compulsive drug seeking. Similarly, considerable research has focussed on the motivational and emotional changes that drugs produce and that result in changes in the incentive processes that modulate goal-directed performance. Although these areas have developed independently, we argue that the effects they described are likely not independent. Here we hypothesize that these changes result from a core deficit in the way the learning and performance factors that support goal-directed action are integrated at a neural level to maintain behavioural control. A dorsal basal ganglia stream mediating goal-directed learning and a ventral stream mediating various performance factors find several points of integration in the cortical basal ganglia system, most notably in the thalamocortical network linking basal ganglia output to a variety of cortical control centres. Recent research in humans and other animals is reviewed suggesting that learning and performance factors are integrated in a network centred on the mediodorsal thalamus and that disintegration in this network may provide the basis for a 'switch' from recreational to dysregulated drug seeking resulting in the well documented changes associated with addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Evaluation of a draft standard on performance specifications for health physics instrumentation. Initial results for radiological tests

    International Nuclear Information System (INIS)

    Swinth, K.L.; Kenoyer, J.L.; Mileham, A.P.; Kathren, R.L.; Selby, J.M.

    1983-06-01

    The draft ANSI standard N42.17D2 on performance specifications for health physics instrumentation is currently being evaluated by the Pacific Northwest Laboratory. The primary objective of the project is the evaluation of the applicability and practicality of the proposed standard through testing of a cross-section of currently available commercial instruments to determine how well they conform to the standard. The standard is being tested against instruments such as ionization chambers, G.M. detectors, alpha survey meters, and neutron dose equivalent survey meters. This paper presents results of the preliminary radiological performance tests on ionization chambers and G.M. detectors. This includes both the data generated during the tests and a discussion of procedures developed to perform the testing. Results are reported for response time, accuracy, precision, radiation overloads, and angular dependence. In addition, results are reported for parameters that affect instrument performance including battery lifetime, geotropism and stability. Initial test indicates that some of the instruments will not meet the criteria specified in ANSI N42.17D2. Results cover approximately 40 instruments that have been obtained by direct purchase, by loan from instrument vendors or by loan from others including DOE licensees

  4. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  5. Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments.

    Science.gov (United States)

    Grand-Guillaume Perrenoud, Alexandre; Hamman, Chris; Goel, Meenakshi; Veuthey, Jean-Luc; Guillarme, Davy; Fekete, Szabolcs

    2013-11-01

    Recently, there has been a renewed interest in supercritical fluid chromatography (SFC), due to the introduction of state-of-the-art instruments and dedicated columns packed with small particles. However, the achievable kinetic performance and practical possibilities of such modern SFC instruments and columns has not been described in details until now. The goal of the present contribution was to provide some information about the optimal column dimensions (i.e. length, diameter and particle size) suitable for such state-of the-art systems, with respect to extra-column band broadening and system upper pressure limit. In addition, the reliability of the kinetic plot methodology, successfully applied in RPLC, was also evaluated under SFC conditions. Taking into account the system variance, measured at ∼85μL(2), on modern SFC instruments, a column of 3mm I.D. was ideally suited for the current technology, as the loss in efficiency remained reasonable (i.e. less than 10% decrease for k>6). Conversely, these systems struggle with 2.1mm I.D. columns (55% loss in N for k=5). Regarding particle size, columns packed with 5μm particles provided unexpectedly high minimum reduced plate height values (hmin=3.0-3.4), while the 3.5 and 1.7μm packing provided lower reduced plate heights hmin=2.2-2.4 and hmin=2.7-3.2, respectively. Considering the system upper pressure limit, it appears that columns packed with 1.7μm particles give the lowest analysis time for efficiencies up to 40,000-60,000 plates, if the mobile phase composition is in the range of 2-19% MeOH. The 3.5μm particles were attractive for higher efficiencies, particularly when the modifier percentage was above 20%, while 5μm was never kinetically relevant with modern SFC instruments, due to an obvious limitation in terms of upper flow rate value. The present work also confirms that the kinetic plot methodology could be successfully applied to SFC, without the need for isopycnic measurements, as the difference

  6. Final draft position on geotechnical instrumentation in a salt repository environment: Requirements, performance, recommendations, and development needs

    International Nuclear Information System (INIS)

    1987-07-01

    This report presents the results of a study of the present status of geotechnical instrumentation with respect to potential use in an underground test facility at a candidate nuclear waste repository site in salt. Programmatic factors that have a general impact on the success of underground instrumentation are discussed. Performance requirements relating to accuracy, temperature range, longevity, and capability for automation are established on the basis of criteria proposed for other rock types, perceived needs of the Site Characterization Program, and the authors' experience and judgment. Test site conditions are discussed including underground logistics, corrosion, and other factors that affect instrument reliability. The status of existing instrumentation for measuring deformation, stress, temperature, fluid pressure, acoustic emission, and other less critical parameters is presented. For each instrument not presently capable of satisfying its associated performance requirements, specific development needs and possible approaches are identified, and necessary testing is describe to a conceptual level of detail. A brief discussion of instrument considerations relating to automatic data acquisition is also included. The position of instrument development as a key activity on the critical path under current schedules for the Site Characterization Program is discussed. Annotated references and reports on site visits and meetings used as the data base in evaluating present instrument status are appended to this report. 110 refs., 14 figs., 26 tabs

  7. On the responsibility concept and the agentive role of the instrument used for the action performance

    Directory of Open Access Journals (Sweden)

    Ivić Milka

    2002-01-01

    Full Text Available It is well established that the choice of subject depends on what the speaker estimates as most responsible for the successful occurrence of the action he is speaking of. The author enlightens the principles according to which in Serbian such a subject promotion may concern objects conceived as instruments indispensable for the performance of the transitive activity denoted by the sentence predicate verb. Pointing, however, to some Dutch language facts which make it quite evident that those principles are by no means universally valid, she claims that still more information about the whole problem are needed. She is, namely, convinced that such line of inquiry would not only enrich our present knowledge of micro parametric variations within the linguistic world, but could also be of relevant help to those researchers who expect, through observation of the facts of language, to get better insights into the ways the human brain works.

  8. AE monitoring instrumentation for high performance superconducting dipoles and quadrupoles, Phase 2

    Science.gov (United States)

    Iwasa, Y.

    1986-01-01

    In the past year and a half, attention has been focused on the development of instrumentation for on-line monitoring of high-performance superconducting dipoles and quadrupoles. This instrumentation has been completed and satisfactorily demonstrated on a prototype Fermi dipole. Conductor motion is the principal source of acoustic emission (AE) and the major cause of quenches in the dipole, except during the virgin run when other sources are also present. The motion events are mostly microslips. The middle of the magnet is most susceptible to quenches. This result agrees with the peak field location in the magnet. In the virgin state the top and bottom of the magnet appeared acoustically similar but diverged after training, possibly due to minute structural asymmetry, for example differences in clamping and welding strength; however, the results do not indicate any major structural defects. There is good correlation between quench current and AE starting current. The correlation is reasonable if mechanical disturbances are indeed responsible for quench. Based on AE cumulative history, the average frictional power dissipation in the whole dipole winding is estimated to be approx. 10 (MU)W cm(-3). We expect to implement the following in the next phase of this project: Application of room-temperature techniques to detecting structural defects in the dipole; application of the system to other dipoles and quadrupoles in the same series to compare their performances; and further investigation of AE starting current approx. quench current relationship. Work has begun on the room temperature measurements. Preliminary Stress Wave Factor measurements have been made on a model dipole casing.

  9. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Joy L. Rempe; Darrell L. Knudson

    2014-05-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  10. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Joy L. Rempe; Darrell L. Knudson

    2013-03-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  11. Development and Testing of Screen-Based and Psychometric Instruments for Assessing Resident Performance in an Operating Room Simulator

    Directory of Open Access Journals (Sweden)

    Richard R. McNeer

    2016-01-01

    Full Text Available Introduction. Medical simulators are used for assessing clinical skills and increasingly for testing hypotheses. We developed and tested an approach for assessing performance in anesthesia residents using screen-based simulation that ensures expert raters remain blinded to subject identity and experimental condition. Methods. Twenty anesthesia residents managed emergencies in an operating room simulator by logging actions through a custom graphical user interface. Two expert raters rated performance based on these entries using custom Global Rating Scale (GRS and Crisis Management Checklist (CMC instruments. Interrater reliability was measured by calculating intraclass correlation coefficients (ICC, and internal consistency of the instruments was assessed with Cronbach’s alpha. Agreement between GRS and CMC was measured using Spearman rank correlation (SRC. Results. Interrater agreement (GRS: ICC = 0.825, CMC: ICC = 0.878 and internal consistency (GRS: alpha = 0.838, CMC: alpha = 0.886 were good for both instruments. Subscale analysis indicated that several instrument items can be discarded. GRS and CMC scores were highly correlated (SRC = 0.948. Conclusions. In this pilot study, we demonstrated that screen-based simulation can allow blinded assessment of performance. GRS and CMC instruments demonstrated good rater agreement and internal consistency. We plan to further test construct validity of our instruments by measuring performance in our simulator as a function of training level.

  12. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  13. Joint investigation of working conditions, environmental and system performance at recycling centres--development of instruments and their usage.

    Science.gov (United States)

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E; Svensson, R; Eklund, M

    2010-05-01

    Recycling is a new and developing industry, which has only been researched to a limited extent. This article describes the development and use of instruments for data collection within a multidisciplinary research programme "Recycling centres in Sweden - working conditions, environmental and system performance". The overall purpose of the programme was to form a basis for improving the function of recycling centres with respect to these three perspectives and the disciplines of: ergonomics, safety, external environment, and production systems. A total of 10 instruments were developed for collecting data from employees, managers and visitors at recycling centres, including one instrument for observing visitors. Validation tests were performed in several steps. This, along with the quality of the collected data, and experience from the data collection, showed that the instruments and methodology used were valid and suitable for their purpose. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  15. Measuring Primary Students' Graph Interpretation Skills Via a Performance Assessment: A case study in instrument development

    Science.gov (United States)

    Peterman, Karen; Cranston, Kayla A.; Pryor, Marie; Kermish-Allen, Ruth

    2015-11-01

    This case study was conducted within the context of a place-based education project that was implemented with primary school students in the USA. The authors and participating teachers created a performance assessment of standards-aligned tasks to examine 6-10-year-old students' graph interpretation skills as part of an exploratory research project. Fifty-five students participated in a performance assessment interview at the beginning and end of a place-based investigation. Two forms of the assessment were created and counterbalanced within class at pre and post. In situ scoring was conducted such that responses were scored as correct versus incorrect during the assessment's administration. Criterion validity analysis demonstrated an age-level progression in student scores. Tests of discriminant validity showed that the instrument detected variability in interpretation skills across each of three graph types (line, bar, dot plot). Convergent validity was established by correlating in situ scores with those from the Graph Interpretation Scoring Rubric. Students' proficiency with interpreting different types of graphs matched expectations based on age and the standards-based progression of graphs across primary school grades. The assessment tasks were also effective at detecting pre-post gains in students' interpretation of line graphs and dot plots after the place-based project. The results of the case study are discussed in relation to the common challenges associated with performance assessment. Implications are presented in relation to the need for authentic and performance-based instructional and assessment tasks to respond to the Common Core State Standards and the Next Generation Science Standards.

  16. Photovoltaic Device Performance Evaluation Using an Open-Hardware System and Standard Calibrated Laboratory Instruments

    Directory of Open Access Journals (Sweden)

    Jesús Montes-Romero

    2017-11-01

    Full Text Available This article describes a complete characterization system for photovoltaic devices designed to acquire the current-voltage curve and to process the obtained data. The proposed system can be replicated for educational or research purposes without having wide knowledge about electronic engineering. Using standard calibrated instrumentation, commonly available in any laboratory, the accuracy of measurements is ensured. A capacitive load is used to bias the device due to its versatility and simplicity. The system includes a common part and an interchangeable part that must be designed depending on the electrical characteristics of each PV device. Control software, developed in LabVIEW, controls the equipment, performs automatic campaigns of measurements, and performs additional calculations in real time. These include different procedures to extrapolate the measurements to standard test conditions and methods to obtain the intrinsic parameters of the single diode model. A deep analysis of the uncertainty of measurement is also provided. Finally, the proposed system is validated by comparing the results obtained from some commercial photovoltaic modules to the measurements given by an independently accredited laboratory.

  17. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  18. The development and psychometric validation of the self-efficacy and performance in self-management support (SEPSS) Instrument

    NARCIS (Netherlands)

    Dr. J. Dwarswaard; A. van Hecke; Dr. S.M. van Hooft; M.M.H. Strating; Dr. A.L. van Staa; V. Duprez

    2015-01-01

    Facilitating persons with a chronic condition to take an active role in the management of their condition, implicates that nurses acquire new competencies. An instrument that can validly and reliably measure nurses’ performance and their perceived capacity to perform self-management support

  19. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.

    2018-04-04

    Flexible electronics is an emerging field in many applications ranging from in vivo biomedical devices to wearable smart systems. The capability of conforming to curved surfaces opens the door to add electronic components to miniaturized instruments, where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first choice, due to their high sensitivity, low power consumption etc. MTJs are also promising candidates for non-volatile next-generation data storage media and, hence, could become central components of wearable electronic devices. In this work, a generic low-cost regenerative batch fabrication process is utilized to transform rigid MTJs on a 500 {\\\\mu}m silicon wafer substrate into 5 {\\\\mu}m thin, mechanically flexible silicon devices, and ensuring optimal utilization of the whole substrate. This method maintains the outstanding magnetic properties, which are only obtained by deposition of the MTJ on smooth high-quality silicon wafers. The flexible MTJs are highly reliable and resistive to mechanical stress. Bending of the MTJ stacks with a diameter as small as 500 {\\\\mu}m is possible without compromising their performance and an endurance of over 1000 cycles without fatigue has been demonstrated. The flexible MTJs were mounted onto the tip of a cardiac catheter with 2 mm in diameter without compromising their performance. This enables the detection of magnetic fields and the angle which they are applied at with a high sensitivity of 4.93 %/Oe and a low power consumption of 0.15 {\\\\mu}W, while adding only 8 {\\\\mu}g and 15 {\\\\mu}m to the weight and diameter of the catheter, respectively.

  20. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    Science.gov (United States)

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  1. Characteristics of X ray calibration fields for performance test of radiation measuring instruments

    International Nuclear Information System (INIS)

    Shimizu, Shigeru; Takahashi, Fumiaki; Sawahata, Tadahiro; Tohnami, Kohichi; Kikuchi, Hiroshi; Murayama, Takashi

    1999-02-01

    Performance test and calibration of the radiation measuring instruments for low energy photons are made using the X ray calibration fields which are monochromatically characterized by filtration of continuous X ray spectrum. The X ray calibration field needs to be characterized by some quality conditions such as quality index and homogeneity coefficient. The present report describes quality conditions, spectrum and some characteristics of X ray irradiation fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (FRS-JAERI). Fifty nine X ray qualities with the quality index of 0.6, 0.7, 0.8 and 0.9 were set for the tube voltages between 10 kV and 350 kV. Estimation of X ray spectrum measured with a Ge detector was made in terms of exposure, ambient dose equivalent and fluence for all the obtained qualities. Practical irradiation field was determined as the dose distribution uniformity is within ±3%. The obtained results improve the quality of X ray calibration fields and calibration accuracy. (author)

  2. Preschoolers' Performance on the Brazilian Adaptation of the Preschool Language Assessment Instrument - Second Edition.

    Science.gov (United States)

    Lindau, Tâmara Andrade; Rossi, Natalia Freitas; Giacheti, Celia Maria

    2016-01-01

    The objective was to test whether the Brazilian version of the Preschool Language Assessment Instrument - Second Edition (PLAI-2) has the potential to assess and identify differences in typical language development of Portuguese-speaking preschoolers. The study included 354 children of both genders with typical language development who were between the ages of 3 years and 5 years 11 months. The version of the PLAI-2 previously translated into Brazilian Portuguese was used to assess the communication skills of these preschool-age children. Statistically significant differences were found between the age groups, and the raw score tended to increase as a function of age. With nonstandardized assessments, the performances of the younger groups revealed behavioral profiles (e.g., nonresponsive, impulsive behavior) that directly influenced the evaluation. The findings of this study show that the PLAI-2 is effective in identifying differences in language development among Brazilian children of preschool age. Future research should include studies validating and standardizing these findings. © 2016 S. Karger AG, Basel.

  3. Quantitation of bone mineral by dual photon absorptiometry (DPA): Evaluation of instrument performance

    International Nuclear Information System (INIS)

    Dunn, W.L.; O'Duffy, A.; Wahner, H.W.

    1984-01-01

    Quantitation of bone mineral is used with increasing frequency for clinical studies. This paper details the principle of DPA and present an evaluation of the technique. DPA measurements were performed with a scanning dual photon system constructed at this institution and modeled after the device developed at the University of Wisconsin. The components are a rectilinear scanner frame, 1.5 Ci Gd-153 source, NaI(TL) detector and a PDP 11/03 computer. Dual discriminator windows are set on the 44 and 100 keV photon energies of Gd-153. Instrument linearity, accuracy and reproducibility were evaluated with ashed bone standards and simulated tissue covering. In these experiments computed and actual bone mineral have a correlation coefficient of 1.0 and a SEE of approximately 1.0% (Linear regression analysis). Precision and accuracy of a standard were studied over a period of two years. Mean error between actual and measured bone mineral was 0.28%. In vivo precision in six subjects averaged 2.3% (CV) for lumbar spine measurements. The effect of soft tissue compositional change was studied with ashed bone standards and human cadaver spine specimens. Intraosseous fat changes of 50% produced an average bone mineral measurement error of 1.4%. A 20% change in fat thickness produced a 2.5% error. In situ and in vitro scans of 9 cadaver spines were performed to study the effect of extraosseous fat. The mean percent difference between the two measurements was 0.7% (SEE=3.2%)

  4. Variation in posture quality across musical instruments and its impact during performances.

    Science.gov (United States)

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez Vidal, Aurora

    2018-06-01

    Bad posture increases the risk that a musician may suffer from musculoskeletal disorders. This study compared posture quality required by different instruments or families of instruments. Using an ad-hoc postural observation instrument embracing 11 postural variables, four experts evaluated the postures of 100 students attending a Spanish higher conservatory of music. The agreement of the experts' evaluations was statistically confirmed by a Cohen's κ value between 0.855 and 1.000 and a Kendall value between 0.709 and 1.000 (p instrument families and seated posture with respect to pelvic attitude, dorsal curvature and head alignment in both sagittal and frontal planes. This analysis also showed an association between instrument families and standing posture with respect to the frontal plane of the axis of gravity, pelvic attitude, head alignment in the frontal plane, the sagittal plane of the shoulders and overall posture. While certain postural defects appear to be common to all families of instruments, others are more characteristic of some families than others. The instrument associated with the best posture quality was the bagpipe, followed by percussion and strings.

  5. Dental students' perceptions about the endodontic treatments performed using NiTi rotary instruments and hand stainless steel files.

    Science.gov (United States)

    Martins, Renata Castro; Seijo, Marília Oliveira Saraiva; Ferreira, Efigênia Ferreira; Paiva, Saul Martins; Ribeiro Sobrinho, Antônio Paulino

    2012-01-01

    This study evaluated the perceptions of Brazilian undergraduate dental students about the endodontic treatments performed using NiTi rotary instruments and hand stainless steel. Data were collected using a questionnaire administered to undergraduate dental students enrolled in endodontic disciplines. The students were divided into 3 groups: G1, students who had treated straight canals with SS hand instruments; G2, students who had treated curved canals with SS hand instruments; and G3, students who had treated both straight and curved canals with NiTi rotary instruments. The number of endodontic treatments performed, types of treated teeth, students' learning, time spent, encountered difficulties, quality of endodontic treatment and characteristics of the employed technique were analyzed. There was a 91.3% rate of return for the questionnaires. Mandibular molars were the most frequently treated teeth, followed by maxillary incisors. The Kruskal-Wallis test showed no differences in learning (p=0.528) or in the characteristics of the technique employed (p=0.560) among the three groups. G3 students performed a greater number of endodontic treatments (pendodontic treatments differed only between G1 and G2 (p=0.045). The use of NiTi rotary instruments should be included in undergraduate dental curriculum, contributing to the increase of patients assisted and consequently to improve the clinical experience of the students.

  6. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    International Nuclear Information System (INIS)

    Hardy, J.E.; Hess, R.A.; Hylton, J.O.

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions

  7. Acoustics and the Performance of Music Manual for Acousticians, Audio Engineers, Musicians, Architects and Musical Instrument Makers

    CERN Document Server

    Meyer, Jürgen

    2009-01-01

    Acoustics and the Performance of Music connects scientific understandings of acoustics with practical applications to musical performance. Of central importance are the tonal characteristics of musical instruments and the singing voice including detailed representations of directional characteristics. Furthermore, room acoustical concerns related to concert halls and opera houses are considered. Based on this, suggestions are made for musical performance. Included are seating arrangements within the orchestra and adaptations of performance techniques to the performance environment. In the presentation we dispense with complicated mathematical connections and deliberately aim for conceptual explanations accessible to musicians, particularly for conductors. The graphical representations of the directional dependence of sound radiation by musical instruments and the singing voice are unique. Since the first edition was published in 1978, this book has been completely revised and rewritten to include current rese...

  8. MODERN TENDENCIES OF USING INTEGRATIVE APPROACH TO ORGANIZING ART TEACHERS’ INSTRUMENTAL AND PERFORMING TRAINING

    Directory of Open Access Journals (Sweden)

    Zhanna Kartashova

    2016-04-01

    Full Text Available In the article the modern tendencies of using integrative approach to organizing art teachers’ instrumental and performing training. The concept “integration” is singled out; it is defined as the process of recovery, replenishment, combining previously isolated parts; moving of the system to a great organic integrity. It is disclosed that the integration means considering multidimensionality of element features which are being integrated while accumulating quantitative features and emerging a new quality and individual features of integral elements are saved. It is proved that integrating is interrelation of art varieties in the process of their aesthetic and educational impact on pupils that is the whole perception of a work (its content and its emotional, rational, ethical and aesthetic form in the unity of tasks of developing artistic and aesthetic senses, thoughts, tastes and pupils’ ideals. It is thought that integration in art pedagogy is held at three levels: internal artistic and aesthetic synthesis of various arts organically combined with students creative activity; interdisciplinary humanistic synthesis of the arts, the native language, literature, and folklore; looking for semantic blocks, images, concepts that have universal meaning, which, entering all spheres of human consciousness, such as science and mathematics, seamlessly combining them into a coherent system. It is noted that the most efficient approach is appeal to the learning subjects of Humanities cycle – music, literature and art. It is concluded that designing of training should be started with the analyzing prospective art teacher’s activity. It should be understood what the teacher has to do, not in general formulation, but at the level of actions and operations.

  9. The development and psychometric validation of the self-efficacy and performance in self-management support (SEPSS) Instrument

    NARCIS (Netherlands)

    V. Duprez (Veerle); S.M. van Hooft (Susanne); J. Dwarswaard (Jolanda); A.L. van Staa (AnneLoes); A. Van Hecke (Ann); M.M.H. Strating (Mathilde)

    2016-01-01

    markdownabstract__Aim:__ To develop and psychometrically test the self-efficacy and performance in self-management support (SEPSS) instrument. __Background:__ Facilitating persons with a chronic condition to take an active role in the management of their condition, implicates that nurses acquire

  10. The Development of a Secondary-Level Solo Wind Instrument Performance Rubric Using the Multifaceted Rasch Partial Credit Measurement Model

    Science.gov (United States)

    Wesolowski, Brian C.; Amend, Ross M.; Barnstead, Thomas S.; Edwards, Andrew S.; Everhart, Matthew; Goins, Quentin R.; Grogan, Robert J., III; Herceg, Amanda M.; Jenkins, S. Ira; Johns, Paul M.; McCarver, Christopher J.; Schaps, Robin E.; Sorrell, Gary W.; Williams, Jonathan D.

    2017-01-01

    The purpose of this study was to describe the development of a valid and reliable rubric to assess secondary-level solo instrumental music performance based on principles of invariant measurement. The research questions that guided this study included (1) What is the psychometric quality (i.e., validity, reliability, and precision) of a scale…

  11. Performing T-tests to Compare Autocorrelated Time Series Data Collected from Direct-Reading Instruments.

    Science.gov (United States)

    O'Shaughnessy, Patrick; Cavanaugh, Joseph E

    2015-01-01

    Industrial hygienists now commonly use direct-reading instruments to evaluate hazards in the workplace. The stored values over time from these instruments constitute a time series of measurements that are often autocorrelated. Given the need to statistically compare two occupational scenarios using values from a direct-reading instrument, a t-test must consider measurement autocorrelation or the resulting test will have a largely inflated type-1 error probability (false rejection of the null hypothesis). A method is described for both the one-sample and two-sample cases which properly adjusts for autocorrelation. This method involves the computation of an "equivalent sample size" that effectively decreases the actual sample size when determining the standard error of the mean for the time series. An example is provided for the one-sample case, and an example is given where a two-sample t-test is conducted for two autocorrelated time series comprised of lognormally distributed measurements.

  12. Provenance study of obsidian samples by using portable and conventional X ray fluorescence spectrometers. Performance comparison of both instrumentations

    International Nuclear Information System (INIS)

    Cristina Vazquez

    2012-01-01

    The potentiality of portable instrumentation lies on the possibility of the in situ determinations. Sampling, packaging and transport of samples from the site to the laboratory are avoided and the analysis becomes non destructive at all. However, detection limits for light elements are, in most cases, a limitation for quantification purposes. In this work a comparison between the results obtained with an X ray fluorescence spectrometer laboratory based and a portable instrument is performed. A set of 76 obsidian archaeological specimens from northwest Patagonia, Argentina was used to carry out the study. Samples were collected in the area of the middle and high basin of the Limay River. The analytical information obtained with both instrumentations was complemented with Principal Component Analysis in order to define groups and identify provenance sources. The information from both instruments allows arriving to the same conclusion about sample provenance and mobility of hunter-gatherer groups. Three groups of sources were identified in both cases matching with the geographical information. Also, same sets of outlier samples or not associated to these sources were found. Artifact samples were associated mainly to the closest sources, but some of them are related to sources located more than three hundred kilometers, evidencing the large mobility of the hunter-gatherers by the obsidian interchange. No significant differences between concentrations values obtained by laboratory based instrument and portable one were found. (author)

  13. Assessment of economic instruments for countries with low municipal waste management performance: An approach based on the analytic hierarchy process.

    Science.gov (United States)

    Kling, Maximilian; Seyring, Nicole; Tzanova, Polia

    2016-09-01

    Economic instruments provide significant potential for countries with low municipal waste management performance in decreasing landfill rates and increasing recycling rates for municipal waste. In this research, strengths and weaknesses of landfill tax, pay-as-you-throw charging systems, deposit-refund systems and extended producer responsibility schemes are compared, focusing on conditions in countries with low waste management performance. In order to prioritise instruments for implementation in these countries, the analytic hierarchy process is applied using results of a literature review as input for the comparison. The assessment reveals that pay-as-you-throw is the most preferable instrument when utility-related criteria are regarded (wb = 0.35; analytic hierarchy process distributive mode; absolute comparison) mainly owing to its waste prevention effect, closely followed by landfill tax (wb = 0.32). Deposit-refund systems (wb = 0.17) and extended producer responsibility (wb = 0.16) rank third and fourth, with marginal differences owing to their similar nature. When cost-related criteria are additionally included in the comparison, landfill tax seems to provide the highest utility-cost ratio. Data from literature concerning cost (contrary to utility-related criteria) is currently not sufficiently available for a robust ranking according to the utility-cost ratio. In general, the analytic hierarchy process is seen as a suitable method for assessing economic instruments in waste management. Independent from the chosen analytic hierarchy process mode, results provide valuable indications for policy-makers on the application of economic instruments, as well as on their specific strengths and weaknesses. Nevertheless, the instruments need to be put in the country-specific context along with the results of this analytic hierarchy process application before practical decisions are made. © The Author(s) 2016.

  14. Utilisation and performance of sodium instrumentation during start-up and initial operation of Phenix

    International Nuclear Information System (INIS)

    Lions, N.; Buis, H.; Baron, J.; Fournier, C.; Gourdon, J.

    1976-01-01

    The main process-instruments on the Phenix reactor are presented with the exception of the FFDL System and of the hydrogen-detector which are described in other papers. The results obtained during reactor start-up and during initial operation of the nuclear power-station are given [fr

  15. Radiation induced charge transfer inefficiencies in the Sentinel 4 instrument: modeling, performance, and correction

    Science.gov (United States)

    Irizar, J.; Gulde, S.; Skegg, M.; Levillain, Y.; Weber, H.

    2017-09-01

    Sentinel 4 is an imaging UVN (UV-VIS-NIR) dispersive spectrometer, developed by Airbus DS under an ESA contract in the frame of the joint EU/ESA COPERNICUS program. The instrument is introduced in a dedicated presentation in this conference.

  16. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  17. Validation of an instrument to measure tutor performance in promoting self-directed learning by using confirmatory factor analysis

    Directory of Open Access Journals (Sweden)

    Genoveva Amador Fierros

    Full Text Available Objective.This work sought to validate and propose an instrument to measure the performance of tutors in promoting self-directed learning in students involved in processes of problem-based learning. Methods. Confirmatory factor analysis (CFA was applied to validate the instrument composed of 60 items and six factors (self-assessment of learning gaps within the United Nations specific context: self-assessment, reflexion, critical thinking, administration of information, group skills, using a sample of 207 students from a total of 279, which comprise the student population of the Faculty of Nursing at Universidad de Colima in Mexico. (2007. Results. The CFA results demonstrated that the instrument is acceptable to measure performance of tutors in promoting self-directed learning, given that all the indicators, variances, covariances, and thresholds are statistically significant. Conclusion. The instrument permits obtaining students' opinions on how much professors contribute for them to develop each of the 60 skills described in the scale. Lastly, the results could report if professors are placing more emphasis in some areas than in other areas they should address during the problem-based learning (PBL process, or if definitely their actions are removed from the premises of PBL, information that will be useful for school management in decision making on the direction of teaching as a whole.

  18. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    Science.gov (United States)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  19. Predicting Team Performance through Human Behavioral Sensing and Quantitative Workflow Instrumentation

    Science.gov (United States)

    2016-07-27

    3. Fig. 3. An illustration of viewport instrumentation. The game client (left) is viewing a portion of the scenario video , whose viewport...in the video and the x-axis representing the number of minutes elapsed since the start of the game . Similarly, Fig. 5 illustrates the teams...courses of action strength) and reflects the overall strategy for how they decide to approach the game ( aggressive to risk-averse). 5.3 Team

  20. Verifying the performance of instrumentation under adverse environmental conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Navorro, S.M.; Gonzalez-Granda, C.

    1983-01-01

    The current standards concerning the environmental qualification of electrical equipment and instrumentation, although extensive and consistent, are likely to be modified or improved in the short term, but will certainly not undergo any fundamental changes. At present, there is a requirement that the condition of equipment in plants in operation or approaching operational status should be checked and monitored for compliance with the relevant standards. One method of checking and monitoring electrical equipment and instrumentation basically consists in determining the environmental conditions in the various areas where safety-related equipment is being installed and then carrying out a study, component by component, using a pre-established form which summarizes the qualification requirements. The form consists of three different columns: the first contains information on the component; the second, information on the environmental conditions for which the component is to be certified or has been certified; and the third, information on the reference documents relating to those conditions. This form makes it possible to determine deficiencies, which are then collated in a table. Once the criteria for acceptance or refusal have been established, the necessary justification or proposal for corrective action is drawn up. Tolerances, accessories and subsequent tests are examples of grounds for justifying requalification, a change of an instrument or of its position, protection of the instrument and additional analyses. These are the possible corrective measures, and a careful study has to be made in order to determine which is the most appropriate measure in each case. A study of this type calls for experts in various fields. Co-operation between the organizations dealing with environmental qualification is desirable in order to facilitate the gathering of data and the adoption of uniform approaches. (author)

  1. Reappropriating Museum Collections: Performing Geology Specimens and Meterology Data as New Instruments for Musical Expression

    OpenAIRE

    Bowers, John; Shaw, Tim

    2014-01-01

    In this paper we describe an artistic response to a collection of natural history museum artefacts, developed as part of a residency organised around a public participatory workshop. Drawing on a critical literature in studies of material culture, the work incorporated data sonification, image audification, field recordings and created a number of instruments for exploring geological artefacts and meterological data as aesthetic material. The residency culminated in an exhibition presented as...

  2. The method to Certify Performance of Long-Lived In-Core Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Kyung-ho; Cha, Kyoon-ho; Moon, Sang-rae [KHNP CRI, Daejeon (Korea, Republic of)

    2015-10-15

    Rh ICI (In-Core Instrumentation) used in OPR1000 generates the relatively large signal but its lifetime is below 6 years. Rh ICI consists of 5 detectors which is a type of SPND (Self Powered Neutron Detector), a couple of thermo-couple, one background wire and several fillers. The short lifetime of Rh detector causes increase of procurement price and space shortage of spent fuel pool. Also, it makes operators be exposed by more radiations. KHNP (Korea Hydro and Nuclear Power Co., Ltd.) CRI (Central Research Institute) is developing the LLICI (Long-Lived In-Core Instrumentation) based on vanadium to solve these problems. LLICI is the detector which is a type of SPND based on Vanadium and has the lifetime of about 10 years. The short lifetime of OPR1000's Rh ICI and long cycle operation strategy cause increase of procurement price, space shortage of spent fuel pool and more radiation exposed to operators. KHNP (Korea Hydro and Nuclear Power Co., Ltd.) CRI (Central Research Institute) is developing the LLICI (Long-Lived In-Core Instrumentation) to solve these problems.

  3. Contribution to the study of solar prominences from observations performed on the LPSP instrument aboard the OSO-8 satellite

    International Nuclear Information System (INIS)

    Vial, Jean-Claude

    1981-01-01

    Notably by reprinting various documents and articles, this research reports works undertaken from the design of an experiment performed with the LPSP instrument aboard the OSO-8 satellite, to its data processing and interpretation. This experiment aimed at the study of the chromosphere fine structure by means of simultaneous high resolution observations of the L α, L β, Mg II, Ca II, H and K lines. The first part presents the on-board LPSP instrument. The second part reports observations of active and quiescent solar prominences. The third part reports the transfer calculation for five resonance lines (H Lα, Mg II H and K, Ca II H and K), and the comparison with observations performed on OSO-8

  4. Performance assessment of patient dosimetry services and X-ray quality assurance instruments used in diagnostic radiology

    International Nuclear Information System (INIS)

    Green, S.; Palethrope, J.E.; Peach, D.; Bradley, D.A.

    1999-01-01

    Experiences of the Regional Radiation Physics and Protection Service (RRPPS) in performance assessment of diagnostic X-ray QA instrumentation and on-patient dosemeters are recounted. Issues relating to the provision of realistic and reproducible reference conditions for calibrated X-irradiations are considered and summary statistics from test measurements of dose and kVp meters are provided. For both dose and kVp meters it is indicated that as many as 25% of instruments used in routine use in the U.K. may require some adjustment before they can truly be said to be performing as the manufacturer intended. Results from intercomparison exercises for patient dosimetry services are also discussed. It is apparent that, for those centres participating in the exercise, dose assessments are generally being obtained to within a bias and a relative standard deviation of less then 10%

  5. The Thermal-hydraulic Performance Test Report for the Non-instrumented Irradiation Test Rig of Annular Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Kang Hee; Shin, Chang Hwan

    2008-09-15

    This report presents the results of pressure drop test, vibration test and endurance test for the non-instrumented rig using the irradiation test in HANARO of the double cooled annular fuel which were designed and fabricated by KAERI. From the out-pile thermal hydraulic tests, corresponding to the pressure drop of 200 kPa is measured to be about 9.72 kg/sec. Vibration frequency for the non-instrumented rig ranges from 5.0 to 10.7 kg/s. RMS(Root Mean Square) displacement for non-instrumented rig is less than 11.73 m, and the maximum displacement is less than 54.87m. The flow rate for endurance test were 10.5 kg/s, which was 110% of 9.72 kg/s. And the endurance test was carried out for 3 days. The test results found not to the wear and satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented rig. This test was performed at the FIVPET facility.

  6. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  7. Predicting automatic speech recognition performance over communication channels from instrumental speech quality and intelligibility scores

    NARCIS (Netherlands)

    Gallardo, L.F.; Möller, S.; Beerends, J.

    2017-01-01

    The performance of automatic speech recognition based on coded-decoded speech heavily depends on the quality of the transmitted signals, determined by channel impairments. This paper examines relationships between speech recognition performance and measurements of speech quality and intelligibility

  8. Performance of engine-driven rotary endodontic instruments with a superimposed bending deflection: V. Gates Glidden and Peeso drills.

    Science.gov (United States)

    Brantley, W A; Luebke, N H; Luebke, F L; Mitchell, J C

    1994-05-01

    A laboratory study was performed on Gates Glidden and Peeso drills to determine the incidence of shaft fracture when a bending deflection was superimposed on the rotating drills. Samples of sizes #1 to #6 stainless steel Gates Glidden drills, sizes #1 to #6 stainless steel and carbon steel-type P Peeso drills, and sizes #009 to #023 carbon steel-type B-1 Peeso drills from each of two manufacturers were evaluated with a unique apparatus that applied a 2-mm bending deflection while rotating the instruments. The apparatus did not restrict movement of the bur head during rotation. The test drills were rotated at 2500, 4000, and 7000 revolutions per minute, and the number of revolutions at failure was recorded. Scanning electron microscopic observations established that the stainless steel Gates Glidden and Peeso drills failed by ductile fracture, whereas the carbon steel Peeso drills failed by brittle fracture. Instrument fracture was always near the handpiece shank with this test, and the length of the fractured drills was measured from the working tip. It is recommended that this additional test be adopted to determine fatigue properties of engine-driven rotary endodontic instruments in establishing international performance standards.

  9. Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  10. STRUCTURAL AND FUNCTIONAL MODEL OF FORMING FUTURE MUSIC TEACHER’S CREATIVE THINKING IN INSTRUMENTAL AND PERFORMING TRAINING

    Directory of Open Access Journals (Sweden)

    Nadiia Lavrentieva

    2016-11-01

    Full Text Available In the article conceptual bases of forming students’ creative thinking in the instrumental and performing activities are revealed, taking current training trends into account. The contradictions between the requirements of society to create favorable conditions to realize future music teachers’ creative potential and current directions of a higher educational establishment to ‘a result”, which causes a specific system of promotion and support students’ value orientations and encourages students to master existing knowledge, algorithms, and performing models, depict the relevant problems of making out the system of the future music teachers’ instrumental and performing training that is aimed at developing their creative thinking. It is noted that while defining such phenomena as creative thinking and cognitive work a great number of scientists emphasizes on the word “create” which means finding and creating something that hasn’t been found in the previous individual or social experience. The aim of the article is to disclose the content and stages of implementing structural and functional model of forming future music teachers’ creative thinking The model is formed as an alternative to information and reproductive approach to training future specialists. The concept model is based on the target of forming future music teachers’ creative and methodological thinking, professional competence, activity and approaches to the students’ training to complete fulfillment of modern needs of professional and music education. The author specifies criteria of structural model of future music teachers’ creative thinking. They are value and motivational, cognitive and educational, action and technological, creative and modulating ones The effectiveness of the future music teachers’ creative thinking in instrumental and performing training depends on the level of forming clear science-based system that has a certain conceptual

  11. Evaluation of Performance Measurement Instruments on Their Use for Food Quality Systems

    NARCIS (Netherlands)

    Spiegel, van der M.; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2004-01-01

    Due to regular challenges of food safety, consumers put high demands on the performance of food quality systems. To deal with these requirements, food manufacturers need effective quality management. Performance of food quality systems can be partly realized by quality assurance systems, such as

  12. Evaluation of Performance Measurement Instruments on their use for Food Quality Systems

    NARCIS (Netherlands)

    Spiegel, M. van der; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2005-01-01

    Due to regular challenges of food safety, consumers put high demands on the performance of food quality systems. To deal with these requirements, food manufacturers need effective quality management. Performance of food quality systems can be partly realized by quality assurance systems, such as

  13. Instructors' Evaluation as an Instrument to Improve Performance and Determine Competence

    Science.gov (United States)

    Laei, Soosan; Abdi, Ali; Karamaerouz, Mohamad Javad; Shirkhani, Nassim

    2014-01-01

    Experts in human resources management have suggested common objectives for evaluating performance of all organizations, including motivation and improvement of staff performance, identification of competence and skills, identification of educational needs and developmental contexts, etc. Achievement to these objectives is -a responsibility of…

  14. Comparison of the performance of different instruments in the stray neutron field around the CERN Proton Synchrotron.

    Science.gov (United States)

    Aza, Eleni; Caresana, Marco; Cassell, Christopher; Colombo, Valeria; Damjanovic, Sanja; Gilardoni, Simone; Manessi, Giacomo Paolo; Pangallo, Michel; Perrin, Daniel; Silari, Marco

    2014-10-01

    This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead time. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. CryoSat SIRAL: Instrument Performance After 5 Years of Operations

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2016-08-01

    CryoSat's Synthetic Interferometric Radar Altimeter (SIRAL) [1] is a Ku-band pulsewidth limited radar altimeter that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for Delay/Doppler processing [2]. Moreover SIRAL takes advantage of two antennas mounted across-track for interferometric capability, in order to determine the across-track direction from which the echo is received [3].The calibration strategy for SIRAL includes both internal calibrations and external calibration [1,7]. Due to the fact that SIRAL is an interferometric phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In this paper we will describe as first the internal calibration strategy and then the different calibration corrections that are applied to science data. The internal calibration results over more than five years of mission will be presented, analysing their temporal evolution in order to highlight the stability of the instrument over its life.

  16. CAS-ATLID (co-alignment sensor of ATLID instrument) thermo-structural design and performance

    Science.gov (United States)

    Moreno, Javier; Serrano, Javier; González, David; Rodríguez, Gemma; Manjón, Andrés.; Vásquez, Eloi; Carretero, Carlos; Martínez, Berta

    2017-11-01

    This paper describes the main thermo-mechanical design features and performances of the Co-Alignment Sensor (CAS) developed by LIDAX and CRISA under ESA program with AIRBUS Defence and Space as industry prime.

  17. Abusive Supervision and Subordinate Performance : Instrumentality Considerations in the Emergence and Consequences of Abusive Supervision

    NARCIS (Netherlands)

    Walter, Frank; Lam, Catherine K.; van der Vegt, Geert; Huang, X.; Miao, Q.

    Drawing from moral exclusion theory, this article examines outcome dependence and interpersonal liking as key boundary conditions for the linkage between perceived subordinate performance and abusive supervision. Moreover, it investigates the role of abusive supervision for subordinates' subsequent,

  18. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.; Sevilla, Gallo. A. Torres; Hawsawi, Mayyada.; Mashraei, Yousof.; Mohammed, Hanan .; Cruz, Melvin E.; Ivanov, Yurii. P.; Jaiswal, Samridh.; Jakob, Gerhard.; Klä ui, Mathias.; Hussain, Muhammad.; Kosel, Jurgen.

    2018-01-01

    , where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first

  19. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    Science.gov (United States)

    Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.

    2016-07-01

    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .

  20. Ecological Development and Validation of a Music Performance Rating Scale for Five Instrument Families

    Science.gov (United States)

    Wrigley, William J.; Emmerson, Stephen B.

    2013-01-01

    This study investigated ways to improve the quality of music performance evaluation in an effort to address the accountability imperative in tertiary music education. An enhanced scientific methodology was employed incorporating ecological validity and using recognized qualitative methods involving grounded theory and quantitative methods…

  1. Surprising Incentive: An Instrument for Promoting Safety Performance of Construction Employees

    Directory of Open Access Journals (Sweden)

    Fakhradin Ghasemi

    2015-09-01

    Conclusion: The results of this study proved that the surprising incentive would improve the employees' safety performance just in the short term because the surprising value of the incentives dwindle over time. For this reason and to maintain the surprising value of the incentive system, the amount and types of incentives need to be evaluated and modified annually or biannually.

  2. The Effects of Performance Quality Ratings on Perceptions of Instrumental Music Lessons

    Science.gov (United States)

    Henninger, Jacqueline C.

    2008-01-01

    This study examines the extent to which the perceptions of observers instructed to rate the quality of students' performances within ensemble rehearsals and applied lessons differ from those not so instructed. Music education majors (N = 52) wrote statements of observation during their viewing of a stimulus tape. All participants were informed of…

  3. The SPOT-HRV instrument - An overview of design and performance

    Science.gov (United States)

    Midan, J. P.

    1983-10-01

    The SPOT spacecraft's High Visible Resolution (HVR) earth resources sensor performance requirements, system and subsystem design features, and technology development considerations, are discussed. Attention is given to such problem areas involving extensive design tradeoff analyses and testing as those uncovered by mechanical design and thermal distortion studies and SNR analysis and calibration considerations. The SPOT spacecraft will be placed in orbit in 1985.

  4. Model of practical skill performance as an instrument for supervision and formative assessment

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Sommer, Irene; Larsen, Karin

    2012-01-01

    as during practice, performance and formative assessment of practical skills learning. It provided a common language about practical skills and enhanced the participants’ understanding of professionalism in practical nursing skill. In conclusion, the model helped to highlight the complexity in mastering......There are still weaknesses in the practical skills of newly graduated nurses. There is also an escalating pressure on existing clinical placements due to increasing student numbers and structural changes in health services. Innovative educational practices and the use of tools that might support...... learning are sparsely researched in the field of clinical education for nursing students. This paper reports on an action research study that promoted and investigated use of The Model of Practical Skill Performance as a learning tool during nursing students’ clinical placement. Clinical supervisors...

  5. SEU tests performed on the digital communication system for LHC cryogenic instrumentation

    International Nuclear Information System (INIS)

    Casas-Cubillos, J.; Faccio, F.; Gomes, P.; Martin, M.A.; Rodriguez-Ruiz, M.A.

    2002-01-01

    The future LHC particle accelerator will use a large number of cryogenic sensors and actuators, most of which are located inside the machine tunnel and therefore in a radiation environment. These elements will communicate through a fieldbus. This paper reports the irradiation study carried out on WorldFIP fieldbus communication system. A digital communication system based on WorldFIP fieldbus protocol has been implemented and single event effects and total ionizing dose radiation tests have been performed on it

  6. Performance of a C{sub 60}{sup +} ion source on a dynamic SIMS instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Albert J. [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States)]. E-mail: albert.fahey@nist.gov; Gillen, Greg [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States); Chi, Peter [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States); Mahoney, Christine M. [Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Dr. Stop 8371, Gaithersburg, MD 20899-8371 (United States)

    2006-07-30

    An IonOptika C{sub 60}{sup +} ion source has been fitted onto a CAMECA{sup 1} ims-4f. Stable ion beams of C{sub 60}{sup +} and C{sub 60}{sup 2+} have been obtained with typical currents approaching 20nA under conditions that allow for several days of source operation. The beam has been able to be focussed into a spot size of {approx}3{mu}m with an anode voltage of 10keV and scanning ion images have been acquired. We have performed analyses to characterize the performance of C{sub 60}{sup +} and C{sub 60}{sup 2+}. Depth profiles of a Cr-Ni multi-layer and polymer films with C{sub 60}{sup +} have produced excellent results. We have discovered that, under bombardment energies of <12keV on Si, C{sub 60}{sup +} will sputter material from the sample but will also produce deposition at a rate that exceeds the sputter rate. The performance of the source and our experiences with its operation will be discussed and some characteristic analysis data will be shown.

  7. The Development of an ASSA Module as an Auxiliary Tool for Assessment of Existing Plant Instrumentation and enhancement of the instruments performance

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Ha, Kwang Soon; Cho, Young Ro; Cho, Young; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong

    2007-04-01

    A review of a plant's accident management capabilities is one of the key elements in achieving regulatory closure of severe accident issues. During accidents, information and data from plant's instruments, as well as others sources, are essential for assessing the plant's status and response. Unlike for design basis accidents, there are inherently some uncertainties to instrumentation capabilities for severe accident conditions. There are many ways to obtain information during a severe accident. Moreover, precise measurements are not necessary. The redundancy and ruggedness of a plant's instrumentation provides considerable depth in the capability of existing designs. The circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings. A new simulator, ASSA(abnormal signal simulator analysis), through an analysis of the important circuits modeling under severe accident conditions has been designed. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. In this paper, it can be simulated to the temperature characteristic analysis procedure of the ASSA through EQ data comparative method and using specific signal processing under severe accident condition

  8. Development of quality control and instrumentation performance metrics for diffuse optical spectroscopic imaging instruments in the multi-center clinical environment

    Science.gov (United States)

    Keene, Samuel T.; Cerussi, Albert E.; Warren, Robert V.; Hill, Brian; Roblyer, Darren; Leproux, AnaÑ--s.; Durkin, Amanda F.; O'Sullivan, Thomas D.; Haghany, Hosain; Mantulin, William W.; Tromberg, Bruce J.

    2013-03-01

    Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the quality of recovered physiological data in some cases.

  9. Development of performance test instrument in the experiment of law of conservation mass using self and peer assessment’s technique

    Science.gov (United States)

    Siswaningsih, W.; Nahadi; Firmansyah, D. R.

    2018-05-01

    The purpose of this research is to develop the instrument of performance assessment of law of mass conservation using self and peer assessment technique that meet valid and reliable criteria. The instrument components consist of task and rubric. The method used is development and validation.Value of the instrument reliability obtained from twice observations that are at four and six students every group with three same observers. Cronbach alpha value for four and six students every group consecutively are 0.94 and 0.76, indicating that value shows that the instrument is reliable. Optimum amount of the students that can be observed are four students. The implementation of the instrument to limited group of students showed that All of the students give positive responses to the instrument used with the interpretation of questionnaire scores >90% that categorized as good.

  10. Development and Testing of a Low-Cost Instrumentation Platform for Fixed-Wing UAV Performance Analysis

    Directory of Open Access Journals (Sweden)

    Tulio Dapper e Silva

    2018-05-01

    Full Text Available The flight data of a fixed-wing Unmanned Aerial Vehicle (UAV can be evaluated by its designers in order to analyze its performance, to validate the project criteria and to make new decisions based on the data analyses. In this paper, the authors propose the development of a low-cost instrumentation platform capable of collecting the following data: airspeed, orientation and altitude of the airplane, and the current drained by the electric system. Moreover, this paper presents the use of a telemetry system in order to display the flight conditions to the pilot. The system contains a variety of sensors, which were chosen based on their price, applicability and ease of use. After a test flight had been performed, the collected measurements were plotted and analyzed. Having the flight data, a set of flight characteristics might be observed.

  11. Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

    CERN Document Server

    Abramowicz, H.; Afanaciev, K.; Aguilar, J.; Alvarez, E.; Avila, D.; Benhammou, Y.; Bortko, L.; Borysov, O.; Bergholz, M.; Bozovic-Jelisavcic, I.; Castro, E.; Chelkov, G.; Coca, C.; Daniluk, W.; Dumitru, L.; Elsener, K.; Fadeyev, V.; Firlej, M.; Firu, E.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Henschel, H.; Idzik, M.; Ishikawa, A.; Kananov, S.; Kollowa, S.; Kotov, S.; Kotula, J.; Kozhevnikov, D.; Kruchonok, V.; Krupa, B.; Kulis, Sz.; Lange, W.; Lesiak, T.; Levy, A.; Levy, I.; Lohmann, W.; Lukic, S.; Milke, C.; Moron, J.; Moszczynski, A.; Neagu, A.T.; Novgorodova, O.; Oliwa, K.; Orlandea, M.; Pandurovic, M.; Pawlik, B.; Preda, T.; Przyborowski, D.; Rosenblat, O.; Sailer, A.; Sato, Y.; Schumm, B.; Schuwalow, S.; Smiljanic, I.; Smolyanskiy, P.; Swientek, K.; Teodorescu, E.; Terlecki, P.; Wierba, W.; Wojton, T.; Yamaguchi, S.; Yamamoto, H.; Zawiejski, L.; Zgura, I.S.; Zhemchugov, A.

    2015-01-01

    Detector-plane prototypes of the very forward calorimetry of a future detector at an $e^+e^-$ collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio for different feedback schemes and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.

  12. Rodent bone densitometer on the International Space Station: Instrument design and performance

    Science.gov (United States)

    Vellinger, John C.; Barton, Kenneth; Faget, Paul; Todd, Paul; Boland, Eugene

    2016-07-01

    The study of bone loss dynamics, mechanisms and countermeasures has been a publicly stated purpose of biomedical research aboard the International Space Station. Rodent research has always played a major role in terrestrial laboratories studying bone loss. The "gold standard" for assessing bone loss in human patients has been dual-energy x-ray absorptiometry (DEXA). DEXA is also widely applied to the study of bone loss in laboratory animals, so this technology has been added to the ISS inventory of analytical tools in the form of the ISS Bone Densitometer (BD) designed, constructed, tested and integrated by Techshot, Inc. (Greenville, Indiana, USA). The BD is a re-packaged COTS device known as PIXImus (GE-Lunar, USA), which was installed on ISS in November 2014 after launching on SpaceX-4. To facilitate operations in microgravity and to meet spaceflight facility and safety requirements the commercial x-ray source, control electronics and imaging system were modified and packaged by Techshot into a drawer that fits into a single EXPRESS Locker replacement. A space-rated "Exam Box" is also supplied for containment of the anesthetized subject during transfer into the BD and during exposure. The commercial software package controls four paired-energy exposures, 80 and 35 kV, and applies DEXA algorithms to the fluorescence images and displays bone mineral density (BMD), bone mineral content, lean mass, fat mass, total mass and per cent fat. The BD is therefore also a means for measuring mass and body composition making it a versatile tool for many types of rodent studies on orbit. The BD has been operated multiple times on orbit, and its performance has not differed significantly from its performance on the ground. It has been shown to measure body mass with a precision of +/- 0.1 g and on-orbit accuracy of -0.3 g. It is expected to detect BMD losses of approximately 2%. The image data are stored in a manner that allows post-test data analysis especially including the

  13. Instrumentation Of The CERN Accelerator Logging Service: Ensuring Performance, Scalability, Maintenance And Diagnostics

    CERN Document Server

    Roderick, C; Dinis Teixeira, D

    2011-01-01

    The CERN accelerator Logging Service currently holds more than 90 terabytes of data online, and processes approximately 450 gigabytes per day, via hundreds of data loading processes and data extraction requests. This service is mission-critical for day-to-day operations, especially with respect to the tracking of live data from the LHC beam and equipment. In order to effectively manage any service, the service provider’s goals should include knowing how the underlying systems are being used, in terms of: “Who is doing what, from where, using which applications and methods, and how long each action takes”. Armed with such information, it is then possible to: analyse and tune system performance over time; plan for scalability ahead of time; assess the impact of maintenance operations and infrastructure upgrades; diagnose past, on-going, or re-occurring problems. The Logging Service is based on Oracle DBMS and Application Servers, and Java technology, and is comprised of several layered and multi-tiered s...

  14. Simulation and Performance Test Technology Development for Semiconductor Radiation Detection Instrument Fabrication

    International Nuclear Information System (INIS)

    Kim, Jong Kyung; Lee, W. G.; Kim, S. Y.; Shin, C. H.; Kim, K. O.; Park, J. M.; Jang, D. Y.; Kang, J. S.

    2010-06-01

    - Analysis on the Absorbed Dose and Electron Generation by Using MCNPX Code - Analysis on the Change of Measured Energy Spectrum As a Function of Bias Voltage Applied in Semiconductor Detector - Comparison of Monte Carlo Simulation Considering the Charge Collection Efficiency and Experimental Result - Development of Semiconductor Sensor Design Code Based on the Graphic User Interface - Analysis on Depth Profile of Ion-implanted Semiconductor Wafer Surface and Naturally Generated SiO2 Insulation Layer Using Auger Electron Spectroscopy - Measurement of AFM Images and Roughness to Abalyze Surface of Semiconductor Wafer with respect to Annealing and Cleaning Process - Measurement of Physical Properties for Semiconductor Detector Surface after CZT Passivation Process - Evaluation of Crystal Structure and Specific Resistance of CZT - Measurement/Analysis on Band Structure of CZT Crystal - Evaluation of Neutron Convertor Layer with respect to Change in Temperature - Measurement/Evaluation of physical characteristics for lattice parameter, specific resistance, and band structure of CZT crystal - Measurement/Evaluation of lattice transition of SiC semiconductor detector after radiation irradiation - Measurement/Evaluation of performance of semiconductor detector with respect to exposure in high temperature environment

  15. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    Science.gov (United States)

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  16. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    Directory of Open Access Journals (Sweden)

    Gustavo R D Bernardina

    Full Text Available Action sport cameras (ASC are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720 and 1.5mm (1920×1080. The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  17. D.P.M. METHOD - A PERFORMANCE ANALYSIS INSTRUMENT OF A STRATEGIC BUSINESS UNIT

    Directory of Open Access Journals (Sweden)

    Ionescu Florin Tudor

    2012-12-01

    Full Text Available Considering the uncertain economic conditions, the market dynamics, the fundamental changes in the attitudes and aspirations of the consumers along with the strong growth of the political role and interventions in the economy, currently characterizing both Romania and other countries of the world, it can be said that the need for strategic planning was never so acute as now. The strategic planning process is an ongoing organizational activity by which managers can make decisions about their present and future position. A number of analytical portfolio tools exist to aid managers in the formulation of the strategy. The use of these tools within the broader context of the overall strategic planning process allows managers to determine the obstacles and opportunities existing in the company’s environment and to define and pursue appropriate strategies for growth and profitability. The present paper aims to highlight from a theoretical standpoint the D.P.M. method, its strategic consequences, advantages and disadvantages. After conducting this analysis I have found that restricting the business portfolio analysis to the D.P.M. matrix is not a very wise decision. The D.P.M. matrix among with other marketing tools of business portfolio analysis have some advantages and disadvantages and is trying to provide, at a time, a specific diagnosis of a company’s business portfolio. Therefore, the recommendation for the Romanian managers consists in a combined use of a wide range of tools and techniques for business portfolio analysis. This leads to a better understanding of the whole mix of product markets, included in portfolio analysis, the strategic position held by each business within a market, the performance potential of business portfolio and the financial aspects related to the resource allocation process for the businesses within the portfolio. It should also be noted that the tools and techniques specific to business portfolio

  18. Pre-bent instruments used in single-port laparoscopic surgery versus conventional laparoscopic surgery: comparative study of performance in a dry lab.

    Science.gov (United States)

    Miernik, Arkadiusz; Schoenthaler, Martin; Lilienthal, Kerstin; Frankenschmidt, Alexander; Karcz, Wojciech Konrad; Kuesters, Simon

    2012-07-01

    Different types of single-incision laparoscopic surgery (SILS) have become increasingly popular. Although SILS is technically even more challenging than conventional laparoscopy, published data of first clinical series seem to demonstrate the feasibility of these approaches. Various attempts have been made to overcome restrictions due to loss of triangulation in SILS by specially designed SILS-specific instruments. This study involving novices in a dry lab compared task performances between conventional laparoscopic surgery (CLS) and single-port laparoscopic surgery (SPLS) using newly designed pre-bent instruments. In this study, 90 medical students without previous experience in laparoscopic techniques were randomly assigned to undergo one of three procedures: CLS, SPLS using two pre-bent instruments (SPLS-pp), or SPLS using one pre-bent and one straight laparoscopic instrument (SPLS-ps). In the dry lab, the participants performed four typical laparoscopic tasks of increasing difficulty. Evaluation included performance times or number of completed tasks within a given time frame. All performances were videotaped and evaluated for unsuccessful attempts and unwanted interactions of instruments. Using subjective questionnaires, the participants rated difficulties with two-dimensional vision and coordination of instruments. Task performances were significantly better in the CLS group than in either SPLS group. The SPLS-ps group showed a tendency toward better performances than the SPLS-pp group, but the difference was not significant. Video sequences and participants` questionnaires showed instrument interaction as the major problem in the single-incision surgery groups. Although SILS is feasible, as shown in clinical series published by laparoscopically experienced experts, SILS techniques are demanding due to restrictions that come with the loss of triangulation. These can be compensated only partially by currently available SILS-designed instruments. The future of

  19. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Gunther, B.; Martinez-Guridi, G.; Xing, J.; Barnes, V.

    2010-01-01

    Integrated digital instrumentation and control (I and C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I and C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I and C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I and C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I and C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  20. How to improve a critical performance for an ExoMars 2020 Scientific Instrument (RLS). Raman Laser Spectrometer Signal to Noise Ratio (SNR) Optimization

    Science.gov (United States)

    Canora, C. P.; Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Ramos, G.; López-Reyes, G.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Rodriguez, P.; Santamaria, P.; Berrocal, A.; Colombo, M.; Gallago, P.; Seoane, L.; Quintana, C.; Ibarmia, S.; Zafra, J.; Saiz, J.; Santiago, A.; Marin, A.; Gordillo, C.; Escribano, D.; Sanz-Palominoa, M.

    2017-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Raman spectroscopy is based on the analysis of spectral fingerprints due to the inelastic scattering of light when interacting with matter. RLS is composed by Units: SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit) and the harnesses (EH and OH). The iOH focuses the excitation laser on the samples and collects the Raman emission from the sample via SPU (CCD) and the video data (analog) is received, digitalizing it and transmiting it to the processor module (ICEU). The main sources of noise arise from the sample, the background, and the instrument (Laser, CCD, focuss, acquisition parameters, operation control). In this last case the sources are mainly perturbations from the optics, dark signal and readout noise. Also flicker noise arising from laser emission fluctuations can be considered as instrument noise. In order to evaluate the SNR of a Raman instrument in a practical manner it is useful to perform end-to-end measurements on given standards samples. These measurements have to be compared with radiometric simulations using Raman efficiency values from literature and taking into account the different instrumental contributions to the SNR. The RLS EQM instrument performances results and its functionalities have been demonstrated in accordance with the science expectations. The Instrument obtained SNR performances in the RLS EQM will be compared experimentally and via analysis, with the Instrument Radiometric Model tool. The characterization process for SNR optimization is still on going. The operational parameters and RLS algorithms (fluorescence removal and acquisition parameters estimation) will be improved in future models (EQM-2) until FM Model delivery.

  1. Performance acceptance test of a portable instrument to detect uranium in water at the DOE Advanced Waste Water Treatment Plant, Fernald, Ohio

    International Nuclear Information System (INIS)

    Anderson, M.S.; Weeks, S.J.

    1997-01-01

    The Eppendorf-Biotronik Model IC 2001-2, a portable field ruggedized ion chromatography instrument, was rigorously tested at the DOE Advanced Waste Water Treatment Plant, Fernald, Ohio. This instrument rapidly detected the uranium concentration in water, and has a detection limit in the low ppb range without using the sample concentrating feature. The test set of samples analyzed included: ''Real World'' water samples from the AWWT containing uranium concentrations in the 9--110 ppb range, a sample blank, and a performance evaluation sample. The AWWT samples contained sets of both raw water and acid-preserved water samples. Selected samples were analyzed in quadruplicate to asses the instrument's precision, and these results were compared with the results from an off-site confirmatory laboratory to assess the instrument's accuracy. Additional comparisons with on-site laboratory instruments, Chemcheck KPA-11 and Scintrex UA-3 are reported. Overall, the Eppendorf-Biotronik IC 2001-2 performed exceptionally well providing a detection limit in the low ppb region (< 10 ppb) and giving rapid (< 5 minutes) accurate and reproducible analytical results for the AWWT, ''real world'', water samples with uranium concentrations in the region of interest (10--40 ppb). The per sample operating cost for this instrument is equivalent to the per sample cost for the currently used KPA. The time required to analyze a sample and provide a result is approximately the same for the CI 2001-2, KPA, and Scintrex instruments

  2. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1984-09-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  3. Problems with radiological surveillance instrumentation

    International Nuclear Information System (INIS)

    Swinth, K.L.; Tanner, J.E.; Fleming, D.M.

    1985-01-01

    Many radiological surveillance instruments are in use at DOE facilities throughout the country. These instruments are an essential part of all health physics programs, and poor instrument performance can increase program costs or compromise program effectiveness. Generic data from simple tests on newly purchased instruments shows that many instruments will not meet requirements due to manufacturing defects. In other cases, lack of consideration of instrument use has resulted in poor acceptance of instruments and poor reliability. The performance of instruments is highly variable for electronic and mechanical performance, radiation response, susceptibility to interferences and response to environmental factors. Poor instrument performance in these areas can lead to errors or poor accuracy in measurements

  4. Differential performance of honey bee colonies selected for bee-pollen production through instrumental insemination and free-mating technique

    Directory of Open Access Journals (Sweden)

    I.M. de Mattos

    Full Text Available ABSTRACT The use of bee-pollen as a nutritional supplement or as a production-enhancing agent in livestock has increased the demand for this product worldwide. Despite the current importance of this niche within the apiculture industry, few studies have addressed the pollen production. We tested the performance of free-mated (FM and instrumentally inseminated queens (IQ in order to establish the effect of different breeding systems on pollen production. The F1 generation of IQ queens produced 153.95±42.83g/day, showing a significant improvement on the pollen production (2.74 times when compared to the parental generation (51.83±7.84g/day. The F1 generation of free-mated queens produced 100.07±8.23 g/day, which increased by 1.78 times when compared to the parental generation. Furthermore, we observed a statistically significant difference between the pollen production between colonies from the IQ and FM treatments. This study suggests that inseminated queens should be considered by beekeepers that aim to increase pollen production.

  5. The utilization of performance evaluation instruments by technical trainers to evaluate maintenance personnel in the nuclear power industry in the United States

    International Nuclear Information System (INIS)

    Hornberger, C.K.

    1993-01-01

    The purpose of this study was to document the utilization of performance evaluation instruments by technical trainers in the evaluation of maintenance personnel in US nuclear power plants. Performance evaluation of maintenance personnel has been identified by nuclear utilities and the Nuclear Regulatory Commission as the only acceptable method of determining worker competence. The NRC requires performance evaluation to be conducted to performance standards, but it does not specify the standards or the method to be utilized. Each plant is free to establish its own standards and methods of evaluation. This was a descriptive study utilizing descriptive statistics for the analysis of the data. The subjects included 655 maintenance trainers in 72 US nuclear plants. Conclusions of the study include: (1) Technical trainers are in compliance with NRC regulations. (2) Evaluation materials developed by the Institute of Nuclear Power Operations are used by technical trainers in every one of the 62 plants that responded. (3) In-plant or self-developed Performance Evaluation Instruments are utilized by 419 or 95.2% of the technical trainers. (4) Technical trainers incorporate nine common components into their Performance Evaluation Instruments. (5) Technical trainers evaluate maintenance processes and the product produced by workers when following procedures and specifications are critical and when safety hazards are involved. (6) Technical trainers believe that utilizing Performance Evaluation Instruments makes their job easier by providing documentation about the quality and standards of maintenance skills. (7) Technical trainers believe that maintenance workers benefit when their skills are assessed through the use of Performance Evaluation Instruments

  6. Diagnostic performance of major depression disorder case-finding instruments used among mothers of young children in the United States: A systematic review.

    Science.gov (United States)

    Owora, Arthur H; Carabin, Hélène; Reese, Jessica; Garwe, Tabitha

    2016-09-01

    Growing recognition of the interrelated negative outcomes associated with major depression disorder (MDD) among mothers and their children has led to renewed public health interest in the early identification and treatment of maternal MDD. Healthcare providers, however, remain unsure of the validity of existing case-finding instruments. We conducted a systematic review to identify the most valid maternal MDD case-finding instrument used in the United States. We identified articles reporting the sensitivity and specificity of MDD case-finding instruments based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) by systematically searching through three electronic bibliographic databases, PubMed, PsycINFO, and EMBASE, from 1994 to 2014. Study eligibility and quality were evaluated using the Standards for the Reporting of Diagnostic Accuracy studies and Quality Assessment of Diagnostic Accuracy Studies guidelines respectively. Overall, we retrieved 996 unduplicated articles and selected 74 for full-text review. Of these, 14 articles examining 21 different instruments were included in the systematic review. The 10 item Edinburgh Postnatal Depression Scale and Postpartum Depression Screening Scale had the most stable (lowest variation) and highest diagnostic performance during the antepartum and postpartum periods (sensitivity range: 0.63-0.94 and 0.67-0.95; specificity range: 0.83-0.98 and 0.68-0.97 respectively). Greater variation in diagnostic performance was observed among studies with higher MDD prevalence. Factors that explain greater variation in instrument diagnostic performance in study populations with higher MDD prevalence were not examined. Findings suggest that the diagnostic performance of maternal MDD case-finding instruments is peripartum period-specific. Published by Elsevier B.V.

  7. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  8. VESUVIO: a novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility

    Science.gov (United States)

    Senesi, R.; Andreani, C.; Bowden, Z.; Colognesi, D.; Degiorgi, E.; Fielding, A. L.; Mayers, J.; Nardone, M.; Norris, J.; Praitano, M.; Rhodes, N. J.; Stirling, W. G.; Tomkinson, J.; Uden, C.

    2000-03-01

    The VESUVIO project aims to provide unique prototype instrumentation at the ISIS-pulsed neutron source and to establish a routine experimental and theoretical program in neutron scattering spectroscopy at eV energies. This instrumentation will be specifically designed for high momentum, (20 Å-11 eV) inelastic neutron scattering studies of microscopic dynamical processes in materials and will represent a unique facility for EU researchers. It will allow to derive single-particle kinetic energies and single-particle momentum distributions, n(p), providing additional and/or complementary information to other neutron inelastic spectroscopic techniques.

  9. The role of different types of instrumentality in motivation, study strategies, and performance: know why you learn, so you'll know what you learn!

    Science.gov (United States)

    Simons, Joke; Dewitte, Siegfried; Lens, Willy

    2004-09-01

    Two theories in the field of motivation and achievement, namely the future time perspective theory and goal theory, result in conflicting recommendations for enhancing students' motivation, because of their differential emphasis on the task at hand and on the future consequences of a task. We will present a framework consisting of four types of instrumentality that combines both perspectives. The implications of those different types for goal orientation, motivation, cognitive strategies, study habits and performance are investigated. Participants were a group of 184 first-year nurse students with ages ranging from 18 to 45 years. Questionnaires were administered that measured instrumentality, goal orientation, motivation, deep and surface level learning strategies, study habits, and a manipulation check. At the end of the year, exam scores were collected. The results showed that different types of instrumentality are related differently to the motivational, cognitive and achievement measures. Being internally regulated and perceiving the utility of the courses resulted both in a more adaptive goal orientation and higher intrinsic motivation, which led to the use of more adaptive cognitive strategies and to better study habits, which ultimately enhanced performance. Linking performance to extrinsic rewards and not seeing the utility of the course for the future yielded the opposite pattern. Type of instrumentality has indeed a differential influence on motivational, cognitive, and behavioural variables.

  10. Acquiring the Language of Learning: The Performance of Hawaiian Preschool Children on the Preschool Language Assessment Instrument (PLAI).

    Science.gov (United States)

    Martini, Mary

    The Preschool Language Assessment Instrument (PLAI) was designed as a diagnostic tool for 3- to 6-year-old children to assess children's abilities to use language to solve thinking problems typically posed by teachers. The PLAI was developed after observing middle-class teachers in preschool classrooms encourage children to use language in…

  11. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  12. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  13. On Common Techniques of Music Instrument Perfor-mance and the References%乐器演奏的通用技法和借鉴

    Institute of Scientific and Technical Information of China (English)

    张馨元

    2014-01-01

    The performance techniques of a lot of music instru-ments are extremely similar and interlinked, especially hand styles, fingering, tone tuning, and so on. Therefore, common per-formance techniques of some music instruments were summa-rized to help learners draw inferences from what they've learned, instead of being restricted by the concept of "different instru-ments with different techniques", and in this way they can get more access to the learning of music instrument types with limited energies in limited time. The references to the interlink and and intercommunication of the performance techniques will give im-petus to a better understanding, inheritance, breakthrough and flexible use of the music instruments.%很多乐器的演奏方法都有着极其相似之处,尤其是手型、指法、调音等,相通之处更多。因此,总结出部分乐器演奏的通用技法,让乐器学习者可以举一反三、触类旁通,而不是拘泥于“术业有专攻”的限制,这样就可以在有限的时间内、用有限的精力对乐器种类有更为广泛的接触和学习,从而借鉴演奏方法上的相通之处和相互联系,进一步推动对这些乐器更好地了解、传承、突破及灵活运用。

  14. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  15. Influence of soil and climate heterogeneity on the performance of economic instruments for reducing nitrate leaching from agriculture.

    Science.gov (United States)

    Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel

    2014-11-15

    Economic instruments can be used to control groundwater nitrate pollution due to the intensive use of fertilizers in agriculture. In order to test their efficiency on the reduction of nitrate leaching, we propose an approach based on the combined use of production and pollution functions to derive the impacts on the expected farmer response of these instruments. Some of the most important factors influencing nitrate leaching and crop yield are the type of soil and the climatic conditions. Crop yield and nitrate leaching responses to different soil and climatic conditions were classified by means of a cluster analysis, and crops located in different areas but with similar response were grouped for the analysis. We use a spatial economic optimization model to evaluate the potential of taxes on nitrogen fertilizers, water prices, and taxes on nitrate emissions to reduce nitrate pollution, as well as their economic impact in terms of social welfare and farmers' net benefits. The method was applied to the Mancha Oriental System (MOS) in Spain, a large area with different soil types and climatic conditions. We divided the study area into zones of homogeneous crop production and nitrate leaching properties. Results show spatially different responses of crop growth and nitrate leaching, proving how the cost-effectiveness of pollution control instruments is contingent upon the spatial heterogeneities of the problem. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations.

    Science.gov (United States)

    Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A

    2017-03-01

    The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Analysis of the learning curve for transurethral resection of the prostate. Is there any influence of musical instrument and video game skills on surgical performance?

    Science.gov (United States)

    Yamaçake, Kleiton Gabriel Ribeiro; Nakano, Elcio Tadashi; Soares, Iva Barbosa; Cordeiro, Paulo; Srougi, Miguel; Antunes, Alberto Azoubel

    2015-09-01

    To evaluate the learning curve for transurethral resection of the prostate (TURP) among urology residents and study the impact of video game and musical instrument playing abilities on its performance. A prospective study was performed from July 2009 to January 2013 with patients submitted to TURP for benign prostatic hyperplasia. Fourteen residents operated on 324 patients. The following parameters were analyzed: age, prostate-specific antigen levels, prostate weight on ultrasound, pre- and postoperative serum sodium and hemoglobin levels, weight of resected tissue, operation time, speed of resection, and incidence of capsular lesions. Gender, handedness, and prior musical instrument and video game playing experience were recorded using survey responses. The mean resection speed in the first 10 procedures was 0.36 g/min and reached a mean of 0.51 g/min after the 20(th) procedure. The incidence of capsular lesions decreased progressively. The operation time decreased progressively for each subgroup regardless of the difference in the weight of tissue resected. Those experienced in playing video games presented superior resection speed (0.45 g/min) when compared with the novice (0.35 g/min) and intermediate (0.38 g/min) groups (p=0.112). Musical instrument playing abilities did not affect the surgical performance. Speed of resection, weight of resected tissue, and percentage of resected tissue improve significantly and the incidence of capsular lesions reduces after the performance of 10 TURP procedures. Experience in playing video games or musical instruments does not have a significant effect on outcomes.

  18. Determination of the Antibiotic Oxytetracycline in Commercial Milk by Solid-Phase Extraction: A High-Performance Liquid Chromatography (HPLC) Experiment for Quantitative Instrumental Analysis

    Science.gov (United States)

    Mei-Ratliff, Yuan

    2012-01-01

    Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…

  19. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  20. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    KALB, P.; LUCKETT, L.; MILLER, K.; GOGOLAK, C.; MILIAN, L.

    2001-01-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  1. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    Science.gov (United States)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  2. SIMPATIQCO: a server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on Orbitrap instruments.

    Science.gov (United States)

    Pichler, Peter; Mazanek, Michael; Dusberger, Frederico; Weilnböck, Lisa; Huber, Christian G; Stingl, Christoph; Luider, Theo M; Straube, Werner L; Köcher, Thomas; Mechtler, Karl

    2012-11-02

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge.

  3. Hand and nickel-titanium root canal instrumentation performed by dental students: a micro-computed tomographic study.

    Science.gov (United States)

    Peru, M; Peru, C; Mannocci, F; Sherriff, M; Buchanan, L S; Pitt Ford, T R

    2006-02-01

    The aim of this study was to evaluate root canals instrumented by dental students using the modified double-flared technique, nickel-titanium (NiTi) rotary System GT files and NiTi rotary ProTaper files by micro-computed tomography (MCT). A total of 36 root canals from 18 mesial roots of mandibular molar teeth were prepared; 12 canals were prepared with the modified double-flared technique, using K-flexofiles and Gates-Glidden burs; 12 canals were prepared using System GT and 12 using ProTaper rotary files. Each root was scanned using MCT preoperatively and postoperatively. At the coronal and mid-root sections, System GT and ProTaper files produced significantly less enlarged canal cross-sectional area, volume and perimeter than the modified double-flared technique (P ProTaper (P ProTaper and System GT were able to prepare root canals with little or no procedural error compared with the modified double-flared technique. Under the conditions of this study, inexperienced dental students were able to prepare curved root canals with rotary files with greater preservation of tooth structure, low risk of procedural errors and much quicker than with hand instruments.

  4. Postoperative quality of life following single-visit root canal treatment performed by rotary or reciprocating instrumentation: a randomized clinical trial.

    Science.gov (United States)

    Pasqualini, D; Corbella, S; Alovisi, M; Taschieri, S; Del Fabbro, M; Migliaretti, G; Carpegna, G C; Scotti, N; Berutti, E

    2016-11-01

    To compare the impact of rotary and reciprocating instrumentation on postoperative quality of life (POQoL) after single-visit primary root canal treatment. A randomized controlled clinical trial was designed and carried out in a University endodontic practice in northern Italy. Healthy subjects with asymptomatic irreversible pulpitis, symptomatic irreversible pulpitis or pulp necrosis with or without apical periodontitis (symptomatic or asymptomatic) scheduled for primary root canal treatment were enrolled. Single-visit root canal treatment was performed with ProTaper ™ S1-S2-F1-F2 (rotary group, n = 23) and WaveOne ™ Primary (reciprocating group, n = 24). Irrigation was performed with 5% NaOCl and 10% EDTA. Root canal filling was performed with the continuous-wave technique and ZOE sealer. POQoL indicators were evaluated for 7 days post-treatment. The variation of each indicator over time was compared using anova for repeated measures (P rotary group (mean, P = 0.077; maximum, P = 0.015). Difficulty in eating (P = 0.017), in performing daily activities (P = 0.023), in sleeping (P = 0.021) and in social relations (P = 0.077), was more evident in the reciprocating group. Patients' perception of the impact of treatment on POQoL was more favourable in the rotary group (P = 0.006). Multirooted tooth type and pre-existing periradicular inflammation were associated with a decrease in POQoL. Reciprocating instrumentation affected POQoL to a greater extent than rotary instrumentation. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. The Effects of Learning Procedure, Tempo, and Performance Condition on Transfer of Rhythm Skills in Instrumental Music.

    Science.gov (United States)

    Pierce, Michael A.

    1992-01-01

    Describes study of effects of learning procedures and performance tempo on ability of 64 middle school students to perform previously learned rhythmic passages. Reviews the four learning procedures used for each rhythmic passage. Finds no evidence attributed to learning procedure but significant adverse differences if the tempo was changed from…

  6. Gum-compliant uncertainty propagations for Pu and U concentration measurements using the 1st-prototype XOS/LANL hiRX instrument; an SRNL H-Canyon Test Bed performance evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Michael K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, Patrick E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-04

    An SRNL H-Canyon Test Bed performance evaluation project was completed jointly by SRNL and LANL on a prototype monochromatic energy dispersive x-ray fluorescence instrument, the hiRX. A series of uncertainty propagations were generated based upon plutonium and uranium measurements performed using the alpha-prototype hiRX instrument. Data reduction and uncertainty modeling provided in this report were performed by the SRNL authors. Observations and lessons learned from this evaluation were also used to predict the expected uncertainties that should be achievable at multiple plutonium and uranium concentration levels provided instrument hardware and software upgrades being recommended by LANL and SRNL are performed.

  7. [Controlling instruments in radiology].

    Science.gov (United States)

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  8. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  9. Reliability of published data on radionuclide half lives - relevance to the use of reference sources for checking instrument performance

    International Nuclear Information System (INIS)

    Waldock, P.M.

    1999-01-01

    Long-lived calibrated radioisotopes are frequently used for checking of instrumentation used in the measurement of radiation; examples include: radioisotope assay meters, radiation monitors and sample counting equipment. In 1986 we purchased a radioisotope calibrator (Capintec CRC120) which was supplied with a number of long-lived check sources by the manufacturer, one of which was barium-133. The source came with its own calibration certificate and a quoted half life of 10.74 years ± 0.05 years, traceable to the National Bureau of Standards in the USA, and is consistent with data published by the National Nuclear Data Center, Brookhaven National Laboratory in 1985 (Tuli 1985). However, we noted at the time that this is significantly different to the value of 7.2 years quoted in the Radiochemical Manual (Wilson 1966) published by the Radiochemical Centre, Amersham (now Nycomed-Amersham), and more recently we have noted that it is significantly different to the value of 10.53 years currently quoted on various Internet sites including the University of Sheffield Chemistry Department (Winter 1999). Further investigation showed similar or worse variations of published half lives with time for several radioisotopes. Letter-to-the-editor

  10. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  11. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 3: Thermal hydraulic research and codes; Digital instrumentation and control; Structural performance

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-04-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) thermal hydraulic research and codes; (2) digital instrumentation and control; (3) structural performance

  12. Trained Musical Performers' and Musically Untrained College Students' Ability to Discriminate Music Instrument Timbre as a Function of Duration.

    Science.gov (United States)

    Johnston, Dennis Alan

    The purpose of this study was to investigate the ability of trained musicians and musically untrained college students to discriminate music instrument timbre as a function of duration. Specific factors investigated were the thresholds for timbre discrimination as a function of duration, musical ensemble participation as training, and the relative discrimination abilities of vocalists and instrumentalists. The subjects (N = 126) were volunteer college students from intact classes from various disciplines separated into musically untrained college students (N = 43) who had not participated in musical ensembles and trained musicians (N = 83) who had. The musicians were further divided into instrumentalists (N = 51) and vocalists (N = 32). The Method of Constant Stimuli, using a same-different response procedure with 120 randomized, counterbalanced timbre pairs comprised of trumpet, clarinet, or violin, presented in durations of 20 to 100 milliseconds in a sequence of pitches, in two blocks was used for data collection. Complete, complex musical timbres were recorded digitally and presented in a sequence of changing pitches to more closely approximate an actual music listening experience. Under the conditions of this study, it can be concluded that the threshold for timbre discrimination as a function of duration is at or below 20 ms. Even though trained musicians tended to discriminate timbre better than musically untrained college students, musicians cannot discriminate timbre significantly better then those subjects who have not participated in musical ensembles. Additionally, instrumentalists tended to discriminate timbre better than vocalists, but the discrimination is not significantly different. Recommendations for further research include suggestions for a timbre discrimination measurement tool that takes into consideration the multidimensionality of timbre and the relationship of timbre discrimination to timbre source, duration, pitch, and loudness.

  13. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    Science.gov (United States)

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  14. Validation of a Self-Efficacy Instrument and Its Relationship to Performance of Crisis Resource Management Skills

    Science.gov (United States)

    Plant, Jennifer L.; van Schaik, Sandrijn M.; Sliwka, Diane C.; Boscardin, Christy K.; O'Sullivan, Patricia S.

    2011-01-01

    Self-efficacy is thought to be important for resuscitation proficiency in that it influences the development of and access to the associated medical knowledge, procedural skills and crisis resource management (CRM) skills. Since performance assessment of CRM skills is challenging, self-efficacy is often used as a measure of competence in this…

  15. Constructing a LabVIEW-Controlled High-Performance Liquid Chromatography (HPLC) System: An Undergraduate Instrumental Methods Exercise

    Science.gov (United States)

    Smith, Eugene T.; Hill, Marc

    2011-01-01

    In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…

  16. Evaluating performance characteristics of x-ray equipment and film systems without the use of electronic measurement and/or special instruments

    International Nuclear Information System (INIS)

    Bianchi, M.F.; DeNitto, C.; Liscio, A.; Scala, N.

    2004-01-01

    Measurement and control of characteristics of NDT equipment and system that produce output to be interpreted by inspector is one of the most important tools for NDT reliability. Control activity should be based on: initial accurate measurement and calibration; periodical check to assure maintenance of calibration status; and, immediate verification and corrective action when any malfunctioning is suspected. 'Self-calibration' intended as capability of NDT facility to calibrate and control its own equipment and systems is very important for continuous and reliable activity. Typical approach based on this philosophy is ASTM E317 'Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Examination Instruments and Systems Without the Use of Electronic Measurement Instruments' that is applicable to shop or field conditions. Is 'Self-calibration' applicable to radiographic system too? Many characteristics can be self-determined according to existing practices and methods, but other ones require assistance and cooperation of supplier both for film system and x-ray equipment. A certified film system being controlled by pre-exposed filmstrips can be adopted as 'measurement device' for X-ray output concerning both intensity and contrast. Basically x-ray equipment manufacturer performs initial accurate measurement and calibration using electronic measurement and/or special instrumentation as necessary. Then specific film set on 'low-price' blocks and specimens is produced according to standard practice whose guidelines are supplied by this paper. Film set, blocks, specimens and results referred to specific film system will be the reference kit for periodical check in NDT facility. This paper supplies some guidelines for standard practice based on testing using mainly GE Inspection Technologies radiographic system being available in Avio facilities. (author)

  17. Assessment of Laparoscopic Skills Performance: 2D Versus 3D Vision and Classic Instrument Versus New Hand-Held Robotic Device for Laparoscopy.

    Science.gov (United States)

    Leite, Mariana; Carvalho, Ana F; Costa, Patrício; Pereira, Ricardo; Moreira, Antonio; Rodrigues, Nuno; Laureano, Sara; Correia-Pinto, Jorge; Vilaça, João L; Leão, Pedro

    2016-02-01

    Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons' performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Each participant performed 3 laparoscopic tasks-Peg transfer, Wire chaser, Knot-in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures. © The Author(s) 2015.

  18. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    Science.gov (United States)

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  19. Technical quality of root canal treatment performed by undergraduate students using hand instrumentation: a meta-analysis.

    Science.gov (United States)

    Ribeiro, D M; Réus, J C; Felippe, W T; Pacheco-Pereira, C; Dutra, K L; Santos, J N; Porporatti, A L; De Luca Canto, G

    2018-03-01

    The technical quality of root canal treatment (RCT) may impact on the outcome. The quality of education received during undergraduate school may be linked to the quality of treatment provided in general dental practice. In this context, the aim of this systematic review was to answer the following focused questions: (i) What is the frequency of acceptable technical quality of root fillings, assessed radiographically, performed by undergraduate students? (ii) What are the most common errors assessed radiographically and reported in these treatments? For this purpose, articles that evaluated the quality of root fillings performed by undergraduate students were selected. Data were collected based on predetermined criteria. The key features from the included studies were extracted. GRADE-tool assessed the quality of the evidence. MAStARI evaluated the methodological quality, and a meta-analysis on all studies was conducted. At the end of the screening, 24 articles were identified. Overall frequency of acceptable technical quality of root fillings was 48%. From this total, 52% related to anterior teeth, 49% to premolars and 26% to molars. The main procedural errors reported were ledge formation, furcation perforation, apical transportation and apical perforation. The heterogeneity amongst the studies was high (84-99%). Five studies had a high risk of bias, eight had a moderate risk, and 11 had low risk. The overall quality of evidence identified was very low. The conclusion was that technical quality of root fillings performed by undergraduate students is low, which may reveal that endodontic education has limited achievement at undergraduate level. A plan to improve the quality of root fillings, and by extrapolation the overall quality of root canal treatment, should be discussed by the staff responsible for endodontic education and training. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Performance of the transition radiation detector flown on the NMSU/WIZARD TS93 balloon-borne instrument

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, F.; Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy). Dip. di Fisica]|[INFN, Trieste (Italy); Basini, G.; Brancaccio, F.M. [INFN, Laboratori nazionali di Frascati, Frascati, Rome (Italy); Bellotti, R. [Bari Univ. (Italy). Dip. di Fisica]|[INFN, Bari (Italy); Bidoli, V. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Bocciolini, M. [Florence Univ. (Italy). Dip. di Fisica]|[INFN, Florence (Italy); Bronzini, F. [Rome Univ. `La Sapienza` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `La Sapienza` Rome (Italy)

    1995-09-01

    It is built and tested a transition radiation detector (TRD) to discriminate positrons from protons in the balloon flight TS 93 experiment. It is presented the TRD performance using flight data obtaining a proton-positron rejection factor of the order of 10{sup -3}. During the 24 hour flight, the data in the momentum range 4-50 GeV/c are collected. Using the TRD together with the Silicon calorimeter, it is achieved an overall rejection factor of about 10{sup -5} of positron against the proton background over the entire momentum range.

  1. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    Science.gov (United States)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  2. Systematic monitoring of male circumcision scale-up in Nyanza, Kenya: exploratory factor analysis of service quality instrument and performance ranking.

    Science.gov (United States)

    Omondi Aduda, Dickens S; Ouma, Collins; Onyango, Rosebella; Onyango, Mathews; Bertrand, Jane

    2014-01-01

    Considerable conceptual and operational complexities related to service quality measurements and variability in delivery contexts of scaled-up medical male circumcision, pose real challenges to monitoring implementation of quality and safety. Clarifying latent factors of the quality instruments can enhance contextual applicability and the likelihood that observed service outcomes are appropriately assessed. To explore factors underlying SYMMACS service quality assessment tool (adopted from the WHO VMMC quality toolkit) and; determine service quality performance using composite quality index derived from the latent factors. Using a comparative process evaluation of Voluntary Medical Male Circumcision Scale-Up in Kenya site level data was collected among health facilities providing VMMC over two years. Systematic Monitoring of the Medical Male Circumcision Scale-Up quality instrument was used to assess availability of guidelines, supplies and equipment, infection control, and continuity of care services. Exploratory factor analysis was performed to clarify quality structure. Fifty four items and 246 responses were analyzed. Based on Eigenvalue >1.00 cut-off, factors 1, 2 & 3 were retained each respectively having eigenvalues of 5.78; 4.29; 2.99. These cumulatively accounted for 29.1% of the total variance (12.9%; 9.5%; 6.7%) with final communality estimates being 13.06. Using a cut-off factor loading value of ≥0.4, fifteen items loading on factor 1, five on factor 2 and one on factor 3 were retained. Factor 1 closely relates to preparedness to deliver safe male circumcisions while factor two depicts skilled task performance and compliance with protocols. Of the 28 facilities, 32% attained between 90th and 95th percentile (excellent); 45% between 50th and 75th percentiles (average) and 14.3% below 25th percentile (poor). the service quality assessment instrument may be simplified to have nearly 20 items that relate more closely to service outcomes. Ranking of

  3. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  4. Exploring the relationships among performance-based functional ability, self-rated disability, perceived instrumental support, and depression: a structural equation model analysis.

    Science.gov (United States)

    Weil, Joyce; Hutchinson, Susan R; Traxler, Karen

    2014-11-01

    Data from the Women's Health and Aging Study were used to test a model of factors explaining depressive symptomology. The primary purpose of the study was to explore the association between performance-based measures of functional ability and depression and to examine the role of self-rated physical difficulties and perceived instrumental support in mediating the relationship between performance-based functioning and depression. The inclusion of performance-based measures allows for the testing of functional ability as a clinical precursor to disability and depression: a critical, but rarely examined, association in the disablement process. Structural equation modeling supported the overall fit of the model and found an indirect relationship between performance-based functioning and depression, with perceived physical difficulties serving as a significant mediator. Our results highlight the complementary nature of performance-based and self-rated measures and the importance of including perception of self-rated physical difficulties when examining depression in older persons. © The Author(s) 2014.

  5. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  6. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  7. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  8. Action and familiarity effects on self and other expert musicians’ Laban effort-shape analyses of expressive bodily behaviors in instrumental music performance: a case study approach

    Science.gov (United States)

    Broughton, Mary C.; Davidson, Jane W.

    2014-01-01

    Self-reflective performance review and expert evaluation are features of Western music performance practice. While music is usually the focus, visual information provided by performing musicians’ expressive bodily behaviors communicates expressiveness to musically trained and untrained observers. Yet, within a seemingly homogenous group, such as one of musically trained individuals, diversity of experience exists. Individual differences potentially affect perception of the subtleties of expressive performance, and performers’ effective communication of their expressive intentions. This study aimed to compare self- and other expert musicians’ perception of expressive bodily behaviors observed in marimba performance. We hypothesized that analyses of expressive bodily behaviors differ between expert musicians according to their specialist motor expertise and familiarity with the music. Two professional percussionists and experienced marimba players, and one professional classical singer took part in the study. Participants independently conducted Laban effort-shape analysis – proposing that intentions manifest in bodily activity are understood through shared embodied processes – of a marimbists’ expressive bodily behaviors in an audio-visual performance recording. For one percussionist, this was a self-reflective analysis. The work was unfamiliar to the other percussionist and singer. Perception of the performer’s expressive bodily behaviors appeared to differ according to participants’ individual instrumental or vocal motor expertise, and familiarity with the music. Furthermore, individual type of motor experience appeared to direct participants’ attention in approaching the analyses. Findings support forward and inverse perception–action models, and embodied cognitive theory. Implications offer scientific rigor and artistic interest for how performance practitioners can reflectively analyze performance to improve expressive communication. PMID

  9. Action and familiarity effects on self and other expert musicians’ Laban effort-shape analyses of expressive bodily behaviors in instrumental music performance: A case study approach

    Directory of Open Access Journals (Sweden)

    Mary C Broughton

    2014-10-01

    Full Text Available Self-reflective performance review and expert evaluation are features of Western music performance practice. While music is usually the focus, visual information provided by performing musicians’ expressive bodily behaviors communicates expressiveness to musically trained and untrained observers. Yet, within a seemingly homogenous group such as one of musically trained individuals, diversity of experience exists. Individual differences potentially affect perception of the subtleties of expressive performance, and performers’ effective communication of their expressive intentions. This study aimed to compare self- and other expert musicians’ perception of expressive bodily behaviors observed in marimba performance. We hypothesised that analyses of expressive expressive bodily behaviors differ between expert musicians according to their specialist motor expertise and familiarity with the music. Two professional percussionists and experienced marimba players, and one professional classical singer took part in the study. Participants independently conducted Laban effort-shape analysis – proposing that intentions manifest in bodily activity are understood through shared embodied processes – of a marimbists’ expressive bodily behaviors in an audio-visual performance recording. For one percussionist, this was a self-reflective analysis. The work was unfamiliar to the other percussionist and singer. Perception of the performer’s expressive bodily behaviors differed according to participants’ individual instrumental or vocal motor expertise, and familiarity with the music. Furthermore, individual type of motor experience appeared to direct participants’ attention in approaching the analyses. Findings support forward and inverse perception-action models, and embodied cognitive theory. Implications offer scientific rigour and artistic interest for how performance practitioners can reflectively analyze performance to improve expressive

  10. Parents' self-efficacy, outcome expectations, and self-reported task performance when managing atopic dermatitis in children: instrument reliability and validity.

    Science.gov (United States)

    Mitchell, Amy E; Fraser, Jennifer A

    2011-02-01

    Support and education for parents faced with managing a child with atopic dermatitis is crucial to the success of current treatments. Interventions aiming to improve parent management of this condition are promising. Unfortunately, evaluation is hampered by lack of precise research tools to measure change. To develop a suite of valid and reliable research instruments to appraise parents' self-efficacy for performing atopic dermatitis management tasks; outcome expectations of performing management tasks; and self-reported task performance in a community sample of parents of children with atopic dermatitis. The Parents' Eczema Management Scale (PEMS) and the Parents' Outcome Expectations of Eczema Management Scale (POEEMS) were developed from an existing self-efficacy scale, the Parental Self-Efficacy with Eczema Care Index (PASECI). Each scale was presented in a single self-administered questionnaire, to measure self-efficacy, outcome expectations, and self-reported task performance related to managing child atopic dermatitis. Each was tested with a community sample of parents of children with atopic dermatitis, and psychometric evaluation of the scales' reliability and validity was conducted. A community-based convenience sample of 120 parents of children with atopic dermatitis completed the self-administered questionnaire. Participants were recruited through schools across Australia. Satisfactory internal consistency and test-retest reliability was demonstrated for all three scales. Construct validity was satisfactory, with positive relationships between self-efficacy for managing atopic dermatitis and general perceived self-efficacy; self-efficacy for managing atopic dermatitis and self-reported task performance; and self-efficacy for managing atopic dermatitis and outcome expectations. Factor analyses revealed two-factor structures for PEMS and PASECI alike, with both scales containing factors related to performing routine management tasks, and managing the

  11. Risk-adjusted econometric model to estimate postoperative costs: an additional instrument for monitoring performance after major lung resection.

    Science.gov (United States)

    Brunelli, Alessandro; Salati, Michele; Refai, Majed; Xiumé, Francesco; Rocco, Gaetano; Sabbatini, Armando

    2007-09-01

    The objectives of this study were to develop a risk-adjusted model to estimate individual postoperative costs after major lung resection and to use it for internal economic audit. Variable and fixed hospital costs were collected for 679 consecutive patients who underwent major lung resection from January 2000 through October 2006 at our unit. Several preoperative variables were used to develop a risk-adjusted econometric model from all patients operated on during the period 2000 through 2003 by a stepwise multiple regression analysis (validated by bootstrap). The model was then used to estimate the postoperative costs in the patients operated on during the 3 subsequent periods (years 2004, 2005, and 2006). Observed and predicted costs were then compared within each period by the Wilcoxon signed rank test. Multiple regression and bootstrap analysis yielded the following model predicting postoperative cost: 11,078 + 1340.3X (age > 70 years) + 1927.8X cardiac comorbidity - 95X ppoFEV1%. No differences between predicted and observed costs were noted in the first 2 periods analyzed (year 2004, $6188.40 vs $6241.40, P = .3; year 2005, $6308.60 vs $6483.60, P = .4), whereas in the most recent period (2006) observed costs were significantly lower than the predicted ones ($3457.30 vs $6162.70, P model may be used as a methodologic template for economic audit in our specialty and complement more traditional outcome measures in the assessment of performance.

  12. Objective evaluation of analyzer performance based on a retrospective meta-analysis of instrument validation studies: point-of-care hematology analyzers.

    Science.gov (United States)

    Cook, Andrea M; Moritz, Andreas; Freeman, Kathleen P; Bauer, Natali

    2017-06-01

    Information on quality requirements and objective evaluation of performance of veterinary point-of-care analyzers (POCAs) is scarce. The study was aimed at assessing observed total errors (TE obs s) for veterinary hematology POCAs via meta-analysis and comparing TE obs to allowable total error (TE a ) specifications based on experts' opinions. The TE obs for POCAs (impedance and laser-based) was calculated based on data from instrument validation studies published between 2006 and 2013 as follows: TE obs = 2 × CV [%] + bias [%]. The CV was taken from published studies; the bias was estimated from the regression equation at 2 different concentration levels of measurands. To fulfill quality requirements, TE obs should be 60% of analyzers showed TE obs hematology variables, respectively. For the CBC, TE obs was TE a (data from 3 analyzers). This meta-analysis is considered a pilot study. Experts' requirements (TE obs < TE a ) were fulfilled for most measurands except HGB (due to instrument-related bias for the ADVIA 2120) and platelet counts. Available data on the WBC differential count suggest an analytic bias, so nonstatistical quality control is recommended. © 2017 American Society for Veterinary Clinical Pathology.

  13. SU-E-I-51: Quantitative Assessment of X-Ray Imaging Detector Performance in a Clinical Setting - a Simple Approach Using a Commercial Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, J; Bujila, R; Omar, A; Nowik, P; Mobini-Kesheh, S; Lindstroem, J [Karolinska University Hospital, Solna (Sweden)

    2015-06-15

    Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices over the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.

  14. Application of the Instrumental Neutron Activation Analysis and High Performance Liquid Chromatography (HPLC) in the rare earth elements determination in reference geological materials

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Moraes, Noemia M.P. de; Shihomatsu, Helena M.

    1997-01-01

    Instrumental Neutron Activation Analysis (INAA) and High Performance Liquid Chromatography (HPLC) were applied to the determination of rare earth elements (REE) in the geological reference materials AGV-1, G-2 and GSP-1 (USGS). Results obtained by both techniques showed good agreement with certified values, giving relative errors less than 10%. The La, Ce, Nd, Sm, Eu, Tb, Yb and Lu REE elements were determined. All the REE except Dy and Y were determined by HPLC. The reference material G94, employed in the International Proficiency Test for Analytical Geochemistry Laboratories (GeoTP1) was analysed. The results obtained are a contribution to REE contents in this sample. The INAA and HPLC application to the determination of REE in this kind of matrix is also discussed. (author). 10 refs., 1 fig., 5 tabs

  15. The latest radiation instrument

    International Nuclear Information System (INIS)

    Kang, Se Sik; Gwon, Dal Gwan; Kim, Gyeong Geum

    2008-08-01

    This book deals with the latest radiation instrument, which is comprised of eight chapters. It explains X rays instrument for medial treatment, X-ray tube instrument and permissible burden with its history, structure and characteristic high voltage apparatus with high voltage rectifier circuit, X-ray control apparatus for medical treatment, X-ray image equipment X-ray television apparatus and CCD 205, X-ray apparatus of install and types, Digital X-ray apparatus with CR 261 and DR 269, performance management on X-ray for medical treatment with its history, necessity and management in the radiation field.

  16. Food quality and motivation: a refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.

    Science.gov (United States)

    Blaisdell, Aaron P; Lau, Yan Lam Matthew; Telminova, Ekatherina; Lim, Hwee Cheei; Fan, Boyang; Fast, Cynthia D; Garlick, Dennis; Pendergrass, David C

    2014-04-10

    Purified high-fat diet (HFD) feeding causes deleterious metabolic and cognitive effects when compared with unrefined low-fat diets in rodent models. These effects are often attributed to the diet's high content of fat, while less attention has been paid to other mechanisms associated with the diet's highly refined state. Although the effects of HFD feeding on cognition have been explored, little is known about the impact of refined vs. unrefined food on cognition. We tested the hypothesis that a refined low-fat diet (LFD) increases body weight and adversely affects cognition relative to an unrefined diet. Rats were allowed ad libitum access to unrefined rodent chow (CON, Lab Diets 5001) or a purified low-fat diet (REF, Research Diets D12450B) for 6 months, and body weight and performance on an instrumental lever pressing task were recorded. After six months on their respective diets, group REF gained significantly more weight than group CON. REF rats made significantly fewer lever presses and exhibited dramatically lower breaking points than CON rats for sucrose and water reinforcement, indicating a chronic reduction of motivation for instrumental performance. Switching the rats' diet for 9 days had no effect on these measures. Diet-induced obesity produces a substantial deficit in motivated behavior in rats, independent of dietary fat content. This holds implications for an association between obesity and motivation. Specifically, behavioral traits comorbid with obesity, such as depression and fatigue, may be effects of obesity rather than contributing causes. To the degree that refined foods contribute to obesity, as demonstrated in our study, they may play a significant contributing role to other behavioral and cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  18. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  19. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  20. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  1. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    Science.gov (United States)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  2. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    Science.gov (United States)

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  3. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  4. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  5. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Gunther, W.; Martinez-Guridi, G.

    2010-01-01

    New and advanced reactors will use integrated digital instrumentation and control (I and C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I and C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I and C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I and C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I and C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I and C conditions as part of the design process and the HSI features and functions that support operators to monitor I and C performance and manage I and C degradations when they occur. In addition, we identified topics for future research.

  6. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  7. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  8. Study of the performance of a compact sandwich calorimeter for the instrumentation of the very forward region of a future linear collider detector

    Energy Technology Data Exchange (ETDEWEB)

    Ghenescu, V., E-mail: veta.ghenescu@cern.ch [Institute of Space Science, Bucharest-Magurele (Romania); Benhammou, Y. [Tel Aviv University, TelAviv (Israel)

    2017-02-11

    The FCAL collaboration is preparing large scale prototypes of special calorimeters to be used in the very forward region at a future linear electron positron collider for a precise and fast luminosity measurement and beam-tuning. These calorimeters are designed as sensor-tungsten calorimeters with very thin sensor planes to keep the Moliere radius small and dedicated FE electronics to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in the CERN PS T9 beam in 2014 and at the DESY-II Synchrotron in 2015. It was operated in a mixed particle beam (electrons, muons and hadrons) of 5 GeV from PS facilities and with secondary electrons of 5 GeV energy from DESY-II. The results demonstrated a very good performance of the full readout chain. The high statistics data were used to study the response to different particles, perform sensor alignment and measure the longitudinal shower development in the sandwich. In addition, Geant4 MC simulations were done, and compared to the data.

  9. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  10. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  11. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  12. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  13. Performance on cognitive tests, instrumental activities of daily living and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro, Brazil

    Science.gov (United States)

    Lima, Christina Martins Borges; Alves, Heloisa Veiga Dias; Mograbi, Daniel Correa; Pereira, Flávia Furtado; Fernandez, Jesus Landeira; Charchat-Fichman, Helenice

    2017-01-01

    Objective To describe the performance on basic cognitive tasks, instrumental activities of daily living, and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro (Brazil) who participated in multiple physical, social, and cognitive activities at government-run community centers. Methods A total of 264 educated older adults (> 60 years of age of both genders) were evaluated by the Brief Cognitive Screening Battery (BCSB), Lawton's and Pfeffer's activities of daily living indexes, and the Geriatric Depressive Scale (GDS). Results The mean age of the sample was 75.7 years. The participants had a mean of 9.3 years of formal education. With the exception of the Clock Drawing Test (CDT), mean scores on the cognitive tests were consistent with the values in the literature. Only 6.4% of the sample had some kind of dependence for activities of daily living. The results of the Geriatric Depression Scale (GDS-15) indicated mild symptoms of depression in 16.8% of the sample Conclusion This study provided important demographic, cognitive, and functional characteristics of a specific community-based sample of elderly adults in Rio de Janeiro, Brazil. PMID:29213494

  14. Performance on cognitive tests, instrumental activities of daily living and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Christina Martins Borges Lima

    Full Text Available ABSTRACT Objective: To describe the performance on basic cognitive tasks, instrumental activities of daily living, and depressive symptoms of a community-based sample of elderly adults in Rio de Janeiro (Brazil who participated in multiple physical, social, and cognitive activities at government-run community centers. Methods: A total of 264 educated older adults (> 60 years of age of both genders were evaluated by the Brief Cognitive Screening Battery (BCSB, Lawton's and Pfeffer's activities of daily living indexes, and the Geriatric Depressive Scale (GDS . Results: The mean age of the sample was 75.7 years. The participants had a mean of 9.3 years of formal education. With the exception of the Clock Drawing Test (CDT, mean scores on the cognitive tests were consistent with the values in the literature. Only 6.4% of the sample had some kind of dependence for activities of daily living. The results of the Geriatric Depression Scale (GDS-15 indicated mild symptoms of depression in 16.8% of the sample. Conclusion: This study provided important demographic, cognitive, and functional characteristics of a specific community-based sample of elderly adults in Rio de Janeiro, Brazil.

  15. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research

    Science.gov (United States)

    Bowman, Kenneth P.; Pan, Laura L.; Campos, Teresa; Gao, Rushan

    2007-09-01

    The Progressive Science Mission in December 2005 was the first research use of the new NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft. The Stratosphere-Troposphere Analyses of Regional Transport (START) component of the mission was designed to investigate the dynamical and chemical structure of the upper troposphere and lower stratosphere. Flight 5 of the Progressive Science mission was a START flight that sampled near the tropopause in an area between the main jet stream and a large, quasi-stationary, cutoff low. The large-scale flow in this region was characterized by a hyperbolic (saddle) point. In this study the in situ measurements by HIAPER are combined with flow analyses and satellite data to investigate the quasi-isentropic stirring of trace species in the upper troposphere. As expected from theoretical considerations, strong stretching and folding deformation of the flow near the hyperbolic point resulted in rapid filamentation of air masses and sharp gradients of constituents. Calculations of the stirring using operational meteorological analyses from the NCEP Global Forecast System model produced excellent agreement with HIAPER and satellite observations of trace species. Back trajectories indicate that elevated ozone levels in some filaments likely came from a large stratospheric intrusion that occurred upstream in the jet over the north Pacific Ocean. The methods presented here can be used with operational forecasts for future flight planning.

  16. Creating a Super Instrument

    DEFF Research Database (Denmark)

    Kallionpää, Maria; Gasselseder, Hans-Peter

    2015-01-01

    Thanks to the development of new technology, musical instruments are no more tied to their existing acoustic or technical limitations as almost all parameters can be augmented or modified in real time. An increasing number of composers, performers, and computer programmers have thus become intere...

  17. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  18. Automated testing of health physics instruments

    International Nuclear Information System (INIS)

    Swinth, K.L.; Endres, A.W.; Hadley, R.T.; Kenoyer, J.L.

    1983-12-01

    A microcomputer controlled CAMAC system has been adapted for automated testing of health physics survey instruments. Once the survey instrument is positioned, the system automatically performs tests for angular dependence or battery lifetime. Rotation of the instrument is performed by a computer controlled stepping motor while readout is performed by an auto ranging digital volt meter and data stored on computer disks

  19. ICFA: Instrumentation school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode.

  20. ICFA: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    74 students, including 45 from developing countries, ten lecturers and nine laboratory instructors participated in the novel instrumentation school held in June at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, sponsored by ICTP and arranged through the Instrumentation Panel of the International Committee for Future Accelerators (ICF). During the two weeks of the course, students had the chance to construct and test a proportional chamber, measure the lifetime of cosmic ray muons, operate and analyse the performance of an 8-wire imaging drift chamber, or study noise and signal processing using a silicon photodiode

  1. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  2. KARINDING : ROLE CHANGE OF NAGAYA’S BUHUN MUSIC INSTRU-MENTS THROUGH ARTS PERFORMANCE (KARINDING : PERUBAHAN PERAN NAYAGA ALAT MUSIK BUHUN MELALUI SENI PERTUNJUKAN

    Directory of Open Access Journals (Sweden)

    Mirna Nur Alia A

    2017-02-01

    Full Text Available Abstract. The purposes of these research is to study the change of nayaga’s role buhun music instruments through arts performance. Social role is what society or other group members expect someone to behave in accordance with their social status, makes an individual sometimes have different roles in life, either in society, peer groups or their families. This research used the qualitative approach with descriptive analysis as its methods to describe each role from a cer-tain members in karinding groups outside their activity as a musician, and then data that result-ed from this research would be analyzed using one of Erving Goffman’s theories which called dramaturgy. The research results showed that the role of a member of the musical group ka-rinding in a family environment tend to be change. For individuals who already have families tend not to make the role in his group as the main livelihood, so they have another profession outside the group to be able to support the needs of family life. While for some other members who have a title as a child in their family environment, choose to concentrate in his education as a student. Time management and adaptability when running a role is one thing to note, that in the exercise of its role can be performed optimally. Abstrak. Tulisan ini bertujuan untuk mengkaji perubahan peran nayaga alat musik buhun karinding melalui seni pertunjukan. Peran sosial merupakan perilaku yang diharapkan oleh masyarakat atau anggota kelompok lainnya terhadap seorang individu sesuai dengan status sosialnya, membuat seseorang terkadang memiliki berbagai peran dalam kehidupannya, baik masyarakat, kelompok ataupun keluarga. Penelitian ini menggunakan pendekatan kualitatif dengan metode analisis deskriptif dengan tujuan untuk mendeskripsikan peranan yang dimiliki oleh setiap individu diluar kelompok musik karinding, hasil penelitian kemudian dianalisis menggunakan kajian sosiologi dengan teori dramaturgi dari Erving

  3. Data acquisition instruments: Psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  4. MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis

    Directory of Open Access Journals (Sweden)

    K. Gerilowski

    2011-02-01

    Full Text Available Carbon dioxide (CO2 and Methane (CH4 are the two most important anthropogenic greenhouse gases. CH4 is furthermore one of the most potent present and future contributors to global warming because of its large global warming potential (GWP. Our knowledge of CH4 and CO2 source strengths is based primarily on bottom-up scaling of sparse in-situ local point measurements of emissions and up-scaling of emission factor estimates or top-down modeling incorporating data from surface networks and more recently also by incorporating data from low spatial resolution satellite observations for CH4. There is a need to measure and retrieve the dry columns of CO2 and CH4 having high spatial resolution and spatial coverage. In order to fill this gap a new passive airborne 2-channel grating spectrometer instrument for remote sensing of small scale and mesoscale column-averaged CH4 and CO2 observations has been developed. This Methane Airborne MAPper (MAMAP instrument measures reflected and scattered solar radiation in the short wave infrared (SWIR and near-infrared (NIR parts of the electro-magnetic spectrum at moderate spectral resolution. The SWIR channel yields measurements of atmospheric absorption bands of CH4 and CO2 in the spectral range between 1.59 and 1.69 μm at a spectral resolution of 0.82 nm. The NIR channel around 0.76 μm measures the atmospheric O2-A-band absorption with a resolution of 0.46 nm. MAMAP has been designed for flexible operation aboard a variety of airborne platforms. The instrument design and the performance of the SWIR channel, together with some results from on-ground and in-flight engineering tests are presented. The SWIR channel performance has been analyzed using a retrieval algorithm applied to the nadir measured spectra. Dry air column-averaged mole fractions are obtained from SWIR

  5. Instrumentation requirements for the ESF thermomechanical experiments

    International Nuclear Information System (INIS)

    Pott, J.; Brechtel, C.E.

    1992-01-01

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery

  6. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  7. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  8. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  9. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  10. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  11. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  12. Solar diffusers in Earth observation instruments with an illumination angle of up to 70°: design and verification of performance in BRDF

    NARCIS (Netherlands)

    Gür, B.; Bol, H.; Xu, P.; Li, B.

    2015-01-01

    The present paper describes the challenging diffuser design and verification activities of TNO under contract of a customer for an earth observation instrument with observation conditions that require feasible BRDF under large angles of incidence of up to 70° with respect to the surface normal. Not

  13. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  14. Commissioning Instrument for the GTC

    Science.gov (United States)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  15. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  16. Alternative concepts for design of air monitoring instruments: In-line and open face reference samplers and a new method of demonstrating alpha CAM performance

    International Nuclear Information System (INIS)

    Rodgers, J.C.; McFarland, A.R.

    1993-01-01

    Over the past several years Los Alamos, Texas A ampersand M University and Canberra Instruments have been collaborating on the development of advanced continuous air monitoring and air sampling concepts and technology. We have successfully completed the design of an alpha CAM which embodies a number of innovations in the way radon progeny background interference is controlled and compensated, and in the way data processing, alarm generation, and data communication are handled

  17. THE EFFORT TO IMPROVE TEACHERS’PERFORMANCE OF SMA TMI ROUDLATUL QUR’AN IN COMPOSING LESSON PLAN AND EVALUATION INSTRUMENT OF CHARACTER EDUCATION THROUGH WORKSHOP ACADEMIC YEAR 2015/2016

    Directory of Open Access Journals (Sweden)

    Budi Raharjo

    2015-10-01

    Full Text Available Abstract: Difficulties found in Senior High School (SMA TMI Roudlatul Qur’an, teachers were not able to integrate character value into their lesson plan and to identify which behaviour must be success indicators of character education. Out of 18 Character value existed, the measurement of students’success as the better change of their behaviour, some only covering observation and lack of triangulation consideration to more accountable result. Worskhop potentially becomes one of the ways to up grade teachers’performance in determining the instrument of character value education, at the same time, train them the way composing lesson plan which integrates character education. This school action research was aimed to carry out workshop at SMA TMI Roudlatul Qur’an of Metro Municipal City, to improve teachers’performance in composing evaluation instrumen of value character education, to improve teachers’performance in composing integrated character value education.The research took place at SMA TMI Roudlatul Qur’an, located at Mulyojati, Metro Barat, Metro Municipal City. It was done in odd semester, continually to one month. Started in early Academic Year 2015/2016, July to August.The researcher concluded that teachers of SMA TMI Roudlatul Qur’an improved their performance well in composing evaluation instrument of value character education and integrated value character lesson plan through workshop. Facts: Workshop process was considered fair 11 teachers, good by 16 teachers, and very good by 12 teachers. At cycle II, the performance of composing evaluation instrument of character education showed 11 teachers were less sufficient performance, 16 teachers were good performance, and 12 teachers were very good. And the performance of composing integrated character value at cycle II showed 8 moderate teachers, 19 good teachers, and 12 excellent teachers. Key words: Workshop, Lesson Plan, Character Education Evaluation

  18. Large Area X-ray Proportional Counter (LAXPC) Instrument on AstroSat and Some Preliminary Results from its performance in the orbit

    OpenAIRE

    Agrawal, P. C.; Yadav, J. S.; Antia, H. M.; Dedhia, Dhiraj; Shah, P.; Chauhan, Jai Verdhan; Manchanda, R. K.; Chitnis, V. R.; Gujar, V. M.; Katoch, Tilak; Kurhade, V. N.; Madhwani, P.; Manojkumar, T. K.; Nikam, V. A.; Pandya, A. S.

    2017-01-01

    Large Area X-ray Propositional Counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of about 6000 cm2 at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency g...

  19. Simulation tools for detector and instrument design

    DEFF Research Database (Denmark)

    Kanaki, Kalliopi; Kittelmann, Thomas; Cai, Xiao Xiao

    2018-01-01

    The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation...... a powerful set of tools to tailor the detector and instrument design to the instrument application....

  20. Evaluating musical instruments

    International Nuclear Information System (INIS)

    Campbell, D. Murray

    2014-01-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians

  1. Easy instrumental analysis

    International Nuclear Information System (INIS)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-01

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  2. Maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de; Santos, C.J.F. dos; Jesus, E.F.O. de; Silva, L.E.M.C.; Borges, J.C.

    1988-01-01

    A program to design and repairing of nuclear instruments for teaching and research was founded in the UFRJ to find solutions for technical support problem - The GEMD-RADIACOES. This group has assisted to several groups of the University in recuperation and conservation of devices like: Linear scanner, Cromatograph and system of radiation detection in general. Recuperation of these devices had required a study of theirs operations modes, to make it possible the setting up of a similar system. Recuperation also involves operation tests, calibration and technical for users, orienting them to get the best performance. (Author) [pt

  3. Easy instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Myeong Su; Kim, Tae Hwa; Park, Gyu Hyeon; Yang, Jong Beom; Oh, Chang Hwan; Lee, Kyoung Hye

    2010-04-15

    This textbook describes instrument analysis in easy way with twelve chapters. The contents of the book are pH measurement on principle, pH meter, pH measurement, examples of the experiments, centrifugation, Absorptiometry, Fluorescent method, Atomic absorption analysis, Gas-chromatography, Gas chromatography-mass spectrometry, High performance liquid chromatography liquid chromatograph-mass spectrometry, Electrophoresis on practical case and analysis of the result and examples, PCR on principle, device, application and examples and Enzyme-linked immunosorbent assay with indirect ELISA, sandwich ELISA and ELISA reader.

  4. Psychometric performance and responsiveness of the functional outcomes of sleep questionnaire and sleep apnea quality of life instrument in a randomized trial: the HomePAP study.

    Science.gov (United States)

    Billings, Martha E; Rosen, Carol L; Auckley, Dennis; Benca, Ruth; Foldvary-Schaefer, Nancy; Iber, Conrad; Zee, Phyllis C; Redline, Susan; Kapur, Vishesh K

    2014-12-01

    Measures of health-related quality of life (HRQL) specific for sleep disorders have had limited psychometric evaluation in the context of randomized controlled trials (RCTs). We investigated the psychometric properties of the Functional Outcomes of Sleep Questionnaire (FOSQ) and Sleep Apnea Quality of Life Instrument (SAQLI). We evaluated the FOSQ and SAQLI construct and criterion validity, determined a minimally important difference, and assessed for associations of responsiveness to baseline subject characteristics and continuous positive airway pressure (CPAP) adherence in a RCT population. Secondary analysis of data collected in a multisite RCT of home versus laboratory-based diagnosis and treatment of obstructive sleep apnea (HomePAP trial). Individuals enrolled in the HomePAP trial (n = 335). N/A. The FOSQ and SAQLI subscores demonstrated high reliability and criterion validity, correlating with Medical Outcomes Study 36-Item Short Form Survey domains. Correlations were weaker with the Epworth Sleepiness Scale (ESS). Both the FOSQ and SAQLI scores improved after 3 mo with CPAP therapy. Averaging 4 h or more of CPAP use was associated with an increase in the FOSQ beyond the minimally important difference. Baseline depressive symptoms and sleepiness predicted FOSQ and SAQLI responsiveness; demographic, objective obstructive sleep apnea (OSA) severity and sleep habits were not predictive in linear regression. The FOSQ and SAQLI are responsive to CPAP intervention, with the FOSQ being more sensitive to differences in CPAP adherence than the SAQLI. These instruments provide unique information about health outcomes beyond that provided by changes in physiological measures of OSA severity (apnea-hypopnea index). Portable Monitoring for Diagnosis and Management of Sleep Apnea (HomePAP) URL: http://clinicaltrials.gov/show/NCT00642486. NIH clinical trials registry number: NCT00642486. © 2014 Associated Professional Sleep Societies, LLC.

  5. Percutaneous endoscopic gastrostomy in porcines performed with standard medical instruments used in a general hospital routine Gastrostomia percutânea endoscópica em suínos realizada com instrumentos de uso rotineiro em hospital geral

    Directory of Open Access Journals (Sweden)

    Luiz Roberto do Nascimento

    2004-10-01

    Full Text Available PURPOSE: To perform a endoscopic gastrostomy by the introducer method with routine instruments used in a general hospital, without special instruments or special kits. METHODS: This procedure was performed in pigs (Sus scrofa domesticus under observation for seven days and then submitted to euthanasia.The technique was evaluated for macroscopic and histologic parameters. RESULTS: All animals had a good evolution without major complications. Some minor complications occurred like a rupture of Foley catheter balloon and subcutaneous space abscess. CONCLUSION: The percutaneous gastrostomy with routine general hospital instruments is successful performed, is safe,cheap and must be performed by skilled endoscopists.OBJETIVO: Realizar uma gastrostomia endoscópica pelo método de punção, porém feita com instrumentos de uso rotineiro em um hospital geral, abolindo o uso de instrumentos especiais e de kits industrializados. MÉTODOS: O procedimento foi realizado em suinos da raça Landrace (Sus scrofa domesticus , que permaneceram em observação por sete dias, quando foram submetidos a eutanasia e avaliados por parâmetros macroscópicos e histológicos. RESULTADOS: Todos os animais tiveram boa evolução, não apresentando complicações importantes. Pequenas complicações, como ruptura do balão da sonda de Foley e abscesso subcutâneo ocorreram. CONCLUSÃO: A gastrostomia percutânea endoscópica é um procedimento seguro, barato e perfeitamente realizável com materiais de uso rotineiro em um hospital geral, porém deve ser realizada por endoscopistas devidamente treinados.

  6. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  7. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  8. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  9. Health physics instrument manual

    International Nuclear Information System (INIS)

    Gupton, E.D.

    1978-08-01

    The purpose of this manual is to provide apprentice health physics surveyors and other operating groups not directly concerned with radiation detection instruments a working knowledge of the radiation detection and measuring instruments in use at the Laboratory. The characteristics and applications of the instruments are given. Portable instruments, stationary instruments, personnel monitoring instruments, sample counters, and miscellaneous instruments are described. Also, information sheets on calibration sources, procedures, and devices are included. Gamma sources, beta sources, alpha sources, neutron sources, special sources, a gamma calibration device for badge dosimeters, and a calibration device for ionization chambers are described

  10. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  11. Troubleshooting in nuclear instruments

    International Nuclear Information System (INIS)

    1987-06-01

    This report on troubleshooting of nuclear instruments is the product of several scientists and engineers, who are closely associated with nuclear instrumentation and with the IAEA activities in the field. The text covers the following topics: Preamplifiers, amplifiers, scalers, timers, ratemeters, multichannel analyzers, dedicated instruments, tools, instruments, accessories, components, skills, interfaces, power supplies, preventive maintenance, troubleshooting in systems, radiation detectors. The troubleshooting and repair of instruments is illustrated by some real examples

  12. Development of a minimization instrument for allocation of a hospital-level performance improvement intervention to reduce waiting times in Ontario emergency departments

    Directory of Open Access Journals (Sweden)

    Anderson Geoff

    2009-06-01

    Full Text Available Abstract Background Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED waiting times in Ontario, Canada. Methods Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition. Results An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal. Conclusion We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.

  13. Development of a minimization instrument for allocation of a hospital-level performance improvement intervention to reduce waiting times in Ontario emergency departments.

    Science.gov (United States)

    Leaver, Chad Andrew; Guttmann, Astrid; Zwarenstein, Merrick; Rowe, Brian H; Anderson, Geoff; Stukel, Therese; Golden, Brian; Bell, Robert; Morra, Dante; Abrams, Howard; Schull, Michael J

    2009-06-08

    Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED) waiting times in Ontario, Canada. Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management) panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition. An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal. We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.

  14. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  15. Operating the EOSDIS at the land processes DAAC managing expectations, requirements, and performance across agencies, missions, instruments, systems, and user communities

    Science.gov (United States)

    Kalvelage, T.A.; ,

    2002-01-01

    NASA developed the Earth Observing System (EOS) during the 1990'S. At the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS EROS Data Center, the EOS Data and Information System (EOSDIS) is required to support heritage missions as well as Landsat 7, Terra, and Aqua. The original system concept of the early 1990'S changed as each community had its say - first the managers, then engineers, scientists, developers, operators, and then finally the general public. The systems at the LP DAAC - particularly the largest single system, the EOSDIS Core System (ECS) - are changing as experience accumulates, technology changes, and each user group gains influence. The LP DAAC has adapted as contingencies were planned for, requirements and therefore plans were modified, and expectations changed faster than requirements could hope to be satisfied. Although not responsible for Quality Assurance of the science data, the LP DAAC works to ensure the data are accessible and useable by influencing systems, capabilities, and data formats where possible, and providing tools and user support as necessary. While supporting multiple missions and instruments, the LP DAAC also works with and learns from multiple management and oversight groups as they review mission requirements, system capabilities, and the overall operation of the LP DAAC. Stakeholders, including the Land Science community, are consulted regularly to ensure that the LP DAAC remains cognizant and responsive to the evolving needs of the user community. Today, the systems do not look or function as originally planned, but they do work, and they allow customers to search and order of an impressive amount of diverse data.

  16. Modeling students' instrumental (mis-) use of substances to enhance cognitive performance: Neuroenhancement in the light of job demands-resources theory.

    Science.gov (United States)

    Wolff, Wanja; Brand, Ralf; Baumgarten, Franz; Lösel, Johanna; Ziegler, Matthias

    2014-01-01

    Healthy university students have been shown to use psychoactive substances, expecting them to be functional means for enhancing their cognitive capacity, sometimes over and above an essentially proficient level. This behavior called Neuroenhancement (NE) has not yet been integrated into a behavioral theory that is able to predict performance. Job Demands Resources (JD-R) Theory for example assumes that strain (e.g. burnout) will occur and influence performance when job demands are high and job resources are limited at the same time. The aim of this study is to investigate whether or not university students' self-reported NE can be integrated into JD-R Theory's comprehensive approach to psychological health and performance. 1,007 students (23.56 ± 3.83 years old, 637 female) participated in an online survey. Lifestyle drug, prescription drug, and illicit substance NE together with the complete set of JD-R variables (demands, burnout, resources, motivation, and performance) were measured. Path models were used in order to test our data's fit to hypothesized main effects and interactions. JD-R Theory could successfully be applied to describe the situation of university students. NE was mainly associated with the JD-R Theory's health impairment process: Lifestyle drug NE (p performance. From a public health perspective, intervention strategies should address these costs of non-supervised NE. With regard to future research we propose to model NE as a means to reach an end (i.e. performance enhancement) rather than a target behavior itself. This is necessary to provide a deeper understanding of the behavioral roots and consequences of the phenomenon.

  17. Beyond Expectations in Music Performance Modules in Higher Education: Rethinking Instrumental and Vocal Music Pedagogy for the Twenty-First Century

    Science.gov (United States)

    Simones, Lilian Lima

    2017-01-01

    Music performance in the higher educational context is shaped by a reciprocal chain of interactions between students, part-time tutors and full-time teaching staff, each with specific expectations about the teaching and learning process. Such expectations can provide valuable insights not only for designing and implementing meaningful educational…

  18. Modeling students’ instrumental (mis-) use of substances to enhance cognitive performance: Neuroenhancement in the light of job demands-resources theory

    Science.gov (United States)

    2014-01-01

    Background Healthy university students have been shown to use psychoactive substances, expecting them to be functional means for enhancing their cognitive capacity, sometimes over and above an essentially proficient level. This behavior called Neuroenhancement (NE) has not yet been integrated into a behavioral theory that is able to predict performance. Job Demands Resources (JD-R) Theory for example assumes that strain (e.g. burnout) will occur and influence performance when job demands are high and job resources are limited at the same time. The aim of this study is to investigate whether or not university students’ self-reported NE can be integrated into JD-R Theory’s comprehensive approach to psychological health and performance. Methods 1,007 students (23.56 ± 3.83 years old, 637 female) participated in an online survey. Lifestyle drug, prescription drug, and illicit substance NE together with the complete set of JD-R variables (demands, burnout, resources, motivation, and performance) were measured. Path models were used in order to test our data’s fit to hypothesized main effects and interactions. Results JD-R Theory could successfully be applied to describe the situation of university students. NE was mainly associated with the JD-R Theory’s health impairment process: Lifestyle drug NE (p model NE as a means to reach an end (i.e. performance enhancement) rather than a target behavior itself. This is necessary to provide a deeper understanding of the behavioral roots and consequences of the phenomenon. PMID:24904687

  19. The QUIET Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  20. Incore instrument device

    International Nuclear Information System (INIS)

    Sakima, Naoki

    1996-01-01

    An incore instrument device has an integrally disposed touch panel having a function of displaying an operation indication method such as for setting of conditions for incore measurement and information processing and results of the incore measurement and a function capable of conducting operation indication such as for setting conditions and information processing for incore measurement relative to a control section upon touching an information position on a displayed information. In addition, an information processing section comprising a man-machine function program formed so as to recognize the content of the operation indication for the incore measurement by touching and let the control section to conduct it is disposed to the outside by way of a communication interface. In addition, a programming device is disposed for forming and rewriting the program of the man-machine function relative to the information processing section. Then, when various indication operations are conducted upon performing incore measurement, a view point can be concentrated to one predetermined point thereby enabling to improve the operationability without danger. In addition, the programming of the man-machine function does not apply unnecessary load to the control section in the incore instrumentation device. (N.H.)

  1. Tropospheric ozone profiles by DIAL at Maïdo Observatory (Reunion Island: system description, instrumental performance and result comparison with ozone external data set

    Directory of Open Access Journals (Sweden)

    V. Duflot

    2017-09-01

    Full Text Available In order to recognize the importance of ozone (O3 in the troposphere and lower stratosphere in the tropics, a DIAL (differential absorption lidar tropospheric O3 lidar system (LIO3TUR was developed and installed at the Université de la Réunion campus site (close to the sea on Reunion Island (southern tropics in 1998. From 1998 to 2010, it acquired 427 O3 profiles from the low to the upper troposphere and has been central to several studies. In 2012, the system was moved up to the new Maïdo Observatory facility (2160 m a.m.s.l. – metres above mean sea level where it started operation in February 2013. The current system (LIO3T configuration generates a 266 nm beam obtained with the fourth harmonic of a Nd:YAG laser sent into a Raman cell filled up with deuterium (using helium as buffer gas, generating the 289 and 316 nm beams to enable the use of the DIAL method for O3 profile measurements. The optimal range for the actual system is 6–19 km a.m.s.l., depending on the instrumental and atmospheric conditions. For a 1 h integration time, vertical resolution varies from 0.7 km at 6 km a.m.s.l. to 1.3 km at 19 km a.m.s.l., and mean uncertainty within the 6–19 km range is between 6 and 13 %. Comparisons with eight electrochemical concentration cell (ECC sondes simultaneously launched from the Maïdo Observatory show good agreement between data sets with a 6.8 % mean absolute relative difference (D between 6 and 17 km a.m.s.l. (LIO3T lower than ECC. Comparisons with 37 ECC sondes launched from the nearby Gillot site during the daytime in a ±24 h window around lidar shooting result in a 9.4 % D between 6 and 19 km a.m.s.l. (LIO3T lower than ECC. Comparisons with 11 ground-based Network for Detection of Atmospheric Composition Change (NDACC Fourier transform infrared (FTIR spectrometer measurements acquired during the daytime in a ±24 h window around lidar shooting show good agreement between data

  2. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  3. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  4. Instrumentation for PIXE and RBS

    International Nuclear Information System (INIS)

    2000-12-01

    The purpose of this document is to give an overview of instrumentation for PIXE and Rutherford backscattering analysis, including hardware and software needed to perform the analysis, including detectors, analyzers, data acquisition systems and data analysis software. It also provides some information on accelerators needed for these applications

  5. Aeroacoustics of Musical Instruments

    NARCIS (Netherlands)

    Fabre, B.; Gilbert, J.; Hirschberg, Abraham; Pelorson, X.

    2012-01-01

    We are interested in the quality of sound produced by musical instruments and their playability. In wind instruments, a hydrodynamic source of sound is coupled to an acoustic resonator. Linear acoustics can predict the pitch of an instrument. This can significantly reduce the trial-and-error process

  6. FMIT diagnostic instrumentation

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Chamberlin, D.D.

    1985-01-01

    The Fusion Materials Irradiation Test facility (FMIT) cw prototype accelerator has noninterceptive beamline instrumentation to measure beam parameters. The transverse emittances and beam profiles are measured with an array of photodiode sensors viewing light emitted from the beam region. Tomographic reconstructions of both spatial-density distributions and of transverse-emittance distributions are performed throughout a quadrupole focusing section. Beam bunches passing through capacitive probes produce bipolar waveforms whose zero crossing corresponds to the bunch's longitudinal centroid. By measuring the time required for a bunch to travel the known distance between two probes, velocity and energy are determined. A toroidal transformer measures the average ac beam current. Beam spill is measured by a set of movable jaws that intercept the beam edges. Each jaw contains a water flow channel whose flow rate and differential temperature are measured to derive a transverse power distribution. Beam centroid position is measured by a four-lobe, magnetic-loop pickup. 5 refs., 6 figs

  7. Internal Model of Commercial Bank as an Instrument for Measuring Credit Risk of the Borrower in Relation to Financial Performance (Credit Scoring and Bankruptcy Models

    Directory of Open Access Journals (Sweden)

    Belás Jaroslav

    2011-12-01

    Full Text Available Commercial banks generally use different methods and procedures for managing credit risk. The internal rating method in which the client has an important position in the process of granting credit provides a comprehensive assessment of client creditworthiness. The aim of this article is to analyze selected theoretical, methodological and practical aspects of internal rating models of commercial banks within the context of models that measures financial performance and to make a comparison of results of real - rating models which are used in the Czech Republic and Slovakia. The results of the chosen credit scoring and bankruptcy methods on selected companies from segments of small and medium-sized companies are presented.

  8. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  9. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Silberstein, K.

    2005-01-01

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  10. Technical presentation - KEITHLEY Instruments - CANCELLED

    CERN Multimedia

    FI Department

    2009-01-01

    10 March 2009 13:30 – 15:30, Council Chamber, Bldg. 503 Keithley markets highly accurate instruments and data acquisition products, as well as complete system solutions for high-volume production and assembly testing. Keithley Instruments, Inc. designs, develops, manufactures and markets complex electronic instruments and systems geared to the specialized needs of electronics manufacturers for high-performance production testing, process monitoring, product development and research. Products and Services: Digital Multimeters and Data Acquisition Systems Current / Voltage Source and Measure Products Low Current / High Resistance Measurement Products Function/Pulse/Arbitrary/Pattern Generators Low Voltage/Low Resistance Measurement Products RF Spectrum Analyzer / RF Signal Generator / RF Switching Semiconductor Device Characterization Program: Topic 1: Welcome and short overview of new Products SMU 26XXA / ARB Generator 3390 / DMM 3706 / E-Meter 6517B Topic 2a: Te...

  11. Optimization of H.E.S.S. instrumental performances for the analysis of weak gamma-ray sources: Application to the study of HESS J1832-092

    International Nuclear Information System (INIS)

    Laffon, H.

    2012-01-01

    H.E.S.S. (High Energy Stereoscopic System) is an array of very-high energy gamma-ray telescopes located in Namibia. These telescopes take advantage of the atmospheric Cherenkov technique using stereoscopy, allowing to detect gamma-rays between 100 GeV and a few tens of TeV. The location of the H.E.S.S. telescopes in the Southern hemisphere allows to observe the central parts of our galaxy, the Milky Way. Tens of new gamma-ray sources were thereby discovered thanks to the galactic plane survey strategy. After ten years of fruitful observations with many detections, it is now necessary to improve the detector performance in order to detect new sources by increasing the sensitivity and improving the angular resolution. The aim of this thesis consists in the development of advanced analysis techniques allowing to make sharper analysis. An automatic tool to look for new sources and to improve the subtraction of the background noise is presented. It is optimized for the study of weak sources that needs a very rigorous analysis. A combined reconstruction method is built in order to improve the angular resolution without reducing the statistics, which is critical for weak sources. These advanced methods are applied to the analysis of a complex region of the galactic plane near the supernova remnant G22.7-0.2, leading to the detection of a new source, HESS J1832-092. Multi-wavelength counterparts are shown and several scenarios are considered to explain the origin of the gamma-ray signal of this astrophysical object. (author)

  12. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  13. DARE: a dedicated aerosols retrieval instrument

    NARCIS (Netherlands)

    Court, A.J.; Smorenburg, K.; Courrèges-Lacoste, G.B.; Visser, H.; Leeuw, G. de; Decae, R.

    2004-01-01

    Satellite remote sensing of aerosols is a largely unresolved problem. A dedicated instrument aimed at aerosols would be able to reduce the large uncertainties connected to this kind of remote sensing. TNO is performing a study of a space based instrument for aerosol measurements, together with the

  14. Instrumentation a reader

    CERN Document Server

    Pope, P

    1990-01-01

    This book contains a selection of papers and articles in instrumentation previously pub­ lished in technical periodicals and journals of learned societies. Our selection has been made to illustrate aspects of current practice and applications of instrumentation. The book does not attempt to be encyclopaedic in its coverage of the subject, but to provide some examples of general transduction techniques, of the sensing of particular measurands, of components of instrumentation systems and of instrumentation practice in two very different environments, the food industry and the nuclear power industry. We have made the selection particularly to provide papers appropriate to the study of the Open University course T292 Instrumentation. The papers have been chosen so that the book covers a wide spectrum of instrumentation techniques. Because of this, the book should be of value not only to students of instrumen­ tation, but also to practising engineers and scientists wishing to glean ideas from areas of instrumen...

  15. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  16. VIRUS instrument enclosures

    Science.gov (United States)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  17. Instrument validation system of general application

    International Nuclear Information System (INIS)

    Filshtein, E.L.

    1990-01-01

    This paper describes the Instrument Validation System (IVS) as a software system which has the capability of evaluating the performance of a set of functionally related instrument channels to identify failed instruments and to quantify instrument drift. Under funding from Combustion Engineering (C-E), the IVS has been developed to the extent that a computer program exists whose use has been demonstrated. The initial development work shows promise for success and for wide application, not only to power plants, but also to industrial manufacturing and process control. Applications in the aerospace and military sector are also likely

  18. LOFT instrumented fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1979-01-01

    A summary description of the Loss-of-Fluid Test (LOFT) system instrumented core construction details and operating experience through reactor startup and loss-of-coolant experiment (LOCE) operations performed to date are discussed. The discussion includes details of the test instrumentation attachment to the fuel assembly, the structural response of the fuel modules to the forces generated by a double-ended break of a pressurized water reactor (PWR) coolant pipe at the inlet to the reactor vessel, the durability of the LOFT fuel and test instrumentation, and the plans for incorporation of improved fuel assembly test instrumentation features in the LOFT core

  19. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  20. Networked Instrumentation Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  1. Instrument validation project

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells

  2. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  3. Operational and reliability experience with reactor instrumentation

    International Nuclear Information System (INIS)

    Dixon, F.; Gow, R.S.

    1978-01-01

    In the last 15 years the CEGB has experienced progressive plant development, integration and changes in operating regime through nine nuclear (gas-cooled reactor) power stations with corresponding instrumentation advances leading towards more refined centralized control. Operation and reliability experience with reactor instrumentation is reported in this paper with reference to the progressive changes related to the early magnox, late magnox and AGR periods. Data on instrumentation reliability in terms of reactor forced outages are presented and show that the instrumentation contributions to loss of generating plant availability are small. Reactor safety circuits, neutron flux and temperature measurements, gas analysis and vibration monitoring are discussed. In reviewing the reactor instrumentation the emphasis is on reporting recent experience, particularly on AGR equipment, but overall performance and changes to magnox equipment are included so that some appreciation can be obtained of instrumentation requirements with respect to plant lifetimes. (author)

  4. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  5. Holy Trinity of Instrumentation Development

    International Nuclear Information System (INIS)

    Ursic, Rok; Solar, Borut

    2004-01-01

    Being user friendly should be the main guidance, beside the self-understood high performance, in today's instrumentation development. Here we identify three components of the user-friendly policy: the all-in-one concept, customization, and connectivity. All-in-one is the concept of unification of various building blocks and thus various functionalities in one product. The customization is enabled by the product's reconfigurability that allows a product to grow and support new requirements and applications without changing hardware. The consequence of the two is the capacity of the single instrument to perform a variety of tasks that before were split among different devices. The last of the three is connectivity that improves the relationship between controls and beam diagnostics, brings out-of-the-crate freedom, and opens unforeseen possibilities for intra-accelerator cooperation and remote technical support

  6. Overview of LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed

  7. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  8. Evaluation of robotically controlled advanced endoscopic instruments

    NARCIS (Netherlands)

    Reilink, Rob; Kappers, Astrid M.L.; Stramigioli, Stefano; Misra, Sarthak

    Background Advanced flexible endoscopes and instruments with multiple degrees of freedom enable physicians to perform challenging procedures such as the removal of large sections of mucosal tissue. However, these advanced endoscopes are difficult to control and require several physicians to

  9. Survey of beam instrumentation used in SLC

    International Nuclear Information System (INIS)

    Ecklund, S.D.

    1991-03-01

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs

  10. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  11. Instrumentation reference book

    CERN Document Server

    Boyes, Walt

    2002-01-01

    Instrumentation is not a clearly defined subject, having a 'fuzzy' boundary with a number of other disciplines. Often categorized as either 'techniques' or 'applications' this book addresses the various applications that may be needed with reference to the practical techniques that are available for the instrumentation or measurement of a specific physical quantity or quality. This makes it of direct interest to anyone working in the process, control and instrumentation fields where these measurements are essential.* Comprehensive and authoritative collection of technical information* Writte

  12. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  13. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  14. Jones' instrument technology

    CERN Document Server

    Jones, Ernest Beachcroft; Kingham, Edward G; Radnai, Rudolf

    1985-01-01

    Jones' Instrument Technology, Volume 5: Automatic Instruments and Measuring Systems deals with general trends in automatic instruments and measuring systems. Specific examples are provided to illustrate the principles of such devices. A brief review of a considerable number of standards is undertaken, with emphasis on the IEC625 Interface System. Other relevant standards are reviewed, including the interface and backplane bus standards. This volume is comprised of seven chapters and begins with a short introduction to the principles of automatic measurements, classification of measuring system

  15. Medical instruments in museums

    DEFF Research Database (Denmark)

    Söderqvist, Thomas; Arnold, Ken

    2011-01-01

    This essay proposes that our understanding of medical instruments might benefit from adding a more forthright concern with their immediate presence to the current historical focus on simply decoding their meanings and context. This approach is applied to the intriguingly tricky question of what...... actually is meant by a "medical instrument." It is suggested that a pragmatic part of the answer might lie simply in reconsidering the holdings of medical museums, where the significance of the physical actuality of instruments comes readily to hand....

  16. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  17. PERFORMANCE

    Directory of Open Access Journals (Sweden)

    M Cilli

    2014-10-01

    Full Text Available This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10% was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ and the squat jump (SJ measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05. In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p>0.05, in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p<0.05. The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.

  18. Environment for the instruments

    International Nuclear Information System (INIS)

    Ambro, P.

    1992-01-01

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  19. CCAT Heterodyne Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will extend and proof-out the design concept for a high pixel count (128 pixels in 2 bands) submillimeter-wave heterodyne receiver array instrument for the...

  20. Environment for the instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ambro, P

    1993-12-31

    A properly conditioned AC power supply is necessary for reliable functioning of instruments. Electric mains power is produced primarily for industry, workshops, lighting and household uses. Its quality is adjusted to these uses. In areas sand countries with a fast growing demand for electric power, these requirements are far from being met. Electronic instruments and computers, especially in these countries, need protection against disturbances of the mains supply. A clean and dry environment is needed for reliable functioning and long life of instruments. High humidity, specially at higher temperatures, changes the characteristics of electronic components. Moreover, under these conditions fungal growth causes leakage of currents and corrosion causes poor contacts. The presence of dust enhances these effects. They give rise to malfunction of instruments, particularly of high voltage equipment

  1. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  2. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  3. Carbon Footprint Reduction Instruments

    Science.gov (United States)

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  4. Instrument care: everyone's responsibility

    Directory of Open Access Journals (Sweden)

    Renée du Toit

    2011-12-01

    Full Text Available Everyone working in an ophthalmic operating theatre must be competent in the care, handling, storage, and maintenance of instruments. This will help to improve surgical outcomes, maintain an economic and affordable service for patients, and provide a safe environment for the wellbeing of patients and staff.Including instrument care in theatre courses and in-service training is one way of ensuring staff competence.

  5. Instrument uncertainty predictions

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-07-01

    The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty

  6. Experimenting with woodwind instruments

    Science.gov (United States)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  7. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  8. Modernization of ILL instrument electronics

    International Nuclear Information System (INIS)

    Descamps, F.

    1999-01-01

    We have built new general purpose cards for data acquisition taking advantage of recent developments in electronics. At the end of the year, most scheduled instruments at the ILL will be running under UNIX with VME electronics front-end. As the VME electronics of the ILL was designed at the beginning of the eighties, the instrument control section (SCI) at ILL has prepared a renewal plan for two reasons: - first, all the processor cards of the Institute are based on MIZAR processor boards and MIZAR stopped the production of this card last year, as the market was shrinking; - in addition, processors and programmable electronics are now 10 times faster. The electronics services want to take full advantage of these new performances. (author)

  9. Instrumental Landing Using Audio Indication

    Science.gov (United States)

    Burlak, E. A.; Nabatchikov, A. M.; Korsun, O. N.

    2018-02-01

    The paper proposes an audio indication method for presenting to a pilot the information regarding the relative positions of an aircraft in the tasks of precision piloting. The implementation of the method is presented, the use of such parameters of audio signal as loudness, frequency and modulation are discussed. To confirm the operability of the audio indication channel the experiments using modern aircraft simulation facility were carried out. The simulated performed the instrument landing using the proposed audio method to indicate the aircraft deviations in relation to the slide path. The results proved compatible with the simulated instrumental landings using the traditional glidescope pointers. It inspires to develop the method in order to solve other precision piloting tasks.

  10. Health physics instrumentation - a progress report

    International Nuclear Information System (INIS)

    Maushart, R.

    1992-01-01

    Health Physics Instruments have changed rather dramatically in the past decade. On the one hand, technological innovations like Microprocessors, data storage facilities and imaging displays have altered shape, size and appearance of the classical devices, particularly the hand-held ones. On the other hand, instruments are increasingly being considered as an integral part of Radiation Protection procedures and organizations, supporting a smooth and reliable implementation of all necessary measures. This implies ease of operation, and extensive self-checking and performance control features. Since there are different categories of users with quite different degrees of motivation and training, the measuring instruments of the future will have to be adapted to specific types of users. Instruments for 'professional' radiation protection - for example in nuclear power plants and nuclear technology - will differ from instruments used in the radionuclide laboratory, where radiation protection will necessarily have to be done as a 'side-job'. (author)

  11. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    Science.gov (United States)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  12. Instrument evaluation no. 10. Scanray radiation meter type 751

    CERN Document Server

    Burgess, P H; White, D F

    1978-01-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the a...

  13. Some emergency instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1986-10-01

    The widespread release of activity and the resultant spread of contamination after the Chernobyl accident resulted in requests to NRPB to provide instruments for, and expertise in, the measurement of radiation. The most common request was for advice on the usefulness of existing instruments, but Board staff were also involved in their adaptation or in the development of new instruments specially to meet the circumstances of the accident. The accident occurred on 26 April. On 1 May, NRPB was involved at Heathrow Airport in the monitoring of the British students who had returned from Kiev and Minsk. The main purpose was to reassure the students by checking that their persons and belongings did not have significant surface contamination. Additional measurements were also made of iodine activity in thyroid using hand-held detectors or a mobile body monitor. This operation was arranged with the Foreign and Commonwealth Office, which had also received numerous requests for instruments from embassies and consulates in countries close to the scene of the accident. There was concern for the well-being of staff and other United Kingdom nationals who resided in or intended to visit the most affected countries. The board supplied suitable instruments, and the FCO distributed them to embassies. The frequency of environmental monitoring was increased from 29 April in anticipation of contamination and appropriate Board instrumentation was deployed. After the Chernobyl cloud arrived in the UK on 2 May, there were numerous requests from local government, public authorities, private companies and members of the public for information and advice on monitoring equipment and procedures. Some of these requirements could be met with existing equipment but members of the public were usually advised not to proceed. At a later stage, the contamination of foodstuffs and livestock required the development of an instrument capable of detecting low levels of {sup 137}Cs and {sup 134}Cs in food

  14. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  15. [The development of an oral biomechanical testing instrument].

    Science.gov (United States)

    Zhang, X H; Sun, X D; Lin, Z

    2000-03-01

    An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.

  16. Instrumentation & Data Acquisition System (D AS) Engineer

    Science.gov (United States)

    Jackson, Markus Deon

    2015-01-01

    The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.

  17. Tool – Material, Metaphor – Metonymy, Instrument(ness)

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2008-01-01

    creativity , supported by analysis of, and interviews with, musical composers. Instrumentness is explained through discussions of materiality and metonymy as central strategies for computer mediated creativity. The paper is contributing to an investigation of the aesthetics of use in relation to software...... are controlled and conceptualized through values such as virtuosity and palyability, which are important for computer-mediated creative work supporting development in use beyond what is initially designed for. The papet performs a conceptual investigation into qualities in software interfaces that support...

  18. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  19. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  20. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  1. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  2. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  3. Comparing surgical trays with redundant instruments with trays with reduced instruments: a cost analysis.

    Science.gov (United States)

    John-Baptiste, A; Sowerby, L J; Chin, C J; Martin, J; Rotenberg, B W

    2016-01-01

    When prearranged standard surgical trays contain instruments that are repeatedly unused, the redundancy can result in unnecessary health care costs. Our objective was to estimate potential savings by performing an economic evaluation comparing the cost of surgical trays with redundant instruments with surgical trays with reduced instruments ("reduced trays"). We performed a cost-analysis from the hospital perspective over a 1-year period. Using a mathematical model, we compared the direct costs of trays containing redundant instruments to reduced trays for 5 otolaryngology procedures. We incorporated data from several sources including local hospital data on surgical volume, the number of instruments on redundant and reduced trays, wages of personnel and time required to pack instruments. From the literature, we incorporated instrument depreciation costs and the time required to decontaminate an instrument. We performed 1-way sensitivity analyses on all variables, including surgical volume. Costs were estimated in 2013 Canadian dollars. The cost of redundant trays was $21 806 and the cost of reduced trays was $8803, for a 1-year cost saving of $13 003. In sensitivity analyses, cost savings ranged from $3262 to $21 395, based on the surgical volume at the institution. Variation in surgical volume resulted in a wider range of estimates, with a minimum of $3253 for low-volume to a maximum of $52 012 for high-volume institutions. Our study suggests moderate savings may be achieved by reducing surgical tray redundancy and, if applied to other surgical specialties, may result in savings to Canadian health care systems.

  4. Characteristics of protective instrumentation

    International Nuclear Information System (INIS)

    Reichart, G.

    1982-01-01

    Protective Instrumentation (PI) for Nuclear Power Plants (NPP) is a general term for an highly reliable instrumentation, which provides information for keeping the system within safe limits, for initation of countermeasures in the case of an incident or for mitigation of consequences of an accident. In German NPPs one can find a hierarchical structure of protective instrumentation, wherein the Reactor Protection System (RPS) has the highest priority. To meet the reliability requirements different design principles are used, like - redundancy - diversity - fail safe - decoupling. The presentation gives an overview about the different design principles and characterizes their reliability aspects. As an example for the technical realization the RPS of a German NPP is discussed in some detail. Furthermore some information about other type of PI is given and reliability aspects of the interaction of operating personell with these systems are mentioned. (orig.)

  5. Aethalometer™ Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Aethalometer is an instrument that provides a real-time readout of the concentration of “Black” or “Elemental” carbon aerosol particles (BC or E) in an air stream (see Figure 1 and Figure 2). It is a self-contained instrument that measures the rate of change of optical transmission through a spot on a filter where aerosol is being continuously collected and uses the information to calculate the concentration of optically absorbing material in the sampled air stream. The instrument measures the transmitted light intensities through the “sensing” portion of the filter, on which the aerosol spot is being collected, and a “reference” portion of the filter as a check on the stability of the optical source. A mass flowmeter monitors the sample air flow rate. The data from these three measurements is used to determine the mean BC content of the air stream.

  6. The IKARUS instrument

    International Nuclear Information System (INIS)

    Gerster, H.J.; Stein, G.

    1994-01-01

    When the Federal Government decided on a 25% reduction of CO 2 emissions till 2005 in 1990 the necessity resulted that an instrument has to be developed for the analysis and assessment of the ecological, economic and energetic impact of different reduction strategies. The development task was awarded by the BMFT to the Research Centre Juelich in cooperation with well-known institutions of energy system research. The total instrument is scheduled to be finished by the end of 1994. For the decentral use of the instrument by a wide specialist public the developed models and data banks which are equipped with a user-friendly surface are suited for larger PCs (486, 16 MB RAM/500-1000 MB ROM). (orig.) [de

  7. ISSUERS OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Cristian GHEORGHE

    2016-05-01

    Full Text Available The rules laid down by Romanian Capital Market Law and the regulations put in force for its implementation apply to issuers of financial instruments admitted to trading on the regulated market established in Romania. But the issuers remain companies incorporated under Company Law of 1990. Such dual regulations need increased attention in order to observe the legal status of the issuers/companies and financial instruments/shares. Romanian legislator has chosen to implement in Capital Market Law special rules regarding the administration of the issuers of financial instruments, not only rules regarding admitting and maintaining to a regulated market. Thus issuers are, in Romanian Law perspective, special company that should comply special rule regarding board of administration and general shareholders meeting.

  8. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  9. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  10. Standard NIM instrumentation system

    International Nuclear Information System (INIS)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice

  11. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  12. Celadon Figurines Play Instruments

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    This group of figurines, each 0.15m tall, were unearthed from a Tang Dynasty tomb in Changsha in 1977. Music was very developed in the Tang Dynasty. Colorful musical instruments and dances were popular both among the people and in the palace. These vivid-looking figurines wear pleated skirts with small sleeves and open chest, a style influenced by the non-Han nationalities living in the north and west of China. Some of the musical instruments were brought from the Western Regions. The figurines are playing the xiao (a vertical bamboo flute), the konghou (an

  13. Peer Learning in Instrumental Practicing

    Science.gov (United States)

    Nielsen, Siw G.; Johansen, Guro G.; Jørgensen, Harald

    2018-01-01

    In higher music education (HME), the notion of “private teaching, private learning” has a long tradition, where the learning part rests on the student's individual practicing between instrumental lessons. However, recent research suggests that collaborative learning among peers is beneficial in several aspects, such as sense of belonging, motivation and self-efficacy. This is consistent with the concept of vicarious learning. In this study, we conducted a survey among bachelor music students in church music, performance or music education programs enrolled in a music academy (N = 96), where parts of the questionnaire addressed peer learning and peer's influence on the students's instrumental practicing, and the degree of satisfaction with their practicing. These issues were seen in relation to gender, musical genre and study program. Overall, the students reported engaging in peer learning related to their instrumental practicing, to various degrees. This involved discussing practicing matters with peers, and practicing together with peers. However, student's reports of their views on peer learning, show that they perceive it more beneficial than the amount of time reported doing it would indicate. No significant gender differences were found, but students within improvised music/jazz engaged the most in peer learning, and church music students the least. Neither the degree of engaging in peer learning nor reported influence from peers correlated significantly with the degree of satisfaction. We discuss whether a general dissatisfaction is caused by being in a competitive learning environment combined with a privatized culture for learning. Finally, we suggest that collaborative forums for instrumental practicing within HME institutions can function as constructive and supportive arenas to enhance students learning and inner motivation. PMID:29599738

  14. Peer Learning in Instrumental Practicing.

    Science.gov (United States)

    Nielsen, Siw G; Johansen, Guro G; Jørgensen, Harald

    2018-01-01

    In higher music education (HME), the notion of "private teaching, private learning" has a long tradition, where the learning part rests on the student's individual practicing between instrumental lessons. However, recent research suggests that collaborative learning among peers is beneficial in several aspects, such as sense of belonging, motivation and self-efficacy. This is consistent with the concept of vicarious learning. In this study, we conducted a survey among bachelor music students in church music, performance or music education programs enrolled in a music academy ( N = 96), where parts of the questionnaire addressed peer learning and peer's influence on the students's instrumental practicing, and the degree of satisfaction with their practicing. These issues were seen in relation to gender, musical genre and study program. Overall, the students reported engaging in peer learning related to their instrumental practicing, to various degrees. This involved discussing practicing matters with peers, and practicing together with peers. However, student's reports of their views on peer learning, show that they perceive it more beneficial than the amount of time reported doing it would indicate. No significant gender differences were found, but students within improvised music/jazz engaged the most in peer learning, and church music students the least. Neither the degree of engaging in peer learning nor reported influence from peers correlated significantly with the degree of satisfaction. We discuss whether a general dissatisfaction is caused by being in a competitive learning environment combined with a privatized culture for learning. Finally, we suggest that collaborative forums for instrumental practicing within HME institutions can function as constructive and supportive arenas to enhance students learning and inner motivation.

  15. Peer Learning in Instrumental Practicing

    Directory of Open Access Journals (Sweden)

    Siw G. Nielsen

    2018-03-01

    Full Text Available In higher music education (HME, the notion of “private teaching, private learning” has a long tradition, where the learning part rests on the student's individual practicing between instrumental lessons. However, recent research suggests that collaborative learning among peers is beneficial in several aspects, such as sense of belonging, motivation and self-efficacy. This is consistent with the concept of vicarious learning. In this study, we conducted a survey among bachelor music students in church music, performance or music education programs enrolled in a music academy (N = 96, where parts of the questionnaire addressed peer learning and peer's influence on the students's instrumental practicing, and the degree of satisfaction with their practicing. These issues were seen in relation to gender, musical genre and study program. Overall, the students reported engaging in peer learning related to their instrumental practicing, to various degrees. This involved discussing practicing matters with peers, and practicing together with peers. However, student's reports of their views on peer learning, show that they perceive it more beneficial than the amount of time reported doing it would indicate. No significant gender differences were found, but students within improvised music/jazz engaged the most in peer learning, and church music students the least. Neither the degree of engaging in peer learning nor reported influence from peers correlated significantly with the degree of satisfaction. We discuss whether a general dissatisfaction is caused by being in a competitive learning environment combined with a privatized culture for learning. Finally, we suggest that collaborative forums for instrumental practicing within HME institutions can function as constructive and supportive arenas to enhance students learning and inner motivation.

  16. In-pile Instrumentation Development

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2005-01-01

    Advanced irradiations in research reactors require the on-line monitoring of crucial parameters like neutron fluxes, gamma dose rates, central fuel rod temperatures, fission gas release pressures and small geometry changes. Our activities in this field aim at a detailed understanding of the sensor behaviour in the irradiation conditions in order to extract reliable real-time information. The objectives of work performed by SCK-CEN are to study of the on-line in-pile measurement of gamma and neutron fluxes in real time and to investigate parasitic radiation-induced signals in instrumentation cables

  17. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  18. Final Report on Design, Fabrication and Test of HANARO Instrumented Capsule (07M-13N) for the Researches of Irradiation Performance of Parts of X-Gen Nuclear Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K. N.; Kim, B. G.; Kang, Y. H. (and others)

    2008-08-15

    An instrumented capsule of 07M-13N was designed, fabricated and irradiated for an evaluation of the neutron irradiation properties of the parts of a X-Gen nuclear fuel assembly for PWR requested by KNF. Some specimens of control rod materials of AP1000 reactor requested by Westinghouse Co. were inserted in this capsule as a preliminary irradiation test and Polyimide specimens requested by Hanyang university were also inserted. 463 specimens such as buckling and spring test specimens of cell spacer grid, tensile, microstructure and tensile of welded parts, irradiation growth, spring test specimens made of HANA tube, Zirlo, Zircaloy-4, Inconel-718, Polyimide, Ag and Ag-In-Cd alloys were placed in the capsule. During the irradiation test, the temperature of the specimens and the thermal/fast neutron fluences were measured by 14 thermocouples and 7 sets of neutron fluence monitors installed in the capsule. A new friction welded tube between STS304 and Al1050 alloys was introduced in the capsule to prevent a coolant leakage into a capsule during a capsule cutting process in HANARO. The capsule was irradiated for 95.19 days (4 cycles) in the CT test hole of HANARO of a 30MW thermal output at 230 {approx} 420 .deg. C. The specimens were irradiated up to a maximum fast neutron fluence of 1.27x10{sup 21}(n/cm{sup 2}) (E>1.0MeV) and the dpa of the irradiated specimens were evaluated as 1.21 {approx} 1.97. The irradiated specimens were tested to evaluate the irradiation performance of the parts of an X-Gen fuel assembly in the IMEF hot cell and the obtained results will be very valuable for the related researches of the users.

  19. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  20. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  1. Power station instrumentation

    International Nuclear Information System (INIS)

    Jervis, M.W.

    1993-01-01

    Power stations are characterized by a wide variety of mechanical and electrical plant operating with structures, liquids and gases working at high pressures and temperatures and with large mass flows. The voltages and currents are also the highest that occur in most industries. In order to achieve maximum economy, the plant is operated with relatively small margins from conditions that can cause rapid plant damage, safety implications, and very high financial penalties. In common with other process industries, power stations depend heavily on control and instrumentation. These systems have become particularly significant, in the cost-conscious privatized environment, for providing the means to implement the automation implicit in maintaining safety standards, improving generation efficiency and reducing operating manpower costs. This book is for professional instrumentation engineers who need to known about their use in power stations and power station engineers requiring information about the principles and choice of instrumentation available. There are 8 chapters; chapter 4 on instrumentation for nuclear steam supply systems is indexed separately. (Author)

  2. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  3. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  4. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  5. Economic Policy Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Økonomiske instrumenter begrundes med behovet for politiske indgreb, der muliggør internaliseringen af omkostningerne ved de miljøpåvirkninger, produktion and levevis afstedkommer, således at hensyntagen til miljøet bliver en del af virksomheders og husholdningers omkostninger og dermed en tilsky...

  6. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  7. Advanced instrumentation and teleoperation

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-01-01

    SCK-CEN's advanced instrumentation and teleoperation project aims at evaluating the potential of a telerobotic approach in a nuclear environment and, in particular, the use of remote-perception systems. Main achievements in 1997 in the areas of R and D on radiation tolerance for remote sensing, optical fibres and optical-fibre sensors, and computer-aided teleoperation are reported

  8. Health physics instrumentation needs

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Kenoyer, J.L.

    1984-10-01

    Deficiencies and desirable improvements can be identified in every technical area in which health physics instruments are employed. The needed improvements cover the full spectrum including long-term reliability, human factors, accuracy, ruggedness, ease of calibration, improved radiation response, and improved mixed field response. Some specific areas of deficiency noted along with needed improvements. 17 references

  9. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  10. CMO Site: Ocean Instrumentation

    Science.gov (United States)

    1997-02-01

    Precipitation , Lightning, Visibility 0150 A InterOcea Hawser Strain 1.. systems, inc. and more... n 1946 3540 aero court san diego ca 92123-1799 usa phone: (619...AGU’s Microgal culture Association, P.O. Box 1004, April 8-10, 1997-Underwater Gravimetry : Instruments, Observa- Niland, CA 92257; (619) 359-3474

  11. Ion chamber instrument

    International Nuclear Information System (INIS)

    Stephan, D.H.

    1975-01-01

    An electrical ionization chamber is described having a self-supporting wall of cellular material which is of uniform areal density and formed of material, such as foamed polystyrene, having an average effective atomic number between about 4 and about 9, and easily replaceable when on the instrument. (auth)

  12. Measurement and Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold

    2018-01-02

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  13. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  14. CRISP instrument manual

    International Nuclear Information System (INIS)

    Bucknall, D.G.; Langridge, Sean

    1997-05-01

    This document is a user manual for CRISP, one of the two neutron reflectomers at ISIS. CRISP is highly automated allowing precision reproducible measurements. The manual provides detailed instructions for the setting-up and running of the instrument and advice on data analysis. (UK)

  15. Musical instruments in the 21st century identities, configurations, practices

    CERN Document Server

    Campo, Alberto; Egermann, Hauke; Hardjowirogo, Sarah-Indriyati; Weinzierl, Stefan

    2017-01-01

    By exploring the many different types and forms of contemporary musical instruments, this book contributes to a better understanding of the conditions of instrumentality in the 21st century. Providing insights from science, humanities and the arts, authors from a wide range of disciplines discuss the following questions: · What are the conditions under which an object is recognized as a musical instrument? · What are the actions and procedures typically associated with musical instruments? · What kind of (mental and physical) knowledge do we access in order to recognize or use something as a musical instrument? · How is this knowledge being shaped by cultural conventions and temporal conditions? · How do algorithmic processes 'change the game' of musical performance, and as a result, how do they affect notions of instrumentality? · How do we address the question of instrumental identity within an instrument's design process? · What properties can be used to differentiate successful and unsuccessful ins...

  16. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  17. Developments in analytical instrumentation

    Science.gov (United States)

    Petrie, G.

    The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead

  18. A GC Instrument Simulator

    Science.gov (United States)

    Armitage, D. Bruce

    1999-02-01

    This simulator was developed to help students beginning the study of gas chromatographic instruments to understand their operation. It is not meant to teach chromatographic theory. The instrument simulator is divided into 5 sections. One is for sample preparation. Another is used to manage carrier gases and choose a detector and column. The third sets the conditions for either isothermal or programmed temperature operation. A fourth section models manual injections, and the fifth is the autosampler. The operator has a choice among 6 columns of differing diameters and packing polarities and a choice of either isothermal or simple one-stage temperature programming. The simulator can be operated in either single-sample mode or as a 10-sample autosampler. The integrator has two modes of operation, a "dumb" mode in which only the retention time, area of the peak, and percentage area are listed and a "smart" mode that also lists the components' identities. The identities are obtained from a list of names and retention times created by the operator. Without this list only the percentages and areas are listed. The percentages are based on the areas obtained from the chromatogram and not on the actual percentages assigned during sample preparation. The data files for the compounds used in the simulator are ASCII files and can be edited easily to add more compounds than the 11 included with the simulator. A maximum of 10 components can be used in any one sample. Sample mixtures can be made on a percent-by-volume basis, but not by mass of sample per volume of solvent. A maximum of 30 compounds can be present in any one file, but the number of files is limited only by the operating system. (I suggest that not more than 20 compounds be used in any one file, as scrolling through large numbers of compounds is annoying to say the least.) File construction and layout are discussed in detail in the User's Manual. Chromatograms are generated by calculating a retention time based on

  19. Social Responsibility Instruments

    Directory of Open Access Journals (Sweden)

    Katarzyna Mizera

    2008-09-01

    Full Text Available Responsible business notion is more and more present in Polish economy, however the results of the research carried out in Polish business still shows a low level of CRS idea knowledge, especially in small and medium companies. Although responsible business notion is generally known, its details, ways of preparing strategy, instruments and what is more its benefits are still narrowly spread. Many business people face the lack of knowledge and information, which on one hand make it easier to spread and deepen wrong stereotypes connected with this notion and on the other hand make business people unwilling to implement CRS in their companies. The subjects of this article are examples of instruments which are responsible for realization of social responsibility strategy.

  20. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  1. Radon-Instrumentation

    International Nuclear Information System (INIS)

    Moreno y Moreno, A.

    2003-01-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  2. Testing Aircraft Instruments.

    Science.gov (United States)

    1981-02-11

    1. Have test data been collected, recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment...instrumentation, and support accommodations adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for...correctness and completeness? Yes No Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No Comment : 5. Were the

  3. Transgressive or Instrumental?

    DEFF Research Database (Denmark)

    Chemi, Tatiana

    2018-01-01

    Contemporary practices that connect the arts with learning are widespread at all level of educational systems and in organisations, but they include very diverse approaches, multiple methods and background values. Regardless of explicit learning benefits, the arts/learning partnerships bring about...... creativity and the other on practices of arts-integration. My final point rests on the belief that the opposition of transgression and instrumentality is a deceiving perspective on the arts, against the background of the aesthetic plurality and hybridity....

  4. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  5. Mandolin Family Instruments

    Science.gov (United States)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  6. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  7. Instrument evaluation no. 33. Automess Szintomat 6134 radiation survey meter

    International Nuclear Information System (INIS)

    McClure, D.R.

    1986-04-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This instrument evaluation report deals with the Automess Szintomat 6134 Radiation Survey Meter

  8. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    1979-05-01

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  9. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  10. Robotic-surgical instrument wrist pose estimation.

    Science.gov (United States)

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  11. PACMAN: PRIMA astrometric instrument software

    Science.gov (United States)

    Abuter, Roberto; Sahlmann, Johannes; Pozna, Eszter

    2010-07-01

    The dual feed astrometric instrument software of PRIMA (PACMAN) that is currently being integrated at the VLTI will use two spatially modulated fringe sensor units and a laser metrology system to carry out differential astrometry. Its software and hardware compromises a distributed system involving many real time computers and workstations operating in a synchronized manner. Its architecture has been designed to allow the construction of efficient and flexible calibration and observation procedures. In parallel, a novel scheme of integrating M-code (MATLAB/OCTAVE) with standard VLT (Very Large Telescope) control software applications had to be devised in order to support numerically intensive operations and to have the capacity of adapting to fast varying strategies and algorithms. This paper presents the instrument software, including the current operational sequences for the laboratory calibration and sky calibration. Finally, a detailed description of the algorithms with their implementation, both under M and C code, are shown together with a comparative analysis of their performance and maintainability.

  12. Tamper indicating radiation surveillance instrumentation

    International Nuclear Information System (INIS)

    Chambers, W.H.; Ney, J.F.

    1975-01-01

    Prototype personnel and shipping dock portal monitors suitable for unattended use were fabricated and tested. The requirement for continuous operation with only periodic inspection along with a desire for minimum costs and minimum interference with normal plant operation imposed unique design constraints. The design, operation, and performance of the detection and data recording instrumentation are described, as well as the tamper indicating techniques required to protect the collected data. The essential elements of either of the two instruments include a gamma detector array, signal conditioning electronics, digital alarm logic circuitry, power supplies, a microwave occupancy monitor, surveillance camera, irreversible electromechanical counters, and the appropriate tamper indicating envelope protecting these elements. Attempts to penetrate the tamper indicating envelope require material removal, and undetectable repair is very difficult, if not impossible. The techniques for joining major subassemblies and providing unique seals are also described. The personnel doorway uses a double pole array of NaI(Tl) detectors, and outputs are taken from a single channel pulse height analyzer with a window set at 60 to 250 keV and the lower level discriminator at greater than 60 keV. A sliding interval counter is used to make comparisons to an accumulated background at the 4sigma level. Logic design, sensitivity for special nuclear materials, false alarm data, and test procedures are described in detail. The shipping dock monitor had different design constraints and therefore uses a single, long, cylindrical plastic scintillator. Some differences in signal conditioning and processing are also described. (auth)

  13. Payment Instrument Characteristics

    DEFF Research Database (Denmark)

    Holst, Jacques; Kjeldsen, Martin; Hedman, Jonas

    2015-01-01

    Over the last decade, we have witnessed payment innovations that fundamentally have changed the ways we pay. Payment innovations, such as mobile payments and on-line banking, include characteristics or features that are essential to understand if we want to know how and why payers choose among...... payment innovations. Using the Repertory Grid technique to explore 15 payers’ perception of six payment instruments, including coins, banknotes, debit cards, credit cards, mobile payments, and on-line banking, we identify 16 payment characteristics. The characteristics aggregate seventy-six unique...

  14. Operational Test Instrumentation Guide.

    Science.gov (United States)

    1981-11-01

    System. A topographic, transit-level measuring system, instrumented with altimeter, clinometers, compasses , and an alidade, plane table, and stadia rod...dual hangar 250 x 135 feet with two door openings, 80 feet each. There is no compass swing base, no electronic landing aids, ro aircraft wash or...month) of SDG &E) Haybarn Canyon 15,000 6,183,870 Lan Pulgas 1,500 433,890 Las Pulgas Well #41621 100 4,258 Las Pulgas Well #41611 150 7,548 Las Flores

  15. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  16. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  17. Instruments of Transformative Governance

    DEFF Research Database (Denmark)

    Borrás, Susana

    production and distribution channels. PDPs aim at overcoming current market and government failures by pooling resources in the attempt to solve this global social challenge. Thus, PDPs are a case of instruments of transformative research and innovation, operating in a transnational governance context....... They exhibit three novelties: they address strategic long-term problems in a holistic manner, set substantive output-oriented goals, and are implemented through new organizational structures. After characterizing the different types of current PDPs and the context in which they emerged, the paper examines...

  18. Diamonds for beam instrumentation

    International Nuclear Information System (INIS)

    Griesmayer, Erich

    2013-01-01

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  19. Pesticide reducing instruments

    DEFF Research Database (Denmark)

    Jacobsen, Lars-Bo; Jensen, Jørgen Dejgård; Andersen, Martin

    2005-01-01

    -mentioned models and tools. All three scenarios are constructed such that they result in the same welfare implication (measured by national consumption in the CGE model). The scenarios are: 1) pesticide taxes resulting in a 25 percent overall reduction; 2) use of unsprayed field margins, resulting in the same...... for improving bio-diversity and securing drinking water. That is, combining economic modeling with physical biological modeling and geological evaluation allows us to select unsprayed field margins as the most effective instrument. Sensitivity analysis conducted on bio-diversity suggest that this result...

  20. Calibration of radiation monitoring instruments

    International Nuclear Information System (INIS)

    1973-01-01

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  1. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  2. Calibration of radiation monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-12-31

    Radiation protection is dependent on good radiation monitoring, and properly calibrated instruments are essential for this work. Simple procedures for periodically checking and recalibrating different kinds of radiation monitoring instruments are shown in this training film

  3. Instruments for Water Quality Monitoring

    Science.gov (United States)

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  4. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  5. 21 CFR 882.4560 - Stereotaxic instrument.

    Science.gov (United States)

    2010-04-01

    ...) Identification. A stereotaxic instrument is a device consisting of a rigid frame with a calibrated guide mechanism for precisely positioning probes or other devices within a patient's brain, spinal cord, or other part of the nervous system. (b) Classification. Class II (performance standards). ...

  6. Nuclear electronic instrumentation

    International Nuclear Information System (INIS)

    Ramirez J, F. J.

    2010-01-01

    The activities carried out in the Instituto Nacional de Investigaciones Nucleares (ININ) in the field of the nuclear electronic instrumentation included those activities corresponding to the design and production of nuclear instruments in a first stage, as well as the internal activities of design, repair and maintenance that have supported to other projects of the institution during many years. It is mentioned of the presence and constant collaboration of the ININ with the IAEA in different projects and programs. Also, it is mentioned on the establishment of the Radiation Detectors Laboratory, which for their characteristics and repair capacities of radiation detectors of cooled semiconductor, it is only in their specialty. It is emphasized the investigation and the development in the field of new radiation detectors and applications, as well as the important contribution in this field, in institutions like: Mexican Petroleum, National Commission of Nuclear Safety and Safeguards and Federal Commission of Electricity. Finally a position of the future of these activities is made, considering the speed of the advances of the electronic and nuclear technology. (Author)

  7. Neutron instrumentation system

    International Nuclear Information System (INIS)

    Akiyama, Takao; Arita, Setsuo; Yuchi, Hiroyuki

    1989-01-01

    The neutron instrumentation system of this invention can greatly reduce the possibility that the shutdown flux is increased greater than a predetermiend value to cause scram due to vibrations caused by earthquakes or shocks in the neutron instrumentation system without injuring the reactor safety. That is, a sensor having a zero sensitivity to a neutron flux which is an object to be detected by the sensor (dummy sensor) is used together with a conventional sensor (a sensor having predetermined sensitivity to a neutron flux as an object to be measured ----- true sensor). Further, identical signal transmission cables, connector and the signal processing circuits are used for both of true sensor and the dummy sensor. The signal from the dummy sensor is subtracted from the signal from the true sensor at the output of the signal processing circuit. Since the output of the dummy sensor is zero during normal operation, the subtracted value is the same as the value from the true sensor. If the true sensor causes an output with the reason other than the neutron flux, this is outputted also from the dummy sensor but does not appear in the subtracted value. (I.S.)

  8. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  9. Advancements in Actuated Musical Instruments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert

    2011-01-01

    are physical instruments that have been endowed with virtual qualities controlled by a computer in real-time but which are nevertheless tangible. These instruments provide intuitive and engaging new forms of interaction. They are different from traditional (acoustic) and fully automated (robotic) instruments...

  10. Rio de Janeiro: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Students from Latin America were able to get hands-on experience in state-of-the-art physics instrumentation in this year's School on Instrumentation for High Energy Physics organized by the active Instrumentation Panel of ICFA (the International Committee for Future Accelerators) at the Centro Brasileiro de Pesquicas Fisicas (CBPF), Rio de Janeiro, in July

  11. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  12. Latest NASA Instrument Cost Model (NICM): Version VI

    Science.gov (United States)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  13. Forward instrumentation for ILC detectors

    International Nuclear Information System (INIS)

    Abramowicz, Halina; Abusleme, Angel; Afanaciev, Konstantin

    2010-09-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10 -3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised. (orig.)

  14. The Bering Target Tracking Instrumentation

    DEFF Research Database (Denmark)

    Denver, Troelz; Jørgensen, John Leif; Betto, Maurizio

    2003-01-01

    The key science instrument on the Bering satellite mission is a relative small telescope with an entrance aperture of 300 mm and a focal length between 500 and 1000 mm. The detection of potential targets is performed by one of the target scanning advanced stellar compasses (ASCs). This procedure...... results in a simple prioritized list of right ascension, declination, proper motion and intensity of each prospective target. The telescope itself has a dedicated ASC Camera Head Unit (CHU) mounted on the secondary mirror, largely co-aligned with the telescope. This CHU accurately determines the telescope......'s pointing direction. To achieve fast tracking over a large solid angle, the telescope pointing is achieved by means of a folding mirror in the optical pathway. When a prospective target approaches the telescope FOV, the ASC on the secondary will guide the folding mirror into position such that the target...

  15. Online Personalization of Hearing Instruments

    Directory of Open Access Journals (Sweden)

    Bert de Vries

    2008-09-01

    Full Text Available Online personalization of hearing instruments refers to learning preferred tuning parameter values from user feedback through a control wheel (or remote control, during normal operation of the hearing aid. We perform hearing aid parameter steering by applying a linear map from acoustic features to tuning parameters. We formulate personalization of the steering parameters as the maximization of an expected utility function. A sparse Bayesian approach is then investigated for its suitability to find efficient feature representations. The feasibility of our approach is demonstrated in an application to online personalization of a noise reduction algorithm. A patient trial indicates that the acoustic features chosen for learning noise control are meaningful, that environmental steering of noise reduction makes sense, and that our personalization algorithm learns proper values for tuning parameters.

  16. Forward Instrumentation for ILC Detectors

    CERN Document Server

    Abramowicz, Halina; Afanaciev, Konstantin; Aguilar, Jonathan; Ambalathankandy, Prasoon; Bambade, Philip; Bergholz, Matthias; Bozovic-Jelisavcic, Ivanka; Castro, Elena; Chelkov, Georgy; Coca, Cornelia; Daniluk, Witold; Dragone, Angelo; Dumitru, Laurentiu; Elsener, Konrad; Emeliantchik, Igor; Fiutowski, Tomasz; Gostkin, Mikhail; Grah, Christian; Grzelak, Grzegorz; Haller, Gunter; Henschel, Hans; Ignatenko, Alexandr; Idzik, Marek; Ito, Kazutoshi; Jovin, Tatjana; Kielar, Eryk; Kotula, Jerzy; Krumstein, Zinovi; Kulis, Szymon; Lange, Wolfgang; Lohmann, Wolfgang; Levy, Aharon; Moszczynski, Arkadiusz; Nauenberg, Uriel; Novgorodova, Olga; Ohlerich, Marin; Orlandea, Marius; Oleinik, Gleb; Oliwa, Krzysztof; Olshevski, Alexander; Pandurovic, Mila; Pawlik, Bogdan; Przyborowski, Dominik; Sato, Yutaro; Sadeh, Iftach; Sailer, Andre; Schmidt, Ringo; Schumm, Bruce; Schuwalow, Sergey; Smiljanic, Ivan; Swientek, Krzysztof; Takubo, Yosuke; Teodorescu, Eliza; Wierba, Wojciech; Yamamoto, Hitoshi; Zawiejski, Leszek; Zhang, Jinlong

    2010-01-01

    Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10-3 and a low polar angle calorimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.

  17. The Atacama Cosmology Telescope: Instrument

    Science.gov (United States)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  18. Instrument evaluation no. 13. Nuclear enterprises portable meter type PDR

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    The various radiations encountered in radiological protection cover a wide range of energies and radiation measurements have to be carried out under an equally broad spectrum of environmental conditions. This report is one of a series intended to give information on the performance characteristics of radiological protection instruments, to assist in the selection of appropriate instruments for a given purpose, to interpret the results obtained with such instruments, and, in particular, to know the likely sources and magnitude of errors that might be associated with measurements in the field. The radiation, electrical and environmental characteristics of radiation protection instruments are considered together with those aspects of the construction which make an instrument convenient for routine use. To provide consistent criteria for instrument performance, the range of tests performed on any particular class of instrument, the test methods and the criteria of acceptable performance are based broadly on the appropriate Recommendations of the International Electrotechnical Commission. The radiations in the tests are, in general, selected from the range of reference radiations for instrument calibration being drawn up by the International Standards Organisation. Normally, each report deals with the capabilities and limitations of one model of instrument and no direct comparison with other instruments intended for similar purposes is made, since the significance of particular performance characteristics largely depends on the radiations and environmental conditions in which the instrument is to be used. The results quoted here have all been obtained from tests on instruments in routine production, with the appropriate measurements being made by the NRPB. This report deals with the evaluation of Nuclear Enterprises Portable Dose Rate Meter Type PDR 2

  19. An instrument for real time detection of contamination in space environmental tests chambers

    Science.gov (United States)

    Richmond, R. G.; Harmon, H. N.

    1972-01-01

    An instrument for in situ vacuum detection of surface reflectance changes at 1216A was designed. Using successive reflections, this instrument is more sensitive as an indicator of reflectance changes than similar instruments having only a single reflection. The selection of each component of the instrument and its operational performance is discussed.

  20. Development of an alpha scattering instrument for heavy element detection in surface materials. Final report

    International Nuclear Information System (INIS)

    Turkevich, A.L.; Economou, T.; Blume, E.; Anderson, W.

    1974-12-01

    The development and characteristics of a portable instrument for detecting and measuring the amounts of lead in painted surfaces are discussed. The instrument is based on the ones used with the alpha scattering experiment on the Surveyor lunar missions. The principles underlying the instrument are described. It is stated that the performance tests of the instrument were satisfactory. (auth)

  1. Three instruments for positron annihilation spectroscopy (PAS)

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Plostinaru, D.; Catana, D.; Racolta, P.M.; Vata, I.

    2003-01-01

    The instruments presented here and dedicated to positron annihilation spectroscopy, PAS, are: 1. High Resolution Life Time Spectrometer (LTS) with time resolution τ = 260 ps, based on large BaF 2 scintillators; 2. Doppler Broadening Spectrometer (DBS) having a 1.6 keV resolution at 514 keV; 3. Positronium Life Time - Perturbed Angular Distribution Spectrometer ( PLT-PAD); positronium life time, in samples under high vacuum in magnetic field, is measured for time intervals up to 500 ns. Results of measurements are shown to illustrate performances of the instruments. (authors)

  2. Environmental Testing for Precision Parts and Instruments

    International Nuclear Information System (INIS)

    Choi, Man Yong; Park, Jeong Hak; Yun, Kyu Tek

    2001-01-01

    Precision parts and instruments are tested to evaluate performance in development-process and product-step to prement a potential defect due to a failure design. In this paper, Environmental test technology, which is the basis of reliability analysis, is introduced with examples of test criterion, test method for products, encoder and traffic signal controller, and measuring instruments. Recently, as the importance of the environmental test technology is recognised. It is proposed that training of test technician and technology of jig design and failure analysis are very essential

  3. Reconstruction of instrumentation and control system (SKR)

    International Nuclear Information System (INIS)

    Wiening, K.-H.

    2001-01-01

    For the first time extensive upgrades have been performed in all safety related areas of units with WWER 440/230 reactors. One of the most important actions was the replacement of the safety and safety related instrumentation and control. The state of the art digital safety instrumentation and control system TELEPERM XS has been implemented in units 1 and 2 of the Bohunice V1 power plant. The requirements as deduced from safety assessments conducted by commissions of international experts have been fulfilled, so that Bohunice V1 after this gradual reconstruction has been upgraded to an internationally accepted safety level for the remainder of its service life. (author)

  4. Instrumentation, Control, and Intelligent Systems

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  5. Instrumentation, Control, and Intelligent Systems

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems

  6. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  7. Control of training instrument

    International Nuclear Information System (INIS)

    Seo, K. W.; Joo, Y. C.; Park, J. C.; Hong, C. S.; Choi, I. K.; Cho, B. J.; Lee, H. Y.; Seo, I. S.; Park, N. K.

    1996-01-01

    This report describes the annual results on control of training instrument. The scope and contents are the following: 1. Control of Compact Nuclear Simulator 2. Control of Radiation/Radioactivity Measurement 3. Control of Non-Destructive Testing Equipment 4. Control of Chemical Equipment 5. Control of Personal Computer 6. Other related Lecture Aid Equipment. Efforts were employed to upgrade the training environment through retrofitting experimental facilities, compiling teaching materials and reforcing audio-visual aids. The Nuclear Training Center executed the open-door training courses for 2,496 engineers/scientists from the nuclear regulatory, nuclear industries, research institutes and other related organizations by means of offering 45 training courses during the fiscal year 1995. (author). 15 tabs., 7 figs., 13 refs

  8. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  9. Instrument design and automation

    International Nuclear Information System (INIS)

    Wernlund, R.F.

    1984-01-01

    The ion mobility spectrometer-mass spectrometer (IMS-MS) is described and consists of two separate instruments coupled in tandem: an ion mobility spectrometer coupled to a quadrupole mass spectrometer. The two insturments operate at different pressures in a synergistic manner, supplying both drift time and mass information about ions which are formed at atmospheric pressure in the ion mobility spectrometer tube. Two types of ion intensity signals are presented to the data processor. The IMS produces an analog voltage with major components from dc to 5 KHz. The mass spectrometer signal output resides in the pulse count rate derived from a series of TTL level pulses where each pulse represents the arrival of a single ion. The hardware, software, interfacing capabilities and basic data acquisition program are described in detail

  10. Instrumented Pipeline Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  11. BOMBAY: Instrumentation school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Promising students had a foretaste of the latest laboratory techniques at the ICFA 1993 India School on Instrumentation in High Energy Physics held from February 15-26 and hosted by the Tata Institute of Fundamental Research (TIFR), Bombay. The scientific programme was put together by the ICFA Panel for Future Instrumentation, Innovation and Development, chaired by Tord Ekelof (Uppsala). The programme included lectures and topical seminars covering a wide range of detector subjects. In small groups, students got acquainted with modern detector technologies in the laboratory sessions, using experimental setups assembled in various institutes world-wide and shipped to Bombay for the School. The techniques covered included multiwire proportional chambers for detection of particles and photons, gaseous detectors for UV photons and X-ray imaging, the study of charge drift in silicon detectors, measurement of the muon lifetime using liquid scintillators, tracking using scintillating fibres, and electronics for sensitive detectors. The India School was attended by around 80 students from 20 countries; 34 came from Indian universities. It was the fifth in this series, previous Schools having been at Trieste (1987, 1989 and 1991) organized by the ICFA Panel and hosted and sponsored by the International Centre for Theoretical Physics, and in 1990, organized at Rio de Janeiro in collaboration with the Centro Brasileiro de Pesquisas Fisicas. The School was jointly directed by Suresh Tonwar (TIFR), Fabio Sauli (CERN) and Marleigh Sheaff (University of Wisconsin), and sponsored by TIFR and DAE (India), CERN (Switzerland), ICTP and INFN (Italy), British Council and RAL (UK), NSF and DOE (USA), KEK (Japan), IPP (Canada) and DESY (Germany)

  12. Ideology as instrument.

    Science.gov (United States)

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. (Copyright) 2007 APA.

  13. The nuclear instrumentation system of the French 1400 MWe reactors

    International Nuclear Information System (INIS)

    Bourgerette, A.; Mauduit, J.P.

    1993-01-01

    The nuclear instrumentation systems in power reactors in France have made considerable advances thanks to technological progress. The appearance of an integrated digital protection system (SPIN) and the extension of digital techniques have considerably improved performance and operating flexibility. Working on the basis of technology developed jointly with the Nuclear Electronics and Instrumentation Department at the French Atomic Energy Commission (CEA), Framatome and Merlin Gerin have designed the new nuclear instrumentation system for 1400 MW reactors. (authors). 4 figs

  14. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  15. Non-process instrumentation surveillance and test reduction

    International Nuclear Information System (INIS)

    Ferrell, R.; LeDonne, V.; Donat, T.; Thomson, I.; Sarlitto, M.

    1993-12-01

    Analysis of operating experience, instrument failure modes, and degraded instrument performance has led to a reduction in Technical Specification surveillance and test requirements for nuclear power plant process instrumentation. These changes have resulted in lower plant operations and maintenance (O ampersand M) labor costs. This report explores the possibility of realizing similar savings by reducing requirements for non-process instrumentation. The project team reviewed generic Technical Specifications for the four major US nuclear steam supply system (NSSS) vendors (Westinghouse, General Electric, Combustion Engineering, and Babcock ampersand Wilcox) to identify nonprocess instrumentation for which surveillance/test requirements could be reduced. The team surveyed 10 utilities to identify specific non-process instrumentation at their plants for which requirements could be reduced. The team evaluated utility analytic approaches used to justify changes in surveillance/test requirements for process equipment to determine their applicability to non-process instrumentation. The report presents a prioritized list of non-process instrumentation systems suitable for surveillance/test requirements reduction. The top three systems in the list are vibration monitors, leak detection monitors, and chemistry monitors. In general, most non-process instrumentation governed by Technical Specification requirements are candidates for requirements reduction. If statistical requirements are somewhat relaxed, the analytic approaches previously used to reduce requirements for process instrumentation can be applied to non-process instrumentation. The report identifies as viable the technical approaches developed and successfully used by Southern California Edison, Arizona Public Service, and Boston Edison

  16. The Basic Design Report of the 40M SANS Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Soo; Lee, Chang Hee; Hwang, Dong Gil; Kim, Hak Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Hwan; Choi, Sung Min [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-04-15

    The HANARO cold neutron research facility project was launched on July 1, 2003. A state of the art SANS instrument was selected as a top-priority instrument by an instrument selection committee, which consisted of domestic users and HANARO personnel. An instrument development team and an international and domestic instrument advisory team were formulated. The guide and the instrument simulation were performed using Vitess software and the optimum basic design was completed based on the simulation results and the international advisory team reviews. The optimum design of the guide for the 40M SANS instrument was completed and the optimum basic design of the 40M the SANS instrument was also completed based on the Vitess simulation results. The Q range of the instrument will cover from 0.0008 to 1.0 A-1 and the maximum flux at a sample position can reach about 5.5x10 7 n/cm2sec. The simulation results and the basic design product will be used for the detailed design and the construction of the SANS instrument. The simulation results could be applied to the development of the other instrument.

  17. In-house validation study of the DuPont Qualicon BAX system Q7 instrument with the BAX system PCR Assay for Salmonella (modification of AOAC Official Method 2003.09 and AOAC Research Institute Performance-Tested Method 100201).

    Science.gov (United States)

    Tice, George; Andaloro, Bridget; White, H Kirk; Bolton, Lance; Wang, Siqun; Davis, Eugene; Wallace, Morgan

    2009-01-01

    In 2006, DuPont Qualicon introduced the BAX system Q7 instrument for use with its assays. To demonstrate the equivalence of the new and old instruments, a validation study was conducted using the BAX system PCR Assay for Salmonella, AOAC Official Method 2003.09, on three food types. The foods were simultaneously analyzed with the BAX system Q7 instrument and either the U.S. Food and Drug Administration Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Comparable performance between the BAX system and the reference methods was observed. Of the 75 paired samples analyzed, 39 samples were positive by both the BAX system and reference methods, and 36 samples were negative by both the BAX system and reference methods, demonstrating 100% correlation. Inclusivity and exclusivity for the BAX system Q7 instrument were also established by testing 50 Salmonella strains and 20 non-Salmonella isolates. All Salmonella strains returned positive results, and all non-Salmonella isolates returned a negative response.

  18. Thermal processes identification using virtual instrumentation

    Directory of Open Access Journals (Sweden)

    Iosif OLAH

    2007-12-01

    Full Text Available In this paper the experimental identification problem of thermal processes is presented, in order to establish their mathematical models which permit the adoption of the automation solutions, respectively the specification of a suitable control law. With this aim in view, the authors resorted to use Virtual Instrumentation with the aid of the LabVIEW development medium. In order to solve the problem of acquisition and processing data from physical real processes, Virtual Instruments which provide at the end a mathematical model which is basis of choosing the automation equipment of the aim followed was designed and achieved. The achieved Virtual Instruments get the opportunity to be used either in student instruction field with the virtual processes identification techniques or to put the identification of some real processes to good use of diverse beneficiaries. The results of some experimental attempts which were achieved during different thermal processes, illustrate the utility of the demarches performed in this paper.

  19. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  20. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance