WorldWideScience

Sample records for perform micro-scale mapping

  1. The Impact of Micro-Finance on the Performance of Small-Scale ...

    African Journals Online (AJOL)

    The Impact of Micro-Finance on the Performance of Small-Scale Enterprises: A Comparison of ... PROMOTING ACCESS TO AFRICAN RESEARCH ... the impact that the study-MFIs are making on their SMEs-client in the Wa Municipality.

  2. Micro-Scale Thermoacoustics

    Science.gov (United States)

    Offner, Avshalom; Ramon, Guy Z.

    2016-11-01

    Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  3. MicroMAPS CO Measurements over North America and Europe during Summer-Fall 2004

    Science.gov (United States)

    Connors, Vickie S.; Hopkins, Patrick E.; Reichle, Henry G., Jr.; Morrow, William H.; McMillan, Wallace; Sandy, Mary L.

    2006-01-01

    The MicroMAPS instrument is a nadir-viewing, gas filter-correlated radiometer which operating in the 4.67 micrometer fundamental band of carbon monoxide. Originally designed and built for a space mission, this CO remote sensor is being flown in support of satellite validation and science instrument demonstrations for potential UAV applications. The MicroMAPS instrument system, as flown on Proteus, was designed by a senior student design project in the Aerospace Engineering Department, Virginia Tech, in Blacksburg, VA. and then revised by Systems Engineers at NASA Langley. The final instrument system was integrated and tested at NASA LaRC, in partnership with Scaled Composites and Virginia Space Grant Consortium (VSGC). VSGC supervised the fabrication of the nacelle that houses the instrument system on the right rear tail boom of Proteus. Full system integration and flight testing was performed at Scaled Composites, in Mojave, in June 2004. Its successful performance enabled participation in four international science missions on Proteus: in 2004, INTEX -NA over eastern North America in July, ADRIEX over the Mediterranean region and EAQUATE over the United Kingdom region in September,and TWP-ICE over Darwin, Australia and the surrounding oceans in Jan-Feb 2006. These flights resulted in nearly 300 hours of data. In parallel with the engineering developments, theoretical radiative transfer models were developed specifically for the MicroMAPS instrument system at the University of Virginia, Mechanical Engineering Department by a combined undergraduate and graduate student team. With technical support from Resonance Ltd. in June 2005, the MicroMAPS instrument was calibrated for the conditions under which the Summer-Fall 2004 flights occurred. The analyses of the calibration data, combined with the theoretical radiative transfer models, provide the first data reduction for the science flights reported here. These early results and comparisons with profile data from the

  4. Three-dimensional micro-scale strain mapping in living biological soft tissues.

    Science.gov (United States)

    Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter

    2018-04-01

    Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro

  5. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Wenbin [General Motors LLC, Pontiac, MI (United States)

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  6. Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran.

    Science.gov (United States)

    Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah

    2016-12-01

    Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this

  7. Effect of micro-scale texturing on the cutting tool performance

    Science.gov (United States)

    Vasumathy, D.; Meena, Anil

    2018-05-01

    The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.

  8. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  9. Wafer-scale micro-optics fabrication

    Science.gov (United States)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  10. The Impact of Micro-Finance on the Performance of Small-Scale ...

    African Journals Online (AJOL)

    2014-10-02

    Oct 2, 2014 ... Department of Planning and Management ... Keywords: Small-scale Enterprises, Micro-Financing, Micro-Credit, Sales Revenue, .... The Wa Municipality is often acclaimed as a private-sector business enclave in the Upper.

  11. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  12. Barbed micro-spikes for micro-scale biopsy

    Science.gov (United States)

    Byun, Sangwon; Lim, Jung-Min; Paik, Seung-Joon; Lee, Ahra; Koo, Kyo-in; Park, Sunkil; Park, Jaehong; Choi, Byoung-Doo; Seo, Jong Mo; Kim, Kyung-ah; Chung, Hum; Song, Si Young; Jeon, Doyoung; Cho, Dongil

    2005-06-01

    Single-crystal silicon planar micro-spikes with protruding barbs are developed for micro-scale biopsy and the feasibility of using the micro-spike as a micro-scale biopsy tool is evaluated for the first time. The fabrication process utilizes a deep silicon etch to define the micro-spike outline, resulting in protruding barbs of various shapes. Shanks of the fabricated micro-spikes are 3 mm long, 100 µm thick and 250 µm wide. Barbs protruding from micro-spike shanks facilitate the biopsy procedure by tearing off and retaining samples from target tissues. Micro-spikes with barbs successfully extracted tissue samples from the small intestines of the anesthetized pig, whereas micro-spikes without barbs failed to obtain a biopsy sample. Parylene coating can be applied to improve the biocompatibility of the micro-spike without deteriorating the biopsy function of the micro-spike. In addition, to show that the biopsy with the micro-spike can be applied to tissue analysis, samples obtained by micro-spikes were examined using immunofluorescent staining. Nuclei and F-actin of cells which are extracted by the micro-spike from a transwell were clearly visualized by immunofluorescent staining.

  13. A CFD Analysis of The Performance of Pin-Fin Laminar Flow Micro/Meso Scale Heat Exchangers

    National Research Council Canada - National Science Library

    Dimas, Sotirios

    2005-01-01

    A full three dimensional computational study was carried out using a finite-volume based solver for analyzing the performance of pin-fin based micro/meso scale heat exchangers with air as the working fluid...

  14. From a meso- to micro-scale connectome: Array Tomography and mGRASP

    Directory of Open Access Journals (Sweden)

    Jinhyun eKim

    2015-06-01

    Full Text Available Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing, combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

  15. Thermal performance of a micro-combustor for micro-gas turbine system

    International Nuclear Information System (INIS)

    Cao, H.L.; Xu, J.L.

    2007-01-01

    Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-combustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant heat transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved micro-combustor

  16. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  17. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin

    Science.gov (United States)

    Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter

    1997-12-01

    In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.

  18. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  19. GeneRecon—A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, Thomas; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2006-01-01

    GeneRecon is a tool for fine-scale association mapping using a coalescence model. GeneRecon takes as input case-control data from phased or unphased SNP and micro-satellite genotypes. The posterior distribution of disease locus position is obtained by Metropolis Hastings sampling in the state space...

  20. Industrial clusters and social networks and their impact on the performance of micro- and small-scale enterprises: evidence from the handloom sector in Ethiopia

    NARCIS (Netherlands)

    Ali, M.A.

    2012-01-01

    This study empirically investigates how clustering and social networks affect the performance of micro- and small-scale enterprises by looking at the evidence from Ethiopia. By contrasting the performance of clustered micro enterprises with that of dispersed ones, it was first shown that

  1. Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ

    International Nuclear Information System (INIS)

    Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.

    2016-01-01

    Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction

  2. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    Science.gov (United States)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  3. Orientation Mapping of Extruded Polymeric Composites by Polarized Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiaoyun Chen

    2015-01-01

    Full Text Available Molecular orientation has a strong influence on polymeric composite materials’ mechanical properties. In this paper we describe the use of polarized micro-Raman spectroscopy as a powerful tool to map out the molecular orientation of a uniaxially oriented polypropylene- (PP- based composite material. Initial samples exhibited a high degree of surface fibrillation upon cutting. Raman spectroscopy was used to characterize the degree of orientation in the skin and guide the development of the posttreatment process to optimize the skin relaxation while maintaining the high degree of orientation in the rest of the board. The PP oriented polymer composite (OPC was oriented through an extrusion process and its surface was then treated to achieve relaxation. Micro-Raman analysis at the surface region demonstrated the surface orientation relaxation, and the results provide an effective way to correlate the extent of relaxation and process conditions. Larger scale orientation mapping was also carried out over the entire cross-section (12.7 cm × 2.54 cm. The results agree well with prior expectation of the molecular orientation based on the extrusion and subsequent quenching process. The methodologies described here can be readily applied to other polymeric systems.

  4. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    Science.gov (United States)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  5. Minimum scale controlled topology optimization and experimental test of a micro thermal actuator

    DEFF Research Database (Denmark)

    Heo, S.; Yoon, Gil Ho; Kim, Y.Y.

    2008-01-01

    This paper is concerned with the optimal topology design, fabrication and test of a micro thermal actuator. Because the minimum scale was controlled during the design optimization process, the production yield rate of the actuator was improved considerably; alternatively, the optimization design ...... tested. The test showed that control over the minimum length scale in the design process greatly improves the yield rate and reduces the performance deviation....... without scale control resulted in a very low yield rate. Using the minimum scale controlling topology design method developed earlier by the authors, micro thermal actuators were designed and fabricated through a MEMS process. Moreover, both their performance and production yield were experimentally...

  6. Construction and Implementation of Teaching Mode for Digital Mapping based on Interactive Micro-course Technology

    Directory of Open Access Journals (Sweden)

    Ning Gao

    2018-02-01

    Full Text Available The era of “Internet + education” has caused reforms in teaching ideas, teaching modes, and learning styles. The emergence of micro-course technology provides new strategies for integrating learning styles. Task-driven digital mapping teaching, known as traditional classroom organization, has poor teaching effect due to single learning style and strategy. A new teaching mode for digital mapping was constructed in this study based on micro-course technology by combining interactive micro-course technology and digital mapping teaching to adapt to the demands of modern teaching. This teaching mode mainly included four modules, namely, micro-courseware, micro-video, micro-exercise, and micro-examination. It realized the hierarchical teaching of knowledge points in digital mapping course, simplification of basic principles, simulation of engineering cases, and self-evaluation of learning outcomes. The teaching mode was applied to 114 students from the Mapping Engineering Department of Henan University of Urban Construction. Results indicate that the proposed teaching mode based on interactive micro-course technology promoting the independent after-class learning of the students, stimulating their learning enthusiasm, enhancing their practical abilities of the students, and improving the effect of teaching. This mode of teaching provides a new concept for the teaching mode reform of other courses in mapping engineering.

  7. Investigation the gas film in micro scale induced error on the performance of the aerostatic spindle in ultra-precision machining

    Science.gov (United States)

    Chen, Dongju; Huo, Chen; Cui, Xianxian; Pan, Ri; Fan, Jinwei; An, Chenhui

    2018-05-01

    The objective of this work is to study the influence of error induced by gas film in micro-scale on the static and dynamic behavior of a shaft supported by the aerostatic bearings. The static and dynamic balance models of the aerostatic bearing are presented by the calculated stiffness and damping in micro scale. The static simulation shows that the deformation of aerostatic spindle system in micro scale is decreased. For the dynamic behavior, both the stiffness and damping in axial and radial directions are increased in micro scale. The experiments of the stiffness and rotation error of the spindle show that the deflection of the shaft resulting from the calculating parameters in the micro scale is very close to the deviation of the spindle system. The frequency information in transient analysis is similar to the actual test, and they are also higher than the results from the traditional case without considering micro factor. Therefore, it can be concluded that the value considering micro factor is closer to the actual work case of the aerostatic spindle system. These can provide theoretical basis for the design and machining process of machine tools.

  8. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  9. Effects of dimensional size and surface roughness on service performance for a micro Laval nozzle

    International Nuclear Information System (INIS)

    Cai, Yukui; Liu, Zhanqiang; Shi, Zhenyu

    2017-01-01

    Nozzles with large and small dimensions are widely used in various industries. The main objective of this research is to investigate the effects of dimensional size and surface roughness on the service performance of a micro Laval nozzle. The variation of nozzle service performance from the conventional macro to micro scale is presented in this paper. This shows that the dimensional nozzle size has a serious effect on the nozzle gas flow friction. With the decrease of nozzle size, the velocity performance and thrust performance deteriorate. The micro nozzle performance has less sensitivity to the variation of surface roughness than the large scale nozzle does. Surface quality improvement and burr prevention technologies are proposed to reduce the friction effect on the micro nozzle performance. A novel process is then developed to control and depress the burr generation during micro nozzle machining. The polymethyl-methacrylate as a coating material is coated on the rough machined surface before finish machining. Finally, the micro nozzle with a throat diameter of 1 mm is machined successfully. Thrust test results show that the implement and application of this machining process benefit the service performance improvement of the micro nozzle. (paper)

  10. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    International Nuclear Information System (INIS)

    Laszczyk, Karolina U; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-01-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit. (paper)

  11. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    Science.gov (United States)

    Laszczyk, Karolina U.; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2015-12-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit.

  12. High precision micro-scale Hall Effect characterization method using in-line micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong

    2008-01-01

    Accurate characterization of ultra shallow junctions (USJ) is important in order to understand the principles of junction formation and to develop the appropriate implant and annealing technologies. We investigate the capabilities of a new micro-scale Hall effect measurement method where Hall...... effect is measured with collinear micro four-point probes (M4PP). We derive the sensitivity to electrode position errors and describe a position error suppression method to enable rapid reliable Hall effect measurements with just two measurement points. We show with both Monte Carlo simulations...... and experimental measurements, that the repeatability of a micro-scale Hall effect measurement is better than 1 %. We demonstrate the ability to spatially resolve Hall effect on micro-scale by characterization of an USJ with a single laser stripe anneal. The micro sheet resistance variations resulting from...

  13. Accuracy assessment of planimetric large-scale map data for decision-making

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-06-01

    Full Text Available This paper presents decision-making risk estimation based on planimetric large-scale map data, which are data sets or databases which are useful for creating planimetric maps on scales of 1:5,000 or larger. The studies were conducted on four data sets of large-scale map data. Errors of map data were used for a risk assessment of decision-making about the localization of objects, e.g. for land-use planning in realization of investments. An analysis was performed for a large statistical sample set of shift vectors of control points, which were identified with the position errors of these points (errors of map data.

  14. Micro-scale energy valorization of grape marcs in winery production plants

    International Nuclear Information System (INIS)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-01-01

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year −1 electrical and 8900 kW h year −1 thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective

  15. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  16. Endovascular brain intervention and mapping in a dog experimental model using magnetically-guided micro-catheter technology.

    Science.gov (United States)

    Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J

    2014-06-01

    Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.

  17. Replication performance of Si-N-DLC-coated Si micro-molds in micro-hot-embossing

    International Nuclear Information System (INIS)

    Saha, B; Tor, S B; Liu, E; Khun, N W; Hardt, D E; Chun, J H

    2010-01-01

    Micro-hot-embossing is an emerging technology with great potential to form micro- and nano-scale patterns into polymers with high throughput and low cost. Despite its rapid progress, there are still challenges when this technology is employed, as demolding stress is usually very high due to large friction and adhesive forces induced during the process. Surface forces are dominating parameters in micro- and nano-fabrication technologies because of a high surface-to-volume ratio of products. This work attempted to improve the surface properties of Si micro-molds by means of silicon- and nitrogen-doped diamond-like carbon (Si-N-DLC) coatings deposited by dc magnetron cosputtering on the molds. The bonding structure, surface roughness, surface energy, adhesive strength and tribological behavior of the coated samples were characterized with micro Raman spectroscopy, atomic force microscopy (AFM), contact angle measurement, microscratch test and ball-on-disk sliding tribological test, respectively. It was observed that the doping condition had a great effect on the performance of the coatings. The Si-N-DLC coating deposited with 5 × 10 −6 m 3 min −1 N 2 had lowest surface roughness and energy of about 1.2 nm and 38.2 × 10 −3 N m −1 , respectively, while the coatings deposited with 20 × 10 −6 and 25 × 10 −6 m 3 min −1 N 2 showed lowest friction coefficients. The uncoated and Si-N-DLC-coated Si micro-molds were tested in a micro-hot-embossing process for a comparative study of their replication performance and lifetime. The experimental results showed that the performance of the Si micro-molds was improved by the Si-N-DLC coatings, and well-defined micro-features with a height of about 100 µm were fabricated successfully into cyclic olefin copolymer (COC) sheets using the Si-N-DLC-coated micro-molds.

  18. Mechanics over micro and nano scales

    CERN Document Server

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  19. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  20. Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics

    Science.gov (United States)

    Saeedi, Sara

    2018-06-01

    With the advancement of computational modeling and simulation (M&S) methods as well as data collection technologies, urban dynamics modeling substantially improved over the last several decades. The complex urban dynamics processes are most effectively modeled not at the macro-scale, but following a bottom-up approach, by simulating the decisions of individual entities, or residents. Agent-based modeling (ABM) provides the key to a dynamic M&S framework that is able to integrate socioeconomic with environmental models, and to operate at both micro and macro geographical scales. In this study, a multi-agent system is proposed to simulate residential dynamics by considering spatiotemporal land use changes. In the proposed ABM, macro-scale land use change prediction is modeled by Artificial Neural Network (ANN) and deployed as the agent environment and micro-scale residential dynamics behaviors autonomously implemented by household agents. These two levels of simulation interacted and jointly promoted urbanization process in an urban area of Tehran city in Iran. The model simulates the behavior of individual households in finding ideal locations to dwell. The household agents are divided into three main groups based on their income rank and they are further classified into different categories based on a number of attributes. These attributes determine the households' preferences for finding new dwellings and change with time. The ABM environment is represented by a land-use map in which the properties of the land parcels change dynamically over the simulation time. The outputs of this model are a set of maps showing the pattern of different groups of households in the city. These patterns can be used by city planners to find optimum locations for building new residential units or adding new services to the city. The simulation results show that combining macro- and micro-level simulation can give full play to the potential of the ABM to understand the driving

  1. The role of micro-NRA and micro-PIXE in carbon mapping of organic tissues

    International Nuclear Information System (INIS)

    Niekraszewicz, L.A.B.; Souza, C.T. de; Stori, E.M.; Jobim, P.F.C.; Amaral, L.; Dias, J.F.

    2015-01-01

    This study reports the work developed in the Ion Implantation Laboratory (Porto Alegre, RS, Brazil) in order to implement the micro-NRA technique for the study of light elements in organic tissues. In particular, the work was focused on nuclear reactions employing protons and alphas with carbon. The (p,p) resonances at 0.475 and 1.734 were investigated. The (α,α) resonance at 4.265 MeV was studied as well. The results indicate that the yields for the 0.475 and 1.734 MeV resonances are similar. Elemental maps of different structures obtained with the micro-NRA technique using the 1.734 MeV resonance were compared with those obtained with micro-PIXE employing a SDD detector equipped with an ultra-thin window. The results show that the use of micro-NRA for carbon at 1.734 MeV resonance provides good results in some cases at the expense of longer beam times. On the other hand, micro-PIXE provides enhanced yields but is limited to surface analysis since soft X-rays are greatly attenuated by matter

  2. Micro-scale energy valorization of grape marcs in winery production plants

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2015-02-15

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  3. Micro-Scale Avionics Thermal Management

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  4. Meso- and Micro-scale Modelling in China: Wind atlas analysis for 12 meteorological stations in NE China (Dongbei)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Yang, Z.; Hansen, Jens Carsten

    As part of the “Meso-Scale and Micro-Scale Modelling in China” project, also known as the CMA component of the Sino-Danish Wind Energy Development Programme (WED), microscale modelling and analyses have been carried out for 12 meteorological stations in NE China. Wind speed and direction data from...... the twelve 70-m masts have been analysed using the Wind Atlas Analysis and Application Program (WAsP 10). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps...... constructed from Google Earth satellite imagery. The maps have been compared to Chinese topographical maps and adjusted accordingly. Summaries are given of the data measured at the 12 masts for the reference period 2009. The main result of the microscale modelling is an observational wind atlas for NE China...

  5. Micro-Scale Properties of Different Bora Types

    Directory of Open Access Journals (Sweden)

    Vinko Šoljan

    2018-03-01

    Full Text Available In this paper we use 20 Hz wind measurements on three levels (2, 5, and 10 m to investigate the differences in micro-scale properties of different bora types, i.e., deep and shallow bora with further subdivision to cyclonic and anticyclonic bora cases. Using Fourier spectral analysis, we investigate a suitable turbulence averaging scale and bora gust pulsations. The obtained data set is further used to test the Monin–Obukhov similarity theory, the surface layer stratification, the behavior of the terms in the prognostic turbulence kinetic energy equation, and the wind profiles. One of our main goals is to identify possible micro-scale differences between shallow and deep bora types because of the possible different mountain wave dynamics in those flows. We found that a turbulence averaging scale of 30 min is suitable for this location and is in agreement with previous bora studies. The wind speed power spectral densities of all selected bora episodes showed pulsations with periods of 2–8 min. This suggests that mountain wave breaking was present in all cases, regardless of flow depth and synoptic type. The stability parameter analysis confirmed the near-neutral thermal stratification of bora; a consequence of intensive mechanical mixing. No significant differences related to bora type were observed in other micro-scale parameters.

  6. Micro-scale hydrological field experiments in Romania

    Directory of Open Access Journals (Sweden)

    Minea Gabriel

    2016-02-01

    Full Text Available The paper (communication presents an overview of hydrologic field experiments at micro-scale in Romania. In order to experimentally investigate micro (plot-scale hydrological impact of soil erosion, the National Institute of Hydrology and Water Management founded Voineşti Experimental Basin (VES in 1964 and the Aldeni Experimental Basins (AEB in 1984. AEB and VES are located in the Curvature Subcarpathians. Experimental plots are organized in a double systems and have an area of 80 m2 (runoff plots at AEB and 300 m2 (water balance plots at VES. Land use of plot: first plot ”grass-land” is covered with perennial grass and second plot (control consists in ”bare soil”. Over the latter one, the soil is hoeing, which results in a greater development of infiltration than in the first plot. Experimental investigations at micro-scale are aimed towards determining the parameters of the water balance equation, during natural and artificial rainfalls, researching of flows and soil erosion processes on experimental plots, extrapolating relations involving runoff coefficients from a small scale to medium scale. Nowadays, the latest evolutions in data acquisition and transmission equipment are represented by sensors (such as: sensors to determinate the soil moisture content. Exploitation and dissemination of hydrologic data is accomplished by research themes/projects, year-books of basic data and papers.

  7. Gas source localization and gas distribution mapping with a micro-drone

    International Nuclear Information System (INIS)

    Neumann, Patrick P.

    2013-01-01

    The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF-based GSL algorithm

  8. Gas source localization and gas distribution mapping with a micro-drone

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Patrick P.

    2013-07-01

    The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF

  9. Gas source localization and gas distribution mapping with a micro-drone

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Patrick P.

    2013-07-01

    The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF-based GSL algorithm

  10. Solidification at the micro-scale

    International Nuclear Information System (INIS)

    Howe, A.

    2003-01-01

    The experimental determination and computer simulation of the micro-segregation accompanying the solidification of alloys continues to be a subject of much academic and industrial interest. Both are subject to progressively more sophisticated analyses, and a discussion is offered regarding the development and practical use of such studies. Simple steels are particularly difficult targets for such work: solidification does not end conveniently in a eutectic, the rapid diffusion particularly in the delta-ferrite phase obscures most evidence of what had occurred at the micro-scale during solidification, and one or more subsequent solid state phase transformations further obscure such details. Also, solidification at the micro-scale is inherently variable: the usual, dendrite morphologies encountered are, after all, instabilities in growth behaviour, and therefore such variability should be expected. For questions such as the relative susceptibility of different grades to particular problems, it is the average, typical behaviour that is of interest, whereas for other questions such as the on-set of macro-segregation, the local variability is paramount. Depending on the question being asked, and indeed the accuracy with which validatory data are available, simple pseudo-analytical equations employing various limiting assumptions, or sophisticated models which remove the need for most such limitations, could be appropriate. This paper highlights the contribution to such studies of various collaborative research forums within the European Union with which the author is involved. (orig.) [de

  11. Magnetic Multi-Scale Mapping to Characterize Anthropogenic Targets

    Science.gov (United States)

    Le Maire, P.; Munschy, M.

    2017-12-01

    The discovery of buried anthropic objects on construction sites can cause delays and/or dangers for workers and for the public. Indeed, every year 500 tons of Unexploded-ordnance are discovered in France. Magnetic measurements are useful to localize magnetized objects. Moreover, it is the cheapest geophysical method which does not impact environment and which is relatively fast to perform. Fluxgate magnetometers (three components) are used to measure magnetic properties bellow the ground. These magnetic sensors are not absolute, so they need to be calibrated before the onset of the measurements. The advantage is that they allow magnetic compensation of the equipment attached to the sensor. So the choice of this kind sensor gives the opportunity to install the equipment aboard different magnetized supports: boat, quad bike, unmanned aerial vehicle, aircraft,... Indeed, this methodology permits to perform magnetic mapping with different scale and different elevation above ground level. An old French aerial military plant was chosen to perform this multi-scale approach. The advantage of the site is that it contains a lot of different targets with variable sizes and depth, e.g. buildings, unexploded-ordnances of the two world wars, trenches, pipes,… By comparison between the different magnetic anomaly maps at different elevations some of the geometric parameters of the magnetic sources can be characterized. The comparison between measured maps at different elevations and the prolonged map highlights the maximum distance for the target's detection (figure).

  12. Bioinspiration From Nano to Micro Scales

    CERN Document Server

    2012-01-01

    Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive an...

  13. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  14. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-01-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO 2 ) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g −1  at the scan rate of 5 mV s −1 . This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  15. a Model Study of Small-Scale World Map Generalization

    Science.gov (United States)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  16. Easy 3D Mapping for Indoor Navigation of Micro UAVs

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Totu, Luminita Cristiana; La Cour-Harbo, Anders

    2017-01-01

    Indoor operation of micro air vehicles (UAS or UAV) is significantly simplified with the availability of some means for indoor localization as well as a sufficiently precise 3D map of the facility. Creation of 3D maps based on the available architectural information should on the one hand provide...... a map of sufficient precision and on the other limit complexity to a manageable level. This paper presents a box based approach for easy generation 3D maps to serve as the basis for indoor navigation of UAS. The basic building block employed is a 3D axis parallel box (APB). Unions of APBs constitute...... with arguments for pivotal design choices and a selection of examples....

  17. PREFERENCE FOR MAP SCALE OF IN-CAR ROUTE GUIDANCE AND NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ana Paula Marques Ramos

    Full Text Available Usability issues of maps presented in-car Route Guidance and Navigation System (RGNS may result in serious impacts on traffic safety. To obtain effective RGNS, evaluation of 'user satisfaction' with the system has played a prominent role, since designers can quantify drivers' acceptance about presented information. An important variable related to design of RGNS interfaces refers to select appropriate scale for maps, since it interferes on legibility of maps. Map with good legibility may support drivers comprehend information easily and take decisions during driving task quickly. This paper evaluates drivers' preference for scales used in maps of RGNS. A total of 52 subjects participated of an experiment performed in a parked car. Maps were designed at four different scales 1:1,000, 1:3,000, 1:6,000 and 1:10,000 for a route composed of 13 junctions. Map design was based on cartographic communication principles, such as perceptive grouping and figure-ground segregation. Based on studies cases, we conclude intermediate scales (1:6,000 and 1:3,000 were more acceptable among drivers compared to large scales (1:1,000 and small (1:10,000. RGNS should select scales for maps which supports drivers to quickly identify direction of the maneuver and, simultaneously, get information about surroundings of route. More results are presented and implications discussed

  18. Performance analysis of a thermosize micro/nano heat engine

    International Nuclear Information System (INIS)

    Nie Wenjie; He Jizhou

    2008-01-01

    In a recent paper [A. Sisman, I. Muller, Phys. Lett. A 320 (2004) 360] the thermodynamic properties of ideal gases confined in a narrow box were examined theoretically. The so-called 'thermosize effects' similar to thermoelectric effects, such as Seebeck-like thermosize effect, Peltier-like thermosize effect and Thomson-like thermosize effect, were analyzed. Like the thermoelectric generator, based on the thermosize effects we have established a model of micro/nano scaled ideal gas heat engine cycle which includes two isothermal and two isobaric processes. The expressions of power output and efficiency of this cycle in the two cases of reversible and irreversible heat exchange are derived and the optimal performance characteristics of the heat engine is discussed by some numerical example. The results obtained here will provide theoretical guidance for the design of micro/nano scaled device

  19. Micro-scale characterization of a CMOS-based neutron detector for in-phantom measurements in radiation therapy

    Science.gov (United States)

    Arbor, Nicolas; Higueret, Stephane; Husson, Daniel

    2018-04-01

    The CMOS sensor AlphaRad has been designed at the IPHC Strasbourg for real-time monitoring of fast and thermal neutrons over a full energy spectrum. Completely integrated, highly transparent to photons and optimized for low power consumption, this sensor offers very interesting characteristics for the study of internal neutrons in radiation therapy with anthropomorphic phantoms. However, specific effects related to the CMOS metal substructure and to the charge collection process of low energy particles must be carefully estimated before being used for medical applications. We present a detailed characterization of the AlphaRad chip in the MeV energy range using proton and alpha micro-beam experiments performed at the AIFIRA facility (CENBG, Bordeaux). Two-dimensional maps of the charge collection were carried out on a micro-metric scale to be integrated into a Geant4 Monte Carlo simulation of the system. The gamma rejection, as well as the fast and thermal neutrons separation, were studied using both simulation and experimental data. The results highlight the potential of a future system based on CMOS sensor for in-phantom neutron detection in radiation therapies.

  20. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  1. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  2. Implications of meso- to micro-scale deformation for fault sealing capacity: Insights from the Lenghu5 fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau

    Science.gov (United States)

    Xie, Liujuan; Pei, Yangwen; Li, Anren; Wu, Kongyou

    2018-06-01

    As faults can be barriers to or conduits for fluid flow, it is critical to understand fault seal processes and their effects on the sealing capacity of a fault zone. Apart from the stratigraphic juxtaposition between the hanging wall and footwall, the development of fault rocks is of great importance in changing the sealing capacity of a fault zone. Therefore, field-based structural analysis has been employed to identify the meso-scale and micro-scale deformation features and to understand their effects on modifying the porosity of fault rocks. In this study, the Lenghu5 fold-and-thrust belt (northern Qaidam Basin, NE Tibetan Plateau), with well-exposed outcrops, was selected as an example for meso-scale outcrop mapping and SEM (Scanning Electron Microscope) micro-scale structural analysis. The detailed outcrop maps enabled us to link the samples with meso-scale fault architecture. The representative rock samples, collected in both the fault zones and the undeformed hanging walls/footwalls, were studied by SEM micro-structural analysis to identify the deformation features at the micro-scale and evaluate their influences on the fluid flow properties of the fault rocks. Based on the multi-scale structural analyses, the deformation mechanisms accounting for porosity reduction in the fault rocks have been identified, which are clay smearing, phyllosilicate-framework networking and cataclasis. The sealing capacity is highly dependent on the clay content: high concentrations of clay minerals in fault rocks are likely to form continuous clay smears or micro- clay smears between framework silicates, which can significantly decrease the porosity of the fault rocks. However, there is no direct link between the fault rocks and host rocks. Similar stratigraphic juxtapositions can generate fault rocks with very different magnitudes of porosity reduction. The resultant fault rocks can only be predicted only when the fault throw is smaller than the thickness of a faulted bed, in

  3. Mapping three-dimensional temperature in microfluidic chip.

    KAUST Repository

    Wu, Jinbo

    2013-11-25

    Three-dimensional (3D) temperature mapping method with high spatial resolution and acquisition rate is of vital importance in evaluating thermal processes in micro-environment. We have synthesized a new temperature-sensitive functional material (Rhodamine B functionalized Polydimethylsiloxane). By performing optical sectioning of this material, we established an advanced method for visualizing the micro-scale 3D thermal distribution inside microfluidic chip with down to 10 ms temporal resolution and 2 ~ 6 °C temperature resolution depending the capture parameters. This method is successfully applied to monitor the local temperature variation throughout micro-droplet heat transfer process and further reveal exothermic nanoliter droplet reactions to be unique and milder than bench-top experiment.

  4. An experimental study on micro-scale flow boiling heat transfer

    International Nuclear Information System (INIS)

    Tibirica, Cristiano Bigonha; Ribatski, Gherhardt

    2009-01-01

    In this paper, new experimental flow boiling heat transfer results in micro-scale tubes are presented. The experimental data were obtained in a horizontal 2.32 mm I.D. stainless steel tube with heating length of 464 mm, R134a as working fluid, mass velocities ranging from 50 to 600 kg/m 2 s, heat flux from 5 to 55 kW/m 2 , exit saturation temperatures of 22, 31 and 41 deg C, and vapor qualities from 0.05 to 0.98. Flow pattern characterization was also performed from images obtained by high speed filming. Heat transfer coefficient results from 2 to 14 kW/m 2 K were measured. It was found that the heat transfer coefficient is a strong function of the saturation pressure, heat flux, mass velocity and vapor quality. The experimental data were compared against the following micro-scale flow boiling predictive methods from the literature: Saitoh et al., Kandlikar, Zhang et al. and Thome et al. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Though not satisfactory, Saitoh et al. worked the best and was able of capturing most of the experimental heat transfer trends. (author)

  5. An experimental study on micro-scale flow boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tibirica, Cristiano Bigonha; Ribatski, Gherhardt [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    2009-07-01

    In this paper, new experimental flow boiling heat transfer results in micro-scale tubes are presented. The experimental data were obtained in a horizontal 2.32 mm I.D. stainless steel tube with heating length of 464 mm, R134a as working fluid, mass velocities ranging from 50 to 600 kg/m{sup 2}s, heat flux from 5 to 55 kW/m{sup 2}, exit saturation temperatures of 22, 31 and 41 deg C, and vapor qualities from 0.05 to 0.98. Flow pattern characterization was also performed from images obtained by high speed filming. Heat transfer coefficient results from 2 to 14 kW/m{sup 2}K were measured. It was found that the heat transfer coefficient is a strong function of the saturation pressure, heat flux, mass velocity and vapor quality. The experimental data were compared against the following micro-scale flow boiling predictive methods from the literature: Saitoh et al., Kandlikar, Zhang et al. and Thome et al. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Though not satisfactory, Saitoh et al. worked the best and was able of capturing most of the experimental heat transfer trends. (author)

  6. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.

    Science.gov (United States)

    Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen

    2015-10-01

    Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.

  7. Large Scale Landform Mapping Using Lidar DEM

    Directory of Open Access Journals (Sweden)

    Türkay Gökgöz

    2015-08-01

    Full Text Available In this study, LIDAR DEM data was used to obtain a primary landform map in accordance with a well-known methodology. This primary landform map was generalized using the Focal Statistics tool (Majority, considering the minimum area condition in cartographic generalization in order to obtain landform maps at 1:1000 and 1:5000 scales. Both the primary and the generalized landform maps were verified visually with hillshaded DEM and an orthophoto. As a result, these maps provide satisfactory visuals of the landforms. In order to show the effect of generalization, the area of each landform in both the primary and the generalized maps was computed. Consequently, landform maps at large scales could be obtained with the proposed methodology, including generalization using LIDAR DEM.

  8. Performance of integrated retainer rings in silicon micro-turbines with thrust style micro-ball bearings

    International Nuclear Information System (INIS)

    Hergert, Robert J; Holmes, Andrew S; Hanrahan, Brendan; Ghodssi, Reza

    2013-01-01

    This work explores the performance of different silicon retainer ring designs when integrated into silicon micro-turbines (SMTs) incorporating thrust style bearings supported on 500 µm diameter steel balls. Experimental performance curves are presented for SMTs with rotor diameters of 5 mm and 10 mm, each with five different retainer designs varying in mechanical rigidity, ball pocket shape and ball complement. It was found that the different retainer designs yielded different performance curves, with the closed pocket designs consistently requiring lower input power for a given rotation speed, and the most rigid retainers giving the best performance overall. Both 5 mm and 10 mm diameter devices have shown repeatable performance at rotation speeds up to and exceeding 20 000 RPM with input power levels below 2 W, and devices were tested for over 2.5 million revolutions without failure. Retainer rings are commonly used in macro-scale bearings to ensure uniform spacing between the rolling elements. The integration of retainers into micro-bearings could lower costs by reducing the number of balls required for stable operation, and also open up the possibility of ‘smart’ bearings with integrated sensors to monitor the bearing status. (paper)

  9. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Large Scale Hierarchical K-Means Based Image Retrieval With MapReduce

    Science.gov (United States)

    2014-03-27

    flat vocabulary on MapReduce. In 2013, Moise and Shestakov [32, 40], have been researching large scale indexing and search with MapReduce. They...time will be greatly reduced, however image retrieval performance will almost certainly suffer. Moise and Shestakov ran tests with 100M images on 108...43–72, 2005. [32] Diana Moise , Denis Shestakov, Gylfi Gudmundsson, and Laurent Amsaleg. Indexing and searching 100m images with map-reduce. In

  11. Spatial distribution of enzyme driven reactions at micro-scales

    Science.gov (United States)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  12. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  13. MicroEcos: Micro-Scale Explorations of Large-Scale Late Pleistocene Ecosystems

    Science.gov (United States)

    Gellis, B. S.

    2017-12-01

    Pollen data can inform the reconstruction of early-floral environments by providing data for artistic representations of what early-terrestrial ecosystems looked like, and how existing terrestrial landscapes have evolved. For example, what did the Bighorn Basin look like when large ice sheets covered modern Canada, the Yellowstone Plateau had an ice cap, and the Bighorn Mountains were mantled with alpine glaciers? MicroEcos is an immersive, multimedia project that aims to strengthen human-nature connections through the understanding and appreciation of biological ecosystems. Collected pollen data elucidates flora that are visible in the fossil record - associated with the Late-Pleistocene - and have been illustrated and described in botanical literature. It aims to make scientific data accessible and interesting to all audiences through a series of interactive-digital sculptures, large-scale photography and field-based videography. While this project is driven by scientific data, it is rooted in deeply artistic and outreach-based practices, which include broad artistic practices, e.g.: digital design, illustration, photography, video and sound design. Using 3D modeling and printing technology MicroEcos centers around a series of 3D-printed models of the Last Canyon rock shelter on the Wyoming and Montana border, Little Windy Hill pond site in Wyoming's Medicine Bow National Forest, and Natural Trap Cave site in Wyoming's Big Horn Basin. These digital, interactive-3D sculpture provide audiences with glimpses of three-dimensional Late-Pleistocene environments, and helps create dialogue of how grass, sagebrush, and spruce based ecosystems form. To help audiences better contextualize how MicroEcos bridges notions of time, space, and place, modern photography and videography of the Last Canyon, Little Windy Hill and Natural Trap Cave sites surround these 3D-digital reconstructions.

  14. High resolution micro-XRF maps of iron oxides inside sensory dendrites of putative avian magnetoreceptors

    International Nuclear Information System (INIS)

    Falkenberg, G; Fleissner, G E; Fleissner, G U E; Schuchardt, K; Kuehbacher, M; Chalmin, E; Janssens, K

    2009-01-01

    Iron mineral containing sensory dendrites in the inner lining of the upper beak of homing pigeons and various bird species are the first candidate structures for an avian magnetic field receptor. A new concept of magnetoreception is based on detailed ultra-structural optical and electron microscopy analyses in combination with synchrotron radiation microscopic X-ray fluorescence analysis (micro-XRF) and microscopic X-ray absorption near edge structures (micro-XANES). Several behavioral experiments and first mathematical simulations affirm our avian magnetoreceptor model. The iron minerals inside the dendrites are housed in three different subcellular compartments (bullets, platelets, vesicles), which could be clearly resolved and identified by electron microscopy on ultrathin sections. Micro-XRF and micro-XANES data obtained at HASYLAB beamline L added information about the elemental distribution and Fe speciation, but are averaged over the complete dendrite due to limited spatial resolution. Here we present recently performed micro-XRF maps with sub-micrometer resolution (ESRF ID21), which reveal for the first time subcellular structural information from almost bulk-like dendrite sample material. Due to the thickness of 30 μm the microarchitecture of the dendrites can be considered as undisturbed and artefacts introduced by sectioning might be widely reduced.

  15. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  16. Re-discovering surface mass spectrometry: chemical mapping from micro to macro

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, K.G.; O' Keefe, D.P

    2004-06-15

    New developments in electronics, devices, micro-encapsulation, and other areas demand the ability to acquire molecularly-specific information from smaller and smaller features. ToF-SIMS provides molecularly-specific mass spectral data, but sufficient high-mass signal has historically been difficult to obtain from organic/polymeric surfaces in the point-mapping mode of operation. Use of chemometric data reduction methods and the development of heavier primary ion sources enhance and extend the chemical information in the mapping data. Large-area chemical mapping via sample stage rastering has also opened up new applications. This capability allows single-experiment mapping of large or multiple features, provides information on surface uniformity over end-use-relevant areas, and offers potential for combinatorial and other screening applications. Examples of these applications are presented.

  17. Planimetric Features Generalization for the Production of Small-Scale Map by Using Base Maps and the Existing Algorithms

    Directory of Open Access Journals (Sweden)

    M. Modiri

    2014-10-01

    Full Text Available Cartographic maps are representations of the Earth upon a flat surface in the smaller scale than it’s true. Large scale maps cover relatively small regions in great detail and small scale maps cover large regions such as nations, continents and the whole globe. Logical connection between the features and scale map must be maintained by changing the scale and it is important to recognize that even the most accurate maps sacrifice a certain amount of accuracy in scale to deliver a greater visual usefulness to its user. Cartographic generalization, or map generalization, is the method whereby information is selected and represented on a map in a way that adapts to the scale of the display medium of the map, not necessarily preserving all intricate geographical or other cartographic details. Due to the problems facing small-scale map production process and the need to spend time and money for surveying, today’s generalization is used as executive approach. The software is proposed in this paper that converted various data and information to certain Data Model. This software can produce generalization map according to base map using the existing algorithm. Planimetric generalization algorithms and roles are described in this article. Finally small-scale maps with 1:100,000, 1:250,000 and 1:500,000 scale are produced automatically and they are shown at the end.

  18. On micro-scale self-organization in a plasma

    International Nuclear Information System (INIS)

    Maluckov, A.; Jovanovic, M.S.; Skoric, M.M.; Sato, T.

    1998-01-01

    We concentrate on a nonlinear saturation of a stimulated Raman backscattering in an open convective weakly confined model in the context of micro-kinetic scale self-organization in plasmas. The results have led to an assertion that a long-time nonlinear saturation in an open SRBS model with phenomenological effects of anomalous dissipation, plasma heating and subsequent entropy expulsion, reveals a generic interrelation of self-organization at wave-fluid (macro) and particle-kinetic (micro) levels. (author)

  19. Large-scale identification of microRNA targets in murine Dgcr8-deficient embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew P A Davis

    Full Text Available Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3' UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation.

  20. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions

    International Nuclear Information System (INIS)

    Pourrajabian, Abolfazl; Ebrahimi, Reza; Mirzaei, Masoud

    2014-01-01

    Highlights: • Three micro-turbines with output power less than 1 kW were designed for operation in low wind speed regions. • In addition to the output power, starting time was considered as a key parameter during the design. • The effects of generator resistive torque and number of blades on the performance of the turbines were investigated. - Abstract: Utilizing the micro scales of wind turbines could noticeably supply the demand for the electricity in low wind speed regions. Aerodynamic design and optimization of the blade, as a main part of a wind turbine, were addressed in the study. Three micro scales of horizontal axis wind turbines with output power of 0.5, 0.75 and 1 kW were considered and the geometric optimization of the blades in terms of the two involved parameters, chord and twist, was undertaken. In order to improve the performance of the turbines at low wind speeds, starting time was included in an objective function in addition to the output power – the main and desirable goal of the wind turbine blade design. A purpose-built genetic algorithm was employed to maximize both the output power and the starting performance which were calculated by the blade-element momentum theory. The results emphasize that the larger values of the chord and twist at the root part of the blades are indispensable for the better performance when the wind speed is low. However, the noticeable value of the generator resistive torque could largely delay the starting of the micro-turbines especially for the considered smaller size, 0.5 kW, where the starting aerodynamic torque could not overcome the generator resistive torque. For that size, an increase in the number of blades improved both the starting performance and also output power

  1. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  2. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    International Nuclear Information System (INIS)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun

    2015-01-01

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  3. In-situ, real time micro-CT imaging of pore scale processes, the next frontier for laboratory based micro-CT scanning

    OpenAIRE

    Boone, Marijn; Bultreys, Tom; Masschaele, Bert; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-01-01

    Over the past decade, laboratory based X-ray computed micro-tomography (micro-CT) has given unique insights in the internal structure of complex reservoir rocks, improving the understanding of pore scale processes and providing crucial information for pore scale modelling. Especially in-situ imaging using X-ray optimized Hassler type cells has enabled the direct visualization of fluid distributions at the pore scale under reservoir conditions. While sub-micrometre spatial resolutions are achi...

  4. Relationship between human resource ability and market access capacity on business performance. (case study of wood craft micro- and small-scale industries in Gianyar Regency, Bali)

    Science.gov (United States)

    Sukartini, N. W.; Sudarmini, N. M.; Lasmini, N. K.

    2018-01-01

    The aims of this research are to: (1) analyze the influence of Human Resource Ability on market access capacity in Wood Craft Micro and Small Industry; (2) to analyze the effect of market access capacity on business performance; (3) analyze the influence of Human Resources ability on business performance. Data were collected using questionnaires, interviews, observations, and literature studies. The resulting data were analyzed using Struture Equation Modeling (SEM). The results of the analysis show that (1) there is a positive and significant influence of the ability of Human Resources on market access capacity in Wood Craft Micro-and Small-Scale Industries in Gianyar; (2) there is a positive and significant influence of market access capacity on business performance; and (3) there is a positive and significant influence of Human Resource ability on business performance. To improve the ability to access the market and business performance, it is recommended that human resource ability need to be improved through training; government and higher education institutions are expected to play a role in improving the ability of human resources (craftsmen) through provision of training programs

  5. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    Science.gov (United States)

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Micro-Scale Experiments and Models for Composite Materials with Materials Research

    DEFF Research Database (Denmark)

    Zike, Sanita

    Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...

  7. The Metacognitive Anger Processing (MAP) Scale

    DEFF Research Database (Denmark)

    Moeller, Stine Bjerrum

    2015-01-01

    : The present data indicate that positive as well as negative beliefs are involved in the tendency to ruminate about angry emotions. Clinical interventions may benefit from an exploration of the patient´s experience of anger, as structured by the MAP's factors and their interrelationships. The psychometric...... preliminary studies was to apply a metacognitive framework to anger and put forward a new anger self-report scale, the Metacognitive Anger Processing (MAP) scale, intended as a supplement to existing measures of anger disposition and to enhance anger treatment targets. METHOD: The new measure was tested...... in a nonclinical and a clinical sample together with measures of anger and metacognition to establish factor structure, reliability, concurrent, and convergent validity. RESULTS: The MAP showed a reliable factor structure with three factors - Positive Beliefs about anger, Negative Beliefs about anger...

  8. From micro-scale 3D simulations to macro-scale model of periodic porous media

    Science.gov (United States)

    Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca

    2015-04-01

    In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a

  9. Progressive Amalgamation of Building Clusters for Map Generalization Based on Scaling Subgroups

    Directory of Open Access Journals (Sweden)

    Xianjin He

    2018-03-01

    Full Text Available Map generalization utilizes transformation operations to derive smaller-scale maps from larger-scale maps, and is a key procedure for the modelling and understanding of geographic space. Studies to date have largely applied a fixed tolerance to aggregate clustered buildings into a single object, resulting in the loss of details that meet cartographic constraints and may be of importance for users. This study aims to develop a method that amalgamates clustered buildings gradually without significant modification of geometry, while preserving the map details as much as possible under cartographic constraints. The amalgamation process consists of three key steps. First, individual buildings are grouped into distinct clusters by using the graph-based spatial clustering application with random forest (GSCARF method. Second, building clusters are decomposed into scaling subgroups according to homogeneity with regard to the mean distance of subgroups. Thus, hierarchies of building clusters can be derived based on scaling subgroups. Finally, an amalgamation operation is progressively performed from the bottom-level subgroups to the top-level subgroups using the maximum distance of each subgroup as the amalgamating tolerance instead of using a fixed tolerance. As a consequence of this step, generalized intermediate scaling results are available, which can form the multi-scale representation of buildings. The experimental results show that the proposed method can generate amalgams with correct details, statistical area balance and orthogonal shape while satisfying cartographic constraints (e.g., minimum distance and minimum area.

  10. Performance and emission reduction potential of micro-gasifier improved through better design

    Directory of Open Access Journals (Sweden)

    Kamil Dino Adem

    2017-01-01

    Full Text Available Biomass gasification is getting popular for household cooking application in most developing countries including Ethiopia. The preference for biomass gasification is due to the generation of less CO (Carbon Monoxide and PM (Particulate Matter in comparison with other biomass cookstoves. Our study showed the improvement in thermal efficiency and emission reduction potential of micro-gasifier. A prototype micro-gasifier was built and tested using the water boiling test protocol. The test results gave a thermal efficiency of 39.6% and a specific fuel consumption of 57 g of fuel/ liter of water. With regard to indoor air pollution, the maximum CO & PM registered were 12.5 ppm and 1.85 mg/m3, respectively. Using clean development mechanism (CDM methodology, the estimated emission reduction potential of the micro-gasifier is 1.30 tCO2 per micro-gasifier per year. Generally, the micro-gasifier has better performance compared to the previous designs proposed by other researchers. Thus, disseminating our micro-gasifier at a larger scale in developing countries such as Ethiopia will be beneficial in reducing deforestation and emission that will be brought about by using open-fire stoves and thus, helps to obtain carbon credit.

  11. Network Partitioning Domain Knowledge Multiobjective Application Mapping for Large-Scale Network-on-Chip

    Directory of Open Access Journals (Sweden)

    Yin Zhen Tei

    2014-01-01

    Full Text Available This paper proposes a multiobjective application mapping technique targeted for large-scale network-on-chip (NoC. As the number of intellectual property (IP cores in multiprocessor system-on-chip (MPSoC increases, NoC application mapping to find optimum core-to-topology mapping becomes more challenging. Besides, the conflicting cost and performance trade-off makes multiobjective application mapping techniques even more complex. This paper proposes an application mapping technique that incorporates domain knowledge into genetic algorithm (GA. The initial population of GA is initialized with network partitioning (NP while the crossover operator is guided with knowledge on communication demands. NP reduces the large-scale application mapping complexity and provides GA with a potential mapping search space. The proposed genetic operator is compared with state-of-the-art genetic operators in terms of solution quality. In this work, multiobjective optimization of energy and thermal-balance is considered. Through simulation, knowledge-based initial mapping shows significant improvement in Pareto front compared to random initial mapping that is widely used. The proposed knowledge-based crossover also shows better Pareto front compared to state-of-the-art knowledge-based crossover.

  12. The role of the substrate in micro-scale scratching of epoxy-polyester films

    Science.gov (United States)

    Barletta, M.; Gisario, A.

    2011-02-01

    The present investigation analyzes the deformation response of electrostatically sprayed epoxy-polyester powder coatings by 'in situ' micro-mechanical tests. The characterization of the performance of the coatings was carried out by micro-scale scratching, by varying the indenter type, the applied load and the sliding speed. The tests were carried out on polymeric coatings deposited on as-received, micro and macro-corrugated AISI 304 stainless steel substrates and 'rigidly adhered' to them. Further tests were performed on 'free-standing' coatings, that is, on the as-received metal substrates pre-coated with an intermediate layer of silicon-based heat curable release coating. Experimental data allow us to evaluate the influence of the contact conditions between substrate and indenter and the role of the loading conditions on the scratch and penetration resistance of the epoxy-polyester coatings. The different responses of the polymeric coatings when deposited on untreated or pre-treated substrates as well as on an intermediate layer of release coating, contribute to a better understanding of the intrinsic roles of the polymeric material and substrate as well as the influence of the interfacial adhesion between coating and substrate.

  13. Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators

    International Nuclear Information System (INIS)

    Sim, Kyuho; Koo, Bonjin; Kim, Chang Ho; Kim, Tae Ho

    2013-01-01

    Highlights: ► We develop micro-power pack using automotive alternator and micro-gas turbine. ► We measure rotordynamic and power generation performance of micro-power pack. ► Micro-power pack shows dramatic increases in mass and volumetric power densities. ► Test results assure feasibility of micro-power pack for electric vehicles. -- Abstract: This paper presents the development of a micro-power pack using automotive alternators powered by a micro-gas turbine (MGT) to recharge battery packs, in particular for electric vehicles (EVs). The thermodynamic efficiency for the MGT with the power turbine is estimated from a simple Brayton cycle analysis. The rotordynamic and power generation performance of the MGT driven alternator was measured during a series of experiments under electrical no-loading and loading conditions, and with belt-pulley and flexible bellows couplings. The flexible coupling showed superior rotordynamic and power generation performance than the belt coupling due to the enhanced alignment of the alternator rotor and the reduced mechanical frictions. Furthermore, the micro-power pack showed dramatic increases in the mass and volumetric power densities by ∼4 times and ∼5 times, respectively, compared with those of a commercial diesel generator with similar power level. As a result, this paper assures the feasibility of the light-weight micro-power pack using a MGT and automotive alternators for EVs.

  14. Graphene Conductance Uniformity Mapping

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  15. Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2013-05-01

    Full Text Available The adoption of 2007/60/EC Directive requires European countries to implement flood hazard and flood risk maps by the end of 2013. Flood risk is the product of flood hazard, vulnerability and exposure, all three to be estimated with comparable level of accuracy. The route to flood risk assessment is consequently much more than hydraulic modelling of inundation, that is hazard mapping. While hazard maps have already been implemented in many countries, quantitative damage and risk maps are still at a preliminary level. A parsimonious quasi-2-D hydraulic model is here adopted, having many advantages in terms of easy set-up. It is here evaluated as being accurate in flood depth estimation in urban areas with a high-resolution and up-to-date Digital Surface Model (DSM. The accuracy, estimated by comparison with marble-plate records of a historic flood in the city of Florence, is characterized in the downtown's most flooded area by a bias of a very few centimetres and a determination coefficient of 0.73. The average risk is found to be about 14 € m−2 yr−1, corresponding to about 8.3% of residents' income. The spatial distribution of estimated risk highlights a complex interaction between the flood pattern and the building characteristics. As a final example application, the estimated risk values have been used to compare different retrofitting measures. Proceeding through the risk estimation steps, a new micro-scale potential damage assessment method is proposed. This is based on the georeferenced census system as the optimal compromise between spatial detail and open availability of socio-economic data. The results of flood risk assessment at the census section scale resolve most of the risk spatial variability, and they can be easily aggregated to whatever upper scale is needed given that they are geographically defined as contiguous polygons. Damage is calculated through stage–damage curves, starting from census data on building type and

  16. Multi Scale Micro and Nano Metrology for Advanced Precision Moulding Technologies

    DEFF Research Database (Denmark)

    Quagliotti, Danilo

    dimensions of the novel micro and nano production. Nowadays, design methodologies and concurrent tolerance guidelines are not yet available for advanced micro manufacture. Moreover, there are no shared methodologies that deals with the uncertainty evaluation of feature of size in the sub-millimetre scale......The technological revolution that has deeply influenced the manufacturing industry over the past two decades opened up new possibilities for the realisation of advanced micro and nano systems but, at the same time, traditional techniques for quality assurance became not adequate any longer......, as the technology progressed. The gap between the needs of the manufacturing industry and the well-organized structure of the dimensional and geometrical metrology appeared, above all, related to the methodologies and, also, to the instrumentation used to deal with the incessant scaling down of the critical...

  17. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    Science.gov (United States)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the

  18. Development and first evaluation of micro-calgrid: a 3-D, urban-canopy-scale photochemical model

    International Nuclear Information System (INIS)

    Stern, R.; Yamartino, R.J.

    2001-01-01

    This paper details the development and first application of the MICRO-CALGRID (MCG), micro-scale photochemical model. The MCG model treats individual buildings as obstacles with impenetrable surfaces, rather than as roughness elements; is driven by the flow and turbulence fields generated by the MISKAM Navier-Stokes model, the emissions generated by the German MOBILEV model, and the concentration inflow boundary conditions generated by the urban-scale CALGRID model; includes a detailed treatment of vehicle-induced turbulence; and is equipped with three chemistry schemes (SAPRC-93, CB-4, and an analytic solution for Chapman cycle chemistry). The MCG model is exercised in both its 2-D and 3-D modes. Also described is a MCG application to a 5-day episode measured within a busy street canyon in Berlin, Germany. Concentrations of all measured pollutants (CO, NO, NO 2 , benzene, SO 2 and TSP) were well reproduced by the MCG model. NO 2 performance appeared adequate using the simpler analytic chemistry solution; however, inclusion of vehicle-induced turbulence was found to improve model performance statistics. (Author)

  19. Comparison of the large-scale radon risk map for southern Belgium with results of high resolution surveys

    International Nuclear Information System (INIS)

    Zhu, H.-C.; Charlet, J.M.; Poffijn, A.

    2000-01-01

    A large-scale radon survey consisting of long-term measurements in about 5200 singe-family houses in the southern part of Belgium was carried from 1995 to 1999. A radon risk map for the region was produced using geostatistical and GIS approaches. Some communes or villages situated within high risk areas were chosen for detailed surveys. A high resolution radon survey with about 330 measurements was performed in half part of the commune of Burg-Reuland. Comparison of radon maps on quite different scales shows that the general Rn risk map has similar pattern as the radon map for the detailed study area. Another detailed radon survey in the village of Hatrival, situated in a high radon area, found very high proportion of houses with elevated radon concentrations. The results of this detailed survey are comparable to the expectation for high risk areas on the large-scale radon risk map. The good correspondence between the findings of the general risk map and the analysis of the limited detailed surveys, suggests that the large-scale radon risk map is likely reliable. (author)

  20. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development

    International Nuclear Information System (INIS)

    Yao, S.-C.; Tang Xudong; Hsieh, C.-C.; Alyousef, Yousef; Vladimer, Michael; Fedder, Gary K.; Amon, Cristina H.

    2006-01-01

    This paper describes a high-power density, silicon-based micro-scale direct methanol fuel cell (DMFC), under development at Carnegie Mellon. Major issues in the DMFC design include the water management and energy-efficient micro fluidic sub-systems. The air flow and the methanol circulation are both at a natural draft, while a passive liquid-gas separator removes CO 2 from the methanol chamber. An effective approach for maximizing the DMFC energy density, pumping the excess water back to the anode, is illustrated. The proposed DMFC contains several unique features: a silicon wafer with arrays of etched holes selectively coated with a non-wetting agent for collecting water at the cathode; a silicon membrane micro pump for pumping the collected water back to the anode; and a passive liquid-gas separator for CO 2 removal. All of these silicon-based components are fabricated using micro-electro-mechanical systems (MEMS)-based processes on the same silicon wafer, so that interconnections are eliminated, and integration efforts as well as post-fabrication costs are both minimized. The resulting fuel cell has an overall size of one cubic inch, produces a net output of 10 mW, and has an energy density three to five times higher than that of current lithium-ion batteries

  1. Entrepreneurial Leadership, Performance, and Sustainability of Micro-Enterprises in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al Mamun

    2018-05-01

    Full Text Available This study probed into the impact of entrepreneurial leadership dimensions (i.e., responsibility, accountability, analytical thinking, and emotional intelligence on the performance and sustainability of micro-enterprises in Kelantan, Malaysia, through the lens of resource-based view (RBV theory. Through the implementation of a cross-sectional design, data were randomly gathered from 403 micro-entrepreneurs whose names appeared in the list of low-income households registered under “Majlis Amanah Rakyat” Kelantan and “Majlis Agama Islam Dan Adat Istiadat” Kelantan. The quantitative data were collected during structured interview sessions held between September and December 2017. The findings of the study revealed that the aspects of responsibility, accountability, and emotional intelligence exhibited significantly positive effects on micro-enterprise performance; while accountability, analytical thinking, and micro-enterprise performance displayed a significantly positive influence on sustainability among micro-enterprises owned by low-income households in Kelantan, Malaysia. The outcomes further portrayed a significant mediating effect of micro-enterprise performance on the correlations of responsibility, analytical thinking, and emotional intelligence with micro-enterprise sustainability. The outcomes of this study extend the scope of RBV theory and simultaneously enhance our understanding pertaining to leadership, performance, and sustainability interplay, particularly within the context of micro-enterprises in emerging economies. As such, it is recommended that the government of Malaysia formulate and to adopt policies that promote varied entrepreneurial-leadership-related traits among budding micro-entrepreneurs, which may not only boost sustainability performance among firms, but also encourage low-income household heads to actively engage in more entrepreneurial activities.

  2. Architectonic Mapping of the Human Brain beyond Brodmann.

    Science.gov (United States)

    Amunts, Katrin; Zilles, Karl

    2015-12-16

    Brodmann has pioneered structural brain mapping. He considered functional and pathological criteria for defining cortical areas in addition to cytoarchitecture. Starting from this idea of structural-functional relationships at the level of cortical areas, we will argue that the cortical architecture is more heterogeneous than Brodmann's map suggests. A triple-scale concept is proposed that includes repetitive modular-like structures and micro- and meso-maps. Criteria for defining a cortical area will be discussed, considering novel preparations, imaging and optical methods, 2D and 3D quantitative architectonics, as well as high-performance computing including analyses of big data. These new approaches contribute to an understanding of the brain on multiple levels and challenge the traditional, mosaic-like segregation of the cerebral cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  4. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition

    Directory of Open Access Journals (Sweden)

    Min Peng

    2017-10-01

    Full Text Available Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve.

  5. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition.

    Science.gov (United States)

    Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan

    2017-01-01

    Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve.

  6. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition

    Science.gov (United States)

    Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan

    2017-01-01

    Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve. PMID:29081753

  7. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    Science.gov (United States)

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  8. Improvements on mapping soil liquefaction at a regional scale

    Science.gov (United States)

    Zhu, Jing

    Earthquake induced soil liquefaction is an important secondary hazard during earthquakes and can lead to significant damage to infrastructure. Mapping liquefaction hazard is important in both planning for earthquake events and guiding relief efforts by positioning resources once the events have occurred. This dissertation addresses two aspects of liquefaction hazard mapping at a regional scale including 1) predictive liquefaction hazard mapping and 2) post-liquefaction cataloging. First, current predictive hazard liquefaction mapping relies on detailed geologic maps and geotechnical data, which are not always available in at-risk regions. This dissertation improves the predictive liquefaction hazard mapping by the development and validation of geospatial liquefaction models (Chapter 2 and 3) that predict liquefaction extent and are appropriate for global application. The geospatial liquefaction models are developed using logistic regression from a liquefaction database consisting of the data from 27 earthquake events from six countries. The model that performs best over the entire dataset includes peak ground velocity (PGV), VS30, distance to river, distance to coast, and precipitation. The model that performs best over the noncoastal dataset includes PGV, VS30, water table depth, distance to water body, and precipitation. Second, post-earthquake liquefaction cataloging historically relies on field investigation that is often limited by time and expense, and therefore results in limited and incomplete liquefaction inventories. This dissertation improves the post-earthquake cataloging by the development and validation of a remote sensing-based method that can be quickly applied over a broad region after an earthquake and provide a detailed map of liquefaction surface effects (Chapter 4). Our method uses the optical satellite images before and after an earthquake event from the WorldView-2 satellite with 2 m spatial resolution and eight spectral bands. Our method

  9. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruikang K [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97237 (United States)

    2007-12-07

    Optical micro-angiography (OMAG) is a recently developed method of imaging localized blood perfusion at capillary level resolution within microcirculatory beds. This paper reports that the OMAG is capable of directional blood perfusion mapping in vivo. This is achieved simply by translating the mirror located in the reference arm back and forth while 3D imaging is performed. The mirror which moves toward the incident beam gives the blood perfusion that flows away from the beam direction and vice versa. The approach is experimentally demonstrated by imaging of a flow phantom and then cerebro-vascular perfusion of a live mouse with cranium intact.

  10. Micro-scaled products development via microforming deformation behaviours, processes, tooling and its realization

    CERN Document Server

    Fu, Ming Wang

    2014-01-01

    Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and  presents a promising micromanufacturing process. When compared to other  micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, t...

  11. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  12. Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator

    International Nuclear Information System (INIS)

    Horade, M; Kojima, M; Kamiyama, K; Kurata, T; Mae, Y; Arai, T

    2015-01-01

    In order to realize effective micro-manipulation using a micro-manipulator system, an optimum end-effector is proposed. Cell-manipulation experiments using mouse fibroblast cells are conducted, and the usability of the proposed end-effector is confirmed. A key advantage of the micro-manipulator is high-accuracy, high-speed 3D micro- and nano-scale positioning. Micro-manipulation has often been used in research involving biological cells. However, there are two important concerns with the micro-manipulator system: gripping efficiency and the release of gripped objects. When it is not possible to grip a micro-object, such as a cell, near its center, the object may be dropped during manipulation. Since the acquisition of exact position information for a micro-object in the vertical direction is difficult using a microscope, the gripping efficiency of the end-effector should be improved. Therefore, technical skill or operational support is required. Since, on the micro-scale, surface forces such as the adsorption force are greater than body forces, such as the gravitational force, the adhesion force between the end-effector and the object is strong. Therefore, manipulation techniques without adhesion are required for placed an object at an arbitrary position. In the present study, we consider direct physical contact between the end-effector and objects. First, the design and materials of the end-effector for micro-scale manipulation were optimized, and an end-effector with an optimum shape to increase the grip force was fabricated. Second, the surface of the end-effector tip was made uneven, and the adhesion force from increasing on the micro-scale was prevented. When an end-effector with an uneven surface was used, release without adhesion was successful 85.0% of the time. On the other hand, when an end-effector without an uneven surface was used, release without adhesion was successful 6.25% of the time. Therefore, the superiority of a structure with an uneven

  13. Micro-PIXE mapping of mineral distribution in mature grain of two pearl millet cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Minnis-Ndimba, R., E-mail: rminnis@tlabs.ac.za [iThemba LABS, National Research Foundation (South Africa); Kruger, J.; Taylor, J.R.N. [Department of Food Science and Institute for Food, Nutrition and Well-being, University of Pretoria (South Africa); Mtshali, C. [iThemba LABS, National Research Foundation (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation (South Africa); Faculty of Health and Wellness Sciences, CPUT, Bellville (South Africa)

    2015-11-15

    Micro-proton-induced X-ray emission (micro-PIXE) was used to map the distribution of several nutritionally important minerals found in the grain tissue of two cultivars of pearl millet (Pennisetum glaucum (L.) R. Br.). The distribution maps revealed that the predominant localisation of minerals was within the germ (consisting of the scutellum and embryo) and the outer grain layers (specifically the pericarp and aleurone); whilst the bulk of the endosperm tissue featured relatively low concentrations of the surveyed minerals. Within the germ, the scutellum was revealed as a major storage tissue for P and K, whilst Ca, Mn and Zn were more prominent within the embryo. Fe was revealed to have a distinctive distribution pattern, confined to the dorsal end of the scutellum; but was also highly concentrated in the outer grain layers. Interestingly, the hilar region was also revealed as a site of high accumulation of minerals, particularly for S, Ca, Mn, Fe and Zn, which may be part of a defensive strategy against infection or damage. Differences between the two cultivars, in terms of the bulk Fe and P content obtained via inductively coupled plasma optical emission spectrometry (ICP-OES), concurred with the average concentration data determined from the analysis of micro-PIXE spectra specifically extracted from the endosperm tissue.

  14. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  15. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  16. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube

    Directory of Open Access Journals (Sweden)

    Rahbar Nader

    2015-01-01

    Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.

  17. Self-assembly of micro- and nano-scale particles using bio-inspired events

    International Nuclear Information System (INIS)

    McNally, H.; Pingle, M.; Lee, S.W.; Guo, D.; Bergstrom, D.E.; Bashir, R.

    2003-01-01

    High sensitivity chemical and biological detection techniques and the development of future electronic systems can greatly benefit from self-assembly processes and techniques. We have approached this challenge using biologically inspired events such as the hybridization of single (ss)- to double-stranded (ds) DNA and the strong affinity between the protein avidin and its associated Vitamin, biotin. Using these molecules, micro-scale polystyrene beads and nano-scale gold particles were assembled with high efficiency on gold patterns and the procedures used for these processes were optimized. The DNA and avidin-biotin complex was also used to demonstrate the attachment of micro-scale silicon islands to each other in a fluid. This work also provides insight into the techniques for the self-assembly of heterogeneous materials

  18. Nano/micro-scale magnetophoretic devices for biomedical applications

    International Nuclear Information System (INIS)

    Lim, Byeonghwa; Kim, CheolGi; Vavassori, Paolo; Sooryakumar, R

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology. (topical review)

  19. Nano/micro-scale magnetophoretic devices for biomedical applications

    Science.gov (United States)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  20. Friction characteristics for density of micro dimples using photolithography

    International Nuclear Information System (INIS)

    Chae, Young Jun; Kim, Seock Sam

    2005-01-01

    Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple

  1. Development of micro-scale joints in volcanic rocks under thermal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Petrographic studies of samples of the Rajmahal basalt reveal a variety of microscopic joints ... To study the micro-scale joints in rock systems, ..... fiber-like crystal habit of the material chosen for ... stress, Y is the numerical modification factor to.

  2. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  3. Data-driven mapping of the potential mountain permafrost distribution.

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-07-15

    Existing mountain permafrost distribution models generally offer a good overview of the potential extent of this phenomenon at a regional scale. They are however not always able to reproduce the high spatial discontinuity of permafrost at the micro-scale (scale of a specific landform; ten to several hundreds of meters). To overcome this lack, we tested an alternative modelling approach using three classification algorithms belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random forests. These supervised learning techniques infer a classification function from labelled training data (pixels of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it is unknown. The research was carried out in a 588km 2 area of the Western Swiss Alps. Permafrost evidences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost controlling factors was computed with the mentioned techniques. Classification performances, assessed with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost distribution modelling thanks to consistent results compared to the field reality. The high resolution of the input dataset (10m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distribution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms offers a more precise overview of the potential distribution of mountain permafrost than proposing simple indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of permafrost data analysis and mapping. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  5. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

    OpenAIRE

    Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.

    2014-01-01

    In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle t...

  6. ESTIMAP: Ecosystem services mapping at European scale

    OpenAIRE

    ZULIAN GRAZIA; PARACCHINI Maria-Luisa; MAES JOACHIM; LIQUETE GARCIA MARIA DEL CAMINO

    2013-01-01

    Mapping, visualization and the access to suitable data as a means to facilitate the dialogue among scientists, policy makers and the general public are among the most challenging issues within current ecosystem service science and application. Recently the attention on spatially explicit ways to map ecosystem services, at local, regional and global scale is increasing. This report presents ESTIMAP: a suite of models for a spatially explicit assessment of three ecosystem services (recreati...

  7. A versatile automated platform for micro-scale cell stimulation experiments.

    Science.gov (United States)

    Sinha, Anupama; Jebrail, Mais J; Kim, Hanyoup; Patel, Kamlesh D; Branda, Steven S

    2013-08-06

    Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥ 10(5)) in milliliter-scale volumes (≥ 0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100-2,000 cells) in micro-scale volumes (1-20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of

  8. Development of Kossel micro-diffraction for strain and stress analysis at the micrometer scale: applications to crystalline materials

    International Nuclear Information System (INIS)

    Bouscaud, D.

    2012-01-01

    X-ray diffraction is a non-destructive method frequently used in materials science to analyse the stress state at a macroscopic scale. Due to the growing complexity of new materials and their applications, it is necessary to know the strain and stress state at a lower scale. Thus, a Kossel micro-diffraction experimental set-up was developed inside a scanning electron microscope. It allows to obtain the crystallographic orientation as well as the strains and stresses within a volume of a few cubic micrometers. Some experiments were also performed using a synchrotron radiation. An experimental procedure was developed to optimize the acquisition of Kossel line patterns and their post-processing. The stress calculation from Kossel patterns was validated by comparing the stress state of single crystals during in situ mechanical loading, obtained by Kossel micro-diffraction and with classical diffraction methods. Then Kossel micro-diffraction was applied to polycrystalline samples by gradually decreasing the grain size. Intergranular stress heterogeneities were for example measured in an interstitial-free steel. Experiments were finally carried out in thin layer samples representative of microelectronic components. (author)

  9. A multi-scale method of mapping urban influence

    Science.gov (United States)

    Timothy G. Wade; James D. Wickham; Nicola Zacarelli; Kurt H. Riitters

    2009-01-01

    Urban development can impact environmental quality and ecosystem services well beyond urban extent. Many methods to map urban areas have been developed and used in the past, but most have simply tried to map existing extent of urban development, and all have been single-scale techniques. The method presented here uses a clustering approach to look beyond the extant...

  10. Micro-scale energy valorization of grape marcs in winery production plants.

    Science.gov (United States)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-01

    The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Application of micro-PIXE and imaging technology to life science (Joint research)

    International Nuclear Information System (INIS)

    Satoh, Takahiro; Ishii, Keizo

    2011-03-01

    The joint research on 'Application of micro-PIXE and imaging technology to life science' supported by the Inter-organizational Atomic Energy Research Program, had been performed for three years, from 2006FY to 2009FY. Aiming to apply in-air micro-PIXE analytical system to life science, the research was consisting of 7 collaborative themes related to beam engineering for micro-PIXE and applied technology of element mapping in biological/medical fields. The system, so-called micro-PIXE camera, to acquire spatial element mapping in living cells was originally developed by collaborative research between the JAEA and the department of engineering of Tohoku University. This review covers these research results. (author)

  12. Confocal mapping of myelin figures with micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang

    2018-01-01

    We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.

  13. Scaling laws for mode lockings in circle maps

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Shraiman, B.; Soederberg, B.

    1985-06-01

    The self-similar structure of mode lockings for circle maps is studied by means of the associated Farey trees. We investigate numerically several classes of scaling relations implicit in the Farey organization of mode lockings and discuss the extent to which they lead to universal scaling laws. (orig.)

  14. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  15. Levitating Micro-Actuators: A Review

    Directory of Open Access Journals (Sweden)

    Kirill V. Poletkin

    2018-04-01

    Full Text Available Through remote forces, levitating micro-actuators completely eliminate mechanical attachment between the stationary and moving parts of a micro-actuator, thus providing a fundamental solution to overcoming the domination of friction over inertial forces at the micro-scale. Eliminating the usual mechanical constraints promises micro-actuators with increased operational capabilities and low dissipation energy. Further reduction of friction and hence dissipation by means of vacuum leads to dramatic increases of performance when compared to mechanically tethered counterparts. In order to efficiently employ the benefits provided by levitation, micro-actuators are classified according to their physical principles as well as by their combinations. Different operating principles, structures, materials and fabrication methods are considered. A detailed analysis of the significant achievements in the technology of micro-optics, micro-magnets and micro-coil fabrication, along with the development of new magnetic materials during recent decades, which has driven the creation of new application domains for levitating micro-actuators is performed.

  16. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  17. Mapping Intermediality in Performance

    NARCIS (Netherlands)

    2010-01-01

    Mapping Intermediality in Performance benadert het vraagstuk van intermedialiteit met betrekking tot performance (vooral theater) vanuit vijf verschillende invalshoeken: performativiteit en lichaam; tijd en ruimte; digitale cultuur en posthumanisme; netwerken; pedagogiek en praxis. In deze boeiende

  18. Digital geologic map in the scale 1:50 000

    International Nuclear Information System (INIS)

    Kacer, S.; Antalik, M.

    2005-01-01

    In this presentation authors present preparation of new digital geologic map of the Slovak Republic. This map is prepared by the State Geological Institute of Dionyz Stur as a part of the project Geological information system GeoIS. One of the basic information geologic layers, which will be accessible on the web-site will be digital geologic map of the Slovak Republic in the scale 1: 50 000

  19. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    Science.gov (United States)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched

  20. Performance Evaluation Of Macro amp Micro Mobility In HMIP Networks

    Directory of Open Access Journals (Sweden)

    Osama Ali Abdelgadir

    2015-08-01

    Full Text Available Abstract Changing the location of mobile node during transmission or receiving of data always caused changing of the address of the mobile node which results in packet loss as well as delay in time taken to locate the new address of the Mobile Node therefore delay of data receiving is caused this problem was known as micro-mobility issue. To resolve this problem and ascurrently mobile IP is the most promising solution for mobility management in the Internet. Several IP micro mobility approaches have been proposed to enhance the performance of mobile IP which supports quality of service minimum packet loss limited handoff delay and scalability and power conservation but they are not scalable for macro mobility. A practical solution would therefore require integration of mobile IP and micro mobility protocols where mobile IP handles macro mobility and HMIP cellular IP HAWAII handles micro mobility. In this paper an integrated mobility management protocol for IP based wireless networks is proposed and analyzed.HIERARCHICAL MICRO MOBILITY PROTOCOL is used. To identify the impact of micro-mobility in IP based Wireless Network to implement selected micro-mobility model of Hierarchal Micro Mobility Protocol in network simulator and for more analysis and measurements results and for the purpose of performance comparison between both Macro and Micro mobility Protocol Management.. Simulation results presented in this paper are based on ns 2

  1. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  2. Update of the Large-scale Concentration Maps for the Netherlands (GCN)

    International Nuclear Information System (INIS)

    Van den Elshout, S.; Molenaar, R.

    2011-01-01

    Every year the RIVM and PBL publish the so-called Large-scale concentration maps of the Netherlands (GCN maps). These maps offer an approximation of the background concentrations of several air-polluting substances. Sometimes these maps need to be updated to realize a better approximation of the background concentrations. [nl

  3. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode

    OpenAIRE

    Agrawal, Praveen; Kurcon, Tomasz; Pilobello, Kanoelani T.; Rakus, John F.; Koppolu, Sujeethraj; Liu, Zhongyin; Batista, Bianca S.; Eng, William S.; Hsu, Ku-Lung; Liang, Yaxuan; Mahal, Lara K.

    2014-01-01

    Carbohydrates (glycans) are complex cell surface molecules that control multiple aspects of cell biology, including cell–cell communication, cancer metastasis, and inflammation. Glycan biosynthesis requires the coordination of many enzymes, but how this is regulated is not well understood. Herein we show that microRNA (miRNA), small noncoding RNA, are a major regulator of cell surface glycosylation. We map miRNA expression onto carbohydrate signatures obtained by using lectin microarrays, a g...

  4. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  5. Enriching the national map database for multi-scale use: Introducing the visibilityfilter attribution

    Science.gov (United States)

    Stauffer, Andrew J.; Webinger, Seth; Roche, Brittany

    2016-01-01

    The US Geological Survey’s (USGS) National Geospatial Technical Operations Center is prototyping and evaluating the ability to filter data through a range of scales using 1:24,000-scale The National Map (TNM) datasets as the source. A “VisibilityFilter” attribute is under evaluation that can be added to all TNM vector data themes and will permit filtering of data to eight target scales between 1:24,000 and 1:5,000,000, thus defining each feature’s smallest applicable scale-of-use. For a prototype implementation, map specifications for 1:100,000- and 1:250,000-scale USGS Topographic Map Series are being utilized to define feature content appropriate at fixed mapping scales to guide generalization decisions that are documented in a ScaleMaster diagram. This paper defines the VisibilityFilter attribute, the generalization decisions made for each TNM data theme, and how these decisions are embedded into the data to support efficient data filtering.

  6. The geological map of Canelones Department scale 1:1000.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Canelones Department (Uruguay), scale 1:100.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  7. The geological map of Montevideo Department scale 1:50.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Montevideo Department (Uruguay), scale 1:50.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  8. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Optimising parallel R correlation matrix calculations on gene expression data using MapReduce.

    Science.gov (United States)

    Wang, Shicai; Pandis, Ioannis; Johnson, David; Emam, Ibrahim; Guitton, Florian; Oehmichen, Axel; Guo, Yike

    2014-11-05

    High-throughput molecular profiling data has been used to improve clinical decision making by stratifying subjects based on their molecular profiles. Unsupervised clustering algorithms can be used for stratification purposes. However, the current speed of the clustering algorithms cannot meet the requirement of large-scale molecular data due to poor performance of the correlation matrix calculation. With high-throughput sequencing technologies promising to produce even larger datasets per subject, we expect the performance of the state-of-the-art statistical algorithms to be further impacted unless efforts towards optimisation are carried out. MapReduce is a widely used high performance parallel framework that can solve the problem. In this paper, we evaluate the current parallel modes for correlation calculation methods and introduce an efficient data distribution and parallel calculation algorithm based on MapReduce to optimise the correlation calculation. We studied the performance of our algorithm using two gene expression benchmarks. In the micro-benchmark, our implementation using MapReduce, based on the R package RHIPE, demonstrates a 3.26-5.83 fold increase compared to the default Snowfall and 1.56-1.64 fold increase compared to the basic RHIPE in the Euclidean, Pearson and Spearman correlations. Though vanilla R and the optimised Snowfall outperforms our optimised RHIPE in the micro-benchmark, they do not scale well with the macro-benchmark. In the macro-benchmark the optimised RHIPE performs 2.03-16.56 times faster than vanilla R. Benefiting from the 3.30-5.13 times faster data preparation, the optimised RHIPE performs 1.22-1.71 times faster than the optimised Snowfall. Both the optimised RHIPE and the optimised Snowfall successfully performs the Kendall correlation with TCGA dataset within 7 hours. Both of them conduct more than 30 times faster than the estimated vanilla R. The performance evaluation found that the new MapReduce algorithm and its

  10. The application of orthogonal photolithography to micro-scale organic field effect transistors and complementary inverters on flexible substrate

    International Nuclear Information System (INIS)

    Jang, Jingon; Song, Younggul; Yoo, Daekyoung; Kim, Dongku; Lee, Hyungwoo; Hong, Seunghun; Lee, Takhee; Oh, Hyuntaek; Lee, Jin-Kyun

    2014-01-01

    Micro-scale pentacene organic field effect transistors (OFETs) were fabricated on a flexible poly(ethylene terephthalate) (PET) substrate. By applying a highly fluorinated developing solvents and its compatible photoresist materials, it has become possible to make the micro-scale patterning for organic devices using standard photolithography without damaging the underlying polymer layers. The flexible pentacene OFETs with 3 μm-sized channel length exhibited stable electrical characteristics under bent configurations and under a large number of repetitive bending cycles. Furthermore, we demonstrated micro-scale organic complementary inverters on a flexible PET substrate using p-type pentacene and n-type copper hexadecafluorophthalocyanine materials

  11. The application of orthogonal photolithography to micro-scale organic field effect transistors and complementary inverters on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jingon; Song, Younggul; Yoo, Daekyoung; Kim, Dongku; Lee, Hyungwoo; Hong, Seunghun; Lee, Takhee, E-mail: tlee@snu.ac.kr [Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Oh, Hyuntaek; Lee, Jin-Kyun, E-mail: jkl36@inha.ac.kr [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-02-03

    Micro-scale pentacene organic field effect transistors (OFETs) were fabricated on a flexible poly(ethylene terephthalate) (PET) substrate. By applying a highly fluorinated developing solvents and its compatible photoresist materials, it has become possible to make the micro-scale patterning for organic devices using standard photolithography without damaging the underlying polymer layers. The flexible pentacene OFETs with 3 μm-sized channel length exhibited stable electrical characteristics under bent configurations and under a large number of repetitive bending cycles. Furthermore, we demonstrated micro-scale organic complementary inverters on a flexible PET substrate using p-type pentacene and n-type copper hexadecafluorophthalocyanine materials.

  12. Economic viability study of micro-cogeneration plants at residential scale; Estudo de viabilidade economica de plantas de micro-cogeracao em escala residencial

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Ramalho e Soares, Ravi [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Michalewicz, Jacek Stanislaw [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Recife, RN (Brazil)

    2008-07-01

    This paper presents the results of a technical and economical feasibility study for the use of micro cogeneration systems in residential scale, using natural gas as an energy source. It was considered two micro-cogeneration systems to meet demand of some types of fictitious establishment of commercial and residential plants, each with its advantages and disadvantages. The first system has as a main driving machine a micro turbine with a nominal capacity of 30 kw, the second one uses a gas motor-generator, with nominal capacity of 35 kw. (author)

  13. Multi-Scale Texturing of Metallic Surfaces for High Performance Military Systems

    Science.gov (United States)

    2015-08-17

    AISI 440C stainless steel balls of 3 mm radius and 690 HV hardness. The sliding time (20 min), amplitude (10.5 mm), frequency (1.5 Hz) and normal...texture form (e. g., micro-scale topography) on surface integrity measures and tribological wear performance were quantified. The ensuing results are... Tribological Applications, Submitted for publication (08 2015) TOTAL: 2 Books Number of Manuscripts: Patents Submitted Patents Awarded Awards Graduate Students

  14. Pore Scale Investigation of Wettability Alteration Through Chemically-Tuned Waterflooding in Oil-Wet Carbonate Rocks Using X-Ray Micro-Ct Imaging

    Science.gov (United States)

    Tawfik, M. S.; Karpyn, Z.

    2017-12-01

    Carbonate reservoirs host more than half of the remaining oil reserves worldwide. Due to their complex pore structure and intermediate to oil-wet nature, it is challenging to produce the remaining oil from these formations. For two decades, chemically tuned waterflooding (CTWF) has gained the attention of many researchers. Experimental, numerical, and field studies suggest that changes in ion composition of injected brine can increase oil recovery in carbonate reservoirs via wettability alteration. However, previous studies explaining the improvement in oil recovery by wettability alteration deduce wettability based on indirect measurements, including sessile drop contact angle measurements on polished rocks, relative permeability, chromatographic separation of SCN- and potential determining ions (PDIs), etc. CTWF literature offers no direct measurement of wettability alteration at the pore scale. This study proposes a direct pore-scale measurement of changes in interfacial curvatures before and after CTWF. Micro-coreflood experiments are performed to investigate the effect of injection brine salinity, ion composition and temperature on rock wettability at the pore scale. X-ray micro-CT scanning is used to obtain 3D image sets to calculate in-situ contact angle distributions. The study also aims to find a correlation between the magnitude of improvement in oil recovery at the macro-scale and the corresponding contact angle distribution at the pore-scale at different experimental conditions. Hence, macro-scale coreflood experiments are performed using the same conditions as the micro-corefloods. Macro-scale coreflood experiments have shown that brines with higher concentration of Ca2+, Mg2+ and SO42- ions have higher recoveries compared to standard seawater. This translates to wettability alteration into a more intermediate-wet state. This study enhances the understanding of the pore-scale physico-chemical mechanisms controlling wettability alteration via CTWF

  15. Road network selection for small-scale maps using an improved centrality-based algorithm

    Directory of Open Access Journals (Sweden)

    Roy Weiss

    2014-12-01

    Full Text Available The road network is one of the key feature classes in topographic maps and databases. In the task of deriving road networks for products at smaller scales, road network selection forms a prerequisite for all other generalization operators, and is thus a fundamental operation in the overall process of topographic map and database production. The objective of this work was to develop an algorithm for automated road network selection from a large-scale (1:10,000 to a small-scale database (1:200,000. The project was pursued in collaboration with swisstopo, the national mapping agency of Switzerland, with generic mapping requirements in mind. Preliminary experiments suggested that a selection algorithm based on betweenness centrality performed best for this purpose, yet also exposed problems. The main contribution of this paper thus consists of four extensions that address deficiencies of the basic centrality-based algorithm and lead to a significant improvement of the results. The first two extensions improve the formation of strokes concatenating the road segments, which is crucial since strokes provide the foundation upon which the network centrality measure is computed. Thus, the first extension ensures that roundabouts are detected and collapsed, thus avoiding interruptions of strokes by roundabouts, while the second introduces additional semantics in the process of stroke formation, allowing longer and more plausible strokes to built. The third extension detects areas of high road density (i.e., urban areas using density-based clustering and then locally increases the threshold of the centrality measure used to select road segments, such that more thinning takes place in those areas. Finally, since the basic algorithm tends to create dead-ends—which however are not tolerated in small-scale maps—the fourth extension reconnects these dead-ends to the main network, searching for the best path in the main heading of the dead-end.

  16. The performance effect of micro-innovation in SMEs : evidence from China

    NARCIS (Netherlands)

    Zhou, Qing; Fang, Gang; Yang, Ying-Wei; Wu, Yun; Brouwers-Ren, Liqin

    2017-01-01

    Purpose: The purpose of this paper is to theoretically and empirically analyze the impact of the types of micro-innovation on innovation performance and the choice of micro-innovation strategies in different contexts on the basis of an examination of the basis and standards of micro-innovation

  17. Performance and cost results from a DOE Micro-CHP demonstration facility at Mississippi State University

    International Nuclear Information System (INIS)

    Giffin, Paxton K.

    2013-01-01

    Highlights: ► We examine the cost and performance results of a Micro-CHP demonstration facility. ► Evaluation includes both summer and winter performance. ► Evaluation in comparison to a conventional HVAC system using grid power. ► Influence of improperly sized equipment. ► Influence of natural gas prices on the viability of CHP projects using that fuel. - Abstract: Cooling, Heating, and Power (CHP) systems have been around for decades, but systems that utilize 20 kW or less, designated as Micro-CHP, are relatively new. A demonstration site has been constructed at Mississippi State University (MSU) to show the advantages of these micro scale systems. This study is designed to evaluate the performance of a Micro-CHP system as opposed to a conventional high-efficiency Heating, Ventilation, and Air Conditioning (HVAC) system that utilizes electrical power from the existing power grid. Raw data was collected for 7 months to present the following results. The combined cycle efficiency from the demonstration site was averaged at 29%. The average combined boiler and engine cost was $1.8 h −1 of operation for heating season and $3.9 h −1 of operation for cooling season. The cooling technology used, an absorption chiller exhibited an average Coefficient of Performance (COP) of 0.27. The conventional high-efficiency system, during cooling season, had a COP of 4.7 with a combined cooling and building cost of $0.2 h −1 of operation. During heating mode, the conventional system had an efficiency of 47% with a fuel and building electrical cost of $0.28 h −1 of operation.

  18. Micro-Scale Distribution of CA4+ in Ex Vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging

    Science.gov (United States)

    Karhula, Sakari S.; Finnilä, Mikko A.; Freedman, Jonathan D.; Kauppinen, Sami; Valkealahti, Maarit; Lehenkari, Petri; Pritzker, Kenneth P. H.; Nieminen, Heikki J.; Snyder, Brian D.; Grinstaff, Mark W.; Saarakkala, Simo

    2017-08-01

    Contrast-enhanced micro-computed tomography (CEµCT) with cationic and anionic contrast agents reveals glycosaminoglycan (GAG) content and distribution in articular cartilage (AC). The advantage of using cationic stains (e.g. CA4+) compared to anionic stains (e.g. Hexabrix®), is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution µCT setups. In this study, we use high-resolution µCT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo µCT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6mgI/ml, and 24 mgI/ml) and imaged with high-resolution µCT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis in the samples

  19. Micro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Sakari S. Karhula

    2017-08-01

    Full Text Available Contrast-enhanced micro-computed tomography (CEμCT with cationic and anionic contrast agents reveals glycosaminoglycan (GAG content and distribution in articular cartilage (AC. The advantage of using cationic stains (e.g., CA4+ compared to anionic stains (e.g., Hexabrix®, is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution μCT setups. In this study, we use high-resolution μCT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo μCT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6 mgI/ml, and 24 mgI/ml and imaged with high-resolution μCT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis

  20. Enhancement of heat transfer. The performance of micro-fin tubes

    International Nuclear Information System (INIS)

    Muzzio, A.

    2001-01-01

    Micro-fin tubes are characterised by numerous, very small integral fins that spiral down the inner surface. A very interesting feature of their performance in flow boiling and condensation is a large heat transfer enhancement accompanied by a low pressure drop penalty. This paper presents a general overview of micro-fin tubes and of their performance in evaporation, condensation and single-phase flow [it

  1. Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation

    Science.gov (United States)

    Schmidt, Susanne I.; Kreft, Jan-Ulrich; Mackay, Rae; Picioreanu, Cristian; Thullner, Martin

    2018-06-01

    Groundwater microorganisms hardly ever cover the solid matrix uniformly-instead they form micro-scale colonies. To which extent such colony formation limits the bioavailability and biodegradation of a substrate is poorly understood. We used a high-resolution numerical model of a single pore channel inhabited by bacterial colonies to simulate the transport and biodegradation of organic substrates. These high-resolution 2D simulation results were compared to 1D simulations that were based on effective rate laws for bioavailability-limited biodegradation. We (i) quantified the observed bioavailability limitations and (ii) evaluated the applicability of previously established effective rate concepts if microorganisms are heterogeneously distributed. Effective bioavailability reductions of up to more than one order of magnitude were observed, showing that the micro-scale aggregation of bacterial cells into colonies can severely restrict the bioavailability of a substrate and reduce in situ degradation rates. Effective rate laws proved applicable for upscaling when using the introduced effective colony sizes.

  2. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  3. Study on the micro direct ethanol fuel cell (Micro-DEFC) performance

    Science.gov (United States)

    Saisirirat, Penyarat; Joommanee, Bordindech

    2018-01-01

    The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.

  4. Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale

    Science.gov (United States)

    Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen

    2017-12-01

    Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.

  5. Benchmarking of direct and indirect friction tests in micro forming

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Calaon, Matteo; Arentoft, M.

    2012-01-01

    The sizeable increase in metal forming friction at micro scale, due to the existence of size effects, constitutes a barrier to the realization of industrial micro forming processes. In the quest for improved frictional conditions in micro scale forming operations, friction tests are applied...... to qualify the tribological performance of the particular forming scenario. In this work the application of a simulative sliding friction test at micro scale is studied. The test setup makes it possible to measure the coefficient of friction as a function of the sliding motion. The results confirm a sizeable...... increase in the coefficient of friction when the work piece size is scaled down. © (2012) Trans Tech Publications....

  6. SKYLARK - A crossbow-launched micro scale cheap UAV for close aerial surveillance

    Directory of Open Access Journals (Sweden)

    Alexandru-Marius PANAIT

    2012-03-01

    Full Text Available Close air support of ground troops especially in densely populated, urban environments has an ever increasing prevalence in the modern warfare. Counter-terrorism activities as well as land-based “surgical strikes” impose a set of special requirements on all the used weapons and equipment so as to minimize weight, cost and complexity and maximize efficiency. Small scale UAVs are in service with all the armed forces around the globe; micro UAVs are emerging as the ground troop close support preferred solution. Endurance and range of these devices is regularly small to very small, and their speed is low. Their small size makes them virtually un-targetable if somewhat still detectable. A new generation of micro-drones is proposed, with a higher speed (up to 350 km/h ground speed averaged and automatic recovery system. Project SKYLARK consists of a reusable minimal micro-UAV featuring a portable micro-USB camera and an aerodynamically assisted timer-based recovery system.

  7. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    International Nuclear Information System (INIS)

    Tapia-Ahumada, K.; Pérez-Arriaga, I.J.; Moniz, E.J.

    2013-01-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO 2 emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies—particularly combined cycle units—are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. - Highlights: • Capacity displacements and daily operation of an electric power system are explored. • Benefits depend on energy mix, prices, and micro-CHP technology and control scheme. • Benefits are observed mostly in winter when micro-CHP heat and power are fully used. • Micro-CHPs mostly displace installed capacity from natural gas combined cycle units. • Tariff design impacts economic efficiency of the system and operation of micro-CHPs

  8. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  9. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  10. Strategic HRM in Building Micro-Foundations of Organizational Knowledge-Based Performance

    DEFF Research Database (Denmark)

    Minbaeva, Dana

    2013-01-01

    Strategic HRM research has a strong potential to further our understanding of how organizational knowledge processes influence performance at various analytical levels. Drawing on ability–motivation–opportunity research and linking it to knowledge sharing behaviors, we discuss the micro......-foundations in the link between strategic HRM practices and knowledge-based organizational performance. We thus describe a research agenda for future micro-foundational research that links strategic HRM and knowledge-based performance....

  11. A Spatial Framework to Map Heat Health Risks at Multiple Scales.

    Science.gov (United States)

    Ho, Hung Chak; Knudby, Anders; Huang, Wei

    2015-12-18

    In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.

  12. Maps on large-scale air quality concentrations in the Netherlands

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Beck, J.P.; Blom, W.F.; Van Dam, J.D.; Elzenga, H.E.; Geilenkirchen, G.P.; Hoen, A.; Jimmink, B.A.; Matthijsen, J.; Peek, C.J.; Van Velze, K.; Visser, H.; De Vries, W.J.

    2007-01-01

    Every year MNP produces maps showing large-scale concentrations of several air quality components in the Netherlands for which there are European regulations. The concentration maps are based on a combination of model calculations and measurements. These maps (called GCN maps) show the large-scale contribution of these components in air in the Netherlands for both past and future years. Local, provincial and other authorities use these maps for reporting exceedances in the framework of the EU Air Quality Directive and for planning. The report gives the underlying assumptions applied to the GCN-maps in this 2007 report. The Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) is legally responsible for selecting the scenario to be used in the GCN maps. The Ministry has chosen to base the current maps of nitrogen dioxide, particulate matter (PM10) and sulphur dioxide for 2010 up to 2020 on standing and proposed Dutch and European policies. That means that the Netherlands and other European countries will meet their National Emissions Ceilings (NEC) by 2010 and the emissions according to the ambitions of the Thematic Strategy on Air Pollution of the European Commission up to 2020, as assumed in the calculations. The large-scale concentrations of NO2 and PM10, presented by the GCN maps, are in 2006 and for the 2010-2020 period, below the European limit value of yearly averaged 40 μg m 3 everywhere in the Netherlands. The large-scale concentration exceeds the European limit value for the daily average of PM10 of maximally 35 days above 50 μg m 3 in some locations in 2006. This applies close to the harbours of Amsterdam and Rotterdam and is associated with storage and handling of dry bulk material. The large-scale concentration of PM10 is below the European limit value for the daily average everywhere in 2010-2020. Several changes have been implemented, in addition to the changes in the GCN maps of last year (report March 2006). New insights into

  13. On the effects of scale for ecosystem services mapping.

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  14. On the effects of scale for ecosystem services mapping.

    Directory of Open Access Journals (Sweden)

    Adrienne Grêt-Regamey

    Full Text Available Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.. We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  15. On the effects of scale for ecosystem services mapping

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J.; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  16. Scaling properties of a simplified bouncer model and of Chirikov's standard map

    International Nuclear Information System (INIS)

    Ladeira, Denis Gouvea; Silva, Jafferson Kamphorst Leal da

    2007-01-01

    Scaling properties of Chirikov's standard map are investigated by studying the average value of I 2 , where I is the action variable, for initial conditions in (a) the stability island and (b) the chaotic component. Scaling behavior appears in three regimes, defined by the value of the control parameter K: (i) the integrable to non-integrable transition (K ∼ 0) and K c (K c ∼ 0.9716); (ii) the transition from limited to unlimited growth of I 2 , K ∼> K c ; (iii) the regime of strong nonlinearity, K >> K c . Our scaling results are also applicable to Pustylnikov's bouncer model, since it is globally equivalent to the standard map. We also describe the scaling properties of a stochastic version of the standard map, which exhibits unlimited growth of I 2 even for small values of K

  17. Self-Organization in Coupled Map Scale-Free Networks

    International Nuclear Information System (INIS)

    Xiao-Ming, Liang; Zong-Hua, Liu; Hua-Ping, Lü

    2008-01-01

    We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns

  18. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    Science.gov (United States)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  19. Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates

    NARCIS (Netherlands)

    Liu, J.; Bosco, E.; Suiker, A.S.J.

    2017-01-01

    Novel numerical algorithms are presented for the implementation of micro-scale boundary conditions of particle aggregates modelled with the discrete element method. The algorithms are based on a servo-control methodology, using a feedback principle comparable to that of algorithms commonly applied

  20. Numerical investigation and performance characteristic mapping of an Archimedean screw hydroturbine

    Science.gov (United States)

    Schleicher, W. Chris

    Computational Fluid Dynamics (CFD) is a crucial tool in the design and analysis of hydraulic machinery, especially in the design of a micro hydro turbine. The micro hydro turbine in question is for a low head (less than 60 meters), low volumetric flow rate (0.005 m3/s to 0.5 m 3/s) application with rotation rates varying from 200 RPM to 1500 RPM. The design of the runner geometry is discussed, specifically a non-uniform Archimedean Spiral with an outer diameter of 6 inches and length of 19.5 inches. The transient simulation method, making use of a frame of reference change and a rotating mesh between time-steps, is explained as well as the corresponding boundary conditions. Both simulation methods are compared and are determined to produce similar results. The rotating frame of reference method was determined to be the most suitable method for the mapping of performance characteristic such as required head, torque, power, and efficiency. Results of simulations for a non-uniform Archimedean Spiral are then presented. First, a spectral and temporal convergence study is conducted to make sure that the results are independent of time-step and mesh selection. Performance characteristics of a non-uniform pitched blade turbine are determined for a wide range of volumetric flow rates and rotation rates. The maximum efficiency of the turbine is calculated around 72% for the design of the turbine blade considered in the present study.

  1. A large-scale radiometric micro-quantitative complement fixation test for serum antibody titration

    International Nuclear Information System (INIS)

    Bengali, Z.H.; Levine, P.H.; Das, S.R.

    1980-01-01

    A micro-quantitative complement fixation (CF) procedure based on 51 Cr release is described. The method employs 50% hemolysis as end point and the alternation equation to calculate the amount of complement involved in the hemolytic reaction. Compared to the conventional CF tests, the radiometric procedure described here is very precise and consistently reproducible. Also, since only 3 4-fold dilutions of sera are used for the titration of antibodies over a wide range of concentrations, the test is very concise and is economical to perform. Its format is amenable to automation and computerization. This radioimetric CF procedure is thus most useful for large-scale immunological research and epidemiological surveilance studies. (Auth.)

  2. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    Science.gov (United States)

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  3. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    International Nuclear Information System (INIS)

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  4. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Science.gov (United States)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  5. A fast approach to generate large-scale topographic maps based on new Chinese vehicle-borne Lidar system

    International Nuclear Information System (INIS)

    Youmei, Han; Bogang, Yang

    2014-01-01

    Large -scale topographic maps are important basic information for city and regional planning and management. Traditional large- scale mapping methods are mostly based on artificial mapping and photogrammetry. The traditional mapping method is inefficient and limited by the environments. While the photogrammetry methods(such as low-altitude aerial mapping) is an economical and effective way to map wide and regulate range of large scale topographic map but doesn't work well in the small area due to the high cost of manpower and resources. Recent years, the vehicle-borne LIDAR technology has a rapid development, and its application in surveying and mapping is becoming a new topic. The main objective of this investigation is to explore the potential of vehicle-borne LIDAR technology to be used to fast mapping large scale topographic maps based on new Chinese vehicle-borne LIDAR system. It studied how to use the new Chinese vehicle-borne LIDAR system measurement technology to map large scale topographic maps. After the field data capture, it can be mapped in the office based on the LIDAR data (point cloud) by software which programmed by ourselves. In addition, the detailed process and accuracy analysis were proposed by an actual case. The result show that this new technology provides a new fast method to generate large scale topographic maps, which is high efficient and accuracy compared to traditional methods

  6. Modeling of micro-scale thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Avshalom [The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Ramon, Guy Z., E-mail: ramong@technion.ac.il [Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2016-05-02

    Thermoacoustic phenomena, that is, onset of self-sustained oscillations or time-averaged fluxes in a sound wave, may be harnessed as efficient and robust heat transfer devices. Specifically, miniaturization of such devices holds great promise for cooling of electronics. At the required small dimensions, it is expected that non-negligible slip effects exist at the solid surface of the “stack”-a porous matrix, which is used for maintaining the correct temporal phasing of the heat transfer between the solid and oscillating gas. Here, we develop theoretical models for thermoacoustic engines and heat pumps that account for slip, within the standing-wave approximation. Stability curves for engines with both no-slip and slip boundary conditions were calculated; the slip boundary condition curve exhibits a lower temperature difference compared with the no slip curve for resonance frequencies that characterize micro-scale devices. Maximum achievable temperature differences across the stack of a heat pump were also calculated. For this case, slip conditions are detrimental and such a heat pump would maintain a lower temperature difference compared to larger devices, where slip effects are negligible.

  7. Modeling of micro-scale thermoacoustics

    International Nuclear Information System (INIS)

    Offner, Avshalom; Ramon, Guy Z.

    2016-01-01

    Thermoacoustic phenomena, that is, onset of self-sustained oscillations or time-averaged fluxes in a sound wave, may be harnessed as efficient and robust heat transfer devices. Specifically, miniaturization of such devices holds great promise for cooling of electronics. At the required small dimensions, it is expected that non-negligible slip effects exist at the solid surface of the “stack”-a porous matrix, which is used for maintaining the correct temporal phasing of the heat transfer between the solid and oscillating gas. Here, we develop theoretical models for thermoacoustic engines and heat pumps that account for slip, within the standing-wave approximation. Stability curves for engines with both no-slip and slip boundary conditions were calculated; the slip boundary condition curve exhibits a lower temperature difference compared with the no slip curve for resonance frequencies that characterize micro-scale devices. Maximum achievable temperature differences across the stack of a heat pump were also calculated. For this case, slip conditions are detrimental and such a heat pump would maintain a lower temperature difference compared to larger devices, where slip effects are negligible.

  8. Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv; Singh, Abhinav [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bais, Vaibhav Sushil Singh; Prakash, Balaji [Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Verma, Nishith, E-mail: nishith@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-05-01

    In the present study, different proteins, namely, bovine serum albumin (BSA), glucose oxidase (GOx) and the laboratory purified YqeH were immobilized in the phenolic resin precursor-based multi-scale web of activated carbon microfibers (ACFs) and carbon nanofibers (CNFs). These biomolecules are characteristically different from each other, having different structure, number of parent amino acid molecules and isoelectric point. CNF was grown on ACF substrate by chemical vapor deposition, using Ni nanoparticles (Nps) as the catalyst. The ultra-sonication of the CNFs was carried out in acidic medium to remove Ni Nps from the tip of the CNFs to provide additional active sites for adsorption. The prepared material was directly used as an adsorbent for proteins, without requiring any additional treatment. Several analytical techniques were used to characterize the prepared materials, including scanning electron microscopy, Fourier transform infrared spectroscopy, BET surface area, pore-size distribution, and UV–vis spectroscopy. The adsorption capacities of prepared ACFs/CNFs in this study were determined to be approximately 191, 39 and 70 mg/g for BSA, GOx and YqeH, respectively, revealing that the carbon micro-nanofibers forming synthesized multi-scale web are efficient materials for the immobilization of protein molecules. - Highlights: • Ni metal Np-dispersed carbon micro-nanofibers (ACFs/CNFs) are prepared. • ACFs/CNFs are mesoporous. • Significant adsorption of BSA, GOx and YqeH is observed on ACFs/CNFs. • Multi-scale web of ACFs/CNFs is effective for protein immobilization.

  9. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    Science.gov (United States)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  10. Scaffolding EFL Oral Performance through Story Maps and Podcasts and Students’ Attitudes toward it

    Directory of Open Access Journals (Sweden)

    Mohammed Pazhouhesh

    2014-11-01

    Full Text Available The present study sought to explore the impact of story maps and audio podcasts as scaffolds on oral proficiency of Iranian EFL learners. The quasi-experimental study was launched with 36 EFL undergraduates in three groups by adopting a counterbalanced 3  3 Latin squared design. All participants were indiscriminately, but in a specified order, exposed to the three treatment conditions of story retelling, story retelling plus story map, and story retelling plus podcast, and post-tested sequentially. The Latin square analysis of the oral assessment scale showed statistically meaningful differences under the treatment conditions for the groups. The post-hoc test also showed overachievements of the participants under the treatment conditions of story retelling plus story map and story retelling plus podcasts. The performance under podcast condition was significantly better than performances under the story map and short story conditions. The post-experiment opinion survey showed the learners’ preferences for and positive attitudes towards podcast and story map as scaffolds in developing EFL oral proficiency. The participants welcomed integration of the scaffolds into EFL speaking courses.

  11. Recent improvements on micro-thermocouple based SThM

    OpenAIRE

    Nguyen, T. P.; Thiery, L.; Teyssieux, D.; Briand, Danick; Vairac, P.

    2017-01-01

    The scanning thermal microscope (SThM) has become a versatile tool for local surface temperature mapping or measuring thermal properties of solid materials. In this article, we present recent improvements in a SThM system, based on a micro-wire thermocouple probe associated with a quartz tuning fork for contact strength detection. Some results obtained on an electrothermal micro-hotplate device, operated in active and passive modes, allow demonstrating its performance as a coupled force detec...

  12. Networks, Micro Small Enterprises (MSE'S) and Performance: the ...

    African Journals Online (AJOL)

    Networks, Micro Small Enterprises (MSE'S) and Performance: the Case of Kenya. ... It adopts the network perspective theoretical approach. Empirically, the ... entrepreneurial personal network as a copying strategy in the process of global

  13. Ecosystem services - from assessements of estimations to quantitative, validated, high-resolution, continental-scale mapping via airborne LIDAR

    Science.gov (United States)

    Zlinszky, András; Pfeifer, Norbert

    2016-04-01

    service potential" which is the ability of the local ecosystem to deliver various functions (water retention, carbon storage etc.), but can't quantify how much of these are actually used by humans or what the estimated monetary value is. Due to its ability to measure both terrain relief and vegetation structure in high resolution, airborne LIDAR supports direct quantification of the properties of an ecosystem that lead to it delivering a given service (such as biomass, water retention, micro-climate regulation or habitat diversity). In addition, its high resolution allows direct calibration with field measurements: routine harvesting-based ecological measurements, local biodiversity indicator surveys or microclimate recordings all take place at the human scale and can be directly linked to the local value of LIDAR-based indicators at meter resolution. Therefore, if some field measurements with standard ecological methods are performed on site, the accuracy of LIDAR-based ecosystem service indicators can be rigorously validated. With this conceptual and technical approach high resolution ecosystem service assessments can be made with well established credibility. These would consolidate the concept of ecosystem services and support both scientific research and evidence-based environmental policy at local and - as data coverage is continually increasing - continental scale.

  14. Land use/land cover mapping using multi-scale texture processing of high resolution data

    Science.gov (United States)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  15. Land use/land cover mapping using multi-scale texture processing of high resolution data

    International Nuclear Information System (INIS)

    Wong, S N; Sarker, M L R

    2014-01-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road

  16. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    Science.gov (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  17. Experimental determination of the micro-scale strength and stress-strain relation of an epoxy resin

    DEFF Research Database (Denmark)

    Zike, Sanita; Sørensen, Bent F.; Mikkelsen, Lars Pilgaard

    2016-01-01

    An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments in an en......An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments......-scale (5–6%). The hardening exponent of a power law hardening material was obtained by the use of the J-integral, estimating the strain energy density around the notch. The hardening exponent was found to be within the range of 5–6 and the corresponding micro-scale failure stress was in the range of 220...

  18. Constant-scale natural boundary mapping to reveal global and cosmic processes

    CERN Document Server

    Clark, Pamela Elizabeth

    2013-01-01

    Whereas conventional maps can be expressed as outward-expanding formulae with well-defined central features and relatively poorly defined edges, Constant Scale Natural Boundary (CSNB) maps have well-defined boundaries that result from natural processes and thus allow spatial and dynamic relationships to be observed in a new way useful to understanding these processes. CSNB mapping presents a new approach to visualization that produces maps markedly different from those produced by conventional cartographic methods. In this approach, any body can be represented by a 3D coordinate system. For a regular body, with its surface relatively smooth on the scale of its size, locations of features can be represented by definite geographic grid (latitude and longitude) and elevation, or deviation from the triaxial ellipsoid defined surface. A continuous surface on this body can be segmented, its distinctive regional terranes enclosed, and their inter-relationships defined, by using selected morphologically identifiable ...

  19. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    Science.gov (United States)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  20. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  1. Detailed geomorphological map sheet Bela Palanka at scale 1:100,000

    Directory of Open Access Journals (Sweden)

    Menković Ljubomir

    2011-01-01

    Full Text Available The Geomorphological Map Sheet Bela Palanka is a graphical representation of landforms in the area covered by the Topographical Map Sheet Bela Palanka at scale 1:100,000. The map is published in 2008 by the Serbian Academy of Sciences and Arts (SASA and the SASA Geodynamics Board. It is the first detailed geomorphological map edited in Serbia. This paper presents the methods used in preparing the geomorphological map, the contents and the mode of data presentation, geologic structure, genetic types of landforms and the subtypes, and the geomorphological history since the Neogene.

  2. Mapping Analyte Distributions in Surrogate Nuclear Melt Glass Using Laser-induced Breakdown Spectroscopy and Micro X-Ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Shattan, Michael [Y-12 National Security Complex, Oak Ridge, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States); McIntosh, Kathryn [Univ. of Tennessee, Knoxville, TN (United States); Auxier II, John [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Parigger, Christian [Univ. of Tennessee, Knoxville, TN (United States); Hall, Howard [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-10

    Explore feasibility of portable LIBS and micro-XRF systems as methods of field screening for real debris; Develop a LIBS Capability to rapidly screen beads for production quality control; Complete 3D elemental mapping of surrogate debris to determine uranium and other elemental migration patterns during debris formation

  3. Recent improvements on micro-thermocouple based SThM

    Science.gov (United States)

    Nguyen, TP; Thiery, L.; Teyssieux, D.; Briand, D.; Vairac, P.

    2017-01-01

    The scanning thermal microscope (SThM) has become a versatile tool for local surface temperature mapping or measuring thermal properties of solid materials. In this article, we present recent improvements in a SThM system, based on a micro-wire thermocouple probe associated with a quartz tuning fork for contact strength detection. Some results obtained on an electrothermal micro-hotplate device, operated in active and passive modes, allow demonstrating its performance as a coupled force detection and thermal measurement system.

  4. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  5. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2008-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze the valence states at the nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in a Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample is topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  6. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2017-06-01

    and use no calibration data. To aid research on agricultural production at fine spatial scales in India, we make our annual winter crop maps from 2000–2001 to 2015–2016 at 1 × 1 km2 produced in this study publically available through the NASA Socioeconomic Data and Applications Center (SEDAC hosted by the Center for International Earth Science Information Network (CIESIN at Columbia University. We also make our R script available since it is likely that this method can be used to map smallholder agriculture in other regions across the globe given that our method performed well in disparate agro-ecologies across India.

  7. High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm.

    Science.gov (United States)

    Fan, Kai; Sun, Xingzhi; Tao, Ying; Xu, Linhao; Wang, Chen; Mao, Xianling; Peng, Bo; Pan, Yue

    2010-11-13

    Post-marketing pharmacovigilance is important for public health, as many Adverse Drug Events (ADEs) are unknown when those drugs were approved for marketing. However, due to the large number of reported drugs and drug combinations, detecting ADE signals by mining these reports is becoming a challenging task in terms of computational complexity. Recently, a parallel programming model, MapReduce has been introduced by Google to support large-scale data intensive applications. In this study, we proposed a MapReduce-based algorithm, for common ADE detection approach, Proportional Reporting Ratio (PRR), and tested it in mining spontaneous ADE reports from FDA. The purpose is to investigate the possibility of using MapReduce principle to speed up biomedical data mining tasks using this pharmacovigilance case as one specific example. The results demonstrated that MapReduce programming model could improve the performance of common signal detection algorithm for pharmacovigilance in a distributed computation environment at approximately liner speedup rates.

  8. Building Micro-Foundations for the Routines, Capabilities, and Performance Links

    DEFF Research Database (Denmark)

    Abell, Peter; Felin, Teppo; Foss, Nicolai Juul

    2007-01-01

    a neglect of micro-foundations - is incomplete. There are no mechanisms that work solely on the macro-level, directly connecting routines and capabilities to firm-level outcomes. While routines and capabilities are useful shorthand for complicated patterns of individual action and interaction, ultimately...... they are best understood at the micro-level. Second, we provide a formal model that shows precisely why macro explanation is incomplete and which exemplifies how explicit micro-foundations may be built for notions of routines and capabilities and for how these impact firm performance....

  9. Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2016-10-01

    Full Text Available Remote sensing offers a low-cost method for developing spatially continuous crop production statistics across large areas and through time. Nevertheless, it has been difficult to characterize the production of individual smallholder farms, given that the land-holding size in most areas of South Asia (<2 ha is smaller than the spatial resolution of most freely available satellite imagery, like Landsat and MODIS. In addition, existing methods to map yield require field-level data to develop and parameterize predictive algorithms that translate satellite vegetation indices to yield, yet these data are costly or difficult to obtain in many smallholder systems. To overcome these challenges, this study explores two issues. First, we employ new high spatial (2 m and temporal (bi-weekly resolution micro-satellite SkySat data to map sowing dates and yields of smallholder wheat fields in Bihar, India in the 2014–2015 and 2015–2016 growing seasons. Second, we compare how well we predict sowing date and yield when using ground data, like crop cuts and self-reports, versus using crop models, which require no on-the-ground data, to develop and parameterize prediction models. Overall, sow dates were predicted well (R2 = 0.41 in 2014–2015 and R2 = 0.62 in 2015–2016, particularly when using models that were parameterized using self-report sow dates collected close to the time of planting and when using imagery that spanned the entire growing season. We were also able to map yields fairly well (R2 = 0.27 in 2014–2015 and R2 = 0.33 in 2015–2016, with crop cut parameterized models resulting in the highest accuracies. While less accurate, we were able to capture the large range in sow dates and yields across farms when using models parameterized with crop model data and these estimates were able to detect known relationships between management factors (e.g., sow date, fertilizer, and irrigation and yield. While these results are specific to our study

  10. MicroCT analysis of calcium/phosphorus ratio maps at different bone sites

    International Nuclear Information System (INIS)

    Speller, R.; Pani, S.; Tzaphlidou, M.; Horrocks, J.

    2005-01-01

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of rats, rabbits and lambs using synchrotron microCT. Use of a monoenergetic X-ray beam, as provided by the synchrotron facility, generates accurate 3-D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data were taken at 20keV for each bone sample and calibration phantoms. From the 3-D data sets, multiple 2-D slices were reconstructed with a slice thickness of ∼28μm and converted to Ca/P ratios using the calibration phantom results. Average values for each animal and bone site were estimated. Differences between the same bone sites from different animals are not significant (0.3 -3 ) demonstrating a dependence upon lifestyle and bone use. The spatial distribution of Ca/P was found to be non-uniform for some bones and some animals possibly indicating the structural mechanism for obtaining bone strength

  11. Where to settle--settlement preferences of Mytilus galloprovincialis and choice of habitat at a micro spatial scale.

    Directory of Open Access Journals (Sweden)

    Christina Carl

    Full Text Available The global mussel aquaculture industry uses specialised spat catching and nursery culture ropes made of multi-filament synthetic and natural fibres to optimise settlement and retention of mussels for on-growing. However, the settlement ecology and preferences of mussels are poorly understood and only sparse information exists in a commercial context. This study quantified the settlement preferences of pediveligers and plantigrades of Mytilus galloprovincialis on increasingly complex surfaces and settlement locations at a micro spatial scale on and within ropes under commercial hatchery operating conditions using optical microscopy and X-ray micro-computed tomography (µCT. M. galloprovincialis has clear settlement preferences for more complex materials and high selectivity for settlement sites from the pediveliger through to the plantigrade stage. Pediveligers of M. galloprovincialis initially settle inside specialised culture ropes. Larger pediveligers were located close to the exterior of ropes as they increased in size over time. In contrast, smaller individuals were located deeper inside of the ropes over time. This study demonstrates that X-ray µCT is an excellent non-destructive technique for mapping settlement and attachment sites of individuals as early as one day post settlement, and quantifies the number and location of settled individuals on and within ropes as a tool to understand and optimise settlement in complex multi-dimensional materials and environments.

  12. 'Micro-8' micro-computer system

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Nakahara, Yoshinori; Yamada, Takayuki; Takeuchi, Norio; Koyama, Kinji

    1978-08-01

    The micro-computer Micro-8 system has been developed to organize a data exchange network between various instruments and a computer group including a large computer system. Used for packet exchangers and terminal controllers, the system consists of ten kinds of standard boards including a CPU board with INTEL-8080 one-chip-processor. CPU architecture, BUS architecture, interrupt control, and standard-boards function are explained in circuit block diagrams. Operations of the basic I/O device, digital I/O board and communication adapter are described with definitions of the interrupt ramp status, I/O command, I/O mask, data register, etc. In the appendixes are circuit drawings, INTEL-8080 micro-processor specifications, BUS connections, I/O address mappings, jumper connections of address selection, and interface connections. (author)

  13. LARGE-SCALE INDICATIVE MAPPING OF SOIL RUNOFF

    Directory of Open Access Journals (Sweden)

    E. Panidi

    2017-11-01

    Full Text Available In our study we estimate relationships between quantitative parameters of relief, soil runoff regime, and spatial distribution of radioactive pollutants in the soil. The study is conducted on the test arable area located in basin of the upper Oka River (Orel region, Russia. Previously we collected rich amount of soil samples, which make it possible to investigate redistribution of the Chernobyl-origin cesium-137 in soil material and as a consequence the soil runoff magnitude at sampling points. Currently we are describing and discussing the technique applied to large-scale mapping of the soil runoff. The technique is based upon the cesium-137 radioactivity measurement in the different relief structures. Key stages are the allocation of the places for soil sampling points (we used very high resolution space imagery as a supporting data; soil samples collection and analysis; calibration of the mathematical model (using the estimated background value of the cesium-137 radioactivity; and automated compilation of the map (predictive map of the studied territory (digital elevation model is used for this purpose, and cesium-137 radioactivity can be predicted using quantitative parameters of the relief. The maps can be used as a support data for precision agriculture and for recultivation or melioration purposes.

  14. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors

    Science.gov (United States)

    Dubal, Deepak P.; Gund, Girish S.; Holze, Rudolf; Lokhande, Chandrakant D.

    2013-11-01

    The hierarchical structures of nanosheets, micro-roses and micro-woolen like CuO nanosheets were directly fabricated on stainless steel via surfactant-free and inexpensive chemical bath deposition (CBD) method. Further, these CuO nanostructures demonstrate excellent surface properties like uniform surface morphology, high surface area and uniform pore size distribution of CuO samples. The electrochemical properties of CuO nanostructures have been investigated by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy techniques. The electrochemical studies of the CuO samples show obvious influence of surface properties on the pseudocapacitance performance. The maximum specific capacitances of nanosheets, micro-roses and micro-woolen like CuO nanosheets are found to be 303 Fg-1, 279 Fg-1 and 346 Fg-1, respectively at 5 mV s-1 scan rate. Further, the EIS analysis shows lower ESR value, high power performance, excellent rate as well as frequency response of micro-woolen like CuO sample. The Ragone plot ascertains better power and energy densities of all three CuO nanostructured samples than other electrical energy storage devices. The long-term cycling performance of CuO is examined at different scan rates and the morphology changes of the electrode materials were studied. Present investigation suggests the inexpensive CBD approach for fine-tuning surface properties of oxide materials for energy storage applications.

  15. Successful large-scale hatchery culture of sandfish (Holothuria scabra using micro-algae concentrates as a larval food source

    Directory of Open Access Journals (Sweden)

    Thane A. Militz

    2018-02-01

    Full Text Available This paper reports methodology for large-scale hatchery culture of sandfish, Holothuria scabra, in the absence of live, cultured micro-algae. We demonstrate how commercially-available micro-algae concentrates can be incorporated into hatchery protocols as the sole larval food source to completely replace live, cultured micro-algae. Micro-algae concentrates supported comparable hatchery production of sandfish to that of live, cultured micro-algae traditionally used in large-scale hatchery culture. The hatchery protocol presented allowed a single technician to achieve production of more than 18,800 juvenile sandfish at 40 days post-fertilisation in a low-resource hatchery in Papua New Guinea. Growth of auricularia larvae fed micro-algae concentrates was represented by the equation length (μm = 307.8 × ln(day + 209.2 (R2 = 0.93 while survival over the entire 40 day hatchery cycle was described by the equation survival = 2 × day−1.06 (R2 = 0.74. These results show that micro-algae concentrates have great potential for simplifying hatchery culture of sea cucumbers by reducing infrastructural and technical resources required for live micro-algae culture. The hatchery methodology described in this study is likely to have applicability to low-resource hatcheries throughout the Indo-Pacific and could support regional expansion of sandfish hatchery production.

  16. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  17. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.

    Science.gov (United States)

    Perk, Osman Yavuz; Şeşen, Muhsincan; Gozuacik, Devrim; Koşar, Ali

    2012-09-01

    The objective of this study is to reveal the potential of micro scale hydrodynamic bubbly cavitation for the use of kidney stone treatment. Hydrodynamically generated cavitating bubbles were targeted to the surfaces of 18 kidney stone samples made of calcium oxalate, and their destructive effects were exploited in order to remove kidney stones in in vitro experiments. Phosphate buffered saline (PBS) solution was used as the working fluid under bubbly cavitating conditions in a 0.75 cm long micro probe of 147 μm inner diameter at 9790 kPa pressure. The surface of calcium oxalate type kidney stones were exposed to bubbly cavitation at room temperature for 5 to 30 min. The eroded kidney stones were visually analyzed with a high speed CCD camera and using SEM (scanning electron microscopy) techniques. The experiments showed that at a cavitation number of 0.017, hydrodynamic bubbly cavitation device could successfully erode stones with an erosion rate of 0.31 mg/min. It was also observed that the targeted application of the erosion with micro scale hydrodynamic cavitation may even cause the fracture of the kidney stones within a short time of 30 min. The proposed treatment method has proven to be an efficient instrument for destroying kidney stones.

  18. An investigation on platelet transport during thrombus formation at micro-scale stenosis.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Tovar-Lopez

    Full Text Available This paper reports on an investigation of mass transport of blood cells at micro-scale stenosis where local strain-rate micro-gradients trigger platelet aggregation. Using a microfluidic flow focusing platform we investigate the blood flow streams that principally contribute to platelet aggregation under shear micro-gradient conditions. We demonstrate that relatively thin surface streams located at the channel wall are the primary contributor of platelets to the developing aggregate under shear gradient conditions. Furthermore we delineate a role for red blood cell hydrodynamic lift forces in driving enhanced advection of platelets to the stenosis wall and surface of developing aggregates. We show that this novel microfluidic platform can be effectively used to study the role of mass transport phenomena driving platelet recruitment and aggregate formation and believe that this approach will lead to a greater understanding of the mechanisms underlying shear-gradient dependent discoid platelet aggregation in the context of cardiovascular diseases such as acute coronary syndromes and ischemic stroke.

  19. Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure

    Science.gov (United States)

    Schindler, M.; Prasad, M.

    2017-12-01

    Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.

  20. Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice.

    Science.gov (United States)

    Chaurand, Perrine; Liu, Wei; Borschneck, Daniel; Levard, Clément; Auffan, Mélanie; Paul, Emmanuel; Collin, Blanche; Kieffer, Isabelle; Lanone, Sophie; Rose, Jérôme; Perrin, Jeanne

    2018-03-13

    In this methodological study, we demonstrated the relevance of 3D imaging performed at various scales for the ex vivo detection and location of cerium oxide nanomaterials (CeO 2 -NMs) in mouse lung. X-ray micro-computed tomography (micro-CT) with a voxel size from 14 µm to 1 µm (micro-CT) was combined with X-ray nano-computed tomography with a voxel size of 63 nm (nano-CT). An optimized protocol was proposed to facilitate the sample preparation, to minimize the experimental artifacts and to optimize the contrast of soft tissues exposed to metal-based nanomaterials (NMs). 3D imaging of the NMs biodistribution in lung tissues was consolidated by combining a vast variety of techniques in a correlative approach: histological observations, 2D chemical mapping and speciation analysis were performed for an unambiguous detection of NMs. This original methodological approach was developed following a worst-case scenario of exposure, i.e. high dose of exposure with administration via intra-tracheal instillation. Results highlighted both (i) the non-uniform distribution of CeO 2 -NMs within the entire lung lobe (using large field-of-view micro-CT) and (ii) the detection of CeO 2 -NMs down to the individual cell scale, e.g. macrophage scale (using nano-CT with a voxel size of 63 nm).

  1. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    International Nuclear Information System (INIS)

    Wilson, S A; Jourdain, R P; Owens, S

    2010-01-01

    The projected force–displacement capability of piezoelectric ceramic films in the 20–50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ∼ 1 V µm −1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'

  2. Creating Cycling-Friendly Environments for Children: Which Micro-Scale Factors Are Most Important? An Experimental Study Using Manipulated Photographs

    Science.gov (United States)

    Ghekiere, Ariane; Deforche, Benedicte; Mertens, Lieze; De Bourdeaudhuij, Ilse; Clarys, Peter; de Geus, Bas; Cardon, Greet; Nasar, Jack; Salmon, Jo; Van Cauwenberg, Jelle

    2015-01-01

    Background Increasing participation in transportation cycling represents a useful strategy for increasing children’s physical activity levels. Knowledge on how to design environments to encourage adoption and maintenance of transportation cycling is limited and relies mainly on observational studies. The current study experimentally investigates the relative importance of micro-scale environmental factors for children’s transportation cycling, as these micro-scale factors are easier to change within an existing neighborhood compared to macro-scale environmental factors (i.e. connectivity, land-use mix, …). Methods Researchers recruited children and their parents (n = 1232) via 45 randomly selected schools across Flanders and completed an online questionnaire which consisted of 1) demographic questions; and 2) a choice-based conjoint (CBC) task. During this task, participants chose between two photographs which we had experimentally manipulated in seven micro-scale environmental factors: type of cycle path; evenness of cycle path; traffic speed; traffic density; presence of speed bumps; environmental maintenance; and vegetation. Participants indicated which route they preferred to (let their child) cycle along. To find the relative importance of these micro-scale environmental factors, we conducted Hierarchical Bayes analyses. Results Type of cycle path emerged as the most important factor by far among both children and their parents, followed by traffic density and maintenance, and evenness of the cycle path among children. Among parents, speed limits and maintenance emerged as second most important, followed by evenness of the cycle path, and traffic density. Conclusion Findings indicate that improvements in micro-scale environmental factors might be effective for increasing children’s transportation cycling, since they increase the perceived supportiveness of the physical environment for transportation cycling. Investments in creating a clearly designated

  3. Improvement of aquaponic performance through micro- and macro-nutrient addition.

    Science.gov (United States)

    Ru, Dongyun; Liu, Jikai; Hu, Zhen; Zou, Yina; Jiang, Liping; Cheng, Xiaodian; Lv, Zhenting

    2017-07-01

    Aquaponics is one of the "zero waste" industry in the twenty-first century, and is considered to be one of the major trends for the future development of agriculture. However, the low nitrogen utilization efficiency (NUE) restricted its widely application. To date, many attempts have been conducted to improve its NUE. In the present study, effect of micro- and macro-nutrient addition on performance of tilapia-pak choi aquaponics was investigated. Results showed that the addition of micro- and macro-nutrients improved the growth of plant directly and facilitated fish physiology indirectly, which subsequently increased NUE of aquaponics from 40.42 to 50.64%. In addition, remarkable lower total phosphorus concentration was obtained in aquaponics with micro- and macro-nutrient addition, which was attributed to the formation of struvite. Most of the added micro-nutrients were enriched in plant root, while macro-nutrients mainly existed in water. Moreover, no enrichment of micro- and macro-nutrients in aquaponic products (i.e., fish and plant leaves) was observed, indicating that it had no influence on food safety. The findings here reported manifest that appropriate addition of micro- and macro-nutrients to aquaponics is necessary, and would improve its economic feasibility.

  4. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  5. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Du, Louise Y [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Umoh, Joseph [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Nikolov, Hristo N [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Pollmann, Steven I [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Lee, Ting-Yim [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Holdsworth, David W [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2007-12-07

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 {mu}m, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm{sup -1} and noise of {+-}35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  6. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    International Nuclear Information System (INIS)

    Du, Louise Y; Umoh, Joseph; Nikolov, Hristo N; Pollmann, Steven I; Lee, Ting-Yim; Holdsworth, David W

    2007-01-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 μm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm -1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy

  7. Mapping neighborhood scale survey responses with uncertainty metrics

    Directory of Open Access Journals (Sweden)

    Charles Robert Ehlschlaeger

    2016-12-01

    Full Text Available This paper presents a methodology of mapping population-centric social, infrastructural, and environmental metrics at neighborhood scale. This methodology extends traditional survey analysis methods to create cartographic products useful in agent-based modeling and geographic information analysis. It utilizes and synthesizes survey microdata, sub-upazila attributes, land use information, and ground truth locations of attributes to create neighborhood scale multi-attribute maps. Monte Carlo methods are employed to combine any number of survey responses to stochastically weight survey cases and to simulate survey cases' locations in a study area. Through such Monte Carlo methods, known errors from each of the input sources can be retained. By keeping individual survey cases as the atomic unit of data representation, this methodology ensures that important covariates are retained and that ecological inference fallacy is eliminated. These techniques are demonstrated with a case study from the Chittagong Division in Bangladesh. The results provide a population-centric understanding of many social, infrastructural, and environmental metrics desired in humanitarian aid and disaster relief planning and operations wherever long term familiarity is lacking. Of critical importance is that the resulting products have easy to use explicit representation of the errors and uncertainties of each of the input sources via the automatically generated summary statistics created at the application's geographic scale.

  8. Micro cogeneration in residential scale; Bancada de sistema de cogeracao de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Primo, Ana Rosa Mendes; Magnani, Fabio Santana; Henriquez, Jorge R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Moura, Newton Reis de; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio Ricardo T.S. [Companhia Pernambucana de Gas (COPERGAS), Recife, PE (Brazil)

    2004-07-01

    Cogeneration is very important to spread the use of natural gas in Brazil. Most of the existing cogeneration plants are of considerable size, as used in industries or commercial centers. Places with low demand on electrical or thermal energy (e.g. small industries, blocs of houses, etc.) could also benefit of cogeneration, but there is no available data about micro-cogeneration in Brazil. In order to verify the technical and economical viability of small size systems of cogeneration, FINEP/PETROBRAS/COPERGAS financed a project of micro-cogeneration at the Federal University of Pernambuco (UFPE), involving experiments on a micro turbine and a generator group, both with 30 kW power. The laboratory is also composed by two heat exchangers to regenerate the heat from the micro-turbine and generator group, a single effect absorption chiller, with 10 TR capacity, two thermal storage tanks (for hot and cold water) and a compression split of 5 TR. Data to build performance curves of the equipment will be stored and analyzed, in order to build their performance curves, allowing the overall cogeneration efficiency to be found. Most probable situations of thermal and electric power demands will be simulated. The aim of the simulations is to achieve the optimal situation for micro-cogeneration, which will offer the best efficiency, the lowest cost for buying the equipment and the lowest operational cost. A software was also developed, which optimizes micro-cogeneration systems. (author)

  9. A comparison of multidimensional scaling methods for perceptual mapping

    NARCIS (Netherlands)

    Bijmolt, T.H.A.; Wedel, M.

    Multidimensional scaling has been applied to a wide range of marketing problems, in particular to perceptual mapping based on dissimilarity judgments. The introduction of methods based on the maximum likelihood principle is one of the most important developments. In this article, the authors compare

  10. MicroCT analysis of calcium/phosphorus ratio maps at different bone sites

    Energy Technology Data Exchange (ETDEWEB)

    Speller, R. [Medical Physics and Bioengineering Department, UCL, London, WC1E 6BT (United Kingdom)]. E-mail: rspeller@medphys.ucl.ac.uk; Pani, S. [Department of Physics, University of Trieste (Italy); Tzaphlidou, M. [Lab Medical Physics, Medical School, University of Ioannina, 45110 Ioannina (Greece); Horrocks, J. [Clinical Physics Group, St Bartholomew' s Hospital, London, EC1A 6BT (United Kingdom)

    2005-08-11

    The Ca/P ratio was measured in cortical bone samples from the femoral neck, front and rear tibia of rats, rabbits and lambs using synchrotron microCT. Use of a monoenergetic X-ray beam, as provided by the synchrotron facility, generates accurate 3-D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Data were taken at 20keV for each bone sample and calibration phantoms. From the 3-D data sets, multiple 2-D slices were reconstructed with a slice thickness of {approx}28{mu}m and converted to Ca/P ratios using the calibration phantom results. Average values for each animal and bone site were estimated. Differences between the same bone sites from different animals are not significant (0.3

  11. The performance of a superconducting micro-undulator prototype

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Jiang, Z.Y.; Ingold, G.; Yu, L.H.; Sampson, W.B.

    1990-05-01

    We report on the performance of a prototype of a super-ferric micro-undulator. The micro-undulator consists of a continuous winding of niobium-titanium wire wound on a low carbon steel yoke. It is about 3 periods long with a period of 8.8 mm and a gap of 4.4 mm. The undulator achieves the a peak magnetic field on axis of over 0.5 Tesla. Asymmetry of the field pattern due to a dipole component was identified, analyzed and a correction has been applied to the undulator ends to produce a symmetric field distribution. Within the precision of the measurement the field pattern produced by the super-ferric undulator needed no correction. 4 refs., 7 figs

  12. Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images

    International Nuclear Information System (INIS)

    Liu, Zhenyu; Wu, Huiying

    2016-01-01

    Highlights: • The complex porous domain has been reconstructed with the micro CT scan images. • Pore-scale numerical model based on LB method has been established. • The correlations for flow and heat transfer were derived from the predictions. • The numerical approach developed in this work is suitable for complex porous media. - Abstract: This paper presents the numerical study on fluid flow and heat transfer in reconstructed porous media at the pore-scale with the double-population thermal lattice Boltzmann (LB) method. The porous geometry was reconstructed using micro-tomography images from micro-CT scanner. The thermal LB model was numerically tested before simulation and a good agreement was achieved by compared with the existing results. The detailed distributions of velocity and temperature in complex pore spaces were obtained from the pore-scale simulation. The correlations for flow and heat transfer in the specific porous media sample were derived based on the numerical results. The numerical method established in this work provides a promising approach to predict pore-scale flow and heat transfer characteristics in reconstructed porous domain with real geometrical effect, which can be extended for the continuum modeling of the transport process in porous media at macro-scale.

  13. Micro-scale environment and mental health in later life: Results from the Cognitive Function and Ageing Study II (CFAS II).

    Science.gov (United States)

    Wu, Yu-Tzu; Prina, A Matthew; Jones, Andy; Barnes, Linda E; Matthews, Fiona E; Brayne, Carol

    2017-08-15

    Poor micro-scale environmental features, such as graffiti and broken windows, have been associated with crime and signs of social disorder with a potential impact on mental health. The aim of this study is to investigate the association between micro-scale environment and mental health problems in later life, including cognitive (cognitive impairment and dementia) and common mental disorders (depressive and anxiety symptoms). The method of visual image audits was used to collect micro-scale environmental data for 3590 participants in the Cognitive Function and Ageing Study II, a population-based multicentre cohort of people aged 65 or above in England. Multilevel logistic regression was used to examine the associations between the quality of micro-scale environment and mental health problems taking into account urban/rural difference. Poor quality of micro-scale environment was associated with nearly 20% increased odds of depressive (OR: 1.19; 95% CI: 0.99, 1.44) and anxiety symptoms (OR: 1.17; 95% CI: 0.99, 1.38) while the direction of association for cognitive disorders differed across urban and rural settings. Although higher odds of cognitive disorders were found in rural settings, living in a poor quality environment was associated with nearly twice higher odds of cognitive impairment (OR: 1.88; 95% CI: 1.18, 2.97) in urban conurbations but 20% lower odds in rural areas (OR: 0.80; 95% CI: 0.57, 1.11). The causal direction could not be fully determined due to the cross-sectional nature of the data. The visual nature of the environmental assessment tool means it likely does not fully capture features related to the availability of local support services, or opportunities for social participation and interaction. The quality of micro-scale environment appears to be important to mental health in older people. Interventions may incorporate the environmental aspect to reduce cognitive and common mental disorders. Copyright © 2017 The Authors. Published by

  14. On Study of Application of Micro-reactor in Chemistry and Chemical Field

    Science.gov (United States)

    Zhang, Yunshen

    2018-02-01

    Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.

  15. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    Science.gov (United States)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different

  16. Performing Mimetic Mapping: A Non-Visualisable Map of the Suzhou River Area of Shanghai

    Directory of Open Access Journals (Sweden)

    Anastasia Karandinou

    2014-07-01

    Full Text Available This paper questions issues concerning the mapping of experience, through the concept of mimesis – the creative re-performance of the site experience onto the map. The place mapped is the Suzhou River area, a significant part of Shanghai, the former boundary between the British and American Settlements, and an ever-changing and transforming territory. Through the detailed description of the mapping processes, we analyse the position of this particular map within contemporary discourse about mapping. Here, we question the purpose of the process, the desired outcome, the consciousness of the significance of each step/event, and the possible significance of the final traces that the mapping leaves behind. Although after the mapping had been carried out, the procedure was analysed, post-rationalised, and justified through its partial documentation (as part of an educational process, this paper questions the way and the reason for these practices (the post-rationalising of the mapping activity, justifying the strategy, etc., and their possible meaning, purpose, demand or context. Thus we conclude that the subject matter is not the final outcome of an object or ‘map’; there is no final map to be exhibited. What this paper brings forth is the mapping as an event, an action performed by the embodied experience of the actual place and by the trans-local materiality of the tools and elements involved in the process of its making.

  17. Evaluation of local free carrier concentrations in individual heavily-doped GaN:Si micro-rods by micro-Raman spectroscopy

    Science.gov (United States)

    Mohajerani, M. S.; Khachadorian, S.; Schimpke, T.; Nenstiel, C.; Hartmann, J.; Ledig, J.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-02-01

    Three-dimensional III-nitride micro-structures are being developed as a promising candidate for the future opto-electrical devices. In this study, we demonstrate a quick and straight-forward method to locally evaluate free-carrier concentrations and a crystalline quality in individual GaN:Si micro-rods. By employing micro-Raman mapping and analyzing lower frequency branch of A1(LO)- and E1(LO)-phonon-plasmon-coupled modes (LPP-), the free carrier concentrations are determined in axial and planar configurations, respectively. Due to a gradual doping profile along the micro-rods, a highly spatially resolved mapping on the sidewall is exploited to reconstruct free carrier concentration profile along the GaN:Si micro-rods. Despite remarkably high free carrier concentrations above 1 × 1020 cm-3, the micro-rods reveal an excellent crystalline quality, without a doping-induced stress.

  18. ANALYSIS OF RADAR AND OPTICAL SPACE BORNE DATA FOR LARGE SCALE TOPOGRAPHICAL MAPPING

    Directory of Open Access Journals (Sweden)

    W. Tampubolon

    2015-03-01

    Full Text Available Normally, in order to provide high resolution 3 Dimension (3D geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term “Rapid Mapping”. In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar or the usage of the GCPs in both, the optical and the

  19. The research of selection model based on LOD in multi-scale display of electronic map

    Science.gov (United States)

    Zhang, Jinming; You, Xiong; Liu, Yingzhen

    2008-10-01

    This paper proposes a selection model based on LOD to aid the display of electronic map. The ratio of display scale to map scale is regarded as a LOD operator. The categorization rule, classification rule, elementary rule and spatial geometry character rule of LOD operator setting are also concluded.

  20. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  1. Tracking and visualization of space-time activities for a micro-scale flu transmission study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-07

    Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study

  2. An Algorithm Creating Thumbnail for Web Map Services Based on Information Entropy and Trans-scale Similarity

    Directory of Open Access Journals (Sweden)

    CHENG Xiaoqiang

    2017-11-01

    Full Text Available Thumbnail can greatly increase the efficiency of browsing pictures,videos and other image resources and improve the user experience prominently. Map service is a kind of graphic resource coupling spatial information and representation scale,its crafting,retrieval and management will not function well without the support of thumbnail. Sophisticated designed thumbnails bring users vivid first impressions and help users make efficient exploration. On the contrast,coarse thumbnail cause negative emotion and discourage users to explore the map service positively. Inspired by video summarization,key position and key scale of web map service were proposed. Meanwhile,corresponding quantitative measures and an automatic algorithm were drawn up and implemented. With the help of this algorithm,poor visual quality,lack of map information and low automation of current thumbnails was solved successfully. Information entropy was used to determine areas richer in content and tran-scale similarity was calculated to judge at which scale the appearance of the map service has changed drastically,and finally a series of static pictures were extracted which can represent the content of the map service. Experimental results show that this method produced medium-sized,content-rich and well-representative thumbnails which effectively reflect the content and appearance of map service.

  3. GeneRecon Users' Manual — A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample of th...

  4. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  5. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography

    Directory of Open Access Journals (Sweden)

    Geon Hee Kim

    2012-04-01

    Full Text Available A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect.

  6. Investigations on the micro-scale surface interactions at the tool and workpiece interface in micro-manufacturing of bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Peker, Mevlut Fatih

    Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate

  7. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    Science.gov (United States)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  8. Investigations of Slip Effect on the Performance of Micro Gas Bearings and Stability of Micro Rotor-Bearing Systems

    Directory of Open Access Journals (Sweden)

    Jieyu Chen

    2007-08-01

    Full Text Available Incorporating the velocity slip effect of the gas flow at the solid boundary, theperformance and dynamic response of a micro gas-bearing-rotor system are investigated inthis paper. For the characteristic length scale of the micro gas bearing, the gas flow in thebearing resides in the slip regime rather than in the continuum regime. The modifiedReynolds equations of different slip models are presented. Gas pressure distribution and loadcarrying capacity are obtained by solving the Reynolds equations with finite differentmethod (FDM. Comparing results from different models, it is found that the second orderslip model agrees reasonably well with the benchmarked solutions obtained from thelinearized Boltzmann equation. Therefore, dynamic coefficients derived from the secondorder slip model are employed to evaluate the linear dynamic stability and vibrationcharacteristics of the system. Compared with the continuum flow model, the slip effectreduces dynamic coefficients of the micro gas bearing, and the threshold speed for stableoperation is consequently raised. Also, dynamic analysis shows that the system responseschange with variation of the operating parameters including the eccentricity ratio, therotational speed, and the unbalance ratio.

  9. Electrical current at micro-/macro-scale of undoped and nitrogen-doped MWPECVD diamond films

    Science.gov (United States)

    Cicala, G.; Velardi, L.; Senesi, G. S.; Picca, R. A.; Cioffi, N.

    2017-12-01

    Chemical, structural, morphological and micro-/macro-electrical properties of undoped and nitrogen-(N-)doped diamond films are determined by X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, field emission scanning electron microscopy, atomic force microscopy, scanning capacitance microscopy (SCM) and two points technique for I-V characteristics, respectively. The characterization results are very useful to examine and understand the relationship among these properties. The effect of the nitrogen incorporation in diamond films is investigated through the evolution of the chemical, structural, morphological and topographical features and of the electrical behavior. The distribution of the electrical current is first assessed at millimeter scale on the surface of diamond films and then at micrometer scale on small regions in order to establish the sites where the carriers preferentially move. Specifically, the SCM images indicate a non-uniform distribution of carriers on the morphological structures mainly located along the grain boundaries. A good agreement is found by comparing the electrical currents at the micro- and macro-scale. This work aims to highlight phenomena such as photo- and thermionic emission from N-doped diamond useful for microelectronic engineering.

  10. Micro-scale mass-transfer variations during electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sutija, D.P.

    1991-08-01

    Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.

  11. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    Energy Technology Data Exchange (ETDEWEB)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Heard, P J; Scott, T B, E-mail: mexas@bristol.ac.u [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom)

    2009-08-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  12. Residual stress relaxation measurements across interfaces at macro-and micro-scales using slitting and DIC

    International Nuclear Information System (INIS)

    Blair, A; Daynes, N; Hamilton, D; Horne, G; Hodgson, D Z L; Shterenlikht, A; Heard, P J; Scott, T B

    2009-01-01

    In this paper digital image correlation is used to measure relaxation of residual stresses across an interface. On the macro scale the method is applied to a tri-layer bonded aluminium sample, where the middle layer is in tension and the top and the bottom layers are in compression. High contrast speckle pattern was sprayed onto the surface. The relaxation was done with the slitting saw. Three dimensional image correlation was used. On the micro scale the technique was applied to a heat treated large grain brass loaded in tension. Mechanical and electro polishing was used for surface preparation. A focused ion beam was used for slitting across a grain boundary and for imaging. Grain orientation was measured using electron back-scattering diffraction. Two dimensional image correlation was employed. In all macro- and micro-scale experiments the range of measured relaxation was sub-pixel, almost at the limit of the resolution of the image correlation algorithms. In the macro-scale experiments, the limiting factor was low residual stress, due to low shear strength of the Araldite glue used for bonding. Finite element simulation of the relaxation agreed only qualitatively with the experimental results at both size scales. The methodology is intended for use with inverse methods, i.e. the measured relaxation is applied as the boundary conditions to an appropriate FE model which produces stresses equal to the relaxed residual stresses, but with opposite sign. The main conclusion is that the digital image correlation method could be used to measure relaxation caused by slitting in heterogeneous materials and structures at both macro- and micro-scales. However, the repeatability of the techniques needs to be improved before residual stresses can be determined confidently. Acknowledgments The authors gratefully acknowledge Airbus UK for provision of materials. They thank Dr Richard Burguete, Airbus UK, and Prof Peter Flewitt, Department of Physics, University of Bristol, for

  13. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  14. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    Science.gov (United States)

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  15. Performance analysis of different database in new internet mapping system

    Science.gov (United States)

    Yao, Xing; Su, Wei; Gao, Shuai

    2017-03-01

    In the Mapping System of New Internet, Massive mapping entries between AID and RID need to be stored, added, updated, and deleted. In order to better deal with the problem when facing a large number of mapping entries update and query request, the Mapping System of New Internet must use high-performance database. In this paper, we focus on the performance of Redis, SQLite, and MySQL these three typical databases, and the results show that the Mapping System based on different databases can adapt to different needs according to the actual situation.

  16. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  17. Enhanced nonlinearity interval mapping scheme for high-performance simulation-optimization of watershed-scale BMP placement

    Science.gov (United States)

    Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn

    2015-03-01

    Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.

  18. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading

    Science.gov (United States)

    Hu, Qiao; Wu, Han; Sun, Jia; Yan, Donghang; Gao, Yongli; Yang, Junliang

    2016-02-01

    Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays with great potential applications in flexible electronic and optoelectronic devices.Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays

  19. Noise pollution mapping approach and accuracy on landscape scales.

    Science.gov (United States)

    Iglesias Merchan, Carlos; Diaz-Balteiro, Luis

    2013-04-01

    Noise mapping allows the characterization of environmental variables, such as noise pollution or soundscape, depending on the task. Strategic noise mapping (as per Directive 2002/49/EC, 2002) is a tool intended for the assessment of noise pollution at the European level every five years. These maps are based on common methods and procedures intended for human exposure assessment in the European Union that could be also be adapted for assessing environmental noise pollution in natural parks. However, given the size of such areas, there could be an alternative approach to soundscape characterization rather than using human noise exposure procedures. It is possible to optimize the size of the mapping grid used for such work by taking into account the attributes of the area to be studied and the desired outcome. This would then optimize the mapping time and the cost. This type of optimization is important in noise assessment as well as in the study of other environmental variables. This study compares 15 models, using different grid sizes, to assess the accuracy of the noise mapping of the road traffic noise at a landscape scale, with respect to noise and landscape indicators. In a study area located in the Manzanares High River Basin Regional Park in Spain, different accuracy levels (Kappa index values from 0.725 to 0.987) were obtained depending on the terrain and noise source properties. The time taken for the calculations and the noise mapping accuracy results reveal the potential for setting the map resolution in line with decision-makers' criteria and budget considerations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism.

    Directory of Open Access Journals (Sweden)

    Shunji Natsuka

    Full Text Available Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA- glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.

  1. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    Science.gov (United States)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  2. Study of squeeze film damping in a micro-beam resonator based on micro-polar theory

    Directory of Open Access Journals (Sweden)

    Mina Ghanbari

    Full Text Available In this paper, squeeze film damping in a micro-beam resonator based on micro-polar theory has been investigated. The proposed model for this study consists of a clamped-clamped micro-beam bounded between two fixed layers. The gap between the micro-beam and layers is filled with air. As fluid behaves differently in micro scale than macro, the micro-scale fluid field in the gap has been modeled based on micro-polar theory. Equation of motion governing transverse deflection of the micro- beam based on modified couple stress theory and also non-linear Reynolds equation of the fluid field based on micropolar theory have been non-dimensionalized, linearized and solved simultaneously in order to calculate the quality factor of the resonator. The effect of micropolar parameters of air on the quality factor has been investigated. The quality factor of the of the micro-beam resonator for different values of non-dimensionalized length scale of the beam, squeeze number and also non-dimensionalized pressure has been calculated and compared to the obtained values of quality factor based on classical theory.

  3. Two micro-models of tourism capitalism and the (re)scaling of state-business relations

    NARCIS (Netherlands)

    Erkuş-Öztürk, H.; Terhorst, P.

    2011-01-01

    This paper aims to show that (i) there are two micro-models of tourism capitalism in Antalya (Turkey) and (ii) different trajectories of (re)scaling of state-business relations form an integral part of each model of tourism capitalism. The paper bridges two debates in the literature that generally

  4. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  5. Transient thermal performance analysis of micro heat pipes

    International Nuclear Information System (INIS)

    Liu, Xiangdong; Chen, Yongping

    2013-01-01

    A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. -- Highlights: • Transient thermal response of micro heat pipe is simulated by an improved model. • Control theory is introduced to quantify the thermal response of micro heat pipe. • Evaluation criteria are proposed to represent thermal response of micro heat pipe. • Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated

  6. Micro- and macro-scale self-organization in a dissipative plasma

    International Nuclear Information System (INIS)

    Skoric, M.M.; Sato, T.; Maluckov, A.; Jovanovic, M.S.

    1998-10-01

    We study a nonlinear three-wave interaction in an open dissipative model of stimulated Raman backscattering in a plasma. A hybrid kinetic-fluid scheme is proposed to include anomalous kinetic dissipation due to electron trapping and plasma wave breaking. We simulate a finite plasma with open boundaries and vary a transport parameter to examine a route to spatio-temporal complexity. An interplay between self-organization at micro (kinetic) and macro (wave/fluid) scales is revealed through quasi-periodic and intermittent evolution of dynamical variables, dissipative structures and related entropy rates. An evidence that entropy rate extrema correspond to structural transitions is found. (author)

  7. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series

    Directory of Open Access Journals (Sweden)

    Beatriz Bellón

    2017-06-01

    Full Text Available In response to the need for generic remote sensing tools to support large-scale agricultural monitoring, we present a new approach for regional-scale mapping of agricultural land-use systems (ALUS based on object-based Normalized Difference Vegetation Index (NDVI time series analysis. The approach consists of two main steps. First, to obtain relatively homogeneous land units in terms of phenological patterns, a principal component analysis (PCA is applied to an annual MODIS NDVI time series, and an automatic segmentation is performed on the resulting high-order principal component images. Second, the resulting land units are classified into the crop agriculture domain or the livestock domain based on their land-cover characteristics. The crop agriculture domain land units are further classified into different cropping systems based on the correspondence of their NDVI temporal profiles with the phenological patterns associated with the cropping systems of the study area. A map of the main ALUS of the Brazilian state of Tocantins was produced for the 2013–2014 growing season with the new approach, and a significant coherence was observed between the spatial distribution of the cropping systems in the final ALUS map and in a reference map extracted from the official agricultural statistics of the Brazilian Institute of Geography and Statistics (IBGE. This study shows the potential of remote sensing techniques to provide valuable baseline spatial information for supporting agricultural monitoring and for large-scale land-use systems analysis.

  8. Superimpose methods for uncooled infrared camera applied to the micro-scale thermal characterization of composite materials

    Science.gov (United States)

    Morikawa, Junko

    2015-05-01

    The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.

  9. Research on Fiber Micro-Surfacing Mixture Design and Pavement Performance in Interchange’s Connections

    Directory of Open Access Journals (Sweden)

    Wu Zhaoyang

    2015-01-01

    Full Text Available In order to use the micro-surfacing which is the existing micro-surfacing technology guide that has some technical defects, the method to determine the optimal dosage of emulsified asphalt and best whetstone is not very reasonable, and it impedes the application and development of micro-surfacing technology to improve the performance of the pavement. In this paper, the “graphical method” is first used to determine the optimal dosage range of emulsified asphalt. Nowadays, a large number of expressways reach the stage of repair and maintenance. Interchange ramp exit and entrance are always the accident-prone sections and, it’s easy to over-look the pavement’s skid resistance of those areas. Micro-surfacing can significantly improve the performance of pavement, especially the skid resistance. Verified with laboratory tests, it recommends that the dosage of emulsified asphalt corresponding to the peak of flexural strain measured with low temperature bending test as OAC of micro-surfacing mixture shows technical superiority. The use of fiber micro-surfacing at the ramp’s exit and entrance can reduce the braking distance.

  10. Digital holographic setups for phase object measurements in micro and macro scale

    Directory of Open Access Journals (Sweden)

    Lédl Vít

    2015-01-01

    Full Text Available The measurement of properties of so called phase objects is being solved for more than one Century starting probably with schlieren technique 1. Classical interferometry served as a great measurement tool for several decades and was replaced by holographic interferometry, which disposes with many benefits when compared to classical interferometry. Holographic interferometry undergone an enormous development in last decade when digital holography has been established as a standard technique and most of the drawbacks were solved. The paper deals with scope of the huge applicability of digital holographic interferometry in heat and mass transfer measurement from micro to macro scale and from simple 2D measurement up to complex tomographic techniques. Recently the very complex experimental setups are under development in our labs combining many techniques leading to digital holographic micro tomography methods.

  11. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim

    2017-01-01

    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  12. Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale

    International Nuclear Information System (INIS)

    Arnaud, A; Boughaleb, J; Monfray, S; Boeuf, F; Skotnicki, T; Cugat, O

    2015-01-01

    Bimetallic strip heat engines are energy harvesters that exploit the thermo-mechanical properties of bistable bimetallic membranes to convert heat into mechanical energy. They thus represent a solution to transform low-grade heat into electrical energy if the bimetallic membrane is coupled with an electro-mechanical transducer. The simplicity of these devices allows us to consider their miniaturization using MEMS fabrication techniques. In order to design and optimize these devices at the macro-scale and micro-scale, this article proposes an explanation of the origin of the thermal snap-through by giving the expressions of the constitutive equations of composite beams. This allows us to evaluate the capability of bimetallic strips to convert heat into mechanical energy whatever their size is, and to give the theoretical thermo-mechanical efficiencies which can be obtained with these harvesters. (paper)

  13. Performance Comparison of OpenMP, MPI, and MapReduce in Practical Problems

    Directory of Open Access Journals (Sweden)

    Sol Ji Kang

    2015-01-01

    Full Text Available With problem size and complexity increasing, several parallel and distributed programming models and frameworks have been developed to efficiently handle such problems. This paper briefly reviews the parallel computing models and describes three widely recognized parallel programming frameworks: OpenMP, MPI, and MapReduce. OpenMP is the de facto standard for parallel programming on shared memory systems. MPI is the de facto industry standard for distributed memory systems. MapReduce framework has become the de facto standard for large scale data-intensive applications. Qualitative pros and cons of each framework are known, but quantitative performance indexes help get a good picture of which framework to use for the applications. As benchmark problems to compare those frameworks, two problems are chosen: all-pairs-shortest-path problem and data join problem. This paper presents the parallel programs for the problems implemented on the three frameworks, respectively. It shows the experiment results on a cluster of computers. It also discusses which is the right tool for the jobs by analyzing the characteristics and performance of the paradigms.

  14. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  15. Carbon budgets of biological soil crusts at micro-, meso-, and global scales

    Science.gov (United States)

    Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina

    2016-01-01

    The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

  16. Mapping of micro and Small branch of industrial enterprises located in the cities of Agudo and Silveira Martins – RS

    Directory of Open Access Journals (Sweden)

    Carla Hartmann Sturm

    2016-06-01

    Full Text Available In the development of a country are the companies responsible for creating jobs, pay taxes and thus cause the economic and regional development. In Brazil, most of these institutions is made up of micro enterprises and small that often struggling to survive in the market. Therefore, it is necessary investments and public incentives to encourage their development making them competitive. In this sense, this article aims to develop a mapping of micro and small enterprises in the industrial sector in the cities of Agudo and Silveira Martins – Rio Grande do Sul (RS. For this, we used a descriptive research on the purposes and literature as to the means being prepared a questionnaire for collecting data from the sample studied. As results obtained ten micro companies and three small businesses were found in Agudo – RS, and the main industries are the timber industry and the manufacture of bakery products, influenced 65.5% of the employees of micro and small companies analyzed in the municipality. Already in Silveira Martins – RS were found seven micro and small enterprises, where six are classified as micro company and only one as small business. It was found also that the main industrial branch is the timber sector (six companies, in which 96% of employees work in any activity related to wood processing.

  17. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle

    International Nuclear Information System (INIS)

    Al Jubori, Ayad; Daabo, Ahmed; Al-Dadah, Raya K.; Mahmoud, Saad; Ennil, Ali Bahr

    2016-01-01

    . Such results are better than other studies in the literature and highlight the potential of the integrated approach for accurate prediction of the organic Rankine cycle performance based on micro-scale axial and radial-inflow turbines.

  18. Principles of soil mapping of a megalopolis with St. Petersburg as an example

    Science.gov (United States)

    Aparin, B. F.; Sukhacheva, E. Yu.

    2014-07-01

    For the first time, a soil map of St. Petersburg has been developed on a scale of 1 : 50000 using MicroStation V8i software. The legend to this map contains more than 60 mapping units. The classification of urban soils and information on the soil cover patterns are principally new elements of this legend. New concepts of the urbanized soil space and urbopedocombinations have been suggested for soil mapping of urban territories. The typification of urbopedocombinations in St. Petersburg has been performed on the basis of data on the geometry and composition of the polygons of soils and nonsoil formations. The ratio between the areas of soils and nonsoil formations and their spatial distribution patterns have been used to distinguish between six types of the urbanized soil space. The principles of classification of the soils of urban territories have been specified, and a separate order of pedo-allochthonous soils has been suggested for inclusion into the Classification and Diagnostic System of Russian Soils (2004). Six types of pedo-allochthonous soils have been distinguished on the basis of data on their humus and organic horizons and the character of the underlying mineral substrate.

  19. Habitat Scale Mapping of Fisheries Ecosystem Service Values in Estuaries

    Directory of Open Access Journals (Sweden)

    Timothy G. O'Higgins

    2010-12-01

    Full Text Available Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information, and the lack of standardization in methodology are major obstacles to applying the ecosystem-services approach at the estuary scale. We present a standardized method that combines habitat maps and habitat-faunal associations to estimate ecosystem service values for recreational and commercial fisheries in estuaries. Three case studies in estuaries on the U.S. west coast (Yaquina Bay, Oregon, east coast (Lagoon Pond, Massachusetts, and the Gulf of Mexico (Weeks Bay, Alabama are presented to illustrate our method's rigor and limitations using available data. The resulting spatially explicit maps of fisheries ecosystem service values show within and between estuary variations in the value of estuarine habitat types that can be used to make better informed resource-management decisions.

  20. A new multiscale model to describe a modified Hall-Petch relation at different scales for nano and micro materials

    Science.gov (United States)

    Fadhil, Sadeem Abbas; Alrawi, Aoday Hashim; Azeez, Jazeel H.; Hassan, Mohsen A.

    2018-04-01

    In the present work, a multiscale model is presented and used to modify the Hall-Petch relation for different scales from nano to micro. The modified Hall-Petch relation is derived from a multiscale equation that determines the cohesive energy between the atoms and their neighboring grains. This brings with it a new term that was originally ignored even in the atomistic models. The new term makes it easy to combine all other effects to derive one modified equation for the Hall-Petch relation that works for all scales together, without the need to divide the scales into two scales, each scale with a different equation, as it is usually done in other works. Due to that, applying the new relation does not require a previous knowledge of the grain size distribution. This makes the new derived relation more consistent and easier to be applied for all scales. The new relation is used to fit the data for Copper and Nickel and it is applied well for the whole range of grain sizes from nano to micro scales.

  1. Radon risk mapping of the Czech Republic on a scale 1:50000

    International Nuclear Information System (INIS)

    Barnet, I.; Miksova, J.; Tomas, R.; Karenova, J.

    2000-01-01

    A new type of radon risk maps on a scale 1:50000 was published in the Czech Republic. Maps are based on the vectorized contours of' geological units and rock types and field soil gas radon measurements from the radon database. Radon risk is expressed in four categories. More detailed topography enables to predict the radon risk from bedrock in the intravilans of villages and towns. (author)

  2. Open quantum maps from complex scaling of kicked scattering systems

    Science.gov (United States)

    Mertig, Normann; Shudo, Akira

    2018-04-01

    We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.

  3. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    Science.gov (United States)

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector's vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL ("PXL") sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ˜3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.

  4. miRBase: integrating microRNA annotation and deep-sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  5. Large scale mapping: an empirical comparison of pixel-based and ...

    African Journals Online (AJOL)

    In the past, large scale mapping was carried using precise ground survey methods. Later, paradigm shift in data collection using medium to low resolution and, recently, high resolution images brought to bear the problem of accurate data analysis and fitness-for-purpose challenges. Using high resolution satellite images ...

  6. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    International Nuclear Information System (INIS)

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-01-01

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge

  7. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Majeed, Asif [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad, A. K (Pakistan)

    2015-03-15

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  8. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries

    Science.gov (United States)

    Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio

    2017-10-01

    Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe

  9. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    Science.gov (United States)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by

  10. Investigation of Size Effects to the Mixing Performance on the X-shaped Micro-Channels

    Directory of Open Access Journals (Sweden)

    S Tu

    2016-09-01

    Full Text Available Due to the developing of micro-electro-mechanical-system, MEMS, the fabrication of the microminiaturization devices becomes obviously important. The advances in the basic understanding of fluid physics have opened an era of application of fluid dynamics systems using microchannels. The purpose of this study is to research the flow transport phenomenon by employing different kinds of micro-channel sizing in X-shaped micro-channels. As the working fluid, water is injected to microchannel at different mass flow rate. Over a wide range of flow condition, 1.06 < Re < 514, in X-shaped micro-channels, the mixture performances of numerical simulation, flow visualization, and temperature distribution remain the same. At the same mass flow rate as the Reynolds number below 112.53, the biggest channel size had the slowest flow velocity and got the best mixing performance; as the Reynolds number above 112.53, the smaller the channel sizing, the lower the pressure drops and the faster velocity becomes. The transition form early from laminar flow, the unsteady flow is an advantage for mixing in the limited mixing area, therefore 0.7 mm got the best mixing performance. It is clear that the size of the channel plays an important role in the X-shaped micro-channels.

  11. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, Emmanuel John M.; Barritt, Sally D. [Department of Earth Systems Analysis, International Institute for Geo-information Science and Earth Observation (ITC), Enschede (Netherlands); Wibowo, Hendro; Sumintadireja, Prihadi [Laboratory of Volcanology and Geothermal, Geology Department, Institute of Technology Bandung (ITB), Bandung (Indonesia)

    2008-06-15

    Conceptual modeling and predictive mapping of potential for geothermal resources at the regional-scale in West Java are supported by analysis of the spatial distribution of geothermal prospects and thermal springs, and their spatial associations with geologic features derived from publicly available regional-scale spatial data sets. Fry analysis shows that geothermal occurrences have regional-scale spatial distributions that are related to Quaternary volcanic centers and shallow earthquake epicenters. Spatial frequency distribution analysis shows that geothermal occurrences have strong positive spatial associations with Quaternary volcanic centers, Quaternary volcanic rocks, quasi-gravity lows, and NE-, NNW-, WNW-trending faults. These geological features, with their strong positive spatial associations with geothermal occurrences, constitute spatial recognition criteria of regional-scale geothermal potential in a study area. Application of data-driven evidential belief functions in GIS-based predictive mapping of regional-scale geothermal potential resulted in delineation of high potential zones occupying 25% of West Java, which is a substantial reduction of the search area for further exploration of geothermal resources. The predicted high potential zones delineate about 53-58% of the training geothermal areas and 94% of the validated geothermal occurrences. The results of this study demonstrate the value of regional-scale geothermal potential mapping in: (a) data-poor situations, such as West Java, and (b) regions with geotectonic environments similar to the study area. (author)

  12. Efficient digitalization method for dental restorations using micro-CT data.

    Science.gov (United States)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-15

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  13. Efficient digitalization method for dental restorations using micro-CT data

    Science.gov (United States)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-01

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  14. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  15. Performance of Loan Repayment Determinants in Ethiopian Micro Finance - An Analysis

    Directory of Open Access Journals (Sweden)

    Shaik Abdul Majeeb PASHA

    2014-05-01

    Full Text Available Micro finance involves the provision of micro-credit, savings, and other services to the poor that are excluded by the commercial banks for collateral and other reasons. Microfinance is relatively new to Ethiopia and came to existence during 1994-95. Out of which Sidama Micro Finance Institution (SMFI is one among 31Micro Finance Institutions (MFIs to serve needy people in Ethiopia. Based on this researchers’ intended to study major socio- economic factors and loan related factors that determines loan repayment performance of borrowers in SMFI. In fact, the identifying and analyzing such determining factors of loan repayment rate is vital in the achievement of profitability and sustainability of MFIs. In this connection, researchers’ collected data from primary and secondary resources and analyzed by using Binary logistic model is used. Through the study 14 determinants’ are selected for evaluation, out of which 9 variables are significant and remaining insignificant are found. Based on the analysis, researchers are recommended that proper training should be provided, reasonable amount of loan which should be useful to their business. Further, more age people and well business experience people can able to repay their loan amount` timely to micro finance institution.

  16. Ultra-thin lithium micro-batteries. Performances and applications; Microaccumulateurs ultra minces au lithium. Performances et applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.; Terrat, J.P. [Hydromecanique et frottement (HEF), 42 - Andrezieux Boutheon (France); Levasseur, A.; Vinatier, P.; Meunier, G. [Centre National de la Recherche Scientifique (CNRS), 33 - Talence (France). Institut de Chimie de la Matiere Condensee et Physique de Bordeaux

    1996-12-31

    This short paper (abstract) describes the characteristics and performances of prototypes of ultra-thin lithium micro-batteries (thickness < 0.2 mm) which can be incorporated into microelectronic circuits. (J.S.)

  17. Ultra-thin lithium micro-batteries. Performances and applications; Microaccumulateurs ultra minces au lithium. Performances et applications

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M; Terrat, J P [Hydromecanique et frottement (HEF), 42 - Andrezieux Boutheon (France); Levasseur, A; Vinatier, P; Meunier, G [Centre National de la Recherche Scientifique (CNRS), 33 - Talence (France). Institut de Chimie de la Matiere Condensee et Physique de Bordeaux

    1997-12-31

    This short paper (abstract) describes the characteristics and performances of prototypes of ultra-thin lithium micro-batteries (thickness < 0.2 mm) which can be incorporated into microelectronic circuits. (J.S.)

  18. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  19. Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors

    International Nuclear Information System (INIS)

    Xu, Wei; Gao, Bo; Xu, Kun; Lee, Yi-Kuen; Pan, Liang; Chiu, Yi

    2017-01-01

    We systematically study the effect of two packaging configurations for the CMOS thermoresistive micro calorimetric flow (TMCF) sensors: S-type with the sensor chip protrusion-mounted on the flow channel wall and E-type with the sensor chip flush-mounted on the flow channel wall. Although the experimental results indicated that the sensitivity of the S-type was increased by more than 30%; the corresponding flow range as compared to the E-type was dramatically reduced by 60% from 0–11 m s −1 to 0–4.5 m s −1 . Comprehensive 2D CFD simulation and in-house developed 3D numerical simulations based on the gas-kinetic scheme were applied to study the flow separation of these two packaging designs with the major parameters. Indeed, the S-type design with the large protrusion would change the local convective heat transfer of the TMCF sensor and dramatically decrease the sensors’ performance. In addition, parametric CFD simulations of the packaging designs provide inspiration to propose a novel general flow regime map (FRM), i.e. normalized protrusion d * versus reduced chip Reynolds number Re * , where the critical boundary curve for the flow separation of TMCF sensors was determined at different channel aspect ratios. The proposed FRM can be a useful guideline for the packaging design and manufacturing of different micro thermal flow sensors. (paper)

  20. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    Science.gov (United States)

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  1. INVESTIGATION OF 1 : 1,000 SCALE MAP GENERATION BY STEREO PLOTTING USING UAV IMAGES

    Directory of Open Access Journals (Sweden)

    S. Rhee

    2017-08-01

    Full Text Available Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after

  2. Investigation of 1 : 1,000 Scale Map Generation by Stereo Plotting Using Uav Images

    Science.gov (United States)

    Rhee, S.; Kim, T.

    2017-08-01

    Large scale maps and image mosaics are representative geospatial data that can be extracted from UAV images. Map drawing using UAV images can be performed either by creating orthoimages and digitizing them, or by stereo plotting. While maps generated by digitization may serve the need for geospatial data, many institutions and organizations require map drawing using stereoscopic vision on stereo plotting systems. However, there are several aspects to be checked for UAV images to be utilized for stereo plotting. The first aspect is the accuracy of exterior orientation parameters (EOPs) generated through automated bundle adjustment processes. It is well known that GPS and IMU sensors mounted on a UAV are not very accurate. It is necessary to adjust initial EOPs accurately using tie points. For this purpose, we have developed a photogrammetric incremental bundle adjustment procedure. The second aspect is unstable shooting conditions compared to aerial photographing. Unstable image acquisition may bring uneven stereo coverage, which will result in accuracy loss eventually. Oblique stereo pairs will create eye fatigue. The third aspect is small coverage of UAV images. This aspect will raise efficiency issue for stereo plotting of UAV images. More importantly, this aspect will make contour generation from UAV images very difficult. This paper will discuss effects relate to these three aspects. In this study, we tried to generate 1 : 1,000 scale map from the dataset using EOPs generated from software developed in-house. We evaluated Y-disparity of the tie points extracted automatically through the photogrammetric incremental bundle adjustment process. We could confirm that stereoscopic viewing is possible. Stereoscopic plotting work was carried out by a professional photogrammetrist. In order to analyse the accuracy of the map drawing using stereoscopic vision, we compared the horizontal and vertical position difference between adjacent models after drawing a specific

  3. Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs

    Directory of Open Access Journals (Sweden)

    D.S. Falcão

    2017-10-01

    Full Text Available The micro direct methanol fuel cell (MicroDMFC is an emergent technology due to its special interest for portable applications. This work presents the results of a set of experiments conducted at room temperature using an active metallic MicroDMFC with an active area of 2.25 cm2. The MicroDMFC uses available commercial materials with low platinum content in order to reduce the overall fuel cell cost. The main goal of this work is to provide useful information to easily design an active MicroDMFC with a good performance recurring to cheaper commercial Membrane Electrode Assemblies MEAs. A performance/cost analysis for each MEA tested is provided. The maximum power output obtained was 18.1 mW/cm2 for a hot-pressed MEA with materials purchased from Quintech with very low catalyst loading (3 mg/cm2 Pt–Ru at anode side and 0.5 mg/cm2 PtB at the cathode side costing around 15 euros. Similar power values are reported in literature for the same type of micro fuel cells working at higher operating temperatures and substantially higher cathode catalyst loadings. Experimental studies using metallic active micro direct methanol fuel cells operating at room temperature are very scarce. The results presented in this work are, therefore, very useful for the scientific community.

  4. Synchrotron x-ray studies of the keel of the short-spined sea urchin lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping

    International Nuclear Information System (INIS)

    Stock, S.R.; Barss, J.; Dahl, T.; Veis, A.; Almer, J.D.; De Carlo, F.

    2003-01-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  5. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  6. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport i...

  7. A CFD Analysis of The Performance of Pin-Fin Laminar Flow Micro/Meso Scale Heat Exchangers

    National Research Council Canada - National Science Library

    Dimas, Sotirios

    2005-01-01

    .... A staggered arrangement of cylindrical pin fins in rectangular channel geometry was used. Various configurations were considered consistent with a parallel experimental study being conducted based on a micro-wind tunnel setup...

  8. Search for Bs0 --> micro+ micro- and B0 --> micro+ micro- decays with 2 fb-1 of pp collisions.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-14

    We have performed a search for B(s)(0) --> micro(+) micro(-) and B(0) --> micro(+) micro(-) decays in pp collisions at square root s = 1.96 TeV using 2 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron Collider. The observed number of B(s)(0) and B0 candidates is consistent with background expectations. The resulting upper limits on the branching fractions are B(B(s)0) --> micro(+) micro(-)) micro(+) micro(-))<1.8 x 10(-8) at 95% C.L.

  9. Decision-Making and Sustainable Drainage: Design and Scale

    Directory of Open Access Journals (Sweden)

    Susanne Charlesworth

    2016-08-01

    Full Text Available Sustainable Drainage (SuDS improves water quality, reduces runoff water quantity, increases amenity and biodiversity benefits, and can also mitigate and adapt to climate change. However, an optimal solution has to be designed to be fit for purpose. Most research concentrates on individual devices, but the focus of this paper is on a full management train, showing the scale-related decision-making process in its design with reference to the city of Coventry, a local government authority in central England. It illustrates this with a large scale site-specific model which identifies the SuDS devices suitable for the area and also at the smaller scale, in order to achieve greenfield runoff rates. A method to create a series of maps using geographical information is shown, to indicate feasible locations for SuDS devices across the local government authority area. Applying the larger scale maps, a management train was designed for a smaller-scale regeneration site using MicroDrainage® software to control runoff at greenfield rates. The generated maps were constructed to provide initial guidance to local government on suitable SuDS at individual sites in a planning area. At all scales, the decision about which device to select was complex and influenced by a range of factors, with slightly different problems encountered. There was overall agreement between large and small scale models.

  10. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2009-12-01

    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  11. Synthesis of sulfadiazine and silver sulfadiazine in semi-micro scale, as an experimental practice in drug synthesis

    International Nuclear Information System (INIS)

    Borges, Aurea Donizete Lanchote; Del Ponte, Gino; Federman Neto, Alberto; Carvalho, Ivone

    2005-01-01

    The total synthesis of sulfadiazine and silver sulfadiazine from readily available starting materials was adapted to semi-micro laboratory scale and is proposed as an experiment in drug synthesis for undergraduate courses. (author)

  12. Photothermal Investigation of Micro-Uniformity Problems Caused by Different Scan Systems

    International Nuclear Information System (INIS)

    Geiler, Hans; Brand, Klaus; Selle, Hans-Joachim

    2008-01-01

    To study beam scanning and beam profiling effects low energy implants of Boron (25 keV) and high energy implants of Helium (5.4 MeV) were carried out by use of different scanning systems including mechanical, electrostatic and hybrid scanning. The sensitivity of photothermal measurement by use of the excess carrier wave in the depth up to 50 μm is proved for buried damage detection and compared with the effect in shallow damage profiles. The micro-mapping capability of the photothermal techniques allows the detection of dose variations in a sub-mm-scale without Moire effects from mapping steps. Conclusion for advanced dose monitoring by multi-frequency photothermal methods will be derived.

  13. Cloud-based computation for accelerating vegetation mapping and change detection at regional to national scales

    Science.gov (United States)

    Matthew J. Gregory; Zhiqiang Yang; David M. Bell; Warren B. Cohen; Sean Healey; Janet L. Ohmann; Heather M. Roberts

    2015-01-01

    Mapping vegetation and landscape change at fine spatial scales is needed to inform natural resource and conservation planning, but such maps are expensive and time-consuming to produce. For Landsat-based methodologies, mapping efforts are hampered by the daunting task of manipulating multivariate data for millions to billions of pixels. The advent of cloud-based...

  14. Harmonisation of the soil map of Africa at the continental scale

    DEFF Research Database (Denmark)

    Dewitte, Olivier; Jones, Arwyn; Spaargaren, Otto

    2013-01-01

    In the context of major global environmental challenges such as food security, climate change, fresh water scarcity and biodiversity loss, the protection and the sustainable management of soil resources in Africa are of paramount importance. To raise the awareness of the general public...... with no information, soil patterns, river and drainage networks, and dynamic features such as sand dunes, water bodies and coastlines. In comparison to the initial map derived from HWSD, the new map represents a correction of 13% of the soil data for the continent. The map is available for downloading. (C) 2013......, stakeholders, policy makers and the science community to the importance of soil in Africa, the Joint Research Centre of the European Commission has produced the Soil Atlas of Africa. To that end, a new harmonised soil map at the continental scale has been produced. The steps of the construction of the new area...

  15. SKYLARK - A crossbow-launched micro scale cheap UAV for close aerial surveillance

    OpenAIRE

    Alexandru-Marius PANAIT

    2012-01-01

    Close air support of ground troops especially in densely populated, urban environments has an ever increasing prevalence in the modern warfare. Counter-terrorism activities as well as land-based “surgical strikes” impose a set of special requirements on all the used weapons and equipment so as to minimize weight, cost and complexity and maximize efficiency. Small scale UAVs are in service with all the armed forces around the globe; micro UAVs are emerging as the ground troop close support pre...

  16. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  17. Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae.

    Science.gov (United States)

    Zuriaga, Elena; Molina, Laura; Badenes, María Luisa; Romero, Carlos

    2012-06-01

    S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.

  18. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Directory of Open Access Journals (Sweden)

    Garzia I.

    2018-01-01

    Full Text Available Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD, allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs. Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  19. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Science.gov (United States)

    Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-01-01

    Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  20. Maps on large-scale air quality concentrations in the Netherlands. Report on 2008

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Blom, W.F.; Van Dam, J.D.; Elzenga, H.E.; Geilenkirchen, G.P.; Hammingh, P.; Hoen, A.; Jimmink, B.A.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Schilderman, C.B.W.; Van der Sluis, O.C.; De Vries, W.J.

    2008-01-01

    Decrease expected in the number of locations exceeding the air quality limit values In the Netherlands, the number of locations were the European limit values for particulate matter and nitrogen dioxide will be exceeded is expected to decrease by 70-90%, in the period up to 2011, respectively 2015. The limit value for particulate matter from 2011 onwards, and for nitrogen dioxide from 2015 onwards, is expected to be exceeded at a small number of locations in the Netherlands, based on standing and proposed Dutch and European policies. These locations are situated mainly in the Randstad, Netherlands, in the vicinity of motorway around the large cities and in the busiest streets in large cities. Whether the limit values will actually be exceeded depends also on local policies and meteorological fluctuations. This estimate is based on large-scale concentration maps (called GCN maps) of air quality components and on additional local contributions. The concentration maps provide the best possible estimate of large-scale air quality. The degree of uncertainty about the local concentrations of particulate matter and nitrogen dioxide is estimated to be approximately 20%. This report presents the methods used to produce the GCN maps and the included emissions. It also shows the differences with respect to the maps of 2007. These maps are used by local, provincial and other authorities. MNP emphasises to keep the uncertainties in the concentrations in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www.mnp.nl/gcn.html [nl

  1. Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA

    Science.gov (United States)

    Wenli Huang; Anu Swatantran; Kristofer Johnson; Laura Duncanson; Hao Tang; Jarlath O' Neil Dunne; George Hurtt; Ralph Dubayah

    2015-01-01

    Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-...

  2. Causal Scale of Rotors in a Cardiac System

    Science.gov (United States)

    Ashikaga, Hiroshi; Prieto-Castrillo, Francisco; Kawakatsu, Mari; Dehghani, Nima

    2018-04-01

    Rotors of spiral waves are thought to be one of the potential mechanisms that maintain atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral waves. In this study, we aimed to elucidate the causal relationship between rotors and spiral waves in a numerical model of cardiac excitation. To accomplish the aim, we described the system in a series of spatiotemporal scales by generating a renormalization group, and evaluated the causal architecture of the system by quantifying causal emergence. Causal emergence is an information-theoretic metric that quantifies emergence or reduction between micro- and macro-scale behaviors of a system by evaluating effective information at each scale. We found that the cardiac system with rotors has a spatiotemporal scale at which effective information peaks. A positive correlation between the number of rotors and causal emergence was observed only up to the scale of peak causation. We conclude that rotors are not the universal mechanism to maintain spiral waves at all spatiotemporal scales. This finding may account for the conflicting benefit of rotor ablation in clinical studies.

  3. ARCADE small-scale docking mechanism for micro-satellites

    Science.gov (United States)

    Boesso, A.; Francesconi, A.

    2013-05-01

    The development of on-orbit autonomous rendezvous and docking (ARD) capabilities represents a key point for a number of appealing mission scenarios that include activities of on-orbit servicing, automated assembly of modular structures and active debris removal. As of today, especially in the field of micro-satellites ARD, many fundamental technologies are still missing or require further developments and micro-gravity testing. In this framework, the University of Padova, Centre of Studies and Activities for Space (CISAS), developed the Autonomous Rendezvous Control and Docking Experiment (ARCADE), a technology demonstrator intended to fly aboard a BEXUS stratospheric balloon. The goal was to design, build and test, in critical environment conditions, a proximity relative navigation system, a custom-made reaction wheel and a small-size docking mechanism. The ARCADE docking mechanism was designed against a comprehensive set of requirements and it can be classified as small-scale, central, gender mating and unpressurized. The large use of commercial components makes it low-cost and simple to be manufactured. Last, it features a good tolerance to off-nominal docking conditions and a by-design soft docking capability. The final design was extensively verified to be compliant with its requirements by means of numerical simulations and physical testing. In detail, the dynamic behaviour of the mechanism in both nominal and off-nominal conditions was assessed with the multibody dynamics analysis software MD ADAMS 2010 and functional tests were carried out within the fully integrated ARCADE experiment to ensure the docking system efficacy and to highlight possible issues. The most relevant results of the study will be presented and discussed in conclusion to this paper.

  4. Maps4Science - National Roadmap for Large-Scale Research Facilities 2011 (NWO Application form)

    NARCIS (Netherlands)

    Van Oosterom, P.J.M.; Van der Wal, T.; De By, R.A.

    2011-01-01

    The Netherlands is historically known as one of worlds' best-measured countries. It is continuing this tradition today with unequalled new datasets, such as the nationwide large-scale topographic map, our unique digital height map (nationwide coverage; ten very accurate 3D points for every Dutch m2)

  5. Mapping of Micro-Tom BAC-End Sequences to the Reference Tomato Genome Reveals Possible Genome Rearrangements and Polymorphisms

    Science.gov (United States)

    Asamizu, Erika; Shirasawa, Kenta; Hirakawa, Hideki; Sato, Shusei; Tabata, Satoshi; Yano, Kentaro; Ariizumi, Tohru; Shibata, Daisuke; Ezura, Hiroshi

    2012-01-01

    A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, “Heinz 1706.” By referring to the “Heinz 1706” physical map and by eliminating redundant or nonsignificant hits, 28,804 “unique pair ends” and 8,263 “unique ends” were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423 bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565 bp) and 140,862 were found in heterochromatin (1 per 2,737 bp). The average polymorphism density in the genome was 1 polymorphism per 2,886 bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database. PMID:23227037

  6. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  7. Mapping the MMPI-2-RF Specific Problems Scales Onto Extant Psychopathology Structures.

    Science.gov (United States)

    Sellbom, Martin

    2017-01-01

    A main objective in developing the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 ) was to link the hierarchical structure of the instrument's scales to contemporary psychopathology and personality models for greater enhancement of construct validity. Initial evidence published with the Restructured Clinical scales has indicated promising results in that the higher order structure of these measures maps onto those reported in the extant psychopathology literature. This study focused on evaluating the internal structure of the Specific Problems and Interest scales, which have not yet been examined in this manner. Two large, mixed-gender outpatient and correctional samples were used. Exploratory factor analyses revealed consistent evidence for a 4-factor structure representing somatization, negative affect, externalizing, and social detachment. Convergent and discriminant validity analyses in the outpatient sample yielded a pattern of results consistent with expectations. These findings add further evidence to indicate that the MMPI-2-RF hierarchy of scales map onto extant psychopathology literature, and also add support to the notion that somatization and detachment should be considered important higher order domains in the psychopathology literature.

  8. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    OpenAIRE

    Chao Chang; Davide Verdi; Miguel Angel Garrido; Jesus Ruiz-Hervias

    2016-01-01

    In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI) in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cerm...

  9. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  10. Formability of Micro-Tubes in Hydroforming

    International Nuclear Information System (INIS)

    Hartl, Christoph; Anyasodor, Gerald; Lungershausen, Joern

    2011-01-01

    Micro-hydroforming is a down-scaled metal forming process, based on the expansion of micro-tubes by internal pressurization within a die cavity. The objective of micro-hydroforming is to provide a technology for the economic mass production of complex shaped hollow micro-components. Influence of size effects in metal forming processes increases with scaling down of metal parts. Investigations into the change in formability of micro-tubes due to metal part scaling down constituted an important subject within the conducted fundamental research work. Experimental results are presented, concerning the analysis of the formability of micro-tubes made from stainless steel AISI 304 with an outer diameter of 800 μm and a wall thickness of 40 μm. An average ratio of tube wall thickness to grain size of 1.54 of up to 2.56 was analyzed. Miniaturised mechanical standard methods as well as bulge tests with internal hydrostatic pressurization of the tubular specimens were applied to analyze the influence of size-dependent effects. A test device was developed for the bulge experiments which enabled the pressurization of micro-tubes with internal pressures up to 4000 bar. To determine the attainable maximum achievable expansion ratio the tubes were pressurized in the bulge tests with increasing internal pressure until instability due to necking and subsequent bursting occurred. Comparisons with corresponding tests of macro-tubes, made from the here investigated material, showed a change in formability of micro-tubes which was attributed to the scaling down of the hydroforming process. In addition, a restricted applicability of existing theoretical correlations for the determination of the maximum pressure at bursting was observed for down-scaled micro-hydroforming.

  11. The Convergence of High Performance Computing and Large Scale Data Analytics

    Science.gov (United States)

    Duffy, D.; Bowen, M. K.; Thompson, J. H.; Yang, C. P.; Hu, F.; Wills, B.

    2015-12-01

    As the combinations of remote sensing observations and model outputs have grown, scientists are increasingly burdened with both the necessity and complexity of large-scale data analysis. Scientists are increasingly applying traditional high performance computing (HPC) solutions to solve their "Big Data" problems. While this approach has the benefit of limiting data movement, the HPC system is not optimized to run analytics, which can create problems that permeate throughout the HPC environment. To solve these issues and to alleviate some of the strain on the HPC environment, the NASA Center for Climate Simulation (NCCS) has created the Advanced Data Analytics Platform (ADAPT), which combines both HPC and cloud technologies to create an agile system designed for analytics. Large, commonly used data sets are stored in this system in a write once/read many file system, such as Landsat, MODIS, MERRA, and NGA. High performance virtual machines are deployed and scaled according to the individual scientist's requirements specifically for data analysis. On the software side, the NCCS and GMU are working with emerging commercial technologies and applying them to structured, binary scientific data in order to expose the data in new ways. Native NetCDF data is being stored within a Hadoop Distributed File System (HDFS) enabling storage-proximal processing through MapReduce while continuing to provide accessibility of the data to traditional applications. Once the data is stored within HDFS, an additional indexing scheme is built on top of the data and placed into a relational database. This spatiotemporal index enables extremely fast mappings of queries to data locations to dramatically speed up analytics. These are some of the first steps toward a single unified platform that optimizes for both HPC and large-scale data analysis, and this presentation will elucidate the resulting and necessary exascale architectures required for future systems.

  12. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  13. Maps on large-scale air quality concentrations in the Netherlands. Report on 2009

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Blom, W.F.; Diederen, H.S.M.A.; Geilenkirchen, G.P.; Jimmink, B.A.; Koekoek, A.F.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Van Rijn, F.J.A.; Van Schijndel, M.W.; Van der Sluis, O.C.; De Vries, W.J.

    2009-06-01

    In the Netherlands, the number of locations where the European limit values for particulate matter and nitrogen dioxide concentrations could be exceeded is lower than was estimated last year. The limit value for particulate matter, from 2011 onwards, is possibly be exceeded at only a few locations in the Netherlands, based on standing and proposed national and European policies. These locations are situated mainly in the Randstad area in the Netherlands, in the vicinity of motorways around the large cities, and close to stables in agricultural areas. The limit value for nitrogen dioxide, from 2015 onwards, is possibly to be exceeded along 100 kilometres of roads in cities and along 50 kilometres of motorways. Whether the limit values will actually be exceeded depends also on local policies and meteorological fluctuations. This estimate was based on large-scale concentration maps (called GCN maps) of air quality components, and on additional local contributions. The concentration maps provided the best possible estimate of large-scale air quality. The degree of uncertainty in local concentrations of particulate matter and nitrogen dioxide was estimated to be approximately 15 to 20%. This report presents the methods and emissions used for producing the GCN maps. It also shows the differences with respect to the maps of 2008. These maps are used by local, provincial and other authorities to define additional local measures. PBL would like to emphasise that uncertainties in the concentrations must be kept in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www. pbl.nl/gcn [nl

  14. Maps on large-scale air quality concentrations in the Netherlands. Report on 2010

    International Nuclear Information System (INIS)

    Velders, G.J.M.; Aben, J.M.M.; Diederen, H.S.M.A.; Drissen, E; Geilenkirchen, G.P.; Jimmink, B.A.; Koekoek, A.F.; Koelemeijer, R.B.A.; Matthijsen, J.; Peek, C.J.; Van Rijn, F.J.A.; De Vries, W.J.

    2010-06-01

    In the Netherlands, the number of locations for which the European limit values for nitrogen dioxide concentrations could be exceeded is larger than was estimated last year. The limit value, from 2015 onwards, might be exceeded along 100 to 150 kilometres of city roads and along about 100 kilometres of motorways, based on standing and proposed national and European policies, not taking local policies into account. The exceedances occur mainly in the Randstad area, along motorways around the large cities, and in streets within these cities. The number of locations is about twice as large as was estimated last year, as a result of new measurements of emissions from heavy-duty vehicles, and meeting the limit value in time may require additional national and local policies. The new estimates were based on large-scale concentration maps (called GCN maps) of air quality components, and on additional local contributions. The concentration maps provided the best possible estimate of large-scale air quality. The degree of uncertainty in local concentrations of particulate matter and nitrogen dioxide was estimated at approximately 15 to 20 per cent. This report presents the methods and emissions used for producing the GCN maps. It also shows the differences with the maps produced in 2009. These maps are used by local, provincial and other authorities to define additional local measures. The PBL would like to emphasise that uncertainties in the concentrations must be kept in mind when using these maps for planning, or when comparing concentrations with limit values. This also applies to the selecting of local measures to improve the air quality. The concentration maps are available online, at http://www.pbl.nl/gcn. Keywords: GCN; particulate matter; PM10; nitrogen dioxide; limit value. [nl

  15. Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques

    International Nuclear Information System (INIS)

    Hu, Hui; Jin, Zheyan; Lum, Chee; Nocera, Daniel; Koochesfahani, Manoochehr

    2010-01-01

    Recent progress made in the development of novel molecule-based flow diagnostic techniques, including molecular tagging velocimetry (MTV) and lifetime-based molecular tagging thermometry (MTT), to achieve simultaneous measurements of multiple important flow variables for micro-flows and micro-scale heat transfer studies is reported in this study. The focus of the work described here is the particular class of molecular tagging tracers that relies on phosphorescence. Instead of using tiny particles, especially designed phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, are used as tracers for both flow velocity and temperature measurements. A pulsed laser is used to 'tag' the tracer molecules in the regions of interest, and the tagged molecules are imaged at two successive times within the photoluminescence lifetime of the tracer molecules. The measured Lagrangian displacement of the tagged molecules provides the estimate of the fluid velocity. The simultaneous temperature measurement is achieved by taking advantage of the temperature dependence of phosphorescence lifetime, which is estimated from the intensity ratio of the tagged molecules in the acquired two phosphorescence images. The implementation and application of the molecular tagging approach for micro-scale thermal flow studies are demonstrated by two examples. The first example is to conduct simultaneous flow velocity and temperature measurements inside a microchannel to quantify the transient behavior of electroosmotic flow (EOF) to elucidate underlying physics associated with the effects of Joule heating on electrokinematically driven flows. The second example is to examine the time evolution of the unsteady heat transfer and phase changing process inside micro-sized, icing water droplets, which is pertinent to the ice formation and accretion processes as water droplets impinge onto cold wind turbine blades

  16. Performance assessment of a micro-cogeneration system under realistic operating conditions

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio

    2013-01-01

    Highlights: • Performances of a micro-cogeneration system have been experimentally evaluated. • Cogenerator performances have been compared with those of a traditional system. • Measured data have been analyzed from both energy and exergy points of view. - Abstract: The European Parliament stated that high-efficiency cogeneration is a Community priority given the potential benefits of cogeneration with regard to saving primary energy and reducing emissions. According to this position, the performance of many micro-cogeneration systems have been assessed from an energy and environmental point of view. However, in the most part of cases, the assessments have been performed by using technical data from manufacturers and/or experimental results measured during steady-state operation, without considering the inefficiencies related to the transient periods; in addition, few works have been devoted to analyze the system operation from an exergy-based point of view. In this paper the electric load-following operation of an internal combustion engine based micro-cogeneration unit with 6.0 kW as nominal electric output has been experimentally investigated in electric load-following operation during a 24 h dynamic test with the application of a realistic daily load profile representing the Italian domestic non-HVAC electric demand for a multi-family house of five dwellings. The measured data have been compared with those that would be associated with servicing the building with electricity from the central electric grid and heat from a natural gas fired boiler from an energy, exergy and environmental points of view

  17. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  18. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    Science.gov (United States)

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Lutzomyia longipalpis Presence and Abundance Distribution at Different Micro-spatial Scales in an Urban Scenario.

    Science.gov (United States)

    Santini, María Soledad; Utgés, María Eugenia; Berrozpe, Pablo; Manteca Acosta, Mariana; Casas, Natalia; Heuer, Paola; Salomón, O Daniel

    2015-01-01

    The principal objective of this study was to assess a modeling approach to Lu. longipalpis distribution in an urban scenario, discriminating micro-scale landscape variables at microhabitat and macrohabitat scales and the presence from the abundance of the vector. For this objective, we studied vectors and domestic reservoirs and evaluated different environmental variables simultaneously, so we constructed a set of 13 models to account for micro-habitats, macro-habitats and mixed-habitats. We captured a total of 853 sandflies, of which 98.35% were Lu. longipalpis. We sampled a total of 197 dogs; 177 of which were associated with households where insects were sampled. Positive rK39 dogs represented 16.75% of the total, of which 47% were asymptomatic. Distance to the border of the city and high to medium density vegetation cover ended to be the explanatory variables, all positive, for the presence of sandflies in the city. All variables in the abundance model ended to be explanatory, trees around the trap, distance to the stream and its quadratic, being the last one the only one with negative coefficient indicating that the maximum abundance was associated with medium values of distance to the stream. The spatial distribution of dogs infected with L. infantum showed a heterogeneous pattern throughout the city; however, we could not confirm an association of the distribution with the variables assessed. In relation to Lu. longipalpis distribution, the strategy to discriminate the micro-spatial scales at which the environmental variables were recorded allowed us to associate presence with macrohabitat variables and abundance with microhabitat and macrohabitat variables. Based on the variables associated with Lu. longipalpis, the model will be validated in other cities and environmental surveillance, and control interventions will be proposed and evaluated in the microscale level and integrated with socio-cultural approaches and programmatic and village (mesoscale

  20. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  1. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  2. Research on Fiber Micro-Surfacing Mixture Design and Pavement Performance in Interchange’s Connections

    OpenAIRE

    Wu Zhaoyang

    2015-01-01

    In order to use the micro-surfacing which is the existing micro-surfacing technology guide that has some technical defects, the method to determine the optimal dosage of emulsified asphalt and best whetstone is not very reasonable, and it impedes the application and development of micro-surfacing technology to improve the performance of the pavement. In this paper, the “graphical method” is first used to determine the optimal dosage range of emulsified asphalt. Nowadays, a large number of exp...

  3. Update of the Large-scale Concentration Maps for the Netherlands (GCN); De aangepaste GCN

    Energy Technology Data Exchange (ETDEWEB)

    Van den Elshout, S.; Molenaar, R. [DCMR Milieudienst Rijnmond, Rotterdam (Netherlands)

    2011-04-15

    Every year the RIVM and PBL publish the so-called Large-scale concentration maps of the Netherlands (GCN maps). These maps offer an approximation of the background concentrations of several air-polluting substances. Sometimes these maps need to be updated to realize a better approximation of the background concentrations. [Dutch] Jaarlijks publiceren het RIVM en het PBL de zogenoemde Grootschalige Concentratiekaarten van Nederland (GCN-kaarten). Deze kaarten geven een benadering van de achtergrondconcentraties van enkele luchtvervuilende stoffen. Soms is het nodig de kaarten aan te passen om tot een betere benadering van de achtergrondconcentratie te komen.

  4. Sustainable Micro-Manufacturing of Micro-Components via Micro Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Valeria Marrocco

    2011-12-01

    Full Text Available Micro-manufacturing emerged in the last years as a new engineering area with the potential of increasing peoples’ quality of life through the production of innovative micro-devices to be used, for example, in the biomedical, micro-electronics or telecommunication sectors. The possibility to decrease the energy consumption makes the micro-manufacturing extremely appealing in terms of environmental protection. However, despite this common belief that the micro-scale implies a higher sustainability compared to traditional manufacturing processes, recent research shows that some factors can make micro-manufacturing processes not as sustainable as expected. In particular, the use of rare raw materials and the need of higher purity of processes, to preserve product quality and manufacturing equipment, can be a source for additional environmental burden and process costs. Consequently, research is needed to optimize micro-manufacturing processes in order to guarantee the minimum consumption of raw materials, consumables and energy. In this paper, the experimental results obtained by the micro-electrical discharge machining (micro-EDM of micro-channels made on Ni–Cr–Mo steel is reported. The aim of such investigation is to shed a light on the relation and dependence between the material removal process, identified in the evaluation of material removal rate (MRR and tool wear ratio (TWR, and some of the most important technological parameters (i.e., open voltage, discharge current, pulse width and frequency, in order to experimentally quantify the material waste produced and optimize the technological process in order to decrease it.

  5. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  6. Fast and Accurate Approaches for Large-Scale, Automated Mapping of Food Diaries on Food Composition Tables

    Directory of Open Access Journals (Sweden)

    Marc Lamarine

    2018-05-01

    Full Text Available Aim of Study: The use of weighed food diaries in nutritional studies provides a powerful method to quantify food and nutrient intakes. Yet, mapping these records onto food composition tables (FCTs is a challenging, time-consuming and error-prone process. Experts make this effort manually and no automation has been previously proposed. Our study aimed to assess automated approaches to map food items onto FCTs.Methods: We used food diaries (~170,000 records pertaining to 4,200 unique food items from the DiOGenes randomized clinical trial. We attempted to map these items onto six FCTs available from the EuroFIR resource. Two approaches were tested: the first was based solely on food name similarity (fuzzy matching. The second used a machine learning approach (C5.0 classifier combining both fuzzy matching and food energy. We tested mapping food items using their original names and also an English-translation. Top matching pairs were reviewed manually to derive performance metrics: precision (the percentage of correctly mapped items and recall (percentage of mapped items.Results: The simpler approach: fuzzy matching, provided very good performance. Under a relaxed threshold (score > 50%, this approach enabled to remap 99.49% of the items with a precision of 88.75%. With a slightly more stringent threshold (score > 63%, the precision could be significantly improved to 96.81% while keeping a recall rate > 95% (i.e., only 5% of the queried items would not be mapped. The machine learning approach did not lead to any improvements compared to the fuzzy matching. However, it could increase substantially the recall rate for food items without any clear equivalent in the FCTs (+7 and +20% when mapping items using their original or English-translated names. Our approaches have been implemented as R packages and are freely available from GitHub.Conclusion: This study is the first to provide automated approaches for large-scale food item mapping onto FCTs. We

  7. Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery

    Science.gov (United States)

    Pullanagari, R. R.; Kereszturi, Gábor; Yule, I. J.

    2016-07-01

    On-farm assessment of mixed pasture nutrient concentrations is important for animal production and pasture management. Hyperspectral imaging is recognized as a potential tool to quantify the nutrient content of vegetation. However, it is a great challenge to estimate macro and micro nutrients in heterogeneous mixed pastures. In this study, canopy reflectance data was measured by using a high resolution airborne visible-to-shortwave infrared (Vis-SWIR) imaging spectrometer measuring in the wavelength region 380-2500 nm to predict nutrient concentrations, nitrogen (N) phosphorus (P), potassium (K), sulfur (S), zinc (Zn), sodium (Na), manganese (Mn) copper (Cu) and magnesium (Mg) in heterogeneous mixed pastures across a sheep and beef farm in hill country, within New Zealand. Prediction models were developed using four different methods which are included partial least squares regression (PLSR), kernel PLSR, support vector regression (SVR), random forest regression (RFR) algorithms and their performance compared using the test data. The results from the study revealed that RFR produced highest accuracy (0.55 ⩽ R2CV ⩽ 0.78; 6.68% ⩽ nRMSECV ⩽ 26.47%) compared to all other algorithms for the majority of nutrients (N, P, K, Zn, Na, Cu and Mg) described, and the remaining nutrients (S and Mn) were predicted with high accuracy (0.68 ⩽ R2CV ⩽ 0.86; 13.00% ⩽ nRMSECV ⩽ 14.64%) using SVR. The best training models were used to extrapolate over the whole farm with the purpose of predicting those pasture nutrients and expressed through pixel based spatial maps. These spatially registered nutrient maps demonstrate the range and geographical location of often large differences in pasture nutrient values which are normally not measured and therefore not included in decision making when considering more effective ways to utilized pasture.

  8. Thermal engineering and micro-technology; Thermique et microtechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, S. [Rochester Inst. of Tech., NY (United States); Luo, L. [Institut National Polytechnique, 54 - Nancy (France); Gruss, A. [CEA Grenoble, GRETH, 38 (France); Wautelet, M. [Mons Univ. (Belgium); Gidon, S. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Gillot, C. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France)]|[CEA Grenoble, Lab. Electronique et de Technologie de l' Informatique (LETI), 38 (France); Therme, J.; Marvillet, Ch.; Vidil, R. [CEA Grenoble, 38 (France); Dutartre, D. [ST Microelectronique, France (France); Lefebvre, Ph. [SNECMA, 75 - Paris (France); Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France); Colin, S. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Joulin, K. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), 86 - Poitiers (France); Gad el Hak, M. [Virginia Univ., Charlottesville, VA (United States)

    2003-07-01

    This document gathers the abstracts and transparencies of 5 invited conferences of this congress of the SFT about heat transfers and micro-technologies: Flow boiling in microchannels: non-dimensional groups and heat transfer mechanisms (S. Kandlikar); Intensification and multi-scale process units (L. Luo and A. Gruss); Macro-, micro- and nano-systems: different physics? (M. Wautelet); micro-heat pipes (M. Lallemand); liquid and gas flows inside micro-ducts (S. Colin). The abstracts of the following presentations are also included: Electro-thermal writing of nano-scale memory points in a phase change material (S. Gidon); micro-technologies for cooling in micro-electronics (C. Gillot); the Minatec project (J. Therme); importance and trends of thermal engineering in micro-electronics (D. Dutartre); Radiant heat transfers at short length scales (K. Joulain); Momentum and heat transfer in micro-electromechanical systems (M. Gad-el-Hak). (J.S.)

  9. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  10. Complementary techniques for solid oxide cell characterisation on micro- and nano-scale

    International Nuclear Information System (INIS)

    Wiedenmann, D.; Hauch, A.; Grobety, B.; Mogensen, M.; Vogt, U.

    2009-01-01

    High temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a way with great potential to transform clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. Also, as SOEC can operate in the reverse mode as solid oxide fuel cells (SOFC), during high peak hours e.g. hydrogen can be used in a very efficient way to reconvert chemically stored energy into electrical energy. As solid oxide cells (SOC) are working at high temperatures (700-900 o C), material degradation and evaporation can occur e.g. from the cell sealing material, leading to poisoning effects and aging mechanisms which are decreasing the cell efficiency and long-term durability. In order to investigate such cell degradation processes, thorough examination on SOC often requires the chemical and structural characterisation on the microscopic and the nanoscopic level. The combination of different microscope techniques like conventional scanning electron microscopy (SEM), electron-probe microanalysis (EPMA) and the focused ion-beam (FIB) preparation technique for transmission electron microscopy (TEM) allows performing post mortem analysis on a multi scale level of cells after testing. These complementary techniques can be used to characterize structural and chemical changes over a large and representative sample area (micro-scale) on the one hand, and also on the nano-scale level for selected sample details on the other hand. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Riso DTU, Denmark. Also, results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation from sealing material are discussed. (author)

  11. Multi-scale optical metrology for the quality control of polymer microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Micro injection moulding is a replication technology enabling large scale production of polymer-based micro products. To this respect, optical measuring technologies were selected to perform the quality control of a polymer micro-component: an optical coordinate measuring machine (CMM) and a white...

  12. Nano-scale orientation mapping of graphite in cast irons

    International Nuclear Information System (INIS)

    Theuwissen, Koenraad; Lacaze, Jacques; Véron, Muriel; Laffont, Lydia

    2014-01-01

    A diametrical section of a graphite spheroid from a ductile iron sample was prepared using the focused ion beam-lift out technique. Characterization of this section was carried out through automated crystal orientation mapping in a transmission electron microscope. This new technique automatically collects electron diffraction patterns and matches them with precalculated templates. The results of this investigation are crystal orientation and phase maps of the specimen, which bring new light to the understanding of growth mechanisms of this peculiar graphite morphology. This article shows that mapping the orientation of carbon-based materials such as graphite, which is difficult to achieve with conventional techniques, can be performed automatically and at high spatial resolution using automated crystal orientation mapping in a transmission electron microscope. - Highlights: • ACOM/TEM can be used to study the crystal orientation of carbon-based materials. • A spheroid is formed by conical sectors radiating from a central nuclei. • Misorientations exist within the conical sectors, defining various orientation domains

  13. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    Chen Chuan; Ren Nanqi; Wang Aijie; Liu Lihong; Lee, Duu-Jong

    2010-01-01

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  14. Scale Morphology and Micro-Structure of Monitor Lizards (Squamata: Varanidae: Varanus spp.) and their Allies: Implications for Systematics, Ecology, and Conservation.

    Science.gov (United States)

    Bucklitsch, Yannick; Böhme, Wolfgang; Koch, André

    2016-08-17

    We analysed scale morphology and micro-structure from five different body regions using scanning electron microscopy (SEM) across all nine recognized subgenera of the monitor lizard genus Varanus including 41 different species investigated. As far as we are aware, this qualitative visual technique was applied by us for the first time to most monitor lizard species and probably also to the primary outgroup and sister species Lanthanotus borneensis. A comprehensive list of 20 scalation characters each with up to seven corresponding character states was established and defined for the five body regions sampled. For the phylogenetic approach, parsimony analyses of the resulting morphological data matrix as well as Bremer and bootstrap support calculations were performed with the software TNT. Our results demonstrate that a variety of micro-ornamentations (i.e., ultra- or micro-dermatoglyphics) as seen in various squamate groups is hardly present in monitor lizards. In several species from six out of nine subgenera, however, we found a honeycomb-shaped micro-structure of foveate polygons. Two further samples of Euprepiosaurus Fitzinger, 1843 exhibit each another unique microscopic structure on the scale surface. Notably, the majority of species showing the honeycombed ultra-structure inhabit arid habitats in Australia, Africa and the Middle East. Therefore, it can be inferred that this microscopic scalation feature, which has also been identified in other desert dwelling lizard species, is taxonomically and ecologically correlated with a xeric habitat type in varanids, too. In addition, the systematic affiliation of V. spinulosus, an endemic monitor lizard species from the Solomon Islands with an extraordinary scale shape, is discussed in the light of current hypotheses about its phylogenetic position within the Varanidae. Due to its unique scalation characteristics, in combination with other morphological evidence, a new monotypic subgenus, Solomonsaurus subgen. nov

  15. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  16. The micro turbine: the MIT example; La micro turbine: l'exemple du MIT

    Energy Technology Data Exchange (ETDEWEB)

    Ribaud, Y. [Office National d' Etudes et de Recherches Aerospatiales (ONERA-DEFA), 92 - Chatillon (France)

    2001-10-01

    The micro turbine study began a few years ago at the MIT, with the participation of specialists from different fields. The purpose is the development of a MEMS (micro electro mechanical systems) based, 1 cm in diameter, micro gas turbine. Potential applications are devoted to micro drone propulsion, electric power generation for portable power sources in order to replace heavy Lithium batteries, satellite motorization, the surface distributed power for boundary suction on plane wings. The manufacturing constraints at such small scales lead to 2-D extruded shapes. The physical constraints stem from viscous effects and from limitations given by 2-D geometry. The time scales are generally shorter than for conventional machines. Otherwise the material properties are better at such length scales. Transposition from conventional turbomachinery laws is no more applicable and new design methods must be established. The present paper highlights the project progress and the technology breakthroughs. (author)

  17. Islands of biogeodiversity in arid lands on a polygons map study: Detecting scale invariance patterns from natural resources maps.

    Science.gov (United States)

    Ibáñez, J J; Pérez-Gómez, R; Brevik, Eric C; Cerdà, A

    2016-12-15

    Many maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research indicates that comparing results of related maps (e.g., soil and geology maps) may aid in identifying mapping deficiencies. Therefore, this study was undertaken in Almeria Province, Spain to (i) compare the underlying map structures of soil and vegetation maps and (ii) investigate if a vegetation map can provide useful soil information that was not shown on a soil map. Soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis, and results then exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence: (i) climatophilous (ii) lithologic-climate; and (iii) edaphophylous. The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophilous units were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity that are threatened by anthropogenic activity in the region. Therefore, this study revealed areas that need to be revisited and studied pedologically. The vegetation mapped in these areas and the soils that support it are key components of the earth's critical zone that must be studied, understood, and preserved. Copyright © 2016

  18. Evaluation of Micro- and Macro-Scale Petrophysical Characteristics of Lower Cretaceous Sandstone with Flow Modeling in µ-CT Imaged Geometry

    Science.gov (United States)

    Katsman, R.; Haruzi, P.; Waldmann, N.; Halisch, M.

    2017-12-01

    In this study petrophysical characteristics of rock samples from 3 successive outcrop layers of Hatira Formation Lower Cretaceous Sandstone in northen Israel were evaluated at micro- and macro-scales. The study was carried out by two complementary methods: using conventional experimental measurements of porosity, pore size distribution and permeability; and using a 3D µCT imaging and modeling of signle-phase flow in the real micro-scale sample geometry. The workfow included µ-CT scanning, image processing, image segmentation, and image analyses of pore network, followed by fluid flow simulations at a pore-scale. Upscaling the results of the micro-scale flow simulations yielded a macroscopic permeabilty tensor. Comparison of the upscaled and the experimentally measured rock properties demonstrated a reasonable agreement. In addition, geometrical (pore size distribution, surface area and tortuosity) and topological (Euler characteristic) characteristics of the grains and of the pore network were evaluated at a micro-scale. Statistical analyses of the samples for estimation of anisotropy and inhomogeneity of the porous media were conducted and the results agree with anisotropy and inhomogeneity of the upscaled permeabilty tensor. Isotropic pore orientation of the primary inter-granular porosity was identified in all three samples, whereas the characteristics of the secondary porosity were affected by precipitated cement and clay matrix within the primary pore network. Results of this study provide micro- and macro-scale characteristics of the Lower Cretaceous sandstone that is used in different places over the world as a reservoir for petroleum production and png;base64,R0lGODlhHAARAHcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAAABAAYAA0AhAAAAAAAAAAAOgAAZgA6kABmtjoAADoAZjo6kDqQ22YAAGa2/5A6AJA6ZpDb/7ZmALb//9uQOtv///+2Zv/bkP//tv//2wECAwECAwECAwECAwECAwECAwECAwECAwECAwVtICBaTGAWIkCaA5S+QKWgZCJSBgo8hASrjJ4osgDqABOB45dcwpopKIznmwpFkxas9uOmqDBZMawYxxS2iakn

  19. An investigation on the role of thermal fins in the design of micro heat exchangers

    DEFF Research Database (Denmark)

    Omidvarnia, Farzaneh; Hansen, Hans Nørgaard; Sarhadi, Ali

    2015-01-01

    The different dominant physical phenomena in design for micro and macro scale products result in different design considerati ons for both categories. In the cu rrent study, a few design concepts are proposed as micro heat exchangers. In addition, the influential parameters on design of a micro...... heat exchanger in comparison with the effective factors in designing its macro counterpart ar e investigated. Numerical si mulations in the finite element software COMSOL are used to evaluate the thermal performance of both micro and macro heat exchangers. The result of the analysis reveals the fact...... that the presence of some features such as “fins ” in micro heat exchanger is n ot as significant as it is in macro scale. The results of this study can be employed as guidelines in design of similar micro heat exchangers....

  20. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei, E-mail: stclchen1982@163.com [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zhu, Lin [Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville 37996 (United States); Guo, Fang [Department of Substation, Guang Dong Electric Power Design Institute, Guangzhou 510663 (China)

    2015-11-15

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  1. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    International Nuclear Information System (INIS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-01-01

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  2. Experimental performance of a piston expander in a small- scale organic Rankine cycle

    Science.gov (United States)

    Oudkerk, J. F.; Dickes, R.; Dumont, O.; Lemort, V.

    2015-08-01

    Volumetric expanders are suitable for more and more applications in the field of micro- and small-scale power system as waster heat recovery or solar energy. This paper present an experimental study carried out on a swatch-plate piston expander. The expander was integrated into an ORC test-bench using R245fa. The performances are evaluated in term of isentropic efficiency and filling factor. The maximum efficiency and power reached are respectively 53% and 2 kW. Inside cylinder pressure measurements allow to compute mechanical efficiency and drown P-V diagram. A semi-empirical simulation model is then proposed, calibrated and used to analyse the different sources of losses.

  3. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    Science.gov (United States)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  4. Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)

    Science.gov (United States)

    Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard

    2013-09-01

    Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.

  5. An approach for establishing the performance maps of the sc-CO_2 compressor: Development and qualification by means of CFD simulations

    International Nuclear Information System (INIS)

    Pham, H.S.; Alpy, N.; Ferrasse, J.H.; Boutin, O.; Tothill, M.; Quenaut, J.; Gastaldi, O.; Cadiou, T.; Saez, M.

    2016-01-01

    Highlights: • Ability of CFD to predict the performance of a sc-CO_2 test compressor is shown. • Risk of vapor pockets occurrence inside a scale 1:1 compressor is highlighted. • Limitation of previous performance maps approaches to model the real gas behavior is shown. • A performance maps approach for the sc-CO_2 compressor is proposed and validated. - Abstract: One of the challenges in the performance prediction of the supercritical CO_2 (sc-CO_2) compressor is the real gas behavior of the working fluid near the critical point. This study deals with the establishment of an approach that allows coping with this particularity by dressing compressor performance maps in adequate reduced coordinates (i.e., suitable dimensionless speed and flow parameters inputs and pressure ratio and enthalpy rise outputs), while using CFD for its validation. Two centrifugal compressor designs have been considered in this work. The first one corresponds to a 6 kW small scale component implemented in a test loop at Tokyo Institute of Technology. The second one corresponds to a 38 MW scale 1:1 design considered at an early stage of a project that investigates sc-CO_2 cycle for a Small Modular Reactor application. Numerical results on the former have been successfully confronted with the experimental data to qualify the ability of CFD to provide a performance database. Results on the latter have revealed a significant decrease in the static temperature and pressure during flow acceleration along the leading edge of the impeller blades. In this line, the increased risk of vapor pockets appearance inside a sc-CO_2 compressor has been highlighted and recommendations regarding the choice of the on-design inlet conditions and the compressor design have been given to overcome this concern. CFD results on the scale 1:1 compressor have then been used to evaluate the relevancy of some previous performance maps approaches for a sc-CO_2 compressor application. These include the conventional

  6. Micro-scale metallization on flexible polyimide substrate by Cu electroplating using SU-8 photoresist mask

    International Nuclear Information System (INIS)

    Cho, S.H.; Kim, S.H.; Lee, N.-E.; Kim, H.M.; Nam, Y.W.

    2005-01-01

    Technologies for flexible electronics have been developed to make electronic or microelectromechanical (MEMS) devices on inexpensive and flexible organic substrates. In order to fabricate the interconnect lines between device elements or layers in flexible electronic devices, metallization on the flexible substrate is essential. In this case, the width and conductivity of metallization line are very important for minimizing the size of device. Therefore, the realization of metallization process with the scale of a few micrometers on the flexible substrate is required. In this work, micro-scale metallization lines of Cu were fabricated on the flexible substrate by electroplating using the patterned mask of a negative-tone SU-8 photoresist. Polyimide surface was treated by O 2 /Ar atmospheric plasma for the improvement in adhesion between Cr layer and polyimide and in situ sputter deposition of 100-nm-thick Cu seed layers on the sputter-deposited 50-nm-thick Cr adhesion layer was followed. SU-8 photoresist was spin-coated and patterned by photolithography. Electroplating of Cu line, removal of SU-8, and selective wet etch of Cr adhesion and Cu seed layers were carried out. Gap between the Cu lines was successfully filled by spin-coating of polyimide. Micro-scale Cu metal lines with gap filling on the polyimide substrate with a thickness of 6-12 μm and an aspect ratio of 1-3 were successfully fabricated

  7. Coating of Ultra-Small Micro End Mills: Analysis of Performance and Suitability of Eight Different Hard-Coatings

    Directory of Open Access Journals (Sweden)

    Martin Bohley

    2018-03-01

    Full Text Available Due to the constant need for better functionalized surfaces or smaller, function integrated components, precise and efficient manufacturing processes have to be established. Micro milling with micro end mills is one of the most promising processes for this task as it combines a high geometric flexibility in a wide range of machinable materials with low set-up costs. A downside of this process is the wear of the micro end mills. Due to size effects and the relatively low cutting speed, the cutting edge is especially subjected to massive abrasive wear. One possibility to minimize this wear is coating of micro end mills. This research paper describes the performance of eight different hard coatings for micro end mills with a diameter <40 µm and discusses some properties for the best performing coating type. With this research, it is therefore possible to boost the possibilities of micro milling for the manufacture of next generation products.

  8. Development of a reconstruction software of elemental maps by micro X-ray fluorescence

    International Nuclear Information System (INIS)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela; Cardoso, Simone Coutinho; Moreira, Silvana

    2009-01-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline at National Synchrotron Light Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in form of a matrix of data. (author)

  9. Development of a reconstruction software of elemental maps by micro X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos, E-mail: apalmeid@gmail.co, E-mail: delson@lin.ufrj.b, E-mail: clemos@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela, E-mail: cely@uerj.b, E-mail: lfolive@uerj.b, E-mail: nitatag@gmail.co [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica; Cardoso, Simone Coutinho [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica; Moreira, Silvana [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2009-07-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline at National Synchrotron Light Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in form of a matrix of data. (author)

  10. Maps of surface activity of 137Cs of Slovakia on scale 1:200 000

    International Nuclear Information System (INIS)

    Gluch, A.

    2005-05-01

    The present set of maps (13 maps) arose from the geological project 'Re-ambulation of 137 Cs radioactivity map of Slovakia at scales 1:200 000 and 1:500 000' in phase of indicative geological survey of environmental factors. Maps document the state of contamination of the territory of Slovakia by one of the radioisotopes cesium-137 at the reference date 01.01.2005. In solving of geological tasks were used all available relevant data on measurements of 137 Cs activity from the whole territory of the Slovak Republic for the period from 1990 to 2003 from results of air and ground gamma spectrometric measurements. (authors)

  11. Computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Benjamin eMerlet

    2016-02-01

    Full Text Available This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc and flat file formats (SBML and Matlab files. We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics and Glasgow Polyomics on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks.In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks.In order to achieve this goal we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  12. Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling

    Science.gov (United States)

    Lawrence, C. R.

    2017-12-01

    Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.

  13. Delving Deep into Multiscale Pedestrian Detection via Single Scale Feature Maps

    Directory of Open Access Journals (Sweden)

    Xinchuan Fu

    2018-04-01

    Full Text Available The standard pipeline in pedestrian detection is sliding a pedestrian model on an image feature pyramid to detect pedestrians of different scales. In this pipeline, feature pyramid construction is time consuming and becomes the bottleneck for fast detection. Recently, a method called multiresolution filtered channels (MRFC was proposed which only used single scale feature maps to achieve fast detection. However, there are two shortcomings in MRFC which limit its accuracy. One is that the receptive field correspondence in different scales is weak. Another is that the features used are not scale invariance. In this paper, two solutions are proposed to tackle with the two shortcomings respectively. Specifically, scale-aware pooling is proposed to make a better receptive field correspondence, and soft decision tree is proposed to relive scale variance problem. When coupled with efficient sliding window classification strategy, our detector achieves fast detecting speed at the same time with state-of-the-art accuracy.

  14. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  15. A comparative study on life cycle assessment of micro and macro components

    DEFF Research Database (Denmark)

    Omidvarnia, Farzaneh; Islam, Aminul; Hansen, Hans Nørgaard

    2013-01-01

    their smaller dimensional scale. So performing of LCA for micro products is equally important as it is for macro products. Keeping this motivation in mind, current paper systematically performs the LCA of a micro Socket used in hearing aids. The analysis makes a guide line about how to use the conventional...... knowledge about LCA and tools for the efficient LCA analysis of the micro parts. A comparative study is made in the paper by comparing two different sockets of hearing aid and it shows well how to make a comparative study for LCAwhen the manufacturer makes a new product to replace an old one. Another...

  16. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus

    DEFF Research Database (Denmark)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki

    2013-01-01

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of...

  17. High specific activity N-Acetyl-3H-α-Aspartyl- L-Glutamic at micro mole scale

    International Nuclear Information System (INIS)

    Suarez, C.

    1984-01-01

    High specific activity N-Acetyl-3 H - α -Aspartyl-I-Glutamic acid at micro mole scale in prepared acetylating L- α -Aspartyl-L-glutamic with 3 H -acetic anhydride in re distilled toluene. The product le purified through cationic and anionic columns. The radiochemical purity as determined by thin-layer chromatography is greater then 99% at the time preparation. (Author) 5 refs

  18. Shape Memory Micro- and Nanowire Libraries for the High-Throughput Investigation of Scaling Effects.

    Science.gov (United States)

    Oellers, Tobias; König, Dennis; Kostka, Aleksander; Xie, Shenqie; Brugger, Jürgen; Ludwig, Alfred

    2017-09-11

    The scaling behavior of Ti-Ni-Cu shape memory thin-film micro- and nanowires of different geometry is investigated with respect to its influence on the martensitic transformation properties. Two processes for the high-throughput fabrication of Ti-Ni-Cu micro- to nanoscale thin film wire libraries and the subsequent investigation of the transformation properties are reported. The libraries are fabricated with compositional and geometrical (wire width) variations to investigate the influence of these parameters on the transformation properties. Interesting behaviors were observed: Phase transformation temperatures change in the range from 1 to 72 °C (austenite finish, (A f ), 13 to 66 °C (martensite start, M s ) and the thermal hysteresis from -3.5 to 20 K. It is shown that a vanishing hysteresis can be achieved for special combinations of sample geometry and composition.

  19. A Pore Scale Flow Simulation of Reconstructed Model Based on the Micro Seepage Experiment

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2017-01-01

    Full Text Available Researches on microscopic seepage mechanism and fine description of reservoir pore structure play an important role in effective development of low and ultralow permeability reservoir. The typical micro pore structure model was established by two ways of the conventional model reconstruction method and the built-in graphics function method of Comsol® in this paper. A pore scale flow simulation was conducted on the reconstructed model established by two different ways using creeping flow interface and Brinkman equation interface, respectively. The results showed that the simulation of the two models agreed well in the distribution of velocity, pressure, Reynolds number, and so on. And it verified the feasibility of the direct reconstruction method from graphic file to geometric model, which provided a new way for diversifying the numerical study of micro seepage mechanism.

  20. Identification and Mapping of Readiness of Micro and Small Coffee Industry Cluster Development

    Directory of Open Access Journals (Sweden)

    Lya Aklimawati

    2015-12-01

    Full Text Available Cluster development of micro and small-scaled coffee industry is an effortto improve the economy of community by utilizing local resources. This studywas aimed to identify phase of cluster growth through determinant factors ofindustrial cluster growth; to assess a linkage between economy players in theindustrial cluster; and to identify strength, weakness, opportunity, and threat incoffee industry development. This research was carried out in Sumberwringin,Bondowoso District, East Java. Survey method through direct observation andinterviews were conducted in this study. Data collected included primary andsecondary data. Number of respondents were 25 industry players selected byjudgement sampling method. The data were analyzed by exploratory descriptivewith content analysis method. This research concluded that industrial clusterstudied was still in phase of formation and initiative (embryo and its growthpattern followed Pattern III. Interrelationship between core industries has notbeen established, while linkage between core industries and supporting industrieshad already well-established. Strength and opportunity in coffee industrydevelopment included raw materials availability, market segment growth. Smalland micro enterprises credit facility, supporting facility, and labor availability.Constraints and threat faced by coffee industry included limited market access,in adequate machineries, limited working capital, raw materials quality, inconsistentproduct quality, credit claim, and competitors.

  1. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    Science.gov (United States)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  2. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    Science.gov (United States)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  3. Micro scale spatial relationships in urban studies : The relationship between private and public space and its impact on street life

    NARCIS (Netherlands)

    Van Nes, A.; Lopez, M.J.J.

    2007-01-01

    Research on urban environment by means of space syntax theory and methods tends to focus on macro scale spatial conditions. However, micro scale conditions should not be neglected. In research on street life and dispersal of crime in urban areas, it became inevitable to pay attention to the

  4. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  5. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  6. PERFORMANCE, CARCASS YIELD AND LITTER QUALITY OF BROILERS RAISED ON LITTERS TREATED WITH MICRO-ORGANISMS

    Directory of Open Access Journals (Sweden)

    Dayane Prado da Cruz

    2013-03-01

    Full Text Available The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-organisms and weekly spraying of water; Treatment 3 – Litter treated by weekly spraying of micro-organisms; Treatment 4 – Litter treated with the same mixture of meals from treatment two and weekly spraying of micro-organisms. Performance was evaluated by the feed consumption, weight gain, feed conversion, viability and carcass, breast and leg yield. From litter samples, pH, dry matter, ashes and nitrogen were evaluated. No differences were found among the treatments. In the conditions the animals were raised, it can be concluded that the treatment on the litter does not affect performance, carcass yield and quality of the litter for broilers.

  7. Micro-mechanical properties of different sites on woodpecker's skull.

    Science.gov (United States)

    Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo

    2017-11-01

    The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.

  8. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench)

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-01-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583

  9. Multimodal Sensor-Based Semantic 3D Mapping for a Large-Scale Environment

    OpenAIRE

    Jeong, Jongmin; Yoon, Tae Sung; Park, Jin Bae

    2018-01-01

    Semantic 3D mapping is one of the most important fields in robotics, and has been used in many applications, such as robot navigation, surveillance, and virtual reality. In general, semantic 3D mapping is mainly composed of 3D reconstruction and semantic segmentation. As these technologies evolve, there has been great progress in semantic 3D mapping in recent years. Furthermore, the number of robotic applications requiring semantic information in 3D mapping to perform high-level tasks has inc...

  10. A Matrix-Based Structure for Vario-Scale Vector Representation over a Wide Range of Map Scales : The Case of River Network Data

    NARCIS (Netherlands)

    Huang, L.; Ai, Tinghua; van Oosterom, P.J.M.; Yan, Xiongfeng; Yang, Min

    2017-01-01

    The representation of vector data at variable scales has been widely applied in geographic information systems and map-based services. When the scale changes across a wide range, a complex generalization that involves multiple operations is required to transform the data. To present such complex

  11. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  12. Movable shark scales act as a passive dynamic micro-roughness to control flow separation

    International Nuclear Information System (INIS)

    Lang, Amy W; Bradshaw, Michael T; Smith, Jonathon A; Wheelus, Jennifer N; Motta, Philip J; Habegger, Maria L; Hueter, Robert E

    2014-01-01

    Shark scales on fast-swimming sharks have been shown to be movable to angles in excess of 50°, and we hypothesize that this characteristic gives this shark skin a preferred flow direction. During the onset of separation, flow reversal is initiated close to the surface. However, the movable scales would be actuated by the reversed flow thereby causing a greater resistance to any further flow reversal and this mechanism would disrupt the process leading to eventual flow separation. Here we report for the first time experimental evidence of the separation control capability of real shark skin through water tunnel testing. Using skin samples from a shortfin mako Isurus oxyrinchus, we tested a pectoral fin and flank skin attached to a NACA 4412 hydrofoil and separation control was observed in the presence of movable shark scales under certain conditions in both cases. We hypothesize that the scales provide a passive, flow-actuated mechanism acting as a dynamic micro-roughness to control flow separation. (paper)

  13. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.

  14. Performance verification of Surface Mapping Instrument developed at CGM

    DEFF Research Database (Denmark)

    Bariani, Paolo

    The need of measuring narrow structures, in the micro and nano scale, over a broader range, can be satisfied by the use of highly resolving techniques, such as atomic force microscopy (AFM), in combination with probe relocation and data file stitching. At the Technical University of Denmark......, research has been carried out over the past years involving an AFM probe mounted on a coordinate measuring machine (CMM). Sensor repositioning by the CMM has made possible the inspection of relatively large samples, which are normally not investigable with AFMs. The latest step in the development...

  15. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus

    NARCIS (Netherlands)

    C. Zeng (Chenjie); Guo, X. (Xingyi); J. Long (Jirong); K.B. Kuchenbaecker (Karoline); A. Droit (Arnaud); K. Michailidou (Kyriaki); M. Ghoussaini (Maya); S. Kar (Siddhartha); Freeman, A. (Adam); J.L. Hopper (John); R.L. Milne (Roger); M.K. Bolla (Manjeet K.); Wang, Q. (Qin); J. Dennis (Joe); S. Agata (Simona); S. Ahmed (Shahana); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Antonenkova, N.N. (Natalia N.); A. Arason (Adalgeir); Arndt, V. (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); F. Bacot (Francois); D. Barrowdale (Daniel); Baynes, C. (Caroline); A. Beeghly-Fadiel (Alicia); J. Benítez (Javier); M. Bermisheva (Marina); C. Blomqvist (Carl); W.J. Blot (William); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); B. Bonnani (Bernardo); A.-L. Borresen-Dale (Anne-Lise); J.S. Brand (Judith S.); H. Brauch (Hiltrud); P. Brennan (Paul); H. Brenner (Hermann); A. Broeks (Annegien); T. Brüning (Thomas); B. Burwinkel (Barbara); S.S. Buys (Saundra); Q. Cai (Qiuyin); T. Caldes (Trinidad); I. Campbell (Ian); T.A. Carpenter (Adrian); J. Chang-Claude (Jenny); Choi, J.-Y. (Ji-Yeob); K.B.M. Claes (Kathleen B.M.); C. Clarke (Christine); A. Cox (Angela); S.S. Cross (Simon); K. Czene (Kamila); M.B. Daly (Mary B.); M. de La Hoya (Miguel); K. De Leeneer (Kim); P. Devilee (Peter); O. Díez (Orland); S.M. Domchek (Susan); M. Doody (Michele); C.M. Dorfling (Cecilia); T. Dörk (Thilo); I. dos Santos Silva (Isabel); M. Dumont (Martine); M. Dwek (Miriam); Dworniczak, B. (Bernd); K.M. Egan (Kathleen); U. Eilber (Ursula); Z. Einbeigi (Zakaria); B. Ejlertsen (Bent); S.D. Ellis (Steve); D. Frost (Debra); F. Lalloo (Fiona); P.A. Fasching (Peter); J.D. Figueroa (Jonine); H. Flyger (Henrik); M. Friedlander (Michael); E. Friedman (Eitan); Gambino, G. (Gaetana); Gao, Y.-T. (Yu-Tang); J. Garber (Judy); M. García-Closas (Montserrat); P.A. Gehrig (Paola A.); F. Damiola (Francesca); F. Lesueur (Fabienne); S. Mazoyer (Sylvie); D. Stoppa-Lyonnet (Dominique); Giles, G.G. (Graham G.); A.K. Godwin (Andrew K.); D. Goldgar (David); A. González-Neira (Anna); M.H. Greene (Mark H.); P. Guénel (Pascal); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); Hallberg, E. (Emily); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); J.M. Hartikainen (J.); J.M. Hartman (Joost); N. Hassan (Norhashimah); S. Healey (Sue); F.B.L. Hogervorst (Frans); S. Verhoef; Hendricks, C.B. (Carolyn B.); P. Hillemanns (Peter); A. Hollestelle (Antoinette); P.J. Hulick (Peter); D. Hunter (David); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); H. Ito (Hidemi); A. Jakubowska (Anna); R. Janavicius (Ramunas); Jaworska-Bieniek, K. (Katarzyna); U.B. Jensen; E.M. John (Esther); Joly Beauparlant, C. (Charles); M. Jones (Michael); M. Kabisch (Maria); D. Kang (Daehee); Karlan, B.Y. (Beth Y.); S. Kauppila (Saila); M. Kerin (Michael); S. Khan (Sofia); E.K. Khusnutdinova (Elza); J.A. Knight (Julia); I. Konstantopoulou (I.); P. Kraft (Peter); A. Kwong (Ava); Y. Laitman (Yael); Lambrechts, D. (Diether); C. Lazaro (Conxi); L. Le Marchand (Loic); C.N. Lee (Chuen); M.H. Lee (Min Hyuk); K.J. Lester (Kathryn); J. Li (Jingmei); A. Liljegren (Annelie); A. Lindblom (Annika); A. Lophatananon (Artitaya); J. Lubinski (Jan); P.L. Mai (Phuong); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); Marme, F. (Frederik); K. Matsuo (Keitaro); L. McGuffog (Lesley); A. Meindl (Alfons); F. Menegaux (Florence); M. Montagna (Marco); K.R. Muir (K.); A.-M. Mulligan (Anna-Marie); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Newcomb (Polly); S. Nord (Silje); R.L. Nussbaum (Robert L.); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); C. Olswold (Curtis); A. Osorio (Ana); L. Papi (Laura); T.-W. Park-Simon; Paulsson-Karlsson, Y. (Ylva); S.T.H. Peeters (Stephanie); B. Peissel (Bernard); P. Peterlongo (Paolo); J. Peto (Julian); G. Pfeiler (Georg); C. Phelan (Catherine); Presneau, N. (Nadege); P. Radice (Paolo); N. Rahman (Nazneen); S.J. Ramus (Susan); M.U. Rashid (Muhammad); G. Rennert (Gad); K. Rhiem (Kerstin); Rudolph, A. (Anja); R. Salani (Ritu); Sangrajrang, S. (Suleeporn); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); M. Schoemaker (Minouk); P. Schürmann (Peter); C.M. Seynaeve (Caroline); C.-Y. Shen (Chen-Yang); M. Shrubsole (Martha); X.-O. Shu (Xiao-Ou); A.J. Sigurdson (Alice); C.F. Singer (Christian); S. Slager (Susan); Soucy, P. (Penny); M.C. Southey (Melissa); D. Steinemann (Doris); A.J. Swerdlow (Anthony ); C. Szabo (Csilla); Tchatchou, S. (Sandrine); P.J. Teixeira; S.-H. Teo (Soo-Hwang); M.B. Terry (Mary Beth); D.C. Tessier (Daniel C.); A. Teulé (A.); M. Thomassen (Mads); L. Tihomirova (Laima); M. Tischkowitz (Marc); A.E. Toland (Amanda); N. Tung (Nadine); C. Turnbull (Clare); A.M.W. van den Ouweland (Ans); E.J. van Rensburg (Elizabeth); ven den Berg, D. (David); J. Vijai (Joseph); S. Wang-Gohrke (Shan); J.N. Weitzel (Jeffrey); A.S. Whittemore (Alice); R. Winqvist (Robert); Wong, T.Y. (Tien Y.); A.H. Wu (Anna); Yannoukakos, D. (Drakoulis); J-C. Yu (Jyh-Cherng); P.D.P. Pharoah (Paul); P. Hall (Per); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); J. Simard (Jacques); F.J. Couch (Fergus); A.C. Antoniou (Antonis C.); D.F. Easton (Douglas F.); W. Zheng (Wei)

    2016-01-01

    textabstractBackground: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more

  16. Archaeology at the micro-scale: micromorphology and phytoliths at a Swahili stonetown

    DEFF Research Database (Denmark)

    Sulas, Federica; Madella, Marco

    2012-01-01

    Geoarchaeological and archaeobotanical techniques are increasingly applied to the study of urban and domestic space. However, they are seldom performed as part of an integrative approach, where the soil and botanical micro-records are used together. This paper presents the preliminary results of ...... from Songo Mnara, this paper illustrates the potential of integrating geoarchaeology and archaeobotany to investigate the use of space in urban contexts. The approach is a novelty within the context of Swahili archaeology and an emerging one in Africa.......Geoarchaeological and archaeobotanical techniques are increasingly applied to the study of urban and domestic space. However, they are seldom performed as part of an integrative approach, where the soil and botanical micro-records are used together. This paper presents the preliminary results...... of ongoing research at Songo Mnara in Tanzania that combines customised intra-site soil macro- and micromorphological analyses, chemical analysis and the study of phytoliths. The research is part of a multidisciplinary project on the use of urban space in Swahili stonetowns. By eliciting multiple datasets...

  17. Assessing the appropriateness of carbon financing for micro-scale projects in terms of capabilities

    OpenAIRE

    Caitlin Trethewy

    2013-01-01

    Micro-scale development projects are currently underrepresented in global carbon markets. This paper outlines the process of becoming eligible to generate carbon credits and examines some of the barriers that may inhibit access to carbon markets. In particular, it focuses on barriers relating to the capacity and resources of the organisation developing the project. This approach represents a deviation from the standard discourse which has traditionally focused on barriers relating to the avai...

  18. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration.

    Science.gov (United States)

    Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-07-01

    The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Efficient protocols for Stirling heat engines at the micro-scale

    Science.gov (United States)

    Muratore-Ginanneschi, Paolo; Schwieger, Kay

    2015-10-01

    We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.

  20. Proficient brain for optimal performance: the MAP model perspective.

    Science.gov (United States)

    Bertollo, Maurizio; di Fronso, Selenia; Filho, Edson; Conforto, Silvia; Schmid, Maurizio; Bortoli, Laura; Comani, Silvia; Robazza, Claudio

    2016-01-01

    Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the "neural efficiency hypothesis." We also observed more ERD as related to optimal-controlled performance in conditions of "neural adaptability" and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  1. Insights into earthquake hazard map performance from shaking history simulations

    Science.gov (United States)

    Stein, S.; Vanneste, K.; Camelbeeck, T.; Vleminckx, B.

    2017-12-01

    Why recent large earthquakes caused shaking stronger than predicted by earthquake hazard maps is under debate. This issue has two parts. Verification involves how well maps implement probabilistic seismic hazard analysis (PSHA) ("have we built the map right?"). Validation asks how well maps forecast shaking ("have we built the right map?"). We explore how well a map can ideally perform by simulating an area's shaking history and comparing "observed" shaking to that predicted by a map generated for the same parameters. The simulations yield shaking distributions whose mean is consistent with the map, but individual shaking histories show large scatter. Infrequent large earthquakes cause shaking much stronger than mapped, as observed. Hence, PSHA seems internally consistent and can be regarded as verified. Validation is harder because an earthquake history can yield shaking higher or lower than that predicted while being consistent with the hazard map. The scatter decreases for longer observation times because the largest earthquakes and resulting shaking are increasingly likely to have occurred. For the same reason, scatter is much less for the more active plate boundary than for a continental interior. For a continental interior, where the mapped hazard is low, even an M4 event produces exceedances at some sites. Larger earthquakes produce exceedances at more sites. Thus many exceedances result from small earthquakes, but infrequent large ones may cause very large exceedances. However, for a plate boundary, an M6 event produces exceedance at only a few sites, and an M7 produces them in a larger, but still relatively small, portion of the study area. As reality gives only one history, and a real map involves assumptions about more complicated source geometries and occurrence rates, which are unlikely to be exactly correct and thus will contribute additional scatter, it is hard to assess whether misfit between actual shaking and a map — notably higher-than-mapped

  2. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    Science.gov (United States)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  3. Complex three dimensional modelling of porous media using high performance computing and multi-scale incompressible approach

    Science.gov (United States)

    Martin, R.; Orgogozo, L.; Noiriel, C. N.; Guibert, R.; Golfier, F.; Debenest, G.; Quintard, M.

    2013-05-01

    In the context of biofilm growth in porous media, we developed high performance computing tools to study the impact of biofilms on the fluid transport through pores of a solid matrix. Indeed, biofilms are consortia of micro-organisms that are developing in polymeric extracellular substances that are generally located at a fluid-solid interfaces like pore interfaces in a water-saturated porous medium. Several applications of biofilms in porous media are encountered for instance in bio-remediation methods by allowing the dissolution of organic pollutants. Many theoretical studies have been done on the resulting effective properties of these modified media ([1],[2], [3]) but the bio-colonized porous media under consideration are mainly described following simplified theoretical media (stratified media, cubic networks of spheres ...). Therefore, recent experimental advances have provided tomography images of bio-colonized porous media which allow us to observe realistic biofilm micro-structures inside the porous media [4]. To solve closure system of equations related to upscaling procedures in realistic porous media, we solve the velocity field of fluids through pores on complex geometries that are described with a huge number of cells (up to billions). Calculations are made on a realistic 3D sample geometry obtained by X micro-tomography. Cell volumes are coming from a percolation experiment performed to estimate the impact of precipitation processes on the properties of a fluid transport phenomena in porous media [5]. Average permeabilities of the sample are obtained from velocities by using MPI-based high performance computing on up to 1000 processors. Steady state Stokes equations are solved using finite volume approach. Relaxation pre-conditioning is introduced to accelerate the code further. Good weak or strong scaling are reached with results obtained in hours instead of weeks. Factors of accelerations of 20 up to 40 can be reached. Tens of geometries can now be

  4. 4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    Science.gov (United States)

    Zickus, Vytautas; Taylor, Jonathan M.

    2018-02-01

    Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.

  5. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  6. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  7. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  8. On the performance of micro injection moulding process simulations of TPE micro rings

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    , a case study based on the micro injection moulding process of thermoplastic elastomer (TPE) micro rings (volume: 1.5 mm3, mass: 2.2 mg) for sensors application is treated. Injection moulding process simulations using Autodesk Moldflow Insight 2016® were applied with the aim of accomplishing two main...

  9. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fernandez-Diaz

    2016-11-01

    Full Text Available In this paper we present a description of a new multispectral airborne mapping light detection and ranging (lidar along with performance results obtained from two years of data collection and test campaigns. The Titan multiwave lidar is manufactured by Teledyne Optech Inc. (Toronto, ON, Canada and emits laser pulses in the 1550, 1064 and 532 nm wavelengths simultaneously through a single oscillating mirror scanner at pulse repetition frequencies (PRF that range from 50 to 300 kHz per wavelength (max combined PRF of 900 kHz. The Titan system can perform simultaneous mapping in terrestrial and very shallow water environments and its multispectral capability enables new applications, such as the production of false color active imagery derived from the lidar return intensities and the automated classification of target and land covers. Field tests and mapping projects performed over the past two years demonstrate capabilities to classify five land covers in urban environments with an accuracy of 90%, map bathymetry under more than 15 m of water, and map thick vegetation canopies at sub-meter vertical resolutions. In addition to its multispectral and performance characteristics, the Titan system is designed with several redundancies and diversity schemes that have proven to be beneficial for both operations and the improvement of data quality.

  10. Multi(scale)gravity: a telescope for the micro-world

    International Nuclear Information System (INIS)

    Kogan, I.I.

    2001-01-01

    A short review of modern status of multi-gravity, i.e. modification of gravity at both short and large distances is given. Usually embedding of standard model and general relativity into any multidimensional construction gives rise to all possible sorts of new effects in a micro-world but we can also get a very drastic modification of these laws of gravity at ultra-large scale. One of the reason why multi-gravity can modify CMB (cosmic microwave background) is that it leads to a large distance modification of the curvature. One of very striking features of multi-gravity is that it gives us a some sort of a dark matter whose origin is that it is just matter from other branes. The author shows that on a 5-dimensional case and at large distances, multi-gravity opens a window in extra dimensions and gravitationally matter which is localized on other branes can be felt. (A.C.)

  11. The practical performance forecast and analysis of thermoelectric module from macro to micro

    International Nuclear Information System (INIS)

    Shen, Limei; Chen, Huanxin; Xiao, Fu; Wang, Shengwei

    2015-01-01

    Highlights: • We analyze the practical performance of TEMs to meet specific requirements. • The influence of different input power sources are discussed. • The step-change phenomena of thermoelectric cooling are found and discussed. • The influence ratio of hot side heat exchanger and input power source is compared. - Abstract: The practical operating conditions of thermoelectric products, such as the input power source and the thermal resistance of hot side heat exchanger, are different from the theoretical study. Thus the equations, which are used to estimate the practical maximum cooling performance just according to the datum in datasheet of commercial thermoelectric module (TEM), are given. The nested loop method is adopted to solve the numerical model. This study provides a method to choose a suitable TEM for thermoelectric product to meet the application requirement. It finds that the minimum cold side temperature increase and the voltage for achieving the minimum cold side temperature step decrease with the increase of thermal resistance of hot side heat exchanger, respectively. The maximum temperature difference increase and the voltage for achieving the maximum temperature difference step increase with the increase of thermal resistance of hot side heat exchanger, respectively. According to the dimension, three kinds of thermoelectric module, bulk TEM, miniature TEM and micro TEM, are studied. The novel scale effect are discovered by comparing these TEMs. It found that the step-change phenomenon become more and more obvious with the decrease of the dimension of thermoelectric module. The influence ratio of thermal resistance of hot side heat exchanger on the maximum cooling performance increases and the influence ratio of input power source decreases from macro to micro, respectively. It forecasts that there exists a critical value for the dimension of thermoelectric module, when the dimension of thermoelectric module is smaller than this critical

  12. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.

    Science.gov (United States)

    Cao, Liujun; Yang, Shubin; Gao, Wei; Liu, Zheng; Gong, Yongji; Ma, Lulu; Shi, Gang; Lei, Sidong; Zhang, Yunhuai; Zhang, Shengtao; Vajtai, Robert; Ajayan, Pulickel M

    2013-09-09

    Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Data analysis and mapping of the mountain permafrost distribution

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-04-01

    the permafrost occurrence where it is unknown, the mentioned supervised learning techniques inferred a classification function from labelled training data (pixels of permafrost absence and presence). A particular attention was given to the pre-processing of the dataset, with the study of its complexity and the relation between permafrost data and employed environmental variables. The application of feature selection techniques completed this analysis and informed about redundant or valueless predictors. Classification performances were assessed with AUROC on independent validation sets (0.81 for LR, 0.85 with SVM and 0.88 with RF). At the micro scale obtained permafrost maps illustrate consistent results compared to the field reality thanks to the high resolution of the dataset (10 meters). Moreover, compared to classical models, the permafrost prediction is computed without recurring to altitude thresholds (above which permafrost may be found). Finally, as machine learning is a non-deterministic approach, mountain permafrost distribution maps are presented and discussed with corresponding uncertainties maps, which provide information on the quality of the results.

  14. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  15. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  16. PERFORMANCE EVALUATION OF INTEGRATED MACRO AND MICRO MOBILITY PROTOCOLS FOR WIDE AREA WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    R.Gunasundari

    2010-03-01

    Full Text Available The success of next generation wireless networks will rely much on advanced mechanisms for seamless mobility support among emerging heterogeneous technologies. Currently, Mobile IP is the most promising solution for mobility management in the Internet. Several IP micro mobility approaches have been proposed to enhance the performance of Mobile IP which supports quality of service, minimum packet loss, limited handoff delay and scalability and power conservation but they are not scalable for macro mobility. A practical solution would therefore require integration of Mobile IP and Micro mobility protocols where Mobile IP handles macro mobility and micro mobility protocols handles micro mobility. In this paper an integrated mobility management protocol for IP based wireless networks is proposed and analyzed. Simulation results presented in this paper are based on ns 2.

  17. VLSI micro- and nanophotonics science, technology, and applications

    CERN Document Server

    Lee, El-Hang; Razeghi, Manijeh; Jagadish, Chennupati

    2011-01-01

    Addressing the growing demand for larger capacity in information technology, VLSI Micro- and Nanophotonics: Science, Technology, and Applications explores issues of science and technology of micro/nano-scale photonics and integration for broad-scale and chip-scale Very Large Scale Integration photonics. This book is a game-changer in the sense that it is quite possibly the first to focus on ""VLSI Photonics"". Very little effort has been made to develop integration technologies for micro/nanoscale photonic devices and applications, so this reference is an important and necessary early-stage pe

  18. Performance Analysis of a Multiple Micro-Jet Impingements Cooling Model

    Directory of Open Access Journals (Sweden)

    A. Husain

    2016-06-01

    Full Text Available The present study investigates the thermal performance of a multiple micro-jet impingements model for electronics cooling. The fluid flow and heat transport characteristics were investigated for steady incompressible laminar flow by solving three-dimensional (3D Navier-Stokes equations. Several parallel and staggered micro-jet configurations (ie. inline 2 Å~ 2, 3 Å~ 3 and 4 Å~ 4 jets, and staggered five-jet and 13-jet arrays with the jet diameter to the channel height ratios from 0.25–0.5 were analyzed at various flow rates for the maximum temperature rise, pressure drop, heat-transfer coefficient, thermal resistance, and pumping power characteristics. The parametric investigation was carried out based on the number of jets and the jet diameters at various mass flow rates and jet Reynolds numbers. Temperature uniformity and coefficient of performance were evaluated to find out the trade-off among the various designs investigated in the present study. The maximum temperature rise and the pressure drop decreased with an increase in the number of jets except in the case of staggered five-jet array. A higher temperature uniformity was observed at higher flow rates with a decrease in the coefficient of performance. The performance parameters, such as thermal resistance and pumping power, showed a conflicting nature with respect to design variables (viz. jet diameter to stand-off ratio and interjet spacing or number of jets at various Reynolds numbers within the laminar regime.

  19. Proficient brain for optimal performance: the MAP model perspective

    Directory of Open Access Journals (Sweden)

    Maurizio Bertollo

    2016-05-01

    Full Text Available Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1 and optimal-controlled (Type 2 performances. Methods. Ten elite shooters (6 male and 4 female with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  20. Map of the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, Kevin W.

    1999-07-02

    Various efforts to map the structure of science have been undertaken over the years. Using a new tool, VxInsight{trademark}, we have mapped and displayed 3000 journals in the physical sciences. This map is navigable and interactively reveals the structure of science at many different levels. Science mapping studies are typically focused at either the macro-or micro-level. At a macro-level such studies seek to determine the basic structural units of science and their interrelationships. The majority of studies are performed at the discipline or specialty level, and seek to inform science policy and technical decision makers. Studies at both levels probe the dynamic nature of science, and the implications of the changes. A variety of databases and methods have been used for these studies. Primary among databases are the citation indices (SCI and SSCI) from the Institute for Scientific Information, which have gained widespread acceptance for bibliometric studies. Maps are most often based on computed similarities between journal articles (co-citation), keywords or topics (co-occurrence or co-classification), or journals (journal-journal citation counts). Once the similarity matrix is defined, algorithms are used to cluster the data.

  1. Mapping Submarine Groundwater Discharge - how to investigate spatial discharge variability on coastal and beach scales

    Science.gov (United States)

    Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.

    2008-12-01

    Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e

  2. Performance Evaluation of Java Based Object Relational Mapping Tools

    Directory of Open Access Journals (Sweden)

    Shoaib Mahmood Bhatti

    2013-04-01

    Full Text Available Object persistency is the hot issue in the form of ORM (Object Relational Mapping tools in industry as developers use these tools during software development. This paper presents the performance evaluation of Java based ORM tools. For this purpose, Hibernate, Ebean and TopLinkhave been selected as the ORM tools which are popular and open source. Their performance has been measured from execution point of view. The results show that ORM tools are the good option for the developers considering the system throughput in shorter setbacks and they can be used efficiently and effectively for performing mapping of the objects into the relational dominated world of database, thus creating a hope for a better and well dominated future of this technology.

  3. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  4. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  5. Memory matters: influence from a cognitive map on animal space use.

    Science.gov (United States)

    Gautestad, Arild O

    2011-10-21

    A vertebrate individual's cognitive map provides a capacity for site fidelity and long-distance returns to favorable patches. Fractal-geometrical analysis of individual space use based on collection of telemetry fixes makes it possible to verify the influence of a cognitive map on the spatial scatter of habitat use and also to what extent space use has been of a scale-specific versus a scale-free kind. This approach rests on a statistical mechanical level of system abstraction, where micro-scale details of behavioral interactions are coarse-grained to macro-scale observables like the fractal dimension of space use. In this manner, the magnitude of the fractal dimension becomes a proxy variable for distinguishing between main classes of habitat exploration and site fidelity, like memory-less (Markovian) Brownian motion and Levy walk and memory-enhanced space use like Multi-scaled Random Walk (MRW). In this paper previous analyses are extended by exploring MRW simulations under three scenarios: (1) central place foraging, (2) behavioral adaptation to resource depletion (avoidance of latest visited locations) and (3) transition from MRW towards Levy walk by narrowing memory capacity to a trailing time window. A generalized statistical-mechanical theory with the power to model cognitive map influence on individual space use will be important for statistical analyses of animal habitat preferences and the mechanics behind site fidelity and home ranges. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Characteristics and performance of a micro-MOSFET: An 'imageable' dosimeter for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Rowbottom, Carl G.; Jaffray, David A.

    2004-01-01

    The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 deg. of rotation in the axial plane to the micro-MOSFET was ±2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams

  7. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    Science.gov (United States)

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  8. Mapping spatial patterns of denitrifiers at large scales (Invited)

    Science.gov (United States)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  9. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.

    Directory of Open Access Journals (Sweden)

    Marta Scalfi

    Full Text Available Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst, at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale, and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale. At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F(ST-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F(ST-outlier methods detected together 11 F(ST-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale and 38 SNPs (macro-geographic scale significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F(ST-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also

  10. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.

    Science.gov (United States)

    Scalfi, Marta; Mosca, Elena; Di Pierro, Erica Adele; Troggio, Michela; Vendramin, Giovanni Giuseppe; Sperisen, Christoph; La Porta, Nicola; Neale, David B

    2014-01-01

    Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F(ST)-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F(ST)-outlier methods detected together 11 F(ST)-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F(ST)-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an

  11. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  12. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion

    Science.gov (United States)

    A continuous monitoring of daily evapotranspiration (ET) at field scale can be achieved by combining thermal infrared remote sensing data information from multiple satellite platforms. Here, an integrated approach to field scale ET mapping is described, combining multi-scale surface energy balance e...

  13. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  14. Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate

    DEFF Research Database (Denmark)

    Buron, Jonas Due; Mackenzie, David M. A.; Petersen, Dirch Hjorth

    2015-01-01

    We demonstrate wafer-scale, non-contact mapping of essential carrier transport parameters, carrier mobility (mu(drift)), carrier density (N-S), DC sheet conductance (sigma(dc)), and carrier scattering time (tau(SC)) in CVD graphene, using spatially resolved terahertz time-domain conductance...

  15. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  16. Concept of subsurface micro-sensing; Chika joho no micro sensing

    Energy Technology Data Exchange (ETDEWEB)

    Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-05-27

    This paper describes concept of subsurface micro-sensing. It is intended to achieve an epoch-making development of subsurface engineerings by developing such technologies as micro measurement of well interior, micro measurement while drilling (MWD), and micro intelligent logging. These technologies are supported by development of micro sensors and micro drilling techniques using micro machine technologies. Micronizing the subsurface sensors makes mass production of sensors with equivalent performance possible, and the production cost can be reduced largely. The sensors can be embedded or used disposably, resulting in increased mobility in measurement and higher performance. Installing multiple number of sensors makes high-accuracy measurement possible, such as array measurement. The sensors can be linked easily with photo-electronics components, realizing remote measurement at low price and high accuracy. Control in micro-drilling and MWD also become possible. Such advantages may also be expected as installing the sensors on the outer side of wells in use and monitoring subsurface information during production. Expectation on them is large as a new paradigm of underground exploration and measurement. 1 fig.

  17. LARGE SCALE TEXTURED MESH RECONSTRUCTION FROM MOBILE MAPPING IMAGES AND LIDAR SCANS

    Directory of Open Access Journals (Sweden)

    M. Boussaha

    2018-05-01

    Full Text Available The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS. First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points and photometry (images. Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014 is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  18. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    Science.gov (United States)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  19. Crystallization behaviors of Zr-Ti-Cu-Ni-Be BMG sheet fabricated by squeeze-casting method and its micro-scaled forming

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.G. [Advanced Fusion Process Group, Production Technology R and D Department, Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Lee, J.B., E-mail: ljb01@kitech.re.kr [Advanced Fusion Process Group, Production Technology R and D Department, Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Compressibility and formability of Zr{sub 62.6}Ti{sub 11}Cu{sub 13.2}Ni{sub 9.8}Be{sub 3.4} BMG sheets increases with an increase in forging temperature and pressure. Black-Right-Pointing-Pointer Crystallization in the alloy BMG sheet began to occur during micro-scaled forming. Black-Right-Pointing-Pointer The volume fraction of crystalline phase increases as the forging temperature and pressure increase. - Abstract: We report the micro-scaled forming of Zr{sub 62.6}Ti{sub 11}Cu{sub 13.2}Ni{sub 9.8}Be{sub 3.4} bulk metallic glass (BMG) as a function of the forging pressure within super-cooled liquid region (SLR), and its effects on the transition to crystallization. The morphology after micro-scaled forming was examined by using a field emission scanning electron microscope (FE-SEM). Thermal behavior of the forged samples was analyzed by using a differential scanning calorimeter (DSC). It was found for perfect forming of the alloy BMG sheets that the temperature of 703 K and the pressure of 20 MPa are required in the present study. The compressibility and the volume fraction of crystalline phase increase with an increase of the forging pressure and temperature, and they are sensitive to temperature more than pressure within SLR.

  20. Impact of wind on the spatial distribution of rain over micro-scale topography : numerical modelling and experimental verification

    NARCIS (Netherlands)

    Blocken, B.J.E.; Poesen, J.; Carmeliet, J.

    2006-01-01

    The wind-driven-rain effect refers to the redistribution of rainfall over micro-scale topography due to the existence of local perturbed wind-flow patterns. Rainfall measurements reported in the literature point to the fact that the wind-driven-rain distribution can show large variations over

  1. Evaluation of an alkaline fuel cell system as a micro-CHP

    International Nuclear Information System (INIS)

    Verhaert, Ivan; Mulder, Grietus; De Paepe, Michel

    2016-01-01

    Highlights: • Sensitivity analysis on system configuration of the AFC as a micro-CHP. • Flow rate in the secondary heating circuit can be used to control water management. • Part load behavior of fuel cells is compared to other micro-CHP technologies. • For future energy demand in buildings fuel cells have the best performance. - Abstract: Micro-cogeneration is an emerging technology to reduce the non-renewable energy demand in buildings and reduce peak load in the grid. Fuel cell based cogeneration (CHP) has interesting prospects for building applications, even at relatively low heat demand. This is due to their partial load behavior which is completely different, compared to other micro-CHP technologies. Within the fuel cell technologies suitable for small scale CHP or micro-CHP, the existing configuration of an alkaline fuel cell system is analyzed. This analysis is based on validated models and offers a control strategy to optimize both water management and energy performance of the alkaline fuel cell system. Finally, the model of the alkaline fuel cell system with optimized control strategy is used to compare its part load behavior to other micro-CHP technologies.

  2. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  3. Micro tooling technologies for polymer micro replication: direct, indirect and hybrid process chains

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard

    2009-01-01

    The increasing employment of micro products, of products containing micro parts and of products with micro-structured surfaces calls for mass fabrication technologies based on replication processes. In many cases, a suitable solution is given by the use of polymer micro products, whose production...... and performance of the corresponding micro mould. Traditional methods of micro tooling, such as various machining processes (e.g. micro milling, micro electrical discharge machining) have already reached their limitations with decreasing dimensions of mould inserts and cavities. To this respect, tooling process...... chains based on combination of micro manufacturing processes (defined as hybrid tooling) have been established in order to obtain further features miniaturization and increased accuracy. In this paper, examples and performance of different hybrid tooling approaches as well as challenges, opportunities...

  4. On the importance of forest assets for micro-firm performance

    Directory of Open Access Journals (Sweden)

    Katarina Haugen

    2013-08-01

    Full Text Available Business start-ups are on the increase, a development which is accompanied by hopes that these new firms will generate a potential for, e.g., local and regional development and a strengthening of local labour markets as well as the national economy. However, the long-term performance and viability of new firms are often rather poor. This research aims to analyse the importance of access to assets in the form of forest holdings for the performance of Swedish micro-firms. The analyses are based on official register data and fixed-effects panel regression modelling. A hypothesis is that a firm whose owner also possesses forest holdings is more viable thanks to the different resources (in the form of capital from logging or mortgaging, or non-pecuniary other values the forest holdings may provide, and which possibly contribute to the firm’s economic stability and resilience to economic fluctuations. From a general point of view, we find support for the hypothesis that forest assets positively and significantly influence firm performance in terms of earnings before interest and taxes (EBIT, but not in terms of value added. Access to forest assets is never detrimental to firm performance, although it does not have a significant positive effect in all sub-categories of entrepreneurs based on different combinations of age, gender and firm type. Particularly, the economic performance of private firms run by older men benefits from resources stemming from their forest holdings. No significant effects were found for female entrepreneurs or for limited companies. As regards regional variations, firms located outside the metropolitan regions – as compared to those at the top of the urban hierarchy – are likely to perform better, thus indicating that local development may benefit from resource transfers from the forest sector to micro-firms engaged in non-primary activities.

  5. Micro-ERDA, micro-RBS and micro-PIXE techniques in the investigation of fish otoliths

    International Nuclear Information System (INIS)

    Huszank, R.; Simon, A.; Szilagyi, E.; Keresztessy, K.; Kovacs, I.

    2009-01-01

    Elemental distribution in the otolith of the fresh water fish burbot (Lota lota L.) collected in Hungary was measured with Elastic Recoil Detection Analysis (ERDA), Rutherford Backscattering Spectrometry (RBS) and as a complementary technique, Particle-Induced X-ray Emission (PIXE) with a focussed ion beam of 1.5 x 1.5 μm 2 spot size. The organic- and inorganic-rich regions of the otolith are distinguished and they are presented as hydrogen and calcium maps at depth regions of 0-70, 70-140 and 140-210 nm. The textured surface of the sample and its porosity were characterized from the effect on the RBS spectra. The oxygen and carbon PIXE elemental maps can also be used to identify the organic- and inorganic-rich regions of the otolith. The calcium map was found to be more homogeneous because the otolith structure is averaged in a larger depth. The trace elements Fe, Zn and Sr were detected only in very low concentration by micro-PIXE.

  6. Micro-ERDA, micro-RBS and micro-PIXE techniques in the investigation of fish otoliths

    Energy Technology Data Exchange (ETDEWEB)

    Huszank, R. [Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary)], E-mail: huszank@atomki.hu; Simon, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Keresztessy, K. [Department of Fish Culture, Institute of Environmental and Landscape Management, Szent Istvan University, Pater K.u.1, H-2103 Goedoello (Hungary); Kovacs, I. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2009-06-15

    Elemental distribution in the otolith of the fresh water fish burbot (Lota lota L.) collected in Hungary was measured with Elastic Recoil Detection Analysis (ERDA), Rutherford Backscattering Spectrometry (RBS) and as a complementary technique, Particle-Induced X-ray Emission (PIXE) with a focussed ion beam of 1.5 x 1.5 {mu}m{sup 2} spot size. The organic- and inorganic-rich regions of the otolith are distinguished and they are presented as hydrogen and calcium maps at depth regions of 0-70, 70-140 and 140-210 nm. The textured surface of the sample and its porosity were characterized from the effect on the RBS spectra. The oxygen and carbon PIXE elemental maps can also be used to identify the organic- and inorganic-rich regions of the otolith. The calcium map was found to be more homogeneous because the otolith structure is averaged in a larger depth. The trace elements Fe, Zn and Sr were detected only in very low concentration by micro-PIXE.

  7. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  8. Satellite Remote Sensing of Cropland Characteristics in 30m Resolution: The First North American Continental-Scale Classification on High Performance Computing Platforms

    Science.gov (United States)

    Massey, Richard

    Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a

  9. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  10. Evaluation of normalization methods in mammalian microRNA-Seq data

    Science.gov (United States)

    Garmire, Lana Xia; Subramaniam, Shankar

    2012-01-01

    Simple total tag count normalization is inadequate for microRNA sequencing data generated from the next generation sequencing technology. However, so far systematic evaluation of normalization methods on microRNA sequencing data is lacking. We comprehensively evaluate seven commonly used normalization methods including global normalization, Lowess normalization, Trimmed Mean Method (TMM), quantile normalization, scaling normalization, variance stabilization, and invariant method. We assess these methods on two individual experimental data sets with the empirical statistical metrics of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Additionally, we evaluate the methods with results from quantitative PCR validation. Our results consistently show that Lowess normalization and quantile normalization perform the best, whereas TMM, a method applied to the RNA-Sequencing normalization, performs the worst. The poor performance of TMM normalization is further evidenced by abnormal results from the test of differential expression (DE) of microRNA-Seq data. Comparing with the models used for DE, the choice of normalization method is the primary factor that affects the results of DE. In summary, Lowess normalization and quantile normalization are recommended for normalizing microRNA-Seq data, whereas the TMM method should be used with caution. PMID:22532701

  11. Hydrocarbon Migration from the Micro to Macro Scale in the Gulf of Mexico

    Science.gov (United States)

    Johansen, C.; Marty, E.; Silva, M.; Natter, M.; Shedd, W. W.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Krajewski, L.; Abrams, M.; MacDonald, I. R.

    2016-02-01

    In the Northern Gulf of Mexico (GoM) at GC600, ECOGIG has been investigating the processes involved in hydrocarbon migration from deep reservoirs to sea surface. We studied two individual vents, Birthday Candles (BC) and Mega-Plume (MP), which are separated by 1km on a salt supported ridge trending from NW-SE. Seismic data depicts two faults, also separated by 1km, feeding into the surface gas hydrate region. BC and MP comprise the range between oily, mixed, and gaseous-type vents. In both cases bubbles are observed escaping from gas hydrate out crops at the sea floor and supporting chemosynthetic communities. Fluid flow is indicated by features on the sea floor such as hydrate mounds, authigenic carbonates, brine pools, mud volcanoes, and biology. We propose a model to describe the upward flow of hydrocarbons from three vertical scales, each dominated by different factors: 1) macro (capillary failure in overlying cap rocks causing reservoir leakage), 2) meso (buoyancy driven fault migration), and 3) micro (hydrate formation and chemosynthetic activity). At the macro scale we use high reflectivity in seismic data and sediment pore throat radii to determine the formation of fractures in leaky reservoirs. Once oil and gas leave the reservoir through fractures in the cap rock they migrate in separate phases. At the meso scale we use seismic data to locate faults and salt diapirs that form conduits for buoyant hydrocarbons follow. This connects the path to the micro scale where we used video data to observe bubble release from individual vents for extended periods of time (3h-26d), and developed an image processing program to quantify bubble release rates. At mixed vents gaseous bubbles are observed escaping hydrate outcrops with a coating of oil varying in thickness. Bubble oil and gas ratios are estimated using average bubble size and release rates. The relative vent age can be described by carbonate hard ground cover, biological activity, and hydrate mound formation

  12. Micro-gas turbine performance optimization by off-design characteristics prediction

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M.B.; Pahlevanzadeh, H. [Power and Water University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Micro-gas turbines are increasingly seen as a good option for supplying distributed electric or combined heat and power (CHP) systems. Micro turbines operate on the same thermodynamic cycle as the Brayton cycle. Fresh air enters a compressor and air pressure increases isentropically and high-pressure air and fuel are mixed and burnt in the combustion chamber at constant pressure. During this process the flue gas expands to lower pressure and increase volume isentropically. In this study a model was developed using parameters obtained from the compressor and turbine. Ambient temperature and and pressure effects on micro-gas turbines were examined. Customer requirements were used as constraints on micro-gas turbine parameters. The computer software Matlab was used to study the effect of the surge margin on the behaviour of the engine. Optimum performance speeds were presented, and a marginal envelope was obtained at the optimal speed. Issues concerning fuel consumption, power output, and efficiency were considered. The principal results of the simulation presented an optimum region of operation rather than any single optimal point. It was suggested that further research is needed to study the influence of the heat exchanger on efficiency and development of a model of the power electronics so that the complete system can be simulated from power generation. It was noted that although operation of microturbines at high speeds of revolution causes more net power output, this affects the thermal efficiency of the system and fuel consumption is high. It was concluded that optimum operating conditions should be evaluated by satisfying the trade off between net power generated and fuel consumption, as well as the achievable efficiency. 8 refs., 12 figs.

  13. Grey-scale conversion X-ray mapping by EDS of multielement and multiphase layered microstructures

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John; Horsewell, Andy

    2007-01-01

    been obtained for several long-term isothermal heat treatments in which significant interdiffusion has taken place. The resulting composition profiles have greatly improved counting statistics compared to traditional point-by-point scans for the same scanning electron microscope time and may......procedure for grey-scale conversion of energy dispersive spectroscopy X-ray maps has been developed, which is particularly useful for the plotting of line composition profiles across modified layered engineering surfaces. The method involves (a) the collection of grey-scale elemental maps, (b......, the procedure has been applied to a layered microstructure that results from a plasma-sprayed metallic MCrAlY coating onto a nickel-superalloy turbine blade. As a further demonstration of the accuracy and amount of compositional data that can be obtained with this procedure, measured compositional profiles have...

  14. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films

    International Nuclear Information System (INIS)

    Armstrong, D.E.J.; Haseeb, A.S.M.A.; Roberts, S.G.; Wilkinson, A.J.; Bade, K.

    2012-01-01

    Nanocrystalline nickel–tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni–12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni–12.7 at.%W was in the range of 1.49–5.14 MPa √m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: ► Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. ► Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. ► Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. ► Fracture toughness values lower than that of nanocrystalline nickel.

  15. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-04-30

    Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.

  16. Micro-CT of sea urchin ossicles supplemented with microbeam diffraction

    Science.gov (United States)

    Stock, Stuart R.; Ignatiev, Konstantin I.; Veis, Arthur; De Carlo, Francesco; Almer, J. D.

    2004-10-01

    Sea urchins employ as wide a range of composite reinforcement strategies as are seen in engineering composites. Besides tailoring reinforcement morphology and alignment to the functional demands of position, solid solution strengthening (high Mg calcite), inclusion toughening (macromolecules), functional gradients in mineral reinforcement morphology, composition and dimensions and mineral interface tailoring are other tactics important to achieving high toughness and high strength in sea urchin teeth. Teeth from different echinoid families illustrate combinations of reinforcement parameters and toughening mechanisms providing good functionality, a virtual probe of the available design space. This paper focuses on a multi-mode x-ray investigation of sea urchin teeth studied on scales approaching 1 μm in millimeter-sized samples, in particular mapping 3-D microarchitecture with synchrotron and laboratory microCT and mapping Ca1-xMgxCO3 crystal composition x and microstrain and crystallite size via microbeam diffraction.

  17. Micro- and Nanoengineering

    NARCIS (Netherlands)

    Schroen, C.G.P.H.

    2015-01-01

    There are two overall themes, micro- and nanotechnology, which are capable of changing the future of food considerably. In microtechnology, production of foods and food ingredients is investigated at small scale; the results are thus that larger scale production is considered through operating many

  18. Addressing the Influence of Hidden State on Wireless Network Optimizations using Performance Maps

    DEFF Research Database (Denmark)

    Højgaard-Hansen, Kim; Madsen, Tatiana Kozlova; Schwefel, Hans-Peter

    2015-01-01

    be used to optimize the use of the wireless net- work by predicting future network performance and scheduling the net- work communication for certain applications on mobile devices. However, other important factors influence the performance of the wireless communication such as changes in the propagation...... environment and resource sharing. In this work we extend the framework of performance maps for wireless networks by introducing network state as an abstraction for all other factors than location that influence the performance. Since network state might not always be directly observable the framework......Performance of wireless connectivity for network client devices is location dependent. It has been shown that it can be beneficial to collect network performance metrics along with location information to generate maps of the location dependent network performance. These performance maps can...

  19. Full-field fabric stress mapping by micro Raman spectroscopy in a yarn push-out test.

    Science.gov (United States)

    Lei, Z K; Qin, F Y; Fang, Q C; Bai, R X; Qiu, W; Chen, X

    2018-02-01

    The full-field stress distribution of a two-dimensional plain fabric was mapped using micro Raman spectroscopy (MRS) through a novel yarn push-out test, simulating a quasi-static projectile impact on the fabric. The stress-strain relationship for a single yarn was established using a digital image correlation method in a single-yarn tensile test. The relationship between Raman peak shift and aramid Kevlar 49 yarn stress was established using MRS in a single-yarn tensile test. An out-of-plane loading test was conducted on an aramid Kevlar 49 plain fabric, and the yarn stress was measured using MRS. From the full-field fabric stress distribution, it can be observed that there is a cross-shaped distribution of high yarn stress; this result would be helpful in further studies on load transfer on a fabric during a projectile impact.

  20. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CM...... and cooling purposes of future low energy buildings. The investigations were conceived as a low temperature concept, where the difference between the temperature of circulating fluid and air in the room was kept in range of 1–4 °C.......The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  1. Landslide susceptibility mapping on a global scale using the method of logistic regression

    Directory of Open Access Journals (Sweden)

    L. Lin

    2017-08-01

    Full Text Available This paper proposes a statistical model for mapping global landslide susceptibility based on logistic regression. After investigating explanatory factors for landslides in the existing literature, five factors were selected for model landslide susceptibility: relative relief, extreme precipitation, lithology, ground motion and soil moisture. When building the model, 70 % of landslide and nonlandslide points were randomly selected for logistic regression, and the others were used for model validation. To evaluate the accuracy of predictive models, this paper adopts several criteria including a receiver operating characteristic (ROC curve method. Logistic regression experiments found all five factors to be significant in explaining landslide occurrence on a global scale. During the modeling process, percentage correct in confusion matrix of landslide classification was approximately 80 % and the area under the curve (AUC was nearly 0.87. During the validation process, the above statistics were about 81 % and 0.88, respectively. Such a result indicates that the model has strong robustness and stable performance. This model found that at a global scale, soil moisture can be dominant in the occurrence of landslides and topographic factor may be secondary.

  2. Assessing variable rate nitrogen fertilizer strategies within an extensively instrument field site using the MicroBasin model

    Science.gov (United States)

    Ward, N. K.; Maureira, F.; Yourek, M. A.; Brooks, E. S.; Stockle, C. O.

    2014-12-01

    The current use of synthetic nitrogen fertilizers in agriculture has many negative environmental and economic costs, necessitating improved nitrogen management. In the highly heterogeneous landscape of the Palouse region in eastern Washington and northern Idaho, crop nitrogen needs vary widely within a field. Site-specific nitrogen management is a promising strategy to reduce excess nitrogen lost to the environment while maintaining current yields by matching crop needs with inputs. This study used in-situ hydrologic, nutrient, and crop yield data from a heavily instrumented field site in the high precipitation zone of the wheat-producing Palouse region to assess the performance of the MicroBasin model. MicroBasin is a high-resolution watershed-scale ecohydrologic model with nutrient cycling and cropping algorithms based on the CropSyst model. Detailed soil mapping conducted at the site was used to parameterize the model and the model outputs were evaluated with observed measurements. The calibrated MicroBasin model was then used to evaluate the impact of various nitrogen management strategies on crop yield and nitrate losses. The strategies include uniform application as well as delineating the field into multiple zones of varying nitrogen fertilizer rates to optimize nitrogen use efficiency. We present how coupled modeling and in-situ data sets can inform agricultural management and policy to encourage improved nitrogen management.

  3. Numerical characterization of micro-cell UO{sub 2}−Mo pellet for enhanced thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Soo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Dong-Joo [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Sun Woo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Yang, Jae Ho; Koo, Yang-Hyun [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-08-15

    Metallic micro-cell UO{sub 2} pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO{sub 2} fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO{sub 2}−Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO{sub 2}−Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO{sub 2} pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm. - Highlights: • Thermal conductivities of micro-cell UO{sub 2}−Mo pellets were numerically studied in terms of their unit cell geometries. • Numerical calculations qualitatively well agreed with experimental measurements. • Optimizing the unit cell geometries of the micro-cell pellets could greatly enhance their thermal conductivities.

  4. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Manolova, M.; Stefanova, S.; Simeonova, V.; Passage, G.; Lassmann, K.

    1994-01-01

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: 1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; 2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; 3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs

  5. WWER-440 fuel rod performance analysis with PIN-Micro and TRANSURANUS codes

    Energy Technology Data Exchange (ETDEWEB)

    Vitkova, M; Manolova, M; Stefanova, S; Simeonova, V; Passage, G [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika; Kharalampieva, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Lassmann, K [European Atomic Energy Community, Karlsruhe (Germany). European Inst. for Transuranium Elements

    1994-12-31

    PIN-micro and TRANSURANUS codes were used to analyse the WWER-440 fuel rod behaviour at normal operation conditions. Two highest loaded fuel rods of the fuel assemblies irradiated in WWER-440 with different power histories were selected. A set of the most probable average values of all geometrical and technological parameters were used. A comparison between PIN-micro and TRANSURANUS codes was performed using identical input data. The results for inner gas pressure, gap size, local linear heat rate, fuel central temperature and fission gas release as a function of time calculated for the selected fuel rods are presented. The following conclusions were drawn: (1) The PIN-micro code predicts adequately the thermal and mechanical behaviour of the two fuel rods; (2) The comparison of the results obtained by PIN-micro and TRANSURANUS shows a reasonable agreement and the discrepancies could be explained by the lack of thoroughly WWER oriented verification of TRANSURANUS; (3) The advanced TRANSURANUS code could be successfully applied for WWER fuel rod thermal and mechanical analysis after incorporation of all necessary WWER specific material properties and models for the Zr+1%Nb cladding, for the fuel rod as a whole and after validation against WWER experimental and operational data. 1 tab., 10 figs., 10 refs.

  6. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    Science.gov (United States)

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  7. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Boyang Xing

    2018-05-01

    Full Text Available A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland. Thus, a small-size and low-cost marker-based localizat