WorldWideScience

Sample records for perform effective calculations

  1. Performance assessment calculational exercises

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1990-01-01

    The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ''expected'' and also ''disturbed'' conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs

  2. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  3. Solvation Effects on Electronic Transitions: Exploring the Performance of Advanced Solvent Potentials in Polarizable Embedding Calculations

    DEFF Research Database (Denmark)

    Schwabe, Tobias; Olsen, Magnus; Sneskov, Kristian

    2011-01-01

    The polarizable embedding (PE) approach, which combines quantum mechanics (QM) and molecular mechanics (MM), is applied to predict solvatochromic effects on excitation energies of several representative molecules in aqueous, methanol, acetonitrile, and carbon tetrachloride solutions. Good agreement...

  4. The Effects of the Use of Microsoft Math Tool (Graphical Calculator) Instruction on Students' Performance in Linear Functions

    Science.gov (United States)

    Kissi, Philip Siaw; Opoku, Gyabaah; Boateng, Sampson Kwadwo

    2016-01-01

    The aim of the study was to investigate the effect of Microsoft Math Tool (graphical calculator) on students' achievement in the linear function. The study employed Quasi-experimental research design (Pre-test Post-test two group designs). A total of ninety-eight (98) students were selected for the study from two different Senior High Schools…

  5. Quantifying environmental performance using an environmental footprint calculator

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Loney, A.C.; Chan, V. [Conestoga-Rovers & Associates, Waterloo, Ontario (Canada)

    2009-07-01

    This paper provides a case study using relevant key performance indicators (KPIs) to evaluate the environmental performance of a business. Using recognized calculation and reporting frameworks, Conestoga-Rovers & Associates (CRA) designed the Environmental Footprint Calculator to quantify the environmental performance of a Canadian construction materials company. CRA designed the Environmental Footprint calculator for our client to track and report their environmental performance in accordance with their targets, based on requirements of relevant guidance documents. The objective was to design a tool that effectively manages, calculates, and reports environmental performance to various stakeholders in a user-friendly format. (author)

  6. Quantifying environmental performance using an environmental footprint calculator

    International Nuclear Information System (INIS)

    Smith, D.B.; Loney, A.C.; Chan, V.

    2009-01-01

    This paper provides a case study using relevant key performance indicators (KPIs) to evaluate the environmental performance of a business. Using recognized calculation and reporting frameworks, Conestoga-Rovers & Associates (CRA) designed the Environmental Footprint Calculator to quantify the environmental performance of a Canadian construction materials company. CRA designed the Environmental Footprint calculator for our client to track and report their environmental performance in accordance with their targets, based on requirements of relevant guidance documents. The objective was to design a tool that effectively manages, calculates, and reports environmental performance to various stakeholders in a user-friendly format. (author)

  7. Searing sentiment or cold calculation? the effects of leader emotional displays on team performance depend on follower epistemic motivation

    NARCIS (Netherlands)

    van Kleef, G.A.; Homan, A.C.; Beersma, B.; van Knippenberg, D.; van Knippenberg, B.; Damen, F.

    2009-01-01

    We examined how leader emotional displays affect team performance. We developed and tested the idea that effects of leader displays of anger versus happiness depend on followers' epistemic motivation, which is the desire to develop a thorough understanding of a situation. Experimental data on

  8. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  9. Invert Effective Thermal Conductivity Calculation

    International Nuclear Information System (INIS)

    M.J. Anderson; H.M. Wade; T.L. Mitchell

    2000-01-01

    The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations

  10. Technical manual for calculating cooling pond performance

    International Nuclear Information System (INIS)

    Krstulovich, S.F.

    1988-01-01

    This manual is produced in response to a growing number of requests for a technical aid to explain methods for simulating cooling pond performance. As such, it is a compilation of reports, charts and graphs developed through the years for use in analyzing situations. Section II contains a report summarizing the factors affecting cooling pond performance and lists statistical parameters used in developing performance simulations. Section III contains the graphs of simulated cooling pond performance on an hourly basis for various combinations of criteria (wind, solar, depth, air temperature and humidity) developed from the report in Section II. Section IV contains correspondence describing how to develop further data from the graphs in Section III, as well as mathematical models for the system of performance calculation. Section V contains the formulas used to simulate cooling pond performances in a cascade arrangement, such as the Fermilab Main Ring ponds. Section VI contains the calculations currently in use to evaluate the Main Ring pond performance based on current flows and Watts loadings. Section VII contains the overall site drawing of the Main Ring cooling ponds with thermal analysis and physical data

  11. Effect of different levels of rapidly degradable carbohydrates calculated by a simple rumen model on performance of lactating dairy cows.

    Science.gov (United States)

    Doorenbos, J; Martín-Tereso, J; Dijkstra, J; van Laar, H

    2017-07-01

    Aggregating rumen degradation characteristics of different carbohydrate components into the term modeled rapidly degradable carbohydrates (mRDC) can simplify diet formulation by accounting for differences in rate and extent of carbohydrate degradation within and between feedstuffs. This study sought to evaluate responses of lactating dairy cows to diets formulated with increasing levels of mRDC, keeping the supply of other nutrients as constant as possible. The mRDC content of feedstuffs was calculated based on a simple rumen model including soluble, washable, and nonwashable but potentially degradable fractions, as well as the fractional degradation and passage rates, of sugar, starch, neutral detergent fiber, and other carbohydrates. The mRDC term effectively represents the total amount of carbohydrates degraded in the rumen within 2 h after ingestion. Fifty-two lactating Holstein cows (of which 4 were rumen fistulated) were assigned to 4 treatments in a 4 × 4 Latin square design. Treatments were fed as a total mixed ration consisting of 25.4% corn silage, 23.1% grass silage, 11.6% grass hay, and 39.9% concentrate on a dry matter basis. Differences in mRDC were created by exchanging nonforage neutral detergent fiber-rich ingredients (mainly sugar beet pulp) with starch-rich ingredients (mainly wheat) and by exchanging corn (slowly degradable starch) with wheat (rapidly degradable starch) in the concentrate, resulting in 4 treatments that varied in dietary mRDC level of 167, 181, 194, or 208 g/kg of dry matter. Level of mRDC did not affect dry matter intake. Fat- and protein-corrected milk production and milk fat and lactose yield were greatest at 181 mRDC and decreased with further increases in mRDC. Milk protein yield and concentration increased with increasing mRDC level. Mean rumen pH and diurnal variation in ruminal pH did not differ between treatments. Total daily meal time and number of visits per meal were smaller at 181 and 194 mRDC. Despite milk

  12. Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study

    International Nuclear Information System (INIS)

    Wu, Tung-Hsin; Chen, Chia-Lin; Huang, Yung-Hui; Liu, Ren-Shyan; Hsieh, Jen-Chuen; Lee, Jason J.S.

    2009-01-01

    The aim of this study was to examine the neural bases for the exceptional mental calculation ability possessed by Chinese abacus experts through PET imaging. We compared the different regional cerebral blood flow (rCBF) patterns using 15 O-water PET in 10 abacus experts and 12 non-experts while they were performing each of the following three tasks: covert reading, simple addition, and complex contiguous addition. All data collected were analyzed using SPM2 and MNI templates. For non-experts during the tasks of simple addition, the observed activation of brain regions were associated with coordination of language (inferior frontal network) and visuospatial processing (left parietal/frontal network). Similar activation patterns but with a larger visuospatial processing involvement were observed during complex contiguous addition tasks, suggesting the recruitment of more visuospatial memory for solving the complex problems. For abacus experts, however, the brain activation patterns showed slight differences when they were performing simple and complex addition tasks, both of which involve visuospatial processing (bilateral parietal/frontal network). These findings supported the notion that the experts were completing all the calculation process on a virtual mental abacus and relying on this same computational strategy in both simple and complex tasks, which required almost no increasing brain workload for solving the latter. In conclusion, after intensive training and practice, the neural pathways in an abacus expert have been connected more effectively for performing the number encoding and retrieval that are required in abacus tasks, resulting in exceptional mental computational ability. (orig.)

  13. Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect

    Science.gov (United States)

    Zhang, Pan; Shen, Yanqing; Wu, Wenjing; Li, Jun; Zhou, Zhongxiang

    2018-03-01

    Although a number of various reduced graphene oxide (RGO)-based nanomaterials with enhanced photocatalytic performance have recently been characterized, the effect of RGO reductivity on their performance is still not clear. Herein, KNbO3(100) surface modification with three RGO sheets of different reductivity is investigated using first-principles calculations, revealing that increasing RGO reductivity enhances the photocatalytic performance of KNbO3(100)/RGO nanocomposites. In contrast to CeO2/RGO nanocomposites, the O atoms of RGO inhibit the photoactivity of KNbO3/RGO nanocomposites by restraining the effect of inducing a red shift of the corresponding photocatalytic absorption spectra by C 2p states. Increased RGO reductivity extends its absorption edge to the visible light region of the optical absorption and also promotes charge transfer from the KNbO3(100) surface to RGO sheets, in contrast to the behavior observed for g-C3N4/RGO composites. Overall, this work provides a reasonable explanation of controversial experimental results obtained previously, paving the way to the development of highly efficient RGO-based photocatalysts and promoting further photocatalytic applications of KNbO3/RGO nanocomposites.

  14. Models for Automated Tube Performance Calculations

    International Nuclear Information System (INIS)

    Brunkhorst, C.

    2002-01-01

    High power radio-frequency systems, as typically used in fusion research devices, utilize vacuum tubes. Evaluation of vacuum tube performance involves data taken from tube operating curves. The acquisition of data from such graphical sources is a tedious process. A simple modeling method is presented that will provide values of tube currents for a given set of element voltages. These models may be used as subroutines in iterative solutions of amplifier operating conditions for a specific loading impedance

  15. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  16. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  17. Status of effective potential calculations

    CERN Document Server

    Quiros, M.

    1995-01-01

    We review various effective potential methods which have been useful to compute the Higgs mass spectrum and couplings of the minimal supersymmetric standard model. We compare results where all-loop next-to-leading-log corrections are resummed by the renormalization group, with those where just the leading-log corrections are kept. Pole masses are obtained from running masses by addition of convenient self-energy diagrams. Approximate analytical expressions are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log terms. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass of the lightest CP-even Higgs boson mass.

  18. Effect of phosphorus doping on electronic structure and photocatalytic performance of g-C{sub 3}N{sub 4}: Insights from hybrid density functional calculation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianjun, E-mail: jjliu@chnu.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China)

    2016-07-05

    Graphitic carbon nitride (g-C{sub 3}N{sub 4}), as a promising visible-light photocatalyst, has wide applications on water splitting, pollutants decomposition and CO{sub 2} reduction. Herein, we investigated the electronic and optical property of pure and P doped g-C{sub 3}N{sub 4} using Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional method. The valuable features such as, the band structure, density of states, band decomposed charged density and optical absorption were computed to explore the role of phosphorus substitute N2 and C1 sites of g-C{sub 3}N{sub 4}.The results indicated that pure g-C{sub 3}N{sub 4} has an indirect band gap of about 2.73 eV, which is in good agreement with the experimental value. By doping P into N2 and C1 sites of g-C{sub 3}N{sub 4}, the band gap reduces to 2.03 and 2.22 eV, respectively. Optical absorption intensity of g-C{sub 3}N{sub 4} had a greatly enhancement in the visible region by doping P. Though narrowing the energy band of g-C{sub 3}N{sub 4} by doping P, conduction band and valance band edge of g-C{sub 3}N{sub 4} doping system still had enough potential to split water. Therefore, phosphorus doped g-C{sub 3}N{sub 4} is effective strategy to improve visible light response photocatalytic performance of g-C{sub 3}N{sub 4}. - Highlights: • For the first time, calculated band structure of P doped g-C{sub 3N}4 by Hybrid DFT method. • P doped g-C{sub 3N}4 narrowed band gap and enhanced optical absorption. • P doped g-C3{sub N4} enhanced the oxidation capacity of the valence band edge.

  19. Calculation of driling and blasting parameters in blasting performance

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  20. Effective hamiltonian calculations using incomplete model spaces

    International Nuclear Information System (INIS)

    Koch, S.; Mukherjee, D.

    1987-01-01

    It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations

  1. Effective action calculation in lattice QCD

    International Nuclear Information System (INIS)

    Hoek, J.

    1983-01-01

    A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)

  2. Performance calculations on the ANFO explosive RX-HD

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P.C.; Larson, D.B.; Tarver, C.M.

    1994-12-31

    This report presents the calculation methods utilized in asessing the detonation performance of the ammonium nitrate-fuel oil (ANFO) utilized in the non-proliferation experiment (NPE) underground explosion at te Nevada Test Site. The composition of the ANFO is discussed.

  3. Effective operators in nuclear-structure calculations

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of the use of many-body perturbation theory to determine effective operators for shell-model calculations, i.e., for calculations in truncated model spaces, is given, starting with the ground-breaking work of Arima and Horie for electromagnetic moments. The problems encountered in utilizing this approach are discussed. New methods based on unitary-transformation approaches are introduced and analyzed. The old problems persist, but the new methods allow us to obtain a better insight into the nature of the physics involved in these processes

  4. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  5. Reference moderator calculated performance for the LANSCE upgrade project

    International Nuclear Information System (INIS)

    Ferguson, P.D.; Russell, G.J.; Pitcher, E.J.

    1995-01-01

    The authors have calculated the performance of five moderators of interest to the LANSCE upgrade project. Coupled and decoupled light water and liquid hydrogen moderators in flux-trap geometry surrounded by a neutronically infinite heavy-water cooled beryllium reflector have been studied. Time and energy spectra, as well as semi-empirical fits to the data, are presented. The data has been made available to aid the instrument design and moderator selection process

  6. Resonance integral analytical calculation considering shadowing effect

    International Nuclear Information System (INIS)

    Monteiro, M.A.M.; Martinez, A.S.

    1990-01-01

    It is presented a method for the Resonance Integral Calculation in the fuel and moderator regions, including the shadowing effect. This effect appears due to the presence of several fuel rods in a infinite moderator region. The method is based on the approximations to the J (ξ, β) function and theirs partial derivatives in relation to β. The dependence of the Resonance Integral in the J (ξ, β) comes from the rational approximation to the neutron escape probability. The final results were obtained in a very simple and fast way, and they show the good accuracy of the method. (author)

  7. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    International Nuclear Information System (INIS)

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; Buluc, Aydin; Shao, Meiyue

    2017-01-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using the compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.

  8. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  9. Performance of quantum Monte Carlo for calculating molecular bond lengths

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  10. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  11. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  12. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  13. Effective connectivity reveals strategy differences in an expert calculator.

    Directory of Open Access Journals (Sweden)

    Ludovico Minati

    Full Text Available Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of "cortical hubs" supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material.

  14. Developing Effective Performance Measures

    Science.gov (United States)

    2014-10-14

    University When Performance Measurement Goes Bad Laziness Vanity Narcissism Too Many Pettiness Inanity 52 Developing Effective...Kasunic, October 14, 2014 © 2014 Carnegie Mellon University Narcissism Measuring performance from the organization’s point of view, rather than from

  15. Effective Permittivity for FDTD Calculation of Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    James B. Cole

    2012-03-01

    Full Text Available We present a new effective permittivity (EP model to accurately calculate surface plasmons (SPs using the finite-difference time-domain (FDTD method. The computational representation of physical structures with curved interfaces causes inherent errors in FDTD calculations, especially when the numerical grid is coarse. Conventional EP models improve the errors, but they are not effective for SPs because the SP resonance condition determined by the original permittivity is changed by the interpolated EP values. We perform FDTD simulations using the proposed model for an infinitely-long silver cylinder and gold sphere, and the results are compared with Mie theory. Our model gives better accuracy than the conventional staircase and EP models for SPs.

  16. Development of Dynamic Environmental Effect Calculation Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il

    2010-01-01

    The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed

  17. A procedure for effective Dancoff factor calculation

    International Nuclear Information System (INIS)

    Milosevic, M.

    2001-01-01

    In this paper, a procedure for Dancoff factors calculation based on equivalence principle and its application in the SCALE-4.3 code system is described. This procedure is founded on principle of conservation of neutron absorption for resolved resonance range in a heterogeneous medium and an equivalent medium consisted of an infinite array of two-region pin cells, where the presence of other fuel rods is taken into account through a Dancoff factor. The neutron absorption in both media is obtained using a fine-group elastic slowing-down calculation. This procedure is implemented in a design oriented lattice physics code, which is applicable for any geometry where the method of collision probability is possible to apply to get a flux solution. Proposed procedure was benchmarked for recent exercise that represents a system with a fuel double heterogeneity, i.e., fuel in solid form (pellets) surrounded by fissile material in solution, and for a 5x5 irregular pressurised water reactor assembly, which requires different Dancoff factors. (author)

  18. Performance evaluation for compressible flow calculations on five parallel computers of different architectures

    International Nuclear Information System (INIS)

    Kimura, Toshiya.

    1997-03-01

    A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)

  19. Performance prediction and flow field calculation for airfoil fan with impeller inlet clearance

    International Nuclear Information System (INIS)

    Kang, Shin Hyoung; Cao, Renjing; Zhang, Yangjun

    2000-01-01

    The performance prediction of an airfoil fan using a commercial code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub

  20. Calculating Second-Order Effects in MOSFET's

    Science.gov (United States)

    Benumof, Reuben; Zoutendyk, John A.; Coss, James R.

    1990-01-01

    Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.

  1. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  2. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  3. Effects of NMR spectral resolution on protein structure calculation.

    Directory of Open Access Journals (Sweden)

    Suhas Tikole

    Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.

  4. User's manual for sustainable transportation performance measures calculator

    Science.gov (United States)

    2010-08-01

    Sustainable transportation can be viewed as the provision of safe, effective, and efficient : access and mobility into the future while considering economic, social, and environmental : needs. For the Texas Department of Transportation (TxDOT) to ass...

  5. An empirical method for calculating thermodynamic parameters for U(6) phases, applications to performance assessment calculations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Chen, F.; Clark, S.B.

    2002-01-01

    Uranyl minerals form by oxidation and alteration of uraninite, UO 2+x , and the UO 2 in used nuclear fuels. The thermodynamic database for these phases is extremely limited. However, the Gibbs free energies and enthalpies for uranyl phases may be estimated based on a method that sums polyhedral contributions. The molar contributions of the structural components to Δ f G m 0 and Δ f H m 0 are derived by multiple regression using the thermodynamic data of phases for which the crystal structures are known. In comparison with experimentally determined values, the average residuals associated with the predicted Δ f G m 0 and Δ f H m 0 for the uranyl phases used in the model are 0.08 and 0.10%, respectively. There is also good agreement between the predicted mineral stability relations and field occurrences, thus providing confidence in this method for the estimation of Δ f G m 0 and Δ f H m 0 of the U(VI) phases. This approach provides a means of generating estimated thermodynamic data for performance assessment calcination and a basic for making bounding calcination of phase stabilities and solubilities. (author)

  6. Performativity and the Politics of Equipping for Calculation

    DEFF Research Database (Denmark)

    Henriksen, Lasse Folke

    2013-01-01

    This article argues that the concept of performativity deepens our understanding of contemporary, expertise-driven processes of global economic governance. Tracing the World Bank's role in constructing a global market for microfinance, the paper suggests that the World Bank was instrumental...... in translating selected parts of economic models into practice, thereby changing microfinance practices globally. Socio-technical networks centered on the World Bank were created to equip actors to become part of a global market, which incorporated not only donors but also commercial investors. The paper makes...

  7. Trends in high-performance computing for engineering calculations.

    Science.gov (United States)

    Giles, M B; Reguly, I

    2014-08-13

    High-performance computing has evolved remarkably over the past 20 years, and that progress is likely to continue. However, in recent years, this progress has been achieved through greatly increased hardware complexity with the rise of multicore and manycore processors, and this is affecting the ability of application developers to achieve the full potential of these systems. This article outlines the key developments on the hardware side, both in the recent past and in the near future, with a focus on two key issues: energy efficiency and the cost of moving data. It then discusses the much slower evolution of system software, and the implications of all of this for application developers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Performance of various mathematical methods for calculation of radioimmunoassay results

    International Nuclear Information System (INIS)

    Sandel, P.; Vogt, W.

    1977-01-01

    Interpolation and regression methods are available for computer aided determination of radioimmunological end results. We compared the performance of eight algorithms (weighted and unweighted linear logit-log regression, quadratic logit-log regression, Rodbards logistic model in the weighted and unweighted form, smoothing spline interpolation with a large and small smoothing factor and polygonal interpolation) on the basis of three radioimmunoassays with different reference curve characteristics (digoxin, estriol, human chorionic somatomammotropin = HCS). Great store was set by the accuracy of the approximation at the intermediate points on the curve, ie. those points that lie midway between two standard concentrations. These concentrations were obtained by weighing and inserted as unknown samples. In the case of digoxin and estriol the polygonal interpolation provided the best results while the weighted logit-log regression proved superior in the case of HCS. (orig.) [de

  9. Performance effect of Lean

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Israelsen, Poul

    2016-01-01

    To understand how the practices of Lean affect performance, we tested and validated a system-wide approach using mediating relationships in a structural equation model. We used a cross-sectional survey of 200 Danish companies that indicated that they used Lean. Thus, this study is especially...... relevant to Denmark, but the approach is empirically more generalizable. We show that the effect of Lean standardized flow production practices on performance is mediated by analytical continuous improvement empowerment practices and by delegation of decision rights practices. Thus, standardized flow...... of decision rights. The paper provides evidence that supports the view that middle managers’ actions further enhance performance in Lean companies. The right Lean behavior by middle managers increases the level of analytical continuous improvement empowerment. In total, high-performing Lean companies...

  10. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  11. Use of condensed videos in a flipped classroom for pharmaceutical calculations: Student perceptions and academic performance.

    Science.gov (United States)

    Gloudeman, Mark W; Shah-Manek, Bijal; Wong, Terri H; Vo, Christina; Ip, Eric J

    2018-02-01

    The flipped teaching method was implemented through a series of multiple condensed videos for pharmaceutical calculations with student perceptions and academic performance assessed post-intervention. Student perceptions from the intervention group were assessed via an online survey. Pharmaceutical exam scores of the intervention group were compared to the control group. The intervention group spent a greater amount of class time on active learning. The majority of students (68.2%) thought that the flipped teaching method was more effective to learn pharmaceutical calculations than the traditional method. The mean exam scores of the intervention group were not significantly different than the control group (80.5 ± 15.8% vs 77.8 ± 16.8%; p = 0.253). Previous studies on the flipped teaching method have shown mixed results in regards to student perceptions and exam scores, where either student satisfaction increased or exam scores improved, but rarely both. The flipped teaching method was rated favorably by a majority of students. The flipped teaching method resulted in similar outcomes in pharmaceutical calculations exam scores, and it appears to be an acceptable and effective option to deliver pharmaceutical calculations in a Doctor of Pharmacy program. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The effect of an interactive e-drug calculations package on nursing students' drug calculation ability and self-efficacy.

    Science.gov (United States)

    McMullan, Miriam; Jones, Ray; Lea, Susan

    2011-06-01

    Nurses need to be competent and confident in performing drug calculations to ensure patient safety. The purpose of this study is to compare an interactive e-drug calculations package, developed using Cognitive Load Theory as its theoretical framework, with traditional handout learning support on nursing students' drug calculation ability, self-efficacy and support material satisfaction. A cluster randomised controlled trial comparing the e-package with traditional handout learning support was conducted with a September cohort (n=137) and a February cohort (n=92) of second year diploma nursing students. Students from each cohort were geographically dispersed over 3 or 4 independent sites. Students from each cohort were invited to participate, halfway through their second year, before and after a 12 week clinical practice placement. During their placement the intervention group received the e-drug calculations package while the control group received traditional 'handout' support material. Drug calculation ability and self-efficacy tests were given to the participants pre- and post-intervention. Participants were given the support material satisfaction scale post-intervention. Students in both cohorts randomised to e-learning were more able to perform drug calculations than those receiving the handout (September: mean 48.4% versus 34.7%, p=0.027; February: mean 47.6% versus 38.3%, p=0.024). February cohort students using the e-package were more confident in performing drug calculations than those students using handouts (self-efficacy mean 56.7% versus 45.8%, p=0.022). There was no difference in improved self-efficacy between intervention and control for students in the September cohort. Students who used the package were more satisfied with its use than the students who used the handout (mean 29.6 versus 26.5, p=0.001), particularly with regard to the package enhancing their learning (p=0.023), being an effective way to learn (p=0.005), providing practice and

  13. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  14. Expected performance properties of the ASDEX upgrade toroidal field magnet derived from calculations and materials investigations

    International Nuclear Information System (INIS)

    Streibl, B.; Mukherjee, S.

    1989-11-01

    This is a summary of the TF-magnet calculation results for the 1984 phase-II proposal including supplements (also considering disturbances) of the performance of ASDEX Upgrade. Calculation results are as reliable as the assumptions incorporated, so that investigations of materials and design components were always used to complete the calculations. (orig.) [de

  15. Study on calculation methods for the effective delayed neutron fraction

    International Nuclear Information System (INIS)

    Irwanto, Dwi; Obara, Toru; Chiba, Go; Nagaya, Yasunobu

    2011-03-01

    The effective delayed neutron fraction β eff is one of the important neutronic parameters from a view point of a reactor kinetics. Several Monte-Carlo-based methods to estimate β eff have been proposed to date. In order to quantify the accuracy of these methods, we study calculation methods for β eff by analyzing various fast neutron systems including the bare spherical systems (Godiva, Jezebel, Skidoo, Jezebel-240), the reflective spherical systems (Popsy, Topsy, Flattop-23), MASURCA-R2 and MASURCA-ZONA2, and FCA XIX-1, XIX-2 and XIX-3. These analyses are performed by using SLAROM-UF and CBG for the deterministic method and MVP-II for the Monte Carlo method. We calculate β eff with various definitions such as the fundamental value β 0 , the standard definition, Nauchi's definition and Meulekamp's definition, and compare these results with each other. Through the present study, we find the following: The largest difference among the standard definition of β eff , Nauchi's β eff and Meulekamp's β eff is approximately 10%. The fundamental value β 0 is quite larger than the others in several cases. For all the cases, Meulekamp's β eff is always higher than Nauchi's β eff . This is because Nauchi's β eff considers the average neutron multiplicity value per fission which is large in the high energy range (1MeV-10MeV), while the definition of Meulekamp's β eff does not include this parameter. Furthermore, we evaluate the multi-generation effect on β eff values and demonstrate that this effect should be considered to obtain the standard definition values of β eff . (author)

  16. Software Tools for Measuring and Calculating Electromagnetic Shielding Effectiveness

    National Research Council Canada - National Science Library

    Tesny, Neal

    2005-01-01

    The evaluation and the analysis of high-altitude electromagnetic pulse response of shielded enclosures require the availability of software tools able to acquire data and calculate shielding effectiveness...

  17. SITE-94. Adaptation of mechanistic sorption models for performance assessment calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Sorption is considered in most predictive models of radionuclide transport in geologic systems. Most models simulate the effects of sorption in terms of empirical parameters, which however can be criticized because the data are only strictly valid under the experimental conditions at which they were measured. An alternative is to adopt a more mechanistic modeling framework based on recent advances in understanding the electrical properties of oxide mineral-water interfaces. It has recently been proposed that these 'surface-complexation' models may be directly applicable to natural systems. A possible approach for adapting mechanistic sorption models for use in performance assessments, using this 'surface-film' concept, is described in this report. Surface-acidity parameters in the Generalized Two-Layer surface complexation model are combined with surface-complexation constants for Np(V) sorption ob hydrous ferric oxide to derive an analytical model enabling direct calculation of corresponding intrinsic distribution coefficients as a function of pH, and Ca 2+ , Cl - , and HCO 3 - concentrations. The surface film concept is then used to calculate whole-rock distribution coefficients for Np(V) sorption by altered granitic rocks coexisting with a hypothetical, oxidized Aespoe groundwater. The calculated results suggest that the distribution coefficients for Np adsorption on these rocks could range from 10 to 100 ml/g. Independent estimates of K d for Np sorption in similar systems, based on an extensive review of experimental data, are consistent, though slightly conservative, with respect to the calculated values. 31 refs

  18. Assessing the stability of free-energy perturbation calculations by performing variations in the method

    Science.gov (United States)

    Manzoni, Francesco; Ryde, Ulf

    2018-03-01

    We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2-3 kJ/mol and a correlation coefficient (R 2) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates). However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty than if performing only one calculation with a single computational setup.

  19. On thermal vibration effects in diffusion model calculations of blocking dips

    International Nuclear Information System (INIS)

    Fuschini, E.; Ugozzoni, A.

    1983-01-01

    In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions

  20. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  1. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  2. Ability of aphasic individuals to perform numerical processing and calculation tasks

    Directory of Open Access Journals (Sweden)

    Gabriela De Luccia

    2014-03-01

    Full Text Available Objective To compare performance on EC301 battery calculation task between aphasic subjects and normal controls of the same sex, age, and education. Method Thirty-two aphasic patients who had suffered a single left hemisphere stroke were evaluated. Forty-four healthy volunteers were also selected. All subjects underwent a comprehensive arithmetic battery to assess their numerical and calculation skills. Performances on numerical processing and calculation tasks were then analyzed. Results Aphasic individuals showed changes in their ability to perform numerical processing and calculation tasks that were not observed in the healthy population. Conclusion Compared with healthy subjects of the same age and education level, individuals with aphasia had difficulty performing various tasks that involved numerical processing and calculation.

  3. Nuclear steam power plant cycle performance calculations supported by power plant monitoring and results computer

    International Nuclear Information System (INIS)

    Bettes, R.S.

    1984-01-01

    The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals

  4. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  5. CSRtrack Faster Calculation of 3-D CSR Effects

    CERN Document Server

    Dohlus, Martin

    2004-01-01

    CSRtrack is a new code for the simulation of Coherent Synchrotron radiation effects on the beam dynamics of linear accelerators. It incorporates the physics of our previous code, TraFiC4, and adds new algorithms for the calculation of the CSR fields. A one-dimensional projected method allows quick estimates and a greens function method allows 3D calculations about ten times faster than with the `direct' method. The tracking code is written in standard FORTRAN77 and has its own parser for comfortable input of calculation parameters and geometry. Phase space input and the analysis of the traced particle distribution is done with MATLAB interface programs.

  6. Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

    OpenAIRE

    Nabil M. Muhaisen; Rajab Abdullah Hokoma

    2012-01-01

    This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating ...

  7. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  8. Radionuclide composition in nuclear fuel waste. Calculations performed by ORIGEN2

    International Nuclear Information System (INIS)

    Lyckman, C.

    1996-01-01

    The report accounts for results from calculations on the content of radionuclides in nuclear fuel waste. It also accounts for the results from calculations on the neutron flow from spent fuel, which is very important during transports. The calculations have been performed using the ORIGEN2 software. The results have been compared to other results from earlier versions of ORIGEN and some differences have been discovered. This is due to the updating of the software. 7 refs, 10 figs, 15 tabs

  9. Calculations of the self-amplified spontaneous emission performance of a free-electron laser

    International Nuclear Information System (INIS)

    Dejus, R. J.

    1999-01-01

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed

  10. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  11. A model for calculating expected performance of the Apollo unified S-band (USB) communication system

    Science.gov (United States)

    Schroeder, N. W.

    1971-01-01

    A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.

  12. Errors in the calculation of new salary positions and performance premiums – 2017 MERIT exercise

    CERN Multimedia

    Staff Association

    2017-01-01

    Following the receipt of the letters dated May 12th announcing the qualification of their performance (MERIT 2017), and the notification of their salary slips for the month of May, several colleagues have come to us to enquire about the calculation of salary increases and performance premiums. After verification, the Staff Association has informed the Management, in a meeting of the Standing Concertation Committee on June 1st, about errors owing to rounding in the applied formulas. James Purvis, Head of HR department, has published in the CERN Bulletin dated July 18th an article, under the heading “Better precision (rounding)”, that gives a short explanation of these rounding effects. But we want to further bring you more precise explanations. Advancement On the salary slips for the month of May, the calculations of the advancement and new salary positions were done, by the services of administrative computing in the FAP department, on the basis of the salary, rounded to the nearest franc...

  13. Preliminary Analysis For Wolsong Par Effects Using ISACC Calculations

    International Nuclear Information System (INIS)

    Song, Yong Mann; Kim, Dong Ha

    2012-01-01

    In the paper, hydrogen control effects using PARs only are analyzed for severe SBO station blackout (SBO) sequences beyond the design basis accidents in WS-1 which are of CANDU6 type reactor. As a computational tool, the latest version of ISAAC4.3 (Integrated Severe Accident Analysis Code for CANDU), which is a fully integrated and lumped severe accident computer code, is used to simulate hydrogen generation and transport inside the reactor building (R/B) before its failure. For the performance of hydrogen removal, the depletion rate equation of K-PAR developed in Korea is applied. In a CANDU reactor, three areas are identified as sources of hydrogen under severe accidents: fuel-coolant interactions in intact channels, suspended fuel or debris interactions in-calandria tank and debris interactions in-calandria vault. The first two origins provide source for the late ('late' terminology is used because it takes more than one day before calandria tank failure) potential hydrogen combustion before calandria tank failure and all the three origins would provide source for the very late potential hydrogen combustion occurring at or after calaria tank failure. If the hydrogen mitigation system fails, the AICC (adiabatic isochoric complete combustion) burning of highly flammable hydrogen may cause Wolsong R/B failure. So hydrogen induced failure possibility is evaluated, using preliminary ISAAC calculations, under several SBO conditions with and without PAR for both late and very late accident periods

  14. Conducting effective performance appraisals.

    Science.gov (United States)

    2001-01-01

    According to experts, performance appraisals rate just below firing someone as the least favorite thing managers do. Many factors contribute to this view--one is that current systems do a poor job of evaluating performance and in fact often impede both evaluation and performance. When used as part of an ongoing supportive process of goal setting and feedback, performance appraisals can enhance performance and morale. One alternative to traditional employee evaluation methods is full-circle or 360-degree feedback. Contained in this issue are practical suggestions for preparing employees for performance appraisals which, when followed daily, encourage employees to put their best feet forward as part of their regular routine. Also included is a template specific to assessing the performance of clinical laboratory technologists . Additionally, numerous resources are provided to help you refine appraisal systems to fit your needs. Full-circle feedback is proving to be a boon to managers. It relieves them from being the exclusive "heavies" in evaluating performance, integrates appraisal input from several sources, and incorporates increasing employee skills, competencies, and satisfaction, thus improving productivity of people and processes. And aren't integration and continuous improvement what the laboratory is all about?

  15. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  16. Development of calculation system for decontamination effect, CDE

    International Nuclear Information System (INIS)

    Satoh, Daiki; Kojima, Kensuke; Oizumi, Akito; Matsuda, Norihiro; Kugo, Teruhiko; Sakamoto, Yukio; Endo, Akira; Okajima, Shigeaki

    2012-08-01

    Large amount of radionuclides had been discharged to environment in the accident of the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant caused by the 2011 off the Pacific coast of Tohoku Earthquake. The radionuclides deposited on the ground elevate dose rates in large area around the Fukushima site. For the reduction of the dose rate and recovery of the environment, decontamination based on a rational plan is an important and urgent subject. A computer software, named CDE (Calculation system for Decontamination Effect), has been developed to support planning the decontamination. CDE calculates the dose rates before the decontamination by using a database of dose contributions by radioactive cesium. The decontamination factor is utilized in the prediction of the dose rates after the decontamination, and dose rate reduction factor is evaluated to express the decontamination effect. The results are visualized on the image of a target zone with color map. In this paper, the overview of the software and the dose calculation method are reported. The comparison with the calculation results by a three-dimensional radiation transport code PHITS is also presented. In addition, the source code of the dose calculation program and user's manual of CDE are attached as appendices. (author)

  17. AB INITIO calculations of magneto-optical effects

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Oppeneer, P. M.

    2002-01-01

    Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Cooper, R.K.

    1988-01-01

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  19. Effective source approach to self-force calculations

    International Nuclear Information System (INIS)

    Vega, Ian; Wardell, Barry; Diener, Peter

    2011-01-01

    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended 'effective source' for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.

  20. Effect size estimates: current use, calculations, and interpretation.

    Science.gov (United States)

    Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J

    2012-02-01

    The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.

  1. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  2. Methods of calculating the post-closure performance of high-level waste repositories

    International Nuclear Information System (INIS)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs

  3. Methods of calculating the post-closure performance of high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. (ed.)

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  4. Study of high-performance canonical molecular orbitals calculation for proteins

    Science.gov (United States)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2017-11-01

    The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.

  5. Calculated k-effectives for light water reactor typical, U + Pu nitrate solution critical experiments

    International Nuclear Information System (INIS)

    Primm, R.T. III; Mincey, J.F.

    1982-01-01

    The Department of Energy's Consolidated Fuel Reprocessing Program has as a goal the design of nuclear fuel reprocessing equipment. In order to validate computer codes used for criticality analyses in the design of such equipment, k-effectives have been calculated for several U + Pu nitrate solution critical experiments. As of January 1981, descriptions of 45 unpoisoned, U + Pu solution experiments were available in the open literature. Twelve of these experiments were performed with solutions which have physical characteristics typical of dissolved, light water reactor fuel. This paper contains a discussion of these twelve experiments, a review of the calculational procedure used to determine k-effectives, and the results of the calculations

  6. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-02-01

    Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water

  7. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  8. Causality and relativistic effects in intranuclear cascade calculations

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.

    1983-01-01

    Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt

  9. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    International Nuclear Information System (INIS)

    Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.

    2004-01-01

    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C

  10. Effectiveness of the current method of calculating member states' contributions

    CERN Document Server

    2002-01-01

    At its Two-hundred and eighty-sixth Meeting of 19 September 2001, the Finance Committee requested the Management to re-assess the effectiveness of the current method of forecasting Net National Income (NNI) for the purposes of calculating the Member States' contributions by comparing the results of the current weighted average method with a method based on a simple arithmetic average. The Finance Committee is invited to take note of this information.

  11. The EU CONCERTO project Class 1 - Demonstrating cost-effective low-energy buildings - Recent results with special focus on comparison of calculated and measured energy performance of Danish buildings

    DEFF Research Database (Denmark)

    Mørck, Ove; Thomsen, K.E.; Rose, J.

    2012-01-01

    -chip heating plant has been added. The project demonstrates the benefits of ultra-low-energy buildings integrated with biomass- and solar heating energy supply. The CLASS1 project involves 4 other countries: Estonia, France, Italy and Romania. These countries develop training activities based on the results......In 2007 the Class1 project commenced. Originally, 442 dwellings were to be designed and constructed as "low-energy class 1" houses according to requirements set by the Municipality of Egedal/Denmark. This means that the energy consumption is 50% below the existing energy regulations. 65 dwellings...... and experiences gained from the Danish housing projects. This paper describes the comparisons between measured and calculated energy consumption in a social housing settlement and in a detached single-family house. Results show relatively large discrepancies between measured and calculated results...

  12. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  13. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  14. Effect of hemodialysis on intraocular lens power calculation.

    Science.gov (United States)

    Çalışkan, Sinan; Çelikay, Osman; Biçer, Tolga; Aylı, Mehmet Deniz; Gürdal, Canan

    2016-01-01

    To evaluate changes in ocular biometric parameters after hemodialysis (HD) in patients with end-stage renal disease (ESRD). Forty eyes of 40 patients undergoing HD were included in this cross-sectional study. Keratometry (K) readings, white-to-white (WTW) distance, central corneal thickness (CCT), anterior chamber depth (ACD), pupil diameter, lens thickness (LT), axial length (AL), and intraocular lens (IOL) power calculation were measured with Lenstar LS 900 (Haag Streit AG, Koeniz, Switzerland) before and after hemodialysis. Intraocular pressure (IOP) was measured with a non-contact tonometer (Tonopachy NT-530P, Nidek Co., LTD, Tokyo, Japan). Main outcomes were changes in biometric parameters after HD. Reliability of the measurements (intraclass correlation coefficients (ICCs)) and the effect size (Cohen's d) were also calculated. Mean difference in AL before and after HD was -0.041 ± 0.022 mm with ICCs > 0.90 (p  0.90 (p = 0.041 and Cohen's d = 0.20). Hemodialysis had no significant effect on K readings, WTW distance, CCT, ACD, LT, or IOP. Axial length and pupil diameter increase after HD with small effect size, while HD does not significantly affect IOL power calculations.

  15. Calculation of the effectiveness of manual control rods for the reactor of Ignalina NPP Unit 2

    International Nuclear Information System (INIS)

    Bubelis, E.; Pabarcius, R.

    2001-01-01

    On the basis of one of the recent databases of the reactor of Ignalina NPP Unit 2, calculations of the effectiveness of separate manual control rods, groups of manual control rods and axial characteristic of effectiveness of separate manual control rods were performed. The results of the calculations indicated, that all analyzed separate manual control rods have approximately the same effectiveness, which doesn't depend on the location of a control rod in the reactor core layout Manual control rod of the new design has about 10% greater effectiveness than manual control rod of the old design. (author)

  16. Calculating Cluster Masses via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Lindley, Ashley; Landry, D.; Bonamente, M.; Joy, M.; Bulbul, E.; Carlstrom, J. E.; Culverhouse, T. L.; Gralla, M.; Greer, C.; Hawkins, D.; Lamb, J. W.; Leitch, E. M.; Marrone, D. P.; Miller, A.; Mroczkowski, T.; Muchovej, S.; Plagge, T.; Woody, D.

    2012-05-01

    Accurate measurements of the total mass of galaxy clusters are key for measuring the cluster mass function and therefore investigating the evolution of the universe. We apply two new methods to measure cluster masses for five galaxy clusters contained within the Brightest Cluster Sample (BCS), an X-ray luminous statistically complete sample of 35 clusters at z=0.15-0.30. These methods distinctively use only observations of the Sunyaev-Zel'dovich (SZ) effect, for which the brightness is redshift independent. At the low redshifts of the BCS, X-ray observations can easily be used to determine cluster masses, providing convenient calibrators for our SZ mass calculations. These clusters have been observed with the Sunyaev-Zel'dovich Array (SZA), an interferometer that is part of the Combined Array for Research in Millimeter-wave Astronomy (CARMA) that has been optimized for accurate measurement of the SZ effect in clusters of galaxies at 30 GHz. One method implements a scaling relation that relates the integrated pressure, Y, as determined by the SZ observations to the mass of the cluster calculated via optical weak lensing. The second method makes use of the Virial theorem to determine the mass given the integrated pressure of the cluster. We find that masses calculated utilizing these methods within a radius r500 are consistent with X-ray masses, calculated by manipulating the surface brightness and temperature data within the same radius, thus concluding that these are viable methods for the determination of cluster masses via the SZ effect. We present preliminary results of our analysis for five galaxy clusters.

  17. Pade approximants and the calculation of effective interactions

    International Nuclear Information System (INIS)

    Schucan, T.H.

    1975-01-01

    It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures

  18. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  19. Identification of calculation hierarchy and information flow for postclosure performance assessment

    International Nuclear Information System (INIS)

    Avci, H.I.; Cunnane, J.C.; Brandstetter, A.

    1990-01-01

    A management tool consisting of calculation hierarchy and information flow diagrams is being prepared to address the resolution of major postclosure performance issues for a geologic high-level radioactive waste repository in the U.S.A. The diagrams will indicate the types of calculations and data needed to assess the postclosure performance of the repository. Separate diagrams will be generated for different scenario classes and conceptual models. The methodology used in developing these diagrams and their contents are illustrated for a single scenario and conceptual model. 5 refs., 5 figs

  20. Range performance calculations using the NVEOL-Georgia Tech Research Institute 0.1- to 100-GHz radar performance model

    Science.gov (United States)

    Rodak, S. P.; Thomas, N. I.

    1983-05-01

    A computer model that can be used to calculate radar range performance at any frequency in the 0.1-to 100-GHz electromagnetic spectrum is described. These different numerical examples are used to demonstrate how to use the radar range performance model. Input/output documentation are included for each case that was run on the MERADCOM CDC 6600 computer at Fort Belvoir, Virginia.

  1. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  2. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  3. H-Index of Astrophysicists at Raman Research Institute: Performance of Different Calculators

    Science.gov (United States)

    Meera, B. M.; Manjunath, M.

    2012-08-01

    H-index, a single number proposed by J. E. Hirsch in 2005 has gained popularity as an index number to measure the research performance of individuals, institutions, universities, etc. There are many calculators to derive the h-in dex number, such as Google Scholar, Web of Science, Scopus, etc. However, h-index can be calculated manually, provided we have access to a complete list of publications of a scientist and the number of citations received by them. It is observed that h-index for a given scientist at a ny given point of time differs from one calculator to the other. Here is an attempt to calculate the H-index of scientists of the Astronomy and Astrophysics Group at Raman Research Institute using Google Scholar Free calculator, Web of Science Paid calculator and The SAO/NASA As trophysics Data System manual calculation and comparison of the results. Application of this h- index phenomenon to the research output of RRI scientists in a group is done while keeping in mi nd Hirsch's systematic in vestigation to predict the position of a scientist using h-index in physics. It is believed that the higher the academic age of a scientist, the higher will be the h-index. An attempt is made to find whether this assumption is true with respect to the sample studied by including the superannuated scientists from Astronomy and Astrophysics Group at Raman Research Institute under the purview of this study.

  4. Calculation study of the WWER-440 fuel performance for extended burnup

    International Nuclear Information System (INIS)

    Kujal, J.; Pazdera, F.; Barta, O.

    1984-01-01

    The results of preliminary calculational study of extended burnup cycling schemes impact on WWER-440 fuel performance are presented. Two high burnup schemes were proposed with three and four cycles, resp. Comparison was made with three cycle reference case. The thermal mechanical analysis was performed with PIN and RELA codes. The values of rod internal pressure, fuel centerline temperatures and fuel-cladding gap are expressed as function of power history. (author)

  5. A comparison of estimated and calculated effective porosity

    Science.gov (United States)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  6. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  7. Mathematics Anxiety and Mathematics Self-Efficacy in Relation to Medication Calculation Performance in Nurses

    Science.gov (United States)

    Melius, Joyce

    2012-01-01

    The purpose of this study is to identify and analyze the relationships that exist between mathematics anxiety and nurse self-efficacy for mathematics, and the medication calculation performance of acute care nurses. This research used a quantitative correlational research design and involved a sample of 84 acute care nurses, LVNs and RNs, from a…

  8. The Association of Precollege Use of Calculators with Student Performance in College Calculus

    Science.gov (United States)

    Mao, Yi; White, Tyreke; Sadler, Philip M.; Sonnert, Gerhard

    2017-01-01

    This study investigates how the use of calculators during high school mathematics courses is associated with student performance in introductory college calculus courses in the USA. Data were drawn from a nationally representative sample of 7087 students enrolled in college calculus at 134 colleges and universities. They included information about…

  9. Documenting Student Performance: An Alternative to the Traditional Calculation of Grade Point Averages

    Science.gov (United States)

    Volwerk, Johannes J.; Tindal, Gerald

    2012-01-01

    Traditionally, students in secondary and postsecondary education have grade point averages (GPA) calculated, and a cumulative GPA computed to summarize overall performance at their institutions. GPAs are used for acknowledgement and awards, as partial evidence for admission to other institutions (colleges and universities), and for awarding…

  10. A methodology for calculating photovoltaic field output and effect of solar tracking strategy

    International Nuclear Information System (INIS)

    Hu, Yeguang; Yao, Yingxue

    2016-01-01

    Highlights: • A new methodology for calculating PV field output is proposed. • The reduction of diffuse radiation and albedo due to shading is considered. • The shadow behavior is accurately analyzed at a cell level. • Several simplified measures are taken to reduce the calculation work. • The field outputs with different solar tracking strategies are compared. - Abstract: This paper proposes an effective methodology for calculating the photovoltaic field output. A combination of two methods is first presented for optical performance calculation: point projection method for direction radiation, and Monte Carlo ray-tracing method for both diffuse radiation and albedo radiation. Based on the optical calculation, an accurate output of the photovoltaic field can be obtained through a cell-level simulation of PV system. Several simplified measures are taken to reduce the large amount of calculation work. The proposed methodology has been validated for accurate and fast calculation of field output. With the help of the developed code, this paper deals with the performance comparison between four typical tracking strategies. Through the comparative analysis, the field output is proved to be related to the tracking strategy. For a regular photovoltaic field, the equatorial and elevation-rolling tracking show the superior performance in annual field output to the azimuth-elevation and rolling-elevation tracking. A reasonable explanation for this difference has been presented in this paper.

  11. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  12. Calculation of β-effective of a molten salt reactor

    International Nuclear Information System (INIS)

    Hirakawa, N.; Sakaba, H.

    1987-01-01

    A method to calculate the β eff of a molten salt reactor was developed taking the effect of the flow of the molten salt into account. The method was applied to the 1000MW MSR design made by ORNL. The change in β eff due to the change in the residence time outside of the core of the fuel salt and to the change in the flow velocity when the total amount of the fuel salt is kept constant were investigated. It was found that β eff was reduced to 47.9% of the value when the fuel salt is at rest for the present design. (author)

  13. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  14. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2010-03-15

    The Savannah River Site disposes of low-activity radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data become available.

  15. The lifecontingencies Package: Performing Financial and Actuarial Mathematics Calculations in R

    Directory of Open Access Journals (Sweden)

    Giorgio Alfredo Spedicato

    2013-11-01

    Full Text Available It is possible to model life contingency insurances with the lifecontingencies R package, which is capable of performing financial and actuarial mathematics calculations. Its functions permit one to determine both the expected value and the stochastic distribution of insured benefits. Therefore, life insurance coverage can be priced and portfolios risk-based capital requirements can be assessed. This paper briefly summarizes the theory regarding life contingencies that is based on financial mathematics and demographic con- cepts. Then, with the aid of applied examples, it shows how the lifecontingencies package can be a useful tool for executing routine, deterministic, or stochastic calculations for life-contingencies actuarial mathematics.

  16. X particle effect for 6Li reaction rates calculations

    International Nuclear Information System (INIS)

    Kocak, G.; Balantekin, A. B.

    2009-01-01

    The inferred primordial 6 L i-7 L i abundances are different from standard big bang nucleosynthesis results, 6 L i is 1000 times larger and 7 L i is 3 times smaller than the big bang prediction. In big bang nucleosynthesis, negatively charged massive X particles a possible solution to explain this primordial Li abundances problem [1]. In this study, we consider only X particle effect for nuclear reactions to obtain S-factor and reaction rates for Li. All S-factors calculated within the Optical Model framework for d(α,γ)6 L i system. We showed that the enhancement effect of massive negatively charged X particle for 6 L i system reaction rate.(author)

  17. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  18. Evaluation of the performance of mini-WIMS in design calculations for SGHWR's

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1980-07-01

    In order to use the WIMS code for SGHWR design calculations it is desirable to reduce the computing time to a minimum. To this end, a study has been made of the effects of using condensed data libraries with few groups in the main transport routine and with coarse mesh representations. The results of initial lattice calculations are given in considerable detail for a set of SGHW experimental cores. The effects of condensation on attainable burnup and irradiated fuel composition for natural and enriched power reactor lattices have also been studied. Comparisons between detailed and condensed WIMS calculations are the main theme of the report but METHUSELAH and experimental results are included whenever possible. (author)

  19. Nuclear performance calculations for the ELMO Bumpy Torus Reactor (EBTR) reference design

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1977-12-01

    The nuclear performance of the ELMO Bumpy Torus Reactor reference design has been calculated using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV transport cross-section data and nuclear response functions. The calculated results include estimates of the spatial and integral heating rate with emphasis on the recovery of fusion neutron energy in the blanket assembly and minimization of the energy deposition rates in the cryogenic magnet coil assemblies. The tritium breeding ratio in the natural lithium-laden blanket was calculated to be 1.29 tritium nuclei per incident neutron. The radiation damage in the reactor structural material and in the magnet assembly is also given

  20. Technical summary of the Performance Assessment Calculational Exercises for 1990 (PACE-90)

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1991-06-01

    A Performance Assessment Calculational Exercise for 1990 (PACE-90) was coordinated by the Yucca Mountain Site Characterization Project Office for a total-system performance-assessment problem. The primary objectives of the exercise were to develop performance-assessment computational capabilities of the Yucca Mountain Project participates and to aid in identifying critical elements and processes associated with the calculation. The problem defined for PACE-90 was simulation of a ''nominal case'' groundwater flow and transport of a selected group of radionuclides through a portion of Yucca Mountain. Both 1-D and 2-D calculations were run for a modeling period of 100,000 years. The nuclides used, 99 Tc, 135 Cs, 129 I, and 237 Np, were representative of ''classes'' of long-lived nuclides expected to be present in the waste inventory. Movement of the radionuclides was simulated through a detailed hydrostratigraphy developed from Yucca Mountain data specifically for this exercise. The results showed that, for the specified conditions with the conceptual models used in the problem, no radioactive contamination reached the water table, 230 m below the repository. However, due to the unavailability of sufficient site-specific data, the results of this exercise cannot be considered a comprehensive total-system- performance assessment of the Yucca Mountain site as a high-level- waste repository. 46 refs., 94 figs., 19 tabs

  1. A refined method for calculating equivalent effective stratospheric chlorine

    Science.gov (United States)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  2. Neutronic calculations for JET. Performed with the FURNACE2 program. (Final report JET contract JEO/9004)

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1996-10-01

    Neutron-transport calculations with the FURNACE(2) program system, in support of the Neutron Diagnostic Group at JET, have been performed since 1980, i.e. since the construction phase of JET. FURNACE(2) is a ray-tracing/multiple-reflection transport program system for toroidal geometries, that orginally was developed for blanket neutronics studies and which then was improved and extended for application to the neutron-diagnostics at JET. (orig./WL)

  3. Effect of core configuration on the burnup calculations of MTR research reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Amin, E.H.; Sakr, A.M.

    2014-01-01

    Highlights: • 3D burn-up calculations of MTR-type research reactor were performed. Examination of the effect of control rod pattern on power density and neutron flux distributions is presented. • The calculations are performed using the MTR P C package and the programs (WIMS and CITVAP). • An empirical formula was generated for every fuel element type, to correlate irradiation to burn-up. - Abstract: In the present paper, three-dimensional burn-up calculations were performed using different patterns of control rods, in order to examine their effect on power density and neutron flux distributions through out the entire core and hence on the local burn-up distribution. These different cores burn-up calculations are carried out for an operating cycle equivalent to 15 Full Power Days (FPDs), with a power rating of 22 MW. Calculations were performed using an example of a typical research reactor of MTR-type using the internationally known computer codes’ package “MTR P C system”, using the cell calculation transport code WIMS-D4 with 12 energy groups and the core calculation diffusion code CITVAP with 5 energy groups. A depletion study was done and the effects on the research reactor fuel (U-235) were performed. The burn-up percentage (B.U.%) curves for every fuel element type were drawn versus irradiation (MWD/TE). Then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Charts of power density and neutron flux distribution for each core were plotted at different sections of each fuel element of the reactor core. Then a complete discussion and analysis of these curves are performed with comparison between the different core configurations, illustrating the effect of insertion or extraction of either of the four control rods directly on the neutron flux and consequently on the power distribution and burn-up. A detailed study of fuel burn-up gives detailed insight on the different B.U.% calculations

  4. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  5. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    Science.gov (United States)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in

  6. Nuclear structure effects on calculated fast neutron reaction cross sections

    International Nuclear Information System (INIS)

    Avrigeanu, V.

    1992-01-01

    The importance of accurate low-lying level schemes for reaction cross section calculation and need for microscopically calculated levels are proved with reference to fast neutron induced reactions in the A = 50 atomic mass range. The uses of the discrete levels both for normalization of phenomenological level density approaches and within Hauser-Feshbach calculations are discussed in this respect. (Author)

  7. Comparing the Effectiveness of Online Sunrise/Sunset Calculators

    Science.gov (United States)

    Phlips, Alan; Wilson, Teresa; Chizek Frouard, Malynda; Bartlett, Jennifer Lynn

    2018-01-01

    The USNO is responsible for providing information through its website on various types of natural phenomena, including times of sunrise and sunset for any given day and location. Alternative websites were explored to see what options are available in case the USNO can no longer support this on-line tool in the future. Websites with sunrise/sunset calculators were examined to see what algorithm they cited, if any. A large percentage of the websites took their calculations from three main sources (USNO, Meeus, and Schlyter). For ease of comparison, one website with an Application Programming Interface (API) for each algorithm was used to generate sunrise/sunset times for 2 dates per year for 24 years at latitudes from the equator to each pole along the prime meridian. Additionally, dates on which only one phenomenon was expected (first and last day of polar day and night) were tested to examine how each algorithm would perform for these extreme edge cases. At mid-latitudes, all of the algorithms agreed within 1 minute of each other but their predictions began to diverge as they approached the poles. Close to the poles, all three differed by more than a minute. While the algorithms diverged well before reaching the poles, Schlyter did so at much lower latitudes compared to the other two. In the edge cases, Schlyter and Meeus did not correctly document the missing sunrise/sunsets. Until a set of arctic or antarctic observations of sunrise and sunset times can be analyzed, we cannot ascertain which algorithm is the most accurate. However, the USNO algorithm handled cases of continuous day and night better than the others. There currently seems to be no better alternative to provide robust sunrise/set times than the USNO Complete Sun and Moon Data for One Day (http://aa.usno.navy.mil/data/docs/RS_OneDay.php).

  8. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    International Nuclear Information System (INIS)

    Lim, Doo Hyun; Hatanaka, Koichiro; Ishii, Eiichi

    2010-01-01

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  9. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Doo Hyun [NE Union Hill Road, Suite 200, WA 98052 (United States); Hatanaka, Koichiro; Ishii, Eiichi [Japan Atomic Energy Agency, Hokkaido (Japan)

    2010-10-15

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  10. Calculating effective diffusivities in the limit of vanishing molecular diffusion

    International Nuclear Information System (INIS)

    Pavliotis, G.A.; Stuart, A.M.; Zygalakis, K.C.

    2009-01-01

    In this paper we study the problem of the numerical calculation (by Monte Carlo methods) of the effective diffusivity for a particle moving in a periodic divergent-free velocity field, in the limit of vanishing molecular diffusion. In this limit traditional numerical methods typically fail, since they do not represent accurately the geometry of the underlying deterministic dynamics. We propose a stochastic splitting method that takes into account the volume-preserving property of the equations of motion in the absence of noise, and when inertial effects can be neglected. An extension of the method is then proposed for the cases where the noise has a non-trivial time-correlation structure and when inertial effects cannot be neglected. The method of modified equations is used to explain failings of Euler-based methods. The new stochastic geometric integrators are shown to outperform standard Euler-based integrators. Various asymptotic limits of physical interest are investigated by means of numerical experiments, using the new integrators

  11. Constitutive Effects of Performance Indicators

    DEFF Research Database (Denmark)

    Dahler-Larsen, Peter

    2014-01-01

    that are demonstrably problematic. Based on a distinction between trivial and advanced measure fixation, an argument is made for constitutive effects that are based on less problematic assumptions. Through this conceptual move, the political dimension of performance indicators is appreciated. The conceptual dimensions...... of constitutive effects are carved out, empirical illustrations of their applicability are offered and implications discussed....

  12. Effects of microdistribution of tritium on dose calculations

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Kwok, C.S.; Nunes, J.

    1992-06-01

    Literature and data pertaining to the microdosimetry, relative biological effectiveness, subcellular distribution, organ uptake and retention for organically-bound tritium are reviewed. The quality factor for the electron degradation spectrum associated with the radiation field of tritium β-rays in water was calculated. The value was found to be 1.9 ± .2. A related experimental measure of quality with value 1.6 ± .2 and an estimate of 1.3 based on simulation studies are cited. The average value for relative biological effectiveness for a data base of 55 values was found to be 1.8 ± .1. The influence of reference radiation, in vivo versus in vitro methodologies, and the use of tritiated thymidine or tritiated water are discussed. A methodology designed to estimate the effects of subcellular distribution is described and a suitable parameter, the localization factor defined. Estimates of this factor are made for both nuclear-bound and organically-bound tritium. Values of 4 and 1.5 respectively are suggested. Organ uptake studies in rodents following long-term feeding of organically-bound tritium are compared. The tritium is found to be unequally distributed among the tissues studied. The highest specific activity occurs in liver, with the lowest in femur. The specific activity of tritium in tissue-free water slightly exceeds that of organically-bound tritium in liver. Retention studies reveal a three-component exponential decrease of organically-bound tritium. No discernible trends of the periods of the three components with specific organs could be established. Average values of the periods are 1.2 ± .2, 10 ± 2, and 65 ± 8 days. It is concluded that specific enhancement of radiobiological effectiveness due to incorporation of tritium in DNA does probably not occur. The radiotoxicological impact of organically-bound tritium could warrant the use of a radiation weighing factor between 2 and 3

  13. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  14. High performance shape annealing matrix (HPSAM) methodology for core protection calculators

    International Nuclear Information System (INIS)

    Cha, K. H.; Kim, Y. H.; Lee, K. H.

    1999-01-01

    In CPC(Core Protection Calculator) of CE-type nuclear power plants, the core axial power distribution is calculated to evaluate the safety-related parameters. The accuracy of the CPC axial power distribution highly depends on the quality of the so called shape annealing matrix(SAM). Currently, SAM is determined by using data measured during startup test and used throughout the entire cycle. An issue concerned with SAM is that it is fairly sensitive to measurements and thus the fidelity of SAM is not guaranteed for all cycles. In this paper, a novel method to determine a high-performance SAM (HPSAM) is proposed, where both measured and simulated data are used in determining SAM

  15. Comparison of calculations with neutron dosimetry measurements performed at the Oak Ridge Poolside Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Williams, M.L.

    1981-01-01

    The Oak Ridge Poolside Facility (PSF), like the Pool Critical Assembly (PCA), is used for benchmark dosimetry measurements which can serve to validate the transport methods used in calculating the high-energy neutron fluences (> 0.1 MeV) in LWR pressure vessels required to estimate the neutron damage to the pressure vessels in the form of embrittlement. The PSF consists of an arrangement of two water gaps of 4 and 12 cm thickness separated by a simulated thermal shield and followed by a simulated pressure vessel wall and then a void box to represent a reactor cavity. The PSF is driven by the 30 MW ORR reactor, whereas the geometrically similar core of the PCA has a maximum power of only 10 KW. This paper reports the results of some calculated activities and compares them with published PSF measurements performed by HEDL and other laboratories on the so-called Westinghouse surveillance capsule perturbation experiment.

  16. Comparison of calculations with neutron dosimetry measurements performed at the Oak Ridge Poolside Facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Williams, M.L.

    1981-01-01

    The Oak Ridge Poolside Facility (PSF), like the Pool Critical Assembly (PCA), is used for benchmark dosimetry measurements which can serve to validate the transport methods used in calculating the high-energy neutron fluences (> 0.1 MeV) in LWR pressure vessels required to estimate the neutron damage to the pressure vessels in the form of embrittlement. The PSF consists of an arrangement of two water gaps of 4 and 12 cm thickness separated by a simulated thermal shield and followed by a simulated pressure vessel wall and then a void box to represent a reactor cavity. The PSF is driven by the 30 MW ORR reactor, whereas the geometrically similar core of the PCA has a maximum power of only 10 KW. This paper reports the results of some calculated activities and compares them with published PSF measurements performed by HEDL and other laboratories on the so-called Westinghouse surveillance capsule perturbation experiment

  17. Semi-empirical Calculation of Detection Efficiency for Voluminous Source Based on Effective Solid Angle Concept

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D.; Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the Effective Solid Angle (ESA) Code. The procedure for semi-empirical determination of the FE efficiency for the arbitrary volume sources and the calculation principles and processes about ESA code is referred to, and the code was validated with a HPGe detector (relative efficiency 32%, n-type) in previous studies. In this study, we use different type and efficiency of HPGe detectors, in order to verify the performance of the ESA code for the various detectors. We calculated the efficiency curve of voluminous source and compared with experimental data. We will carry out additional validation by measurement of various medium, volume and shape of CRM volume sources with detector of different efficiency and type. And we will reflect the effect of the dead layer of p-type HPGe detector and coincidence summing correction technique in near future.

  18. Method of calculation overall equipment effectiveness in fertilizer factory

    Science.gov (United States)

    Siregar, I.; Muchtar, M. A.; Rahmat, R. F.; Andayani, U.; Nasution, T. H.; Sari, R. M.

    2018-02-01

    This research was conducted at a fertilizer company in Sumatra, where companies that produce fertilizers in large quantities to meet the needs of consumers. This company cannot be separated from issues related to the performance/effectiveness of the machinery and equipment. It can be seen from the engine that runs every day without a break resulted in not all of the quality of products in accordance with the quality standards set by the company. Therefore, to measure and improve the performance of the machine in the unit Plant Urea-1 as a whole then used method of Overall Equipment Effectiveness (OEE), which is one important element in the Total Productive Maintenance (TPM) to measure the effectiveness of the machine so that it can take measures to maintain that level. In July, August and September OEE values above the standard set at 85%. Meanwhile, in October, November and December have not reached the standard OEE values. The low value of OEE due to lack of time availability of machines for the production shut down due to the occurrence of the engine long enough so that the availability of reduced production time.

  19. Input/Output of ab-initio nuclear structure calculations for improved performance and portability

    International Nuclear Information System (INIS)

    Laghave, Nikhil

    2010-01-01

    Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.

  20. Monte Carlo calculations of fast effects in uranium graphite lattices

    International Nuclear Information System (INIS)

    Beardwood, J.E.; Tyror, J.G.

    1962-12-01

    Details are given of the results of a series of computations of fast neutron effects in natural uranium metal/graphite cells. The computations were performed using the Monte Carlo code SPEC. It is shown that neutron capture in U238 is conveniently discussed in terms of a capture escape probability ζ as well as the conventional probability p. The latter is associated with the slowing down flux and has the classical exponential dependence on fuel-to-moderator volume ratio whilst the former is identified with the component of neutron flux above 1/E. (author)

  1. Effect of cephalometer misalignment on calculations of facial asymmetry.

    Science.gov (United States)

    Lee, Ki-Heon; Hwang, Hyeon-Shik; Curry, Sean; Boyd, Robert L; Norris, Kevin; Baumrind, Sheldon

    2007-07-01

    In this study, we evaluated errors introduced into the interpretation of facial asymmetry on posteroanterior (PA) cephalograms due to malpositioning of the x-ray emitter focal spot. We tested the hypothesis that horizontal displacements of the emitter from its ideal position would produce systematic displacements of skull landmarks that could be fully accounted for by the rules of projective geometry alone. A representative dry skull with 22 metal markers was used to generate a series of PA images from different emitter positions by using a fully calibrated stereo cephalometer. Empirical measurements of the resulting cephalograms were compared with mathematical predictions based solely on geometric rules. The empirical measurements matched the mathematical predictions within the limits of measurement error (x= 0.23 mm), thus supporting the hypothesis. Based upon this finding, we generated a completely symmetrical mathematical skull and calculated the expected errors for focal spots of several different magnitudes. Quantitative data were computed for focal spot displacements of different magnitudes. Misalignment of the x-ray emitter focal spot introduces systematic errors into the interpretation of facial asymmetry on PA cephalograms. For misalignments of less than 20 mm, the effect is small in individual cases. However, misalignments as small as 10 mm can introduce spurious statistical findings of significant asymmetry when mean values for large groups of PA images are evaluated.

  2. Calculation of effective impedance of polycrystals in weak magnetic fields

    International Nuclear Information System (INIS)

    Kaganova, I.M.

    2006-01-01

    We present results for the effective surface impedance tensor (EIT) of polycrystals of metals in a weak uniform magnetic field H. The frequency region corresponds to the region in which the local impedance boundary conditions are applicable. We suppose that the resistivity tensor ρ ik (H) of the single crystal grains out of which the polycrystal is composed, is known up to the terms of O(H 2 ). For polycrystals of metals of arbitrary symmetry, the elements of the EIT can be calculated to the same order in H, even if the tensor ρ ik (H) is strongly anisotropic. As examples, we write down the EIT of polycrystals of (i) cubic metals (ii) metals with ellipsoidal Fermi surfaces, and (iii) metals of tetragonal symmetry whose tensor ρ ik (0) is strongly anisotropic. Although polycrystals are metals that are isotropic on average, in the presence of a uniform magnetic field the structure of the EIT is not the same as the structure of the impedance tensor of an isotropic metal with a spherical Fermi surface. The results cannot be improved either by taking into account higher powers of H, or with respect to the anisotropy of the single crystal grains

  3. Neutron metrology file NMF-90. An integrated database for performing neutron spectrum adjustment calculations

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1996-01-01

    The Neutron Metrology File NMF-90 is an integrated database for performing neutron spectrum adjustment (unfolding) calculations. It contains 4 different adjustment codes, the dosimetry reaction cross-section library IRDF-90/NMF-G with covariances files, 6 input data sets for reactor benchmark neutron fields and a number of utility codes for processing and plotting the input and output data. The package consists of 9 PC HD diskettes and manuals for the codes. It is distributed by the Nuclear Data Section of the IAEA on request free of charge. About 10 MB of diskspace is needed to install and run a typical reactor neutron dosimetry unfolding problem. (author). 8 refs

  4. Simultaneous calculation and assessment of facade performances; Gelijktijdig berekenen en beoordelen van gevelprestaties

    Energy Technology Data Exchange (ETDEWEB)

    Berk, A.B.M.; Rutten, P.G.S.; Loomans, M.G.L.C.; Aarts, M.P.J.; Loonen, R.C.G.M. [Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands)

    2013-01-15

    What is the added value of simultaneous calculation of performance indicators in terms of visual comfort, thermal comfort and related use of energy with regard to design of a building facade? This and other related questions are answered on the basis of research aimed at an area with office functions [Dutch] Wat is de meerwaarde van het 'gelijktijdig' in een model berekenen van prestatieindicatoren in termen van visueel comfort, thermisch comfort en bijbehorend energiegebruik in relatie tot het gevelontwerp? In dit artikel worden deze en andere daaraan verwante vragen beantwoord op basis van onderzoek dat gericht is op een ruimte met kantoorfunctie.

  5. Unobservable Effects and Business Performance

    OpenAIRE

    Robert Jacobson

    1990-01-01

    While “unobservable” factors such as corporate culture, access to scarce resources, management skill, and luck can be postulated to be principal determinants of business success, their effects are all but ignored in studies of business performance. This study, making use of the PIMS data base, reports empirical evidence indicating that failure to control for unobservable factors influencing profitability both biases and exaggerates the effect of strategic factors. Indeed, the influence of uno...

  6. SU-E-T-531: Performance Evaluation of Multithreaded Geant4 for Proton Therapy Dose Calculations in a High Performance Computing Facility

    International Nuclear Information System (INIS)

    Shin, J; Coss, D; McMurry, J; Farr, J; Faddegon, B

    2014-01-01

    Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1, 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended

  7. Performance Improvement of the Core Protection Calculator System (CPCS) by Introducing Optimal Function Sets

    International Nuclear Information System (INIS)

    Won, Byung Hee; Kim, Kyung O; Kim, Jong Kyung; Kim, Soon Young

    2012-01-01

    The Core Protection Calculator System (CPCS) is an automated device which is adopted to inspect the safety parameters such as Departure from Nuclear Boiling Ratio (DNBR) and Local Power Density (LPD) during normal operation. One function of the CPCS is to predict the axial power distributions using function sets in cubic spline method. Another function of that is to impose penalty when the estimated distribution by the spline method disagrees with embedded data in CPCS (i.e., over 8%). In conventional CPCS, restricted function sets are used to synthesize axial power shape, whereby it occasionally can draw a disagreement between synthesized data and the embedded data. For this reason, the study on improvement for power distributions synthesis in CPCS has been conducted in many countries. In this study, many function sets (more than 18,000 types) differing from the conventional ones were evaluated in each power shape. Matlab code was used for calculating/arranging the numerous cases of function sets. Their synthesis performance was also evaluated through error between conventional data and consequences calculated by new function sets

  8. Validity limits of fuel rod performance calculations from radiochemical data at operating LWRs

    International Nuclear Information System (INIS)

    Zaenker, H.; Nebel, D.

    1986-01-01

    There are various calculational models for the assessment of the fuel rod performance on the basis of the activities of gaseous and volatile fission products in the reactor coolant. The most important condition for the applicability of the calculational models is that a steady state release of the fission products into the reactor coolant takes place. It is well known that the models are not applicable during or shortly after reactor transients. The fact that 'unsteady states' caused by the fuel defection processes themselves can also occur in rare cases at steady reactor operation has not been taken into account so far. A test of validity is suggested with the aid of which the applicability of the calculational models can be checked in any concrete case, and the misleading of the reactor operators by gross misinterpretation of the radiochemical data can be avoided. The criteria of applicability are the fission product total activity, the slope tan α in the relationship lg (R/sub i//B/sub i/) proportional to lg lambda/sub i/ for the gaseous and volatile fission products, and the activity of the nonvolatile isotope 239 Np. (author)

  9. Calculation method for the seasonal performance of heat pump compact units and validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. These units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are described. A testing procedure developed at the University of Applied Science in Lucerne, Switzerland, using a test rig for the measurement of the seasonal performance factor (SPF) is described. A calculation method based on temperature classes for the calculation of the SPF of combined heat pump systems for space heating and domestic hot water preparation that was developed by the Institute of Energy in Buildings at the University of Applied Sciences Northwestern Switzerland is examined. Two pilot plants allowing detailed field monitoring of two compact units are described. One pilot plant installed in a single-family house built to MINERGIE standard in Gelterkinden, Switzerland, provided data on a compact unit. These results of measurements made on this and a further installation in a MINERGIE-P ultra-low energy consumption house in Zeiningen, Switzerland, are presented and discussed. Calculation methods, including exergy considerations are reviewed and their validation is discussed.

  10. Toolkit for high performance Monte Carlo radiation transport and activation calculations for shielding applications in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.

    2011-01-01

    The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)

  11. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  12. Assessing the effect of electron density in photon dose calculations

    International Nuclear Information System (INIS)

    Seco, J.; Evans, P. M.

    2006-01-01

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  13. Wind effects on RVACS performance

    International Nuclear Information System (INIS)

    Tzanos, C.

    1995-01-01

    The reactor vessel auxillary cooling system (RVACS) is a passive liquid-metal reactor decay-heat removal system. The RVACS performance is a function of the pressure difference between air flow inlet and outlet, of the air inlet temperature, of the air density variation along the flow path, and of the pressure loss characteristics of the path. The pressure difference can be affected by wind speed and direction. The objective of this project was to investigate the effects of wind on the performance of the RVACS, specifically, the heat release through the stacks, of a liquid-metal reactor

  14. Calculation of the performance of the INS iron-free π√2 spectrometer as a spectrograph

    International Nuclear Information System (INIS)

    Fujioka, M.; Hirasawa, M.; Kawakami, H.

    1983-02-01

    The performance of the INS iron-free π√2 beta-ray spectrometer of the current-loop type is calculated with a view of using it as a spectrograph, i.e., in a multichannel mode with a position-sensitive proportional counter. For the momentum resolution of R = 0.01 and 0.1 % the usable momentum range as a spectrograph ( + epsilon + 0 ) and the line shapes on the focal plane are calculated. The transmission of the baffle is 0.025 and 0.13 % of 4π and the expected gain of data-collection efficiency over the single-channel mode is 140 and 40 for R = 0.01 and 0.1%, respectively. An effective tilting of the focal plane due to the entrance baffle is discussed as well as the problems with arrangement and testing of the position detector. (author)

  15. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  16. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry, E-mail: zzhong@anl.gov, E-mail: alby@anl.gov, E-mail: gohar@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, IL (United States)

    2011-07-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β{sub eff} has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β{sub eff} was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β{sub eff}, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have

  17. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    International Nuclear Information System (INIS)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β_e_f_f has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β_e_f_f was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β_e_f_f, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have been

  18. ADHD and math - The differential effect on calculation and estimation.

    Science.gov (United States)

    Ganor-Stern, Dana; Steinhorn, Ofir

    2018-05-31

    Adults with ADHD were compared to controls when solving multiplication problems exactly and when estimating the results of multidigit multiplication problems relative to reference numbers. The ADHD participants were slower than controls in the exact calculation and in the estimation tasks, but not less accurate. The ADHD participants were similar to controls in showing enhanced accuracy and speed for smaller problem sizes, for trials in which the reference numbers were smaller (vs. larger) than the exact answers and for reference numbers that were far (vs. close) from the exact answer. The two groups similarly used the approximated calculation and the sense of magnitude strategies. They differed however in strategy execution, mainly of the approximated calculation strategy, which requires working memory resources. The increase in reaction time associated with using the approximated calculation strategy was larger for the ADHD compared to the control participants. Thus, ADHD seems to selectively impair calculation processes in estimation tasks that rely on working memory, but it does not hamper estimation skills that are based on sense of magnitude. The educational implications of these findings are discussed. Copyright © 2018. Published by Elsevier B.V.

  19. Bounces and the calculation of quantum tunneling effects

    International Nuclear Information System (INIS)

    Liang, J.; Mueller-Kirsten, H.J.W.

    1992-01-01

    The imaginary part of the energy of the metastable ground state for the inverted double-well potential is calculated by using the path-integral method. The tunneling process is dominated by bounces. It is shown that the evaluation of the determinant of the second variation of the action at the bounce can be avoided, and that the imaginary part of the energy results directly from characteristic properties of the bounce itself, namely, the antisymmetry of its first time derivative under time reversal. The imaginary part of the result is in exact agreement with that of the well-known WKB calculation of Bender and Wu

  20. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  1. Exploration of Important Issues for the Safety of SFR 1 using Performance Assessment Calculations

    International Nuclear Information System (INIS)

    Maul, P.R.; Robinson, P.C.

    2002-06-01

    SKB has produced a revised safety case for the SFR 1 disposal facility for low and intermediate level radioactive wastes at Forsmark: project SAFE. This assessment includes a Performance Assessment (PA) for the long term post-closure safety of the facility. SKI has a responsibility to scrutinise SKB's safety case that is shared with SSI. Quintessa has undertaken a review of SKB's case for the long term safety of SFR 1 to assist SKI's evaluation of SAFE, and this is given in SKI-R--02-61, henceforth referred to as the Quintessa Review. The current report describes the independent PA calculations that provided an input to that review. Since 1999 SKI has been developing a PA capability for SFR 1 using the AMBER software. Two key features of the approach taken have been: To represent the whole system in a single model; and To allow the time-dependency of all key features, events and processes to be represented. These capabilities allow a better understanding of the key features of the system to be obtained for different future evolutions (scenarios). This report presents a summary of the work undertaken to provide SKI with a PA capability for SFR 1 and the calculations undertaken with it. Calculations have been undertaken for radionuclides transported in groundwater and gas, but not for direct intrusion by humans into the wastes. It should be emphasised that the purpose of the Performance Assessment calculations described in this report is not to provide an alternative assessment of potential radiological impacts to that produced by SKB. The aim is to use the models that have been developed to investigate the important features of the system and to help SKI scrutinise the case put to them by SKB. The PA calculations that have been undertaken are by no means comprehensive, and various issues could be investigated further if required. The key issues that have been identified can be summarised as follows: 1. The SFR 1 system has a number of different timescales that can

  2. Effect of Using Scientific Calculators in Learning Mathematics by ...

    African Journals Online (AJOL)

    Mathematics plays a crucial role in technological development of any country; attainment in the subject determines the rate of adoption of appropriate technology and industrialization. In Kenya mathematics is compulsory in primary and at secondary school level. Use of scientific calculators was introduced in Kenya ...

  3. Technique of calculating the total effectiveness of capital investments and basic funds in the gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Shamis, L V

    1978-01-01

    An examination is made of the method of calculating and using the indicators for total effectiveness of capital investments of the gas industry. Fundamentals of the calculations assume modeling the effectiveness of reproduction of the basic production funds of the sector. An example is given of calculating the long-term coefficient for total effectiveness.

  4. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant...

  5. Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations

    International Nuclear Information System (INIS)

    Li, Ming-Fu; Surh, M.P.; Louie, S.G.

    1988-06-01

    Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs

  6. Studying performation: the arrangement of speech, calculation and writing acts within dispositifs : Carbon accounting for strategizing in a large corporation

    OpenAIRE

    Le Breton , Morgane; Aggeri , Franck

    2016-01-01

    International audience; This paper aims at proposing an analytical framework for performation process that is performation through speech, calculation and writing acts connected within a “dispositif”. This analytical framework is put into practice in the case study of a French large corporation which has built a low-carbon strategy based on carbon accounting tools. We have found that low-carbon strategy is performed through carbon accounting tools since speech, calculation and writing acts ar...

  7. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  8. Calculational study on reactivity effect of pipe intersections

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Kaneko, Toshiyuki.

    1995-03-01

    A simple formulation was proposed for evaluating the increment of reactivity due to the attachment of pipes to a vessel filled with fuel solution, and its validity was checked by numerical calculations. The formulation was based on the neutron balance equation which had been applied to the criticality safety analysis code MUTUAL for multi-unit systems, and the current formulation considered further the deviation of the representative neutron source point from the center of each pipe. The formulation was validated for models of 2- and 3-dimensional fuel systems by comparison with the precise calculations using the Monte Carlo code KENO-IV. For systems of pipes attached perpendicularly to the side of a cylindrical vessel, the size and number of negligible pipes were shown that corresponded to a very small increment (e.g. 0.3% Δk/k) of the neutron multiplication factor. (author)

  9. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-01-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. (note)

  10. Selection method and device for reactor core performance calculation input indication

    International Nuclear Information System (INIS)

    Yuto, Yoshihiro.

    1994-01-01

    The position of a reactor core component on a reactor core map, which is previously designated and optionally changeable, is displayed by different colors on a CRT screen by using data of a data file incorporating results of a calculation for reactor core performance, such as incore thermal limit values. That is, an operator specifies the kind of the incore component to be sampled on a menu screen, to display the position of the incore component which satisfies a predetermined condition on the CRT screen by different colors in the form of a reactor core map. The position for the reactor core component displayed on the CRT screen by different colors is selected and designated on the screen by a touch panel, a mouse or a light pen, thereby automatically outputting detailed data of evaluation for the reactor core performance of the reactor core component at the indicated position. Retrieval of coordinates of fuel assemblies to be data sampled and input of the coordinates and demand for data sampling can be conducted at once by one menu screen. (N.H.)

  11. An Assessment of SKB's Performance Assessment Calculations in the Interim Main Report for the Safety Assessment SR-Can

    International Nuclear Information System (INIS)

    Maul, Philip; Robinson, Peter

    2005-03-01

    SKB have published their Interim Main Report of the safety assessment SR-Can, which is intended to establish the framework for what will be submitted in 2006 in support of a licence application for construction of the spent fuel encapsulation plant. This follows on from the SR-Can Planning Document published in 2003. The purpose of the Interim Report is stated to be to demonstrate the methodology that will be used for safety assessment. The present report evaluates the information provided in the Interim SR-Can Report that is relevant to the Performance Assessment (PA) calculations that SKB intend to undertake, using independent calculations to facilitate this process. SKB consider that the primary safety function is to isolate completely the fuel within the canisters over the entire assessment period. Should a canister be damaged, the secondary safety function is to ensure that any release is retarded and dispersed sufficiently to ensure that concentrations levels in the accessible environment cannot cause unacceptable consequences. In this report PA calculations are considered to include both a high-level representation of the evolution of the system (relevant to the primary safety function), and any subsequent radionuclide transport (relevant to the secondary safety function). The main conclusions drawn are: 1. The effects of climate evolution on engineered barriers have not been analysed in detail in the Interim Report, and this limits the usefulness of the preliminary calculations that have been undertaken. 2. A key aspect of SKB's approach is the use of an integrated near-field evolution model. The information provided on this model demonstrates its capability efficiently to reproduce calculations from individual process models, but insufficient information is given at the present time to justify statements about interactions between processes. In particular it is assumed that relatively short term thermal and resaturation processes do not affect the

  12. Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations

    International Nuclear Information System (INIS)

    Pan, Wenxiao; Zhang, Dongju; Zhan, Jinhua

    2011-01-01

    Highlights: → We study the inclusion mechanism of TCDD with β-CD by theoretical methods. → Clearly, the formation of inclusion complex is an energetically driven process. → The inclusion complex can be detected by IR and Raman techniques. → The results imply that β-CD may be used as a host molecule to enrich TCDD molecules. - Abstract: The rapid enrichment and detection of trace polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are currently challenging issues in the field of environmental science. In this paper, by performing quantum chemistry (QM) calculations and molecular dynamics (MD) simulations, we studied the inclusion complexation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a representative PCDD molecule, with β-cyclodextrin (β-CD), one of the widely used compounds in supramolecular chemistry. The calculated results reveal that the stable inclusion complex can be formed in both the gas phase and solvent, which proposes that β-CD may serve as a potential substrate enriching TCDD. The calculated vibrational spectra indicate that the infrared (IR) and Raman spectroscopy may be suitable for the detection of β-CD-modified TCDD. The present theoretical results may be informative to environmental scientists who are devoting themselves to developing effective methods for detection and treatment of POPs.

  13. CALCULATING THE EFFECT OF EMPLOYEE STOCK OPTIONS ON DILUTED EPS

    OpenAIRE

    van Zyl, Warrick Boyd

    2007-01-01

    This paper focuses on how to calculate diluted earnings per share (DEPS) when a firm has outstanding employee stock options (ESOs). Three possible methods are described and compared. The first is the current International Accounting Standard 33 – Earnings Per Share (IAS 33) approach which is based on the intrinsic value of the ESOs. The second method, advocated by Core et al. (2002), is very similar to that of IAS 33 but instead of the intrinsic value uses the fair value of the outstanding...

  14. Radionuclide composition in nuclear fuel waste. Calculations performed by ORIGEN2; Radionuklidinnehaall i utbraent kaernbraensle. Beraekningar med ORIGEN2

    Energy Technology Data Exchange (ETDEWEB)

    Lyckman, C

    1996-01-01

    The report accounts for results from calculations on the content of radionuclides in nuclear fuel waste. It also accounts for the results from calculations on the neutron flow from spent fuel, which is very important during transports. The calculations have been performed using the ORIGEN2 software. The results have been compared to other results from earlier versions of ORIGEN and some differences have been discovered. This is due to the updating of the software. 7 refs, 10 figs, 15 tabs.

  15. The effects of some parameters on the calculated 1H NMR relaxation times of cell water

    International Nuclear Information System (INIS)

    Koivula, A.; Suominen, K.; Kiviniitty, K.

    1976-01-01

    The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)

  16. Neutronic performance calculations with alternative fluids in a hybrid reactor by using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Mehtap [Malatya Univ. (Turkey). Physics Department

    2015-03-15

    In this study, salt-heavy metal mixtures consisting of 93-85% Li{sub 20}Sn{sub 80} + 5% SFG-PuO{sub 2} and 2-10% UO{sub 2}, 93-85% Li{sub 20}Sn{sub 80} + 5% SFG-PuO{sub 2} and 2-10% NpO{sub 2}, and 93-85% Li{sub 20}Sn{sub 80} + 5% SFG-PuO{sub 2} and 2-10% UCO were used as fluids. The fluids were used in the liquid first wall, blanket, and shield zones of a fusion-fission hybrid reactor system. A beryllium (Be) zone with a width of 3 cm was used for neutron multiplicity between the liquid first wall and the blanket. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The contributions of each isotope in the fluids to the nuclear parameters, such as tritium breeding ratio (TBR), energy multiplication factor (M), and heat deposition rate, of the fusion-fission hybrid reactor were calculated in the liquid first wall, blanket, and shield zones. Three-dimensional analyses were performed using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  17. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    Science.gov (United States)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  18. Calculation of the Non-Inductive Current Profile in High-Performance NSTX Plasmas

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M.G.; Bell, R.E.; Le Blanc, B.P.; Kugel, H.; Sabbagh, S.A.; Yuh, H.

    2011-01-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX [M. Ono, et al., Nuclear Fusion 40, 557 (2000)]; these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β, or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven, and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfven eigenmode avalanches or coupled m/n=1/1+2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast ion diffusivity of ∼0.5-1 m 2 /sec is found in 'MHD-free' discharges, based on the neutron emission, time rate of change of the neutron signal when a neutral beam is stepped, and reconstructed on-axis current density.

  19. Neutronic performance calculations with alternative fluids in a hybrid reactor by using the Monte Carlo method

    International Nuclear Information System (INIS)

    Guenay, Mehtap

    2015-01-01

    In this study, salt-heavy metal mixtures consisting of 93-85% Li 20 Sn 80 + 5% SFG-PuO 2 and 2-10% UO 2 , 93-85% Li 20 Sn 80 + 5% SFG-PuO 2 and 2-10% NpO 2 , and 93-85% Li 20 Sn 80 + 5% SFG-PuO 2 and 2-10% UCO were used as fluids. The fluids were used in the liquid first wall, blanket, and shield zones of a fusion-fission hybrid reactor system. A beryllium (Be) zone with a width of 3 cm was used for neutron multiplicity between the liquid first wall and the blanket. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The contributions of each isotope in the fluids to the nuclear parameters, such as tritium breeding ratio (TBR), energy multiplication factor (M), and heat deposition rate, of the fusion-fission hybrid reactor were calculated in the liquid first wall, blanket, and shield zones. Three-dimensional analyses were performed using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  20. Commentary on "Performance of a glucose meter with a built-in automated bolus calculator versus manual bolus calculation in insulin-using subjects".

    Science.gov (United States)

    Rossetti, Paolo; Vehí, Josep; Revert, Ana; Calm, Remei; Bondia, Jorge

    2012-03-01

    Since the early 2000s, there has been an exponentially increasing development of new diabetes-applied technology, such as continuous glucose monitoring, bolus calculators, and "smart" pumps, with the expectation of partially overcoming clinical inertia and low patient compliance. However, its long-term efficacy in glucose control has not been unequivocally proven. In this issue of Journal of Diabetes Science and Technology, Sussman and colleagues evaluated a tool for the calculation of the prandial insulin dose. A total of 205 insulin-treated patients were asked to compute a bolus dose in two simulated conditions either manually or with the bolus calculator built into the FreeStyle InsuLinx meter, revealing the high frequency of wrong calculations when performed manually. Although the clinical impact of this study is limited, it highlights the potential implications of low diabetesrelated numeracy in poor glycemic control. Educational programs aiming to increase patients' empowerment and caregivers' knowledge are needed in order to get full benefit of the technology. © 2012 Diabetes Technology Society.

  1. Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor Influence des transferts thermiques sur le calcul des performances des compresseurs de suralimentation

    Directory of Open Access Journals (Sweden)

    Chesse P.

    2011-09-01

    Full Text Available Usually, turbochargers used within internal combustion engine simulation software are modelled in an adiabatic manner. However, during our experimental tests we found that this is not necessarily the case. The direct use of the manufacturer’s map is not possible anymore. A simple method which considers the heat transfers is proposed. It is based on experimental tests made on hot air supplied turbocharger test bench. The difference with the adiabatic model is considerable mainly for low compressor power. This corresponds to internal combustion engine low loads. En général, les turbocompresseurs pris en compte dans les logiciels de simulation moteur sont modélisés de façon adiabatique. Cependant, les tests expérimentaux effectués au laboratoire montrent que ce n’est pas toujours le cas. L’utilisation directe des champs de fonctionnement fournis par les constructeurs de turbomachines n’est alors plus possible. Une évaluation quantitative de ces transferts, basée sur des tests réalisés sur un banc d’essais turbo à air chaud, est présentée. Puis ils sont pris en compte afin de calculer les caractéristiques réelles de fonctionnement d’un compresseur. La différence avec le modèle adiabatique apparaît très importante pour les faibles puissances compresseur. Ceci correspond aux faibles charges moteur.

  2. Monte Carlo validation of self shielding and void effect calculations

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, M.; Raepsaet, C.; Soldevila, M.; Van der Gucht, C.

    1995-01-01

    The self shielding validation and the void effect are studied with Monte Carlo method. The satisfactory comparison obtained between the APOLLO 2 results of the self shielding effect and the TRIPOLI and MCNP results allows us to be confident in the multigroup transport code. (K.A.)

  3. Calculation of effective absorption coefficient for aerosols of internal mixture

    International Nuclear Information System (INIS)

    Xu Bo; Huang Yinbo; Fan Chengyu; Qiao Chunhong

    2012-01-01

    The effective absorption coefficient with time of strong absorbing aerosol made of carbon dusts and water of internal mixture is analyzed, and the influence of different wavelengths and radius ratios on it is discussed. The shorter the wavelength is, the larger the effective absorption coefficient is , and more quickly it increases during 1-100 μs, and the largest increase if 132.65% during 1-100 μs. Different ratios between inner and outer radius have large influence on the effective absorption coefficient. The larger the ratio is, the larger the effective absorption coefficient is, and more quickly it increases during 1-100 μs. The increase of the effective absorption coefficient during 1-100 μs is larger than that during 100-1000 μs, and the largest increase is 138.66% during 1-100 μs. (authors)

  4. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  5. Substituent effect on redox potential of nitrido technetium complexes with Schiff base ligand. Theoretical calculations

    International Nuclear Information System (INIS)

    Takayama, T.; Sekine, T.; Kudo, H.

    2003-01-01

    Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex. (author)

  6. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  7. Techniques for calculations with nPI effective actions

    Directory of Open Access Journals (Sweden)

    Carrington M.E.

    2015-01-01

    Full Text Available We consider a symmetric scalar theory with quartic coupling in 2- and 3- dimensions and compare the self-consistent 4-point vertex obtained from the 4PI effective action with the Bethe-Salpeter 4-vertex from 2PI effective action. We show that when the coupling is large the contributions from the higher order effective action are large. We also show that one can solve the 2PI equations of motion in 4-dimensions, without introducing counter-terms, using a renormalization group method. This method provides a promising starting point to study the renormalization of higher order nPI theories.

  8. Calculational model used in the analysis of nuclear performance of the Light Water Breeder Reactor (LWBR) (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.B. (ed.)

    1978-08-01

    The calculational model used in the analysis of LWBR nuclear performance is described. The model was used to analyze the as-built core and predict core nuclear performance prior to core operation. The qualification of the nuclear model using experiments and calculational standards is described. Features of the model include: an automated system of processing manufacturing data; an extensively analyzed nuclear data library; an accurate resonance integral calculation; space-energy corrections to infinite medium cross sections; an explicit three-dimensional diffusion-depletion calculation; a transport calculation for high energy neutrons; explicit accounting for fuel and moderator temperature feedback, clad diameter shrinkage, and fuel pellet growth; and an extensive testing program against experiments and a highly developed analytical standard.

  9. Calculation and simulation of atmospheric refraction effects in maritime environments

    Science.gov (United States)

    Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc

    2001-01-01

    Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.

  10. Nurse Staffing Calculation in the Emergency Department - Performance-Oriented Calculation Based on the Manchester Triage System at the University Hospital Bonn.

    Directory of Open Access Journals (Sweden)

    Ingo Gräff

    Full Text Available To date, there are no valid statistics regarding the number of full time staff necessary for nursing care in emergency departments in Europe.Staff requirement calculations were performed using state-of-the art procedures which take both fluctuating patient volume and individual staff shortfall rates into consideration. In a longitudinal observational study, the average nursing staff engagement time per patient was assessed for 503 patients. For this purpose, a full-time staffing calculation was estimated based on the five priority levels of the Manchester Triage System (MTS, taking into account specific workload fluctuations (50th-95th percentiles.Patients classified to the MTS category red (n = 35 required the most engagement time with an average of 97.93 min per patient. On weighted average, for orange MTS category patients (n = 118, nursing staff were required for 85.07 min, for patients in the yellow MTS category (n = 181, 40.95 min, while the two MTS categories with the least acute patients, green (n = 129 and blue (n = 40 required 23.18 min and 14.99 min engagement time per patient, respectively. Individual staff shortfall due to sick days and vacation time was 20.87% of the total working hours. When extrapolating this to 21,899 (2010 emergency patients, 67-123 emergency patients (50-95% percentile per month can be seen by one nurse. The calculated full time staffing requirement depending on the percentiles was 14.8 to 27.1.Performance-oriented staff planning offers an objective instrument for calculation of the full-time nursing staff required in emergency departments.

  11. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1984-01-01

    This report consists of a series of 7 individual review chapters -written between 1980 and 1983- together with a summary document linking and overviewing the work. The topics covered are as follows: ''atmospheric dispersion in urban environments''; ''topographical effects in nuclear safety studies''; coastal effects and transport over water''; ''time-varying meteorology in consequence assessment''; ''building effects in nuclear safety studies''; effect of variations in mixing height on atmospheric dispersion''; ''the effect of turning of the wind with height on lateral dispersion''. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on the assessment of reactor accident consequences. In general the work focuses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development

  12. Influence of Steam Reforming Catalyst Geometry on the Performance of Tubular Reformer – Simulation Calculations

    Directory of Open Access Journals (Sweden)

    Franczyk Ewelina

    2015-06-01

    Full Text Available A proper selection of steam reforming catalyst geometry has a direct effect on the efficiency and economy of hydrogen production from natural gas and is a very important technological and engineering issue in terms of process optimisation. This paper determines the influence of widely used seven-hole grain diameter (ranging from 11 to 21 mm, h/d (height/diameter ratio of catalyst grain and Sh/St (hole surface/total cylinder surface in cross-section ratio (ranging from 0.13 to 0.37 on the gas load of catalyst bed, gas flow resistance, maximum wall temperature and the risk of catalyst coking. Calculations were based on the one-dimensional pseudo-homogeneous model of a steam reforming tubular reactor, with catalyst parameters derived from our investigations. The process analysis shows that it is advantageous, along the whole reformer tube length, to apply catalyst forms of h/d = 1 ratio, relatively large dimensions, possibly high bed porosity and Sh/St ≈ 0.30-0.37 ratio. It enables a considerable process intensification and the processing of more natural gas at the same flow resistance, despite lower bed activity, without catalyst coking risk. Alternatively, plant pressure drop can be reduced maintaining the same gas load, which translates directly into diminishing the operating costs as a result of lowering power consumption for gas compression.

  13. Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea

    Directory of Open Access Journals (Sweden)

    Hai Feng Wang

    2015-10-01

    Full Text Available The harvesting of wind energy is expected to increase greatly in the future because of its stability, abundance, and renewability in large coastal states such as China. The floating support structure will likely become the major structural form for wind turbines in the future due to its cost advantages when the water depth reaches 50 m. The 5MW wind turbine model from National Renewable Energy Lab (NREL and the modified tension leg platform model proposed by Harbin Institute of Technology (HIT were applied to certain sea conditions in the South China Sea in order to consider the effects of external load coupling actions. In this study, the internal force, mooring system force, as well as the acceleration, displacement and velocity of the floating structure of the modified HIT Tension Leg Platform (HIT-TLP were calculated. During this process, the physical parameters of its tension leg structure at a specific frequency domain were obtained to find the technical reserves for its practical application in the future.

  14. Polarization and sidewall effects in a coal fired MHD channel - three-dimensional calculation

    International Nuclear Information System (INIS)

    Ishikawa, M.; Scott, M.H.; Wu, Y.C.L.

    1981-01-01

    The effects of slag polarization of electrodes and the sidewall configuration on generator performance are studied experimentally and analytically. An analysis of the voltage-current characteristics between two generator frames measured during the operation of the TP40-07 experiment is given, along with an examination of nonuniformities of interframe voltage. Experimental data show that the polarization effect reduces about 3% of the overall electrical performance of the 60 deg diagonal conducting channel used in the study. Analytically, the effect of polarization on the local current and potential distributions is examined by solving the three-dimensional electrical potential using a finite element method. A moderate increase in conductivity in the vicinity of the cathode-side frame is found to give a calculated leakage resistance which approximates the value derived experimentally. The polarization effect results in a large change in the potential and current distributions near the frame but has a small effect on the overall electrical performance. Alternate sidewall/electrode configurations are treated analytically

  15. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1985-01-01

    This work consists of a series of ten individual review Chapters - written between 1980 and 1983 - together with a summary document linking and overviewing the work. The topics covered are as follows: 'Plume Rise in Nuclear Safety Studies'; 'Dry Deposition'; 'Wet Deposition'; 'Atmospheric Dispersion in Urban Environments'; 'Topographical Effects in Nuclear Safety Studies'; 'Coastal Effects and Transport over Water'; 'Time-Varying Meteorology in Consequence Assessment'; 'Building Effects in Nuclear Safety Studies'; 'Effect of Turning of the Wind with Height on Lateral Dispersion'. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on th assessment of reactor accident consequences. In general the work focusses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development. (author)

  16. A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

    Science.gov (United States)

    Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio

    2009-03-01

    A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.

  17. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kizashi [Institute for Nano Science Design Center, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and TOYOTA Physical and Chemical Research Institute, Nagakute, Aichi, 480-1192 (Japan); Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2015-01-22

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  18. Pade approximants and the calculation of effective interactions

    International Nuclear Information System (INIS)

    Schucan, T.H.

    1975-01-01

    The analytic properties of the effective interaction in nuclei have become increasingly well understood in the last few years. It has been found that the corresponding series expansion diverges in most practical applications due to the occurrence of low lying collective states. It is the purpose of this paper to review and discuss an approximation scheme that has been used to rearrange this series with the aim to overcome the difficulties connected with its divergence. (orig./WL) [de

  19. Effects of Inventory Bias on Landslide Susceptibility Calculations

    Science.gov (United States)

    Stanley, T. A.; Kirschbaum, D. B.

    2017-01-01

    Many landslide inventories are known to be biased, especially inventories for large regions such as Oregon's SLIDO or NASA's Global Landslide Catalog. These biases must affect the results of empirically derived susceptibility models to some degree. We evaluated the strength of the susceptibility model distortion from postulated biases by truncating an unbiased inventory. We generated a synthetic inventory from an existing landslide susceptibility map of Oregon, then removed landslides from this inventory to simulate the effects of reporting biases likely to affect inventories in this region, namely population and infrastructure effects. Logistic regression models were fitted to the modified inventories. Then the process of biasing a susceptibility model was repeated with SLIDO data. We evaluated each susceptibility model with qualitative and quantitative methods. Results suggest that the effects of landslide inventory bias on empirical models should not be ignored, even if those models are, in some cases, useful. We suggest fitting models in well-documented areas and extrapolating across the study region as a possible approach to modeling landslide susceptibility with heavily biased inventories.

  20. Effect of multicell DRAGON calculations depends on the environment on the DONJON predictions for the ACR-1000

    International Nuclear Information System (INIS)

    Duquette, J.-S.

    2009-01-01

    For understanding the behavior of a nuclear reactor core, it is necessary to make a full core calculation in order to compute the neutrons flux. To obtain the neutrons flux, solving the Boltzmann transport equation is required. That is not a simple task and it is impossible to analytically fend the solution of the neutrons transport equation on a complex core. Following a series of approximations, it is possible to numerically solve the neutrons transport equation. The solution of this equation is done step by step. Calculations will be performed over the ACR-1000 core. The Advanced CANDU Reactor (ACR-1000) is a generation III+ heavy water moderated and light water cooled reactor. It is a 1200 MW(e) power reactor. Amongst the ACR-1000 design parameters that differ from the CANDU 6, the reduced lattice pitch and the use of light water coolant and enriched fuel are the three most important. Those features modify the behavior of the neutrons in the ACR compared to the CANDU 6. The impact of the tight lattice is that a cell is more strongly coupled to its neighbor. The objective of this work is to determine the impact of the environment on the cell properties of the ACR-1000. Those properties will be used to perform full core calculations. The neutron transport calculations are performed with DRAGON whereas for the diffusion calculation on a full core. The code DONJON will be used. The DRAGON reference transport calculation will be made on a single cell. Then, a series of calculations will be performed using DRAGON over two types of assemblies, the first modelling the core interior and the second, modelling the core periphery. Moreover, the fuel age will sometimes be homogeneous, sometimes heterogeneous. The fuel will be burned during six hundred days. One thus obtains libraries of macroscopic cross sections over a six hundred days interval for various simulations. Thereafter, we will determine the effect of a neutrons transport multicell calculation on various DONJON

  1. Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.

    Science.gov (United States)

    Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene

    2012-04-21

    Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.

  2. Detailed performance calculations: Wayne State University and Ford Motor Company, appendix C

    Science.gov (United States)

    1984-12-01

    The laser-generated OH through ozone dissociation is defined in equations. Using these equations, the ozone interference levels corresponding to various humidity and ozone concentrations can be calculated readily.

  3. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  4. Effect of music tempo on task performance.

    Science.gov (United States)

    Mayfield, C; Moss, S

    1989-12-01

    Two studies were conducted to evaluate the effect of music tempo on task performance. In Study 1, 44 undergraduate business students were asked to be "workers" in a stock market project by collecting closing stock prices and calculating the percentage of change in the price from week to week. Subjects were randomly divided into groups such that they either listened to fast-paced music while they worked, to slow-paced music, or to no music. Analyses of variance and covariance were conducted on both the quantity and quality of the subjects' work, using music listening habits as a covariate. There were no differences in either the quantity or quality of the work produced by the groups. There were some methodological concerns regarding Study 1, so a second study was conducted. The 70 undergraduate business students in Study 2 completed the same task under the same music conditions as in Study 1. Analyses of variance indicated women performed significantly better than men, performance was significantly higher in the rock condition than in the heartbeat condition, and subjects in the rock condition had a significantly higher perceived level of distraction by the music.

  5. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  6. Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code

    Directory of Open Access Journals (Sweden)

    Ahmed Amin El Said Abd El Hameed

    2015-08-01

    Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code.  We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon

  7. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  8. CALCULATION OF SHOCK-WAVE PULSE EFFECT ON OUTSTRETCHED SPINE

    Directory of Open Access Journals (Sweden)

    G. A. Esman

    2011-01-01

    Full Text Available Combined effects of a shock-wave pulse method and mechanotherapy on a spine is considered as an alternative to conservative and operative methods.Methodology for spinal disease treatment while applying a shock-wave therapy is characterized by the following specific features. Firstly, it is necessary to limit a penetration depth of shock pulses in a biological object in order to exclude damage to a spinal cord. Secondly, it is necessary to limit an energy flux density:Imax≤ 0,280 J∕m2and  pressure in focus:PFmax≤ 0,040 MPа,in order to exclude traumatizing of spinal tissue and only stimulate blood  circulation and metabolic processes in them.Where an acceptable value of the force acting on the inter-vertebral disc while a shock wave is passing is determined by the following formula: F max = PFmaxS = PFmax πr02 = 0,040 ∙106 ∙3,14 ∙(8∙10-32 = 9 N, where r0 – a focal spot radius, mm.Mechanotherapy is applied in combination with the shock-wave therapy and it presupposes the following: an outstretching force acts created in a longitudinal direction of the spine and it is directed across a vertebral column, whose value usually ranges from 50 to 500 N.   

  9. Using BRDFs for accurate albedo calculations and adjacency effect corrections

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Gerstl, S.A.W.

    1996-09-01

    In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.

  10. Risks of transport of radioactive materials on the road; some exploring calculations performed with the INTERTRAN-model

    International Nuclear Information System (INIS)

    1987-04-01

    Under the auspices of the IAEA a computercode, named INTERTRAN, has been developed in order to calculate the risks of the transport of radioactive materials. This code has to be tested nearer. For the Dutch situation a number of calculations has been performed of more or less realistic cases in which four transport streams have been investigated. Two transport routes are chosen. The risks thus obtained are compared quantitatively with the risks of LPG-transports. 4 refs.; 9 figs

  11. Efficient methods for including quantum effects in Monte Carlo calculations of large systems: extension of the displaced points path integral method and other effective potential methods to calculate properties and distributions.

    Science.gov (United States)

    Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G

    2013-01-07

    We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.

  12. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  13. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  14. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  15. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  17. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  18. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  19. Effect of different level density prescriptions on the calculated neutron nuclear reaction cross sections

    International Nuclear Information System (INIS)

    Garg, S.B.

    1991-01-01

    A detailed investigation is carried out to determine the effect of different level density prescriptions on the computed neutron nuclear data of Ni-58 in the energy range 5-25 MeV. Calculations are performed in the framework of the multistep Hauser-Feshbach statistical theory including the Kalbach exciton model and Brink-Axel giant dipole resonance model for radiative capture. Level density prescriptions considered in this investigation are based on the original Gilbert-Cameron, improved Gilbert-Cameron, backshifted Fermi-gas and the Ignatyuk, et al. approaches. The effect of these prescriptions is discussed, with special reference to (n,p), (n,2n), (n,alpha) and total particle-production cross sections. (author). 17 refs, 8 figs

  20. The performance of ENDF/B-V.2 nuclear data for fast reactor calculations

    International Nuclear Information System (INIS)

    Atkinson, C.A.; Collins, P.J.

    1987-01-01

    Calculations with ENDF/B-V.2 data have been made for twenty-five fast-spectrum integral assemblies covering a wide range of sizes and compositions. Analysis was done by transport codes with refined cross section processing methods and detailed reactor modelling. The predictions of fission rate distributions and control rod worths were emphasized for the more prototypic benchmark cores. The results show considerable improvements in agreement with experiment compared with analysis using ENDF/B-IV data, but it is apparent that significant errors remain for fast reactor design calculations

  1. Radiation effect calculation means of the Crisis Technical Center of the Nuclear Safety and Protection Institut

    International Nuclear Information System (INIS)

    Crabol, B.; Manesse, D.; Robeau, D.

    1989-07-01

    The available calculation tools of the Crisis Technical Center (CTC), for the analysis and evaluation of radiation effects from a nuclear accident, are presented. The CTC calculation unit depends on local means, and on the National Meteorology system, in order to collect the data needed for the atmospheric waste diffusion evaluation. For the radiation dose calculations, plotters and software allowing the analysis of all waste Kinetics and all the meteorological conditions are available. The work developed by CTC calculation unit enables an easy application of the calculation tools as well as the results obtention. Images from data bases are provided to complete the obtained results [fr

  2. Montecarlo calculation for a benchmark on interactive effects of Gadolinium poisoned pins in BWRs

    International Nuclear Information System (INIS)

    Borgia, M.G.; Casali, F.; Cepraga, D.

    1985-01-01

    K infinite and burn-up calculations have been done in the frame of a benchmark organized by Physic Reactor Committee of NEA. The calculations, performed by the Montecarlo code KIM, concerned BWR lattices having UO*L2 fuel rodlets with and without gadolinium oxide

  3. Performance of SOPPA-based methods in the calculation of vertical excitation energies and oscillator strengths

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik Frank; Buse, Mogens

    2015-01-01

    methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-size molecules with 139 singlet and 71 triplet excited states. The results are compared...

  4. Performance Calculations for a Boundary-Layer-Ingesting Fan Stage from Sparse Measurements

    Science.gov (United States)

    Hirt, Stefanie M.; Wolter, John D.; Arend, David J.; Hearn, Tristan A.; Hardin, Larry W.; Gazzaniga, John A.

    2018-01-01

    A test of the Boundary Layer Ingesting-Inlet / Distortion-Tolerant Fan was completed in NASA Glenn's 8-Foot by 6-Foot supersonic wind tunnel. Inlet and fan performance were measured by surveys using a set of rotating rake arrays upstream and downstream of the fan stage. Surveys were conducted along the 100 percent speed line and a constant exit corrected flow line passing through the aerodynamic design point. These surveys represented only a small fraction of the data collected during the test. For other operating points, data was recorded as snapshots without rotating the rakes which resulted in a sparser set of recorded data. This paper will discuss analysis of these additional, lower measurement density data points to expand our coverage of the fan map. Several techniques will be used to supplement the snapshot data at test conditions where survey data also exists. The supplemented snapshot data will be compared with survey results to assess the quality of the approach. Effective methods will be used to analyze the data set for which only snapshots exist.

  5. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  6. Development and validation of calculation schemes dedicated to the interpretation of small reactivity effects for nuclear data improvement

    International Nuclear Information System (INIS)

    Gruel, A.

    2011-01-01

    Reactivity measurements by the oscillation technique, as those performed in the Minerve reactor, enable to access various neutronic parameters on materials, fuels or specific isotopes. Usually, expected reactivity effects are small, about ten pcm at maximum. Then, the modeling of these experiments should be very precise, to obtain reliable feedback on the pointed parameters. Especially, calculation biases should be precisely identified, quantified and reduced to get precise information on nuclear data. The goal of this thesis is to develop a reference calculation scheme, with well quantified uncertainties, for in-pile oscillation experiments. In this work are presented several small reactivity calculation methods, based on deterministic and/or stochastic calculation codes. Those method are compared thanks to a numerical benchmark, against a reference calculation. Three applications of these methods are presented here: a purely deterministic calculation with exact perturbation theory formalism is used for the experimental validation of fission product cross sections, in the frame of reactivity loss studies for irradiated fuel; an hybrid method, based on a stochastic calculation and the exact perturbation theory is used for the readjustment of nuclear data, here 241 Am; and a third method, based on a perturbative Monte Carlo calculation, is used in a conception study. (author) [fr

  7. An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay

    International Nuclear Information System (INIS)

    Horoi, Mihai; Neacsu, Andrei

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  8. Effective calculation algorithm for nuclear chains of arbitrary length and branching

    International Nuclear Information System (INIS)

    Chirkov, V.A.; Mishanin, B.V.

    1994-01-01

    An effective algorithm for calculation of the isotope concentration in the spent nuclear fuel when it is kept in storage, is presented. Using the superposition principle and representing the transfer function in a rather compact form it becomes possible achieve high calculation speed and a moderate computer code size. The algorithm is applied for the calculation of activity, energy release and toxicity of heavy nuclides and products of their decay when the fuel is kept in storage. (authors). 1 ref., 4 tabs

  9. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  10. Test of Effective Solid Angle code for the efficiency calculation of volume source

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of); Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is hard to determine a full energy (FE) absorption peak efficiency curve for an arbitrary volume source by experiment. That's why the simulation and semi-empirical methods have been preferred so far, and many works have progressed in various ways. Moens et al. determined the concept of effective solid angle by considering an attenuation effect of γ-rays in source, media and detector. This concept is based on a semi-empirical method. An Effective Solid Angle code (ESA code) has been developed for years by the Applied Nuclear Physics Group in Seoul National University. ESA code converts an experimental FE efficiency curve determined by using a standard point source to that for a volume source. To test the performance of ESA Code, we measured the point standard sources and voluminous certified reference material (CRM) sources of γ-ray, and compared with efficiency curves obtained in this study. 200∼1500 KeV energy region is fitted well. NIST X-ray mass attenuation coefficient data is used currently to check for the effect of linear attenuation only. We will use the interaction cross-section data obtained from XCOM code to check the each contributing factor like photoelectric effect, incoherent scattering and coherent scattering in the future. In order to minimize the calculation time and code simplification, optimization of algorithm is needed.

  11. Comparison of explicit and effective models for calculating ionic populations in argon plasmas

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1994-01-01

    Calculations have been performed to model the state populations of argon plasmas at electron densities at and above those required for the validity of coronal equilibrium. Both effective and explicit models have been used, and both are based on the same set of atomic cross sections. The effective model includes ground and singly excited states explicitly, while the effect of autoionizing states is accounted for by branching factors which describe their depopulation into the various non-autoionizing states. The explicit model considers both autoionizing and non-autoionizing states explicitly. The effective model requires a significantly reduced amount of computer time and memory. Good agreement between the two models can be obtained through moderate densities if the branching factors include electron density dependent terms which describe the collisional stabilization of each autoionizing state. The effective model breaks down as density is increased because the population of individual autoionizing states become significant. Results for both ionization balance and radiated power loss are presented. (Author)

  12. Calculating Effective Elastic Properties of Berea Sandstone Using Segmentation-less Method without Targets

    Science.gov (United States)

    Ikeda, K.; Goldfarb, E. J.; Tisato, N.

    2017-12-01

    Digital rock physics (DRP) allows performing common laboratory experiments on numerical models to estimate, for example, rock hydraulic permeability. The standard procedure of DRP involves turning a rock sample into a numerical array using X-ray micro computed tomography (micro-CT). Each element of the array bears a value proportional to the X-ray attenuation of the rock at the element (voxel). However, the traditional DRP methodology, which includes segmentation, over-predicts rock moduli by significant amounts (e.g., 100%). Recently, a new methodology - the segmentation-less approach - has been proposed leading to more accurate DRP estimate of elastic moduli. This new method is based on homogenization theory. Typically, segmentation-less approach requires calibration points from known density objects, known as targets. Not all micro-CT datasets have these reference points. Here, we describe how we perform segmentation- and target-less DRP to estimate elastic properties of rocks (i.e., elastic moduli), which are crucial parameters to perform subsurface modeling. We calculate the elastic properties of a Berea sandstone sample that was scanned at a resolution of 40 microns per voxel. We transformed the CT images into density matrices using polynomial fitting curve with four calibration points: the whole rock, the center of quartz grains, the center of iron oxide grains, and the center of air-filled volumes. The first calibration point is obtained by assigning the density of the whole rock to the average of all CT-numbers in the dataset. Then, we locate the center of each phase by finding local extrema point in the dataset. The average CT-numbers of these center points are assigned the density equal to either pristine minerals (quartz and iron oxide) or air. Next, density matrices are transformed to porosity and moduli matrices by means of an effective medium theory. Finally, effective static bulk and shear modulus are numerically calculated by using a Matlab code

  13. Effects of hydrogen on Mn-doped GaN: A first principles calculation

    International Nuclear Information System (INIS)

    Wu, M.S.; Xu, B.; Liu, G.; Lei, X.L.; Ouyang, C.Y.

    2013-01-01

    First-principles calculations based on spin density functional theory are performed to study the effects of H on the structural, electronic and magnetic properties of the Mn-doped GaN dilute magnetic semiconductors. Our results show that the interstitial H atom prefers to bond with N atom rather than Mn atom, which means that H favors to form the N–H complex rather than Mn–H complex in the Mn-doped GaN. After introducing one H atom in the system, the total magnetic moment of the Mn-doped GaN increases by 25%, from 4.0μ B to 5.0μ B . The physics mechanism of the increase of magnetic moment after hydrogenation in Mn-doped GaN is discussed

  14. Use of moving heat conductor mesh to perform reflood calculations with RELAP4/MOD6

    International Nuclear Information System (INIS)

    Fischer, S.R.; Ellis, L.V.; Chen, Y.S.

    1979-01-01

    RELAP4 is a computer code which can be used for the transient thermal hydraulic analysis of light water reactors and related systems. RELAP4/MOD6 includes many new analytical models which were developed primarily for the analysis of the reflood phase of a PWR loss-of-coolant accident (LOCA) transient. The key feature forming the basis for the MOD6 reflood calculation is a unique moving finite differenced heat conductor. The development and application of the moving heat conductor mesh for use in reflood analysis are described

  15. Cost-effective GPU-grid for genome-wide epistasis calculations.

    Science.gov (United States)

    Pütz, B; Kam-Thong, T; Karbalai, N; Altmann, A; Müller-Myhsok, B

    2013-01-01

    Until recently, genotype studies were limited to the investigation of single SNP effects due to the computational burden incurred when studying pairwise interactions of SNPs. However, some genetic effects as simple as coloring (in plants and animals) cannot be ascribed to a single locus but only understood when epistasis is taken into account [1]. It is expected that such effects are also found in complex diseases where many genes contribute to the clinical outcome of affected individuals. Only recently have such problems become feasible computationally. The inherently parallel structure of the problem makes it a perfect candidate for massive parallelization on either grid or cloud architectures. Since we are also dealing with confidential patient data, we were not able to consider a cloud-based solution but had to find a way to process the data in-house and aimed to build a local GPU-based grid structure. Sequential epistatsis calculations were ported to GPU using CUDA at various levels. Parallelization on the CPU was compared to corresponding GPU counterparts with regards to performance and cost. A cost-effective solution was created by combining custom-built nodes equipped with relatively inexpensive consumer-level graphics cards with highly parallel GPUs in a local grid. The GPU method outperforms current cluster-based systems on a price/performance criterion, as a single GPU shows speed performance comparable up to 200 CPU cores. The outlined approach will work for problems that easily lend themselves to massive parallelization. Code for various tasks has been made available and ongoing development of tools will further ease the transition from sequential to parallel algorithms.

  16. Results from synthesis of calculation cases illustrating overall system performance in the safety assessment in H12 report

    International Nuclear Information System (INIS)

    Makino, Hitoshi; Sawada, Atsushi; Wakasugi, Keiichiro; Kato, Tomoko; Uchida, Masahiro; Miyahara, Kaname

    2002-02-01

    JNC (Japan Nuclear Cycle Development Institute) had proceeded R and D activities to provide a scientific and technical basis for geological disposal of HLW in Japan. The second progress report (H12) documented the progress of R and D and the Japanese version was submitted to the AEC (the Atomic Energy Commission) in November 1999. This report summarizes the calculation results for nuclide migration in 'Synthesis of Calculation Cases Illustrating Overall System Performance', which are performed to examine the safety of the geological disposal concept in Japan in the Safety Assessment in H12 Report. In addition, a set of calculation result for nuclide migration through each pathway in one-dimensional multiple pathway model (a set of 48 segments) are summarized for the Reference Case in H12 Report, and calculated dose conversion factors are also summarized against the combinations of potential Geosphere-Biosphere Interfaces (GBI) and potential exposure groups. Digital data of the calculation results are summarized in Appendix CD-ROM as Microsoft EXCEL files. (author)

  17. Correction for adiabatic effects in lethe calculated instantaneous gas consumption of scuba dives

    NARCIS (Netherlands)

    Schellart, Nico A. M.; Le Péchon, Jean-Claude

    2015-01-01

    Introduction: In scuba-diving practice, instantaneous gas consumption is generally calculated from the fall in cylinder pressure without considering the effects of water temperature (heat transfer) and adiabatic processes. We aimed to develop a simple but precise method for calculating the

  18. Carmen system: a code block for neutronic PWR calculation by diffusion theory with spacedependent feedback effects

    International Nuclear Information System (INIS)

    Ahnert, C.; Aragones, J.M.

    1982-01-01

    The Carmen code (theory and user's manual) is described. This code for assembly and core calculations uses diffusion theory (Citation), with feedback in the cross sections by zone due to the effects of burnup, water density, fuel temperature, Xenon and Samarium. The burnup calculation of a full cycle is solved in only an execution of Carmen, and in a reduced computer time. (auth.)

  19. The modeler's influence on calculated solubilities for performance assessments at the Aespoe hard-rock laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.; Arthur, R.; Glynn, P.D.; McMurry, J.

    1999-01-01

    Four researchers were asked to provide independent modeled estimates of the solubility of a radionuclide solid phase, specifically Pu(OH) 4 , under five specified sets of conditions. The objectives of the study were to assess the variability in the results obtained and to determine the primary causes for this variability. In the exercise, modelers were supplied with the composition, pH and redox properties of the water and with a description of the mineralogy of the surrounding fracture system. A standard thermodynamic data base was provided to all modelers. Each modeler was encouraged to use other data bases in addition to the standard data base and to try different approaches to solving the problem. In all, about fifty approaches were used, some of which included a large number of solubility calculations. For each of the five test cases, the calculated solubilities from different approaches covered several orders of magnitude. The variability resulting from the use of different thermodynamic data bases was in most cases, far smaller than that resulting from the use of different approaches to solving the problem

  20. Workshift and Antihistamine Effects on Task Performance

    National Research Council Canada - National Science Library

    Gilliland, Kirby

    1997-01-01

    Sixteen male subjects, well trained on a battery of cognitive performance assessment tasks, participated in a study to Investigate the effects on human operator performance of work shift (Day Shift vs. Mid shift...

  1. Calculation of the effective delayed neutron fraction by TRIPOLI-4 code for IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Lee, Y.K.; Hugot, F.X.

    2011-01-01

    The effective delayed neutron fraction βeff is an important reactor physics parameter. Its calculation within the multi-group deterministic transport code can be performed with the aid of adjoint flux weighted integrations. However, in continuous energy Monte Carlo transport code, the adjoint weighted βeff calculation becomes complicated due to the backward treatment of the anisotropy scattering. In TRIPOLI-4 continuous energy Monte Carlo code, the βeff calculation was performed by a two-run method, one run with delayed neutrons and second with only the contribution from prompt fission neutrons. To improve the uncertainty of the βeff two-run calculation for the experimental reactors, two simple and fast one-run methods to estimate the βeff in the continuous energy simulation have been implemented into the TRIPOLI-4 code. First approach is an improved one of the Bretscher's prompt method and second one based on the proposal of Nauchi and Kameyama. In these one-run methods, the prompt and the delayed neutrons are first tagged. Their tracking and statistics are separated performed. The new βeff calculations have been optimized in the power iteration cycles so as to estimate the production of prompt and delayed neutrons from the prompt and delayed neutrons of previous generation. To validate the new βeff calculation by TRIPOLI-4, several benchmarks including fast and thermal systems have been considered. In this paper the recent measurements of βeff in the research reactor IPEN/MB-01 have been benchmarked. The basic components of the βeff and the Keff have been also calculated so as to understand the influences of the cross sections and the delayed neutron yields on the reactor reactivity calculations. Three nuclear data libraries, ENDF/BVI.r4, ENDF/B-VII.0, and JEFF-3.1 were taken into account in this study. (author)

  2. Review of proposed values for carcinogenic effects of low dose irradiation: calculations and sensitivity analysis

    International Nuclear Information System (INIS)

    Hubert, P.

    1983-01-01

    The assessment of radiological risk generally relies on no threshold linear relationship, computed by the ICRP and the National Academy of Science in a former report (BEIR II). The last report of the NAS, as well as the publication by Loewe and Mendelsohn of new dose estimates for Hiroshima and Nagasaki, enhanced the controversy on the shape of the curve of the dose effect relationship. The theoretical debate focuses on this shape (linear or quadratic, with or without threshold) which depends on the true impact of radiation in the carcinogenic process. This paper leaves aside the theoretical aspect of the problem. Instead, it describes the flow chart of the calculations which allow to find munerical values for the coefficients of the relationship, starting from the observations on irradiated human populations. In this process, besides the theoretical hypotheses, pragmatic choices, and even the necessary simplifications in the calculation, can result in substantial changes in the risk coefficients. This paper aims to present these factors of variability, as well as some sensitivity analyses. These analyses are performed within the framework of pragmatical problems like the assessment of radiological impact of nuclear facilities or the optimisation of radioprotection. In this respect, the shape of the curve appears not to have greater impact than other alternatives, such as the absolute v relative risk projection model, the choice of data source [fr

  3. A case study and critical assessment in calculating power usage effectiveness for a data centre

    International Nuclear Information System (INIS)

    Brady, Gemma A.; Kapur, Nikil; Summers, Jonathan L.; Thompson, Harvey M.

    2013-01-01

    Highlights: • A case study PUE calculation is carried out on a data centre by using open source specifications. • The PUE metric does not drive improvements in the efficiencies of IT processes. • The PUE does not fairly represent energy use; an increase in IT load can lead to a decrease in the PUE. • Once a low PUE is achieved, power supply efficiency and IT load have the greatest impact on its value. - Abstract: Metrics commonly used to assess the energy efficiency of data centres are analysed through performing and critiquing a case study calculation of energy efficiency. Specifically, the metric Power Usage Effectiveness (PUE), which has become a de facto standard within the data centre industry, will be assessed. This is achieved by using open source specifications for a data centre in Prineville, Oregon, USA provided by the Open Compute Project launched by the social networking company Facebook. The usefulness of the PUE metric to the IT industry is critically assessed and it is found that whilst it is important for encouraging lower energy consumption in data centres, it does not represent an unambiguous measure of energy efficiency

  4. Calculation method for the seasonal performance of heat pump compact units and validation. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This appendix to a comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made on compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. The tests on these units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are presented and discussed. Test conditions are described; these cover ventilation, acoustic, hygiene and safety aspects. Detailed results from the two test objects - buildings built to MINERGIE and MINERGIE-P low energy consumption standards - are presented and discussed. The calculation methods used are examined and discussed.

  5. Calculated thermal performance of solar collectors based on measured weather data from 2001-2010

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Andersen, Elsa

    2015-01-01

    This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period ...... with an increase in global radiation. This means that besides increasing the thermal performance with increasing the solar radiation, the utilization of the solar radiation also becomes better.......This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period...

  6. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  7. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  8. EFFDOS - a FORTRAN-77-code for the calculation of the effective dose equivalent

    International Nuclear Information System (INIS)

    Baer, M.; Honcu, S.; Huebschmann, W.

    1984-01-01

    The FORTRAN-77-code EFFDOS calculates the effective dose equivalent according to ICRP 26 due to the longterm emission of radionuclides into the atmosphere for the following exposure pathways: inhalation, ingestion, γ-ground irradiation (γ-irradiation by radionuclides deposited on the ground) and β- or γ-submersion (irradiation by the passing radioactive cloud). For calculating the effective dose equivalent at a single spot it is necessary to put in the diffusion factor and - if need be - the washout factor; otherwise EFFDOS calculates the input data for the computer codes ISOLA III and WOLGA-1, which then are enabled to compute the atmospheric diffusion, ground deposition and local dose equivalent distribution for the requested exposure pathway. Atmospheric diffusion, deposition and radionuclide transfer are calculated according to the ''Allgemeine Berechnungsgrundlage ....'' recommended by the German Fed. Ministry of Interior. A sample calculated is added. (orig.) [de

  9. On the nuclear shell effects appeared in (p,t) analyzing power calculations

    International Nuclear Information System (INIS)

    Kubo, Ken-ichi

    1980-01-01

    Origin of shell effects found in two-step (p, d, t) calculation, which play an important role for understanding the observed 'anomalous' (p, t) analyzing powers, is clarified based on the selections for transferred angular momenta. (author)

  10. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    International Nuclear Information System (INIS)

    De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.

    2010-01-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  11. Calculation code of heterogeneity effects for analysis of small sample reactivity worth

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Mukaiyama, Takehiko; Maeda, Akio.

    1988-03-01

    The discrepancy between experimental and calculated central reactivity worths has been one of the most significant interests for the analysis of fast reactor critical experiment. Two effects have been pointed out so as to be taken into account in the calculation as the possible cause of the discrepancy; one is the local heterogeneity effect which is associated with the measurement geometry, the other is the heterogeneity effect on the distribution of the intracell adjoint flux. In order to evaluate these effects in the analysis of FCA actinide sample reactivity worth the calculation code based on the collision probability method was developed. The code can handle the sample size effect which is one of the local heterogeneity effects and also the intracell adjoint heterogeneity effect. (author)

  12. Effect of contrast on treatment planning system dose calculations in the lung

    International Nuclear Information System (INIS)

    Lees, J.; Holloway, L.; Fuller, M.; Forstner, D.

    2004-01-01

    Full text: Contrast-enhanced x-ray computed tomography is utilised in the planning of radiotherapy lung treatments to allow greater accuracy in defining tumour volume and nodal areas. The use of contrast results in increased density in the region of the tumour and may result in an overall increased density in the lung volume. It is possible that this change in density may affect the accuracy of any dose calculations based on this CT data. As yet, the effect of the contrast agent on the calculations performed by the treatment planning computer is unclear. Ideally, a study would be undertaken using pre- and post- contrast patient data, however this may be considered unethical as an extra CT scan would be required. For this reason, the following study was undertaken to assess the possible impact in a simulated environment. The object of this study was to explore the effect of the contrast agent upon the isodose curves and the monitor units calculated by the treatment planning system. Two investigations were made. Initially, pre- and post-contrast images were acquired using an anthropomorphic phantom. Contrast-enhancement was simulated by replacing cylindrical sections of the lung with lengths of drinking straw containing contrast agent. The effect of increased density in the tumour volume was considered in this comparison. Secondly, block density corrections were used in an existing patient dataset to simulate an increase in lung density and compared with the original dataset. In the two investigations, a treatment was generated using both datasets. Fields were placed on the non contrast-enhanced scan, and then transferred onto the contrast-enhanced scan. The numbers of monitor units calculated in each of the plans were compared, as were the resulting isodose curves. In the first investigation, the relative electron density in the contrast-enhanced scan varied between 0.523 and 1.705 within the tumour volume. This resulted from the presence of undiluted contrast agent

  13. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  14. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  15. Calculated K-effectives using ENDF/B-V data for U + Pu solution critical experiments

    International Nuclear Information System (INIS)

    Primm, R.T. III; Mincey, J.F.

    1981-01-01

    Effective multiplication factors for 12 critical experiments have been calculated using multigroup cross sections derived from the ENDF/B-V library. All 12 experiments contained mixed plutonium and uranium nitrate solutions. The range of hydrogen-to-fissile plutonium atom ratios spanned by these experiments was 200 to 2200. A comparison with K-effectives calculated with ENDF/B-IV data is presented

  16. Effect of XCOM photoelectric cross-sections on dosimetric quantities calculated with EGSnrc

    International Nuclear Information System (INIS)

    Hobeila, F.; Seuntjens, J.P.

    2002-01-01

    The EGSnrc Monte-Carlo code system incorporates improved low energy photon physics such as atomic relaxations and the implementation of bound Compton cross-sections using the impulse approximation. The total cross-section for photoelectric absorption however, still relies on the data by Storm and Israel (S and I). Yet, low energy applications such as brachytherapy (e.g. 125 I) require up-to-date low-energy photoelectric cross-section data. In this paper, we study the dosimetric effects of a simple implementation of NIST XCOM-based photoelectric cross-sections in EGSnrc. This is done by calculating mass energy-absorption coefficients, absorbed dose from point sources, kilovoltage x-ray beams and ion chamber response. In the EGS code system, the PEGS4 routine reads the photoelectric and pair cross-sections for elements from a file (pgspepr.dat) and provides numerical fits for compounds which will be used by EGSnrc. We updated the photoelectric cross-sections of the pgspepr.dat file with the XCOM total photoelectric absorption cross-sections from NIST. After validation of this new implementation, we studied its effects on a number of dosimetrically relevant quantities. Firstly, we calculated mass energy-absorption coefficients by scoring energy transferred in a thin slab of water and air using the DOSRZnrc user code. Secondly, we calculated inverse-square corrected absorbed dose distributions from point sources in water by using an internally developed user code, KERNELph. Thirdly, we studied the differences in free-air ion chamber response calculations. Ion chamber response is defined as the dose to the cavity of an ionization chamber, D gas , positioned with its effective point of measurement at a reference point divided by air-kerma measured free-in-air at the same point. The ion chamber response was calculated using monoenergetic photon beams of energy 10 keV to 200 keV. The comparison of the Storm and Israel photoelectric cross-sections with the XCOM cross

  17. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    Science.gov (United States)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  18. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J. (Enviros Spain S.L., Barcelona (ES))

    2006-12-15

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  19. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    International Nuclear Information System (INIS)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J.

    2006-12-01

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  20. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  1. New approach to calculate the true-coincidence effect of HpGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com [Department of Physics, Faculty of Pure and Applied Science, International University of Africa, 12223 Khartoum (Sudan); Wagiran, H. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai,Johor (Malaysia); Ibrahim, N. [Faculty of Defence Science and Technology, National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Hamzah, S.; Elias, M. S. [Malaysia Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor D.E. (Malaysia); Siong, W. B. [Chemistry Department, Faculty of Resource Science & Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia)

    2016-01-22

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  2. Calculations on the effect of pellet filling on the rewetting of overheated nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Pearson, K.G.; Loveless, J.

    1977-03-01

    Numerical solutions of the rewetting equations are presented which show the effect of filler material and gas gap on the rate of rewetting of an overheated fuel pin. It is shown that taking the presence of the fuel into account can lead to a large reduction in the calculated rewetting speed compared with a calculation which neglects the presence of fuel. The effect is most marked in conditions where rewetting speeds tend to be already low, such as at high pin temperatures and low ambient pressure. A comparison is made between the predictions of the present method and experimental data obtained on zircaloy and stainless steel pins filled with magnesia and with boron nitride. In all cases filling the pins produced a large reduction in rewetting speed and the agreement between the calculated and measured effect was encouraging. It is concluded that the presence of the UO 2 pellet filling should be taken into account when calculating rewetting speeds in safety assessments. (author)

  3. A strategy for the derivation and use of sorption coefficients in performance assessment calculations for the Yucca Mountain site

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-01-01

    The chemical interactions of dissolved radionuclides with mineral surfaces along flowpaths from the proposed repository to the accessible environment around Yucca Mountain constitute one of the potential barriers to radionuclide migration at the site. Our limited understanding of these interactions suggests their details will be complex and will involve control by numerous chemical and physical parameters. It appears unlikely that we will understand all the details of these reactions or obtain all the site data required to evaluate each of them in the time available for site characterization. Yet, performance assessment calculations will require some form of coupling of chemical interaction models will hydrologic flow models for the site. Clearly, strategies will be needed to bound the problem without compromising the reliability of the performance assessment calculations required for site suitability analysis. The main purpose of this paper is to describe such a strategy. 39 refs., 7 figs., 5 tabs

  4. Transient calculation performance of the MASTER code for control rod ejection problem

    International Nuclear Information System (INIS)

    Cho, B. O.; Joo, H. G.; Yoo, Y. J.; Park, S. Y.; Zee, S. Q.

    1999-01-01

    The accuracy and the effectiveness of the solution methods of the MASTER code for reactor transient problems were analyzed with a set of NEACRP PWR control rod ejection benchmark problems. A series of sensitivity study for the effects on the solution by the neutronic solution methods and the neutronic and thermal-hydraulic model parameters were thus investigated. The MASTER results were then compared with the reference PANTHER results. This indicates that the MASTER solution is sufficiently accurate and the computing time is fast enough for nuclear design application

  5. Transient calculation performance of the MASTER code for control rod ejection problem

    Energy Technology Data Exchange (ETDEWEB)

    Cho, B. O.; Joo, H. G.; Yoo, Y. J.; Park, S. Y.; Zee, S. Q. [KAERI, Taejon (Korea, Republic of)

    1999-10-01

    The accuracy and the effectiveness of the solution methods of the MASTER code for reactor transient problems were analyzed with a set of NEACRP PWR control rod ejection benchmark problems. A series of sensitivity study for the effects on the solution by the neutronic solution methods and the neutronic and thermal-hydraulic model parameters were thus investigated. The MASTER results were then compared with the reference PANTHER results. This indicates that the MASTER solution is sufficiently accurate and the computing time is fast enough for nuclear design application.

  6. 3-D heat transfer computer calculations of the performance of the IAEA's air-bath calorimeters

    International Nuclear Information System (INIS)

    Elias, E.; Kaizermann, S.; Perry, R.B.; Fiarman, S.

    1989-01-01

    A three dimensional (3-D) heat transfer computer code was developed to study and optimize the design parameters and to better understand the performance characteristics of the IAEA's air-bath calorimeters. The computer model accounts for heat conduction and radiation in the complex materials of the calorimeter and for heat convection and radiation at its outer surface. The temperature servo controller is modelled as an integral part of the heat balance equations in the system. The model predictions will be validated against test data using the ANL bulk calorimeter. 11 refs., 6 figs

  7. Window Energy Rating System and Calculation of Energy Performance of Windows

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    The goal of reducing the energy consumption in buildings is the background for the introduction of an energy rating system of fenestration products in Denmark. The energy rating system requires that producers declare, among other things, the heat loss coefficient, U, and the total solar energy...... development, e.g. when the resulting effects of a reduced frame area are evaluated....

  8. Performance of a light applicator for photodynamic therapy in the oral cavity: calculations and measurements

    NARCIS (Netherlands)

    van Benthem, H. E.; Sterenborg, H. J.; van der Meulen, F. W.; van Gemert, M. J.

    1997-01-01

    Photodynamic therapy (PDT) is an experimental therapy for the treatment of superficial cancer using laser light. In PDT a uniform light distribution is usually required for an optimal therapeutic effect. To irradiate part of the oral cavity uniformly for PDT, two prototype applicators were built,

  9. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    Energy Technology Data Exchange (ETDEWEB)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a

  10. Calculation of coupled bunch effects in the synchrotron light source BESSY VSR

    Energy Technology Data Exchange (ETDEWEB)

    Ruprecht, Martin

    2016-02-22

    In the scope of this thesis, the strength of coupled bunch instabilities (CBIs) driven by longitudinal monopole higher order modes (HOMs) and transverse dipole and quadrupole HOMs is evaluated for the upgrade project BESSY Variable Pulse Length Storage Ring (BESSY VSR) at Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (HZB), based on analytic calculations and tracking simulations, and compared to the performance of an active bunch-by-bunch feedback (BBFB). Algorithms for tracking codes are derived, and a semi-empirical formula for the estimation of transverse quadrupole CBIs is presented. CBI studies are an integral part of the benchmarking of the cavity models for BESSY VSR and have been accompanying and influencing their entire design process. Based on the BESSY VSR cavity model with highly advanced HOM damping, beam stability is likely to be reached with a BBFB system, independent of the bunch fill pattern. Additionally, measurements of CBIs have been performed at BESSY II and the Metrology Light Source of the Physikalisch-Technische Bundesanstalt (MLS), where the longitudinal long range impedance was characterized. Transient beam loading is evaluated by means of analytic formulas and new experimentally verified tracking codes. For the baseline bunch fill pattern of BESSY VSR, it is shown that the particular setup of cavity frequencies amplifies the transient effect on the long bunch, limiting its elongation and potentially resulting in increased Touschek losses.

  11. Improved cache performance in Monte Carlo transport calculations using energy banding

    Science.gov (United States)

    Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.

    2014-04-01

    We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.

  12. Performance study of a cluster calculation; parallelization and application under geant4

    International Nuclear Information System (INIS)

    Trabelsi, Abir

    2007-01-01

    This work concretizes the final studies project for engineering computer sciences, it is archived within the national center of nuclear sciences and technology. The project consists in studying the performance of a set of machines in order to determine the best architecture to assemble them in a cluster. As well as the parallelism and the parallel implementation of GEANT4, as a tool of simulation. The realisation of this project consists on : 1) programming with C++ and executing the two benchmarks P MV and PMM on each station; 2) Interpreting this result in order to show the best architecture of the cluster; 3) parallelism with TOP-C the two benchmarks; 4) Executing the two Top-C versions on the cluster; 5) Generalizing this results; 6)parallelism et executing the parallel version of GEANT4. (Author). 14 refs

  13. Performance of a glucose meter with a built-in automated bolus calculator versus manual bolus calculation in insulin-using subjects.

    Science.gov (United States)

    Sussman, Allen; Taylor, Elizabeth J; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Lawrence, Andrew; Ng, Ronald

    2012-03-01

    Patients consider multiple parameters in adjusting prandial insulin doses for optimal glycemic control. Difficulties in calculations can lead to incorrect doses or induce patients to administer fixed doses, rely on empirical estimates, or skip boluses. A multicenter study was conducted with 205 diabetes subjects who were on multiple daily injections of rapid/ short-acting insulin. Using the formula provided, the subjects manually calculated two prandial insulin doses based on one high and one normal glucose test result, respectively. They also determined the two doses using the FreeStyle InsuLinx Blood Glucose Monitoring System, which has a built-in, automated bolus calculator. After dose determinations, the subjects completed opinion surveys. Of the 409 insulin doses manually calculated by the subjects, 256 (63%) were incorrect. Only 23 (6%) of the same 409 dose determinations were incorrect using the meter, and these errors were due to either confirmed or potential deviations from the study instructions by the subjects when determining dose with meter. In the survey, 83% of the subjects expressed more confidence in the meter-calculated doses than the manually calculated doses. Furthermore, 87% of the subjects preferred to use the meter than manual calculation to determine prandial insulin doses. Insulin-using patients made errors in more than half of the manually calculated insulin doses. Use of the automated bolus calculator in the FreeStyle InsuLinx meter minimized errors in dose determination. The patients also expressed confidence and preference for using the meter. This may increase adherence and help optimize the use of mealtime insulin. © 2012 Diabetes Technology Society.

  14. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  15. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  16. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  17. Impact of different libraries on the performance calculation of a modul-type pebble bed HTR

    International Nuclear Information System (INIS)

    Ohlig, U.; Brockmann, H.; Haas, K.A.; Teuchert, E.

    1991-01-01

    A new multigroup library for the GAM-THERMOS spectrum codes has been compiled from the sources ENDF/B-V and JEF-1. The progress in comparison to the 20 years old standard library has been studied for one specific reactor design of the Modular High Temperature Reactor. The study covers various aspects of the performance of the reactor both for the initial core and for the equilibrium cycle. For the multiplication factor k eff the different amounts to Δ k eff = 0.0164 in the startup reactor, which is mainly due to changes in the cross sections of 235 U. At the turn to the equilibrium cycle the difference reduces to Δ k eff = 0.0017 as due to various opposite tendencies in the data of the many involved nuclides. The change in the mass balance of the fissile materials is about 5%. The impact on the temperature coefficients is in the order of 4%, and the influence on other safety related properties of the reactor is lower than about 1 or 2 percent, confirming the confidence in formerly received results. (author). 10 refs, 3 figs, 6 tabs

  18. MO-F-CAMPUS-I-01: A System for Automatically Calculating Organ and Effective Dose for Fluoroscopically-Guided Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z; Vijayan, S; Rana, V; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to read data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.

  19. Consideration of the environmental effects on fatigue behavior of austenitic components. Calculation methods and practical application

    International Nuclear Information System (INIS)

    Seichter, Johannes; Reese, Sven H.; Klucke, Dietmar

    2012-01-01

    During the last years environmental effects on the fatigue behavior of nuclear power plant components has worldwide been discussed controversial with respect to the transferability of laboratory data on real components. A publication from Argonne National Laboratory on experimental results concerning environmental effects (air and LWR coolant) on fatigue of austenitic steels included a proposal on calculation methods concerning the lifetime reduction due to environmental effects. This calculation method, i.e. multiplication of the usage factor by a F(en), has been included into the ASME Code, Section III, Division I, as Code Case N-792 (fatigue evaluations including environmental effects). The presented contribution evaluates the practical application of this calculation procedure and demonstrates the determination of the usage factor of an austenitic component under environmental exposure.

  20. THREEDANT: A code to perform three-dimensional, neutral particle transport calculations

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1994-01-01

    The THREEDANT code solves the three-dimensional neutral particle transport equation in its first order, multigroup, discrate ordinate form. The code allows an unlimited number of groups (depending upon the cross section set), angular quadrature up to S-100, and unlimited Pn order again depending upon the cross section set. The code has three options for spatial differencing, diamond with set-to-zero fixup, adaptive weighted diamond, and linear modal. The geometry options are XYZ and RZΘ with a special XYZ option based upon a volume fraction method. This allows objects or bodies of any shape to be modelled as input which gives the code as much geometric description flexibility as the Monte Carlo code MCNP. The transport equation is solved by source iteration accelerated by the DSA method. Both inner and outer iterations are so accelerated. Some results are presented which demonstrate the effectiveness of these techniques. The code is available on several types of computing platforms

  1. Effect of temperature on task performance in officeenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli; Fisk, William J.; Lei, Q.H.

    2006-07-01

    Indoor temperature is one of the fundamental characteristics of the indoor environment. It can be controlled with a degree of accuracy dependent on the building and its HVAC system. The indoor temperature affects several human responses, including thermal comfort, perceived air quality, sick building syndrome symptoms and performance at work. In this study, we focused on the effects of temperature on performance at office work. We included those studies that had used objective indicators of performance that are likely to be relevant in office type work, such as text processing, simple calculations (addition, multiplication), length of telephone customer service time, and total handling time per customer for call-center workers. We excluded data from studies of industrial work performance. We calculated from all studies the percentage of performance change per degree increase in temperature, and statistically analyzed measured work performance with temperature. The results show that performance increases with temperature up to 21-22 C, and decreases with temperature above 23-24 C. The highest productivity is at temperature of around 22 C. For example, at the temperature of 30 C, the performance is only 91.1% of the maximum i.e. the reduction in performance is 8.9%

  2. Effects of Reynold's number on flight performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defense Agency Tokyo (Japan); Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1988-12-10

    Concerning the performance of the F3-30 turbofan engine which is carried on the intermediate trainer XT-4 of the Air Self Defense Force, tests simulating its flight conditions were conducted at the Altitude Test Facility (ATF) of the Arnold Engineering Development Center (AEDC), U.S. Air Force in order to adjust the effect of Reynold's number corresponding to the flight condition. This report summarizes the results of the above tests. As the results of the tests, it was revealed that in order to calculate with precision the flight performance of the F3-30 turbofan engine, it was required to adjust Reynold's number against the following figures, namely the fan air flow, compressor air flow, compressor adiabatic efficiency, low pressure turbine gas flow and low pressure turbine adiabatic efficiency. The engine performance calculated by using the above adjustments agreed well with the measured values of the ATF tests. 7 refs., 17 figs., 1 tab.

  3. The problem of resonance self-shielding effect in neutron multigroup calculations

    International Nuclear Information System (INIS)

    Wang Qingming; Huang Jinghua

    1991-01-01

    It is not allowed to neglect the resonance self-shielding effect in hybrid blanket and fast reactor neutron designs. The authors discussed the importance as well as the method of considering the resonance self-shielding effect in hybrid blanket and fast reactor neutron multigroup calculations

  4. Calculation of force and power during bench throws using a Smith machine: the importance of considering the effect of counterweights.

    Science.gov (United States)

    Kobayashi, Y; Narazaki, K; Akagi, R; Nakagaki, K; Kawamori, N; Ohta, K

    2013-09-01

    For achieving accurate and safe measurements of the force and power exerted on a load during resistance exercise, the Smith machine has been used instead of free weights. However, because some Smith machines possess counterweights, the equation for the calculation of force and power in this system should be different from the one used for free weights. The purpose of this investigation was to calculate force and power using an equation derived from a dynamic equation for a Smith machine with counterweights and to determine the differences in force and power calculated using 2 different equations. One equation was established ignoring the effect of the counterweights (Method 1). The other equation was derived from a dynamic equation for a barbell and counterweight system (Method 2). 9 female collegiate judo athletes performed bench throws using a Smith machine with a counterweight at 6 different loading conditions. Barbell displacement was recorded using a linear position transducer. The force and power were subsequently calculated by Methods 1 and 2. The results showed that the mean and peak power and force in Method 1 were significantly lower relative to those of Method 2 under all loading conditions. These results indicate that the mean and peak power and force during bench throwing using a Smith machine with counterweights would be underestimated when the calculations used to determine these parameters do not account for the effect of counterweights. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.

  6. Calculating potential of mean force between like-charged nanoparticles: A comprehensive study on salt effects

    International Nuclear Information System (INIS)

    Wu, Yuan-Yan; Wang, Feng-Hua; Tan, Zhi-Jie

    2013-01-01

    Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work, we systematically calculated the potentials of mean force between two like-charged nanoparticles in salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the potential of mean force and compared systematically with the inversed-Boltzmann method. An effective attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather than the charge inversion effect. The present method would be useful for calculating effective interactions during nucleic acid folding.

  7. Spectroscopic calculation of the excited electronic states with spin orbit effect of the molecule NaCs

    International Nuclear Information System (INIS)

    Bleik, S.; Korek, M.; Allouche, A.R.

    2004-01-01

    Full text.The existence of new experimental data on the alkali dimers has stimulated theoretical approaches, necessary to provide predictions accurate enough to be useful for interpretation and evenly for guidance of experiments. With the aim of improving the accuracy of predictions we will perform a theoretical study of the electronic structure of the molecule NaCs using a method mainly in the way by which core-valence effects are taken into account. To investigate the electronic structure of NaCs we will use the package CIPSI (Configuration Interaction by Perturbation of a multiconfiguration wave function Selected Interactively) of the Laboratoire de Physique Quantique (Toulouse, France). The atoms Na and Cs will be treated through non-empirical effective one electron core potentials of Durand and Barthelat type. Molecular orbitals for NaCs will be derived from Self Consistent field Calculations (SCF) and full valence Configuration Interaction (IC) calculations. A core-core interaction more elaborated than the usual approximation 1/R will be taken into account as the sum of an exponential repulsive term plus a long range dispersion term approximated by the well known London formula. Potential energy calculations will be performed for different molecular states, for numerous values of the inter-nuclear distance R in a wide range. Spectroscopic constants have been derived for the bound states with regular shape. A ro vibrational study have been performed for the ground states with a calculation of the rotational and centrifugal distortion constants. A calculation for the transition dipole moment and matrix elements have been done for the bound states

  8. Effectiveness of personalized and interactive health risk calculators: a randomized trial.

    Science.gov (United States)

    Harle, Christopher A; Downs, Julie S; Padman, Rema

    2012-01-01

    Risk calculators are popular websites that provide individualized disease risk assessments to the public. Little is known about their effect on risk perceptions and health behavior. This study sought to test whether risk calculator features-namely, personalized estimates of one's disease risk and feedback about the effects of risk-mitigating behaviors-improve risk perceptions and motivate healthy behavior. A web-based experimental study using simple randomization was conducted to compare the effects of 3 prediabetes risk communication websites. Setting The study was conducted in the context of ongoing health promotion activities sponsored by a university's human resources office. Patients Participants were adult university employees. Intervention The control website presented nonindividualized risk information. The personalized noninteractive website presented individualized risk calculations. The personalized interactive website presented individualized risk calculations and feedback about the effects of hypothetical risk-mitigating behaviors. Measurements Pre- and postintervention risk perceptions were measured in absolute and relative terms. Health behavior was measured by assessing participant interest in follow-up preventive health services. On average, risk perceptions decreased by 2%. There was no general effect of personalization or interactivity in aligning subjective risk perceptions with objective risk calculations or in increasing healthy behaviors. However, participants who previously overestimated their risk reduced their perceptions by 16%. This was a significantly larger change than the 2% increase by participants who underestimated their risk. Limitations Results may not generalize to different populations, different diseases, or longer-term outcomes. Compared to nonpersonalized information, individualized risk calculators had little positive effect on prediabetes risk perception accuracy or health behavior. Risk perception accuracy was improved in

  9. Effective-medium calculations for hydrogen in Ni, Pd, and Pt

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Stoltze, Per; Jacobsen, Karsten Wedel

    1990-01-01

    The effective-medium theory is applied to a study of the energetics of the hydrides of Ni, Pd, and Pt, stressing the properties of PdHθ for 0≤θ≤1. The calculated heat of solution and the heat of hydride formation for the three systems agree very well with experiment. We determine the favored...... structure for PdHθ by calculating the total energy and lattice expansion of different configurations. Vibrational frequencies and diffusion barriers of H in Pd are also treated. A simple and transparent physical picture of the hydrogen-metal interaction is developed. From the calculated energetics we make...... a model calculation of the phase diagram of hydrogen in palladium in qualitative agreement with experiment. On this basis we propose a new explanation of the peculiarities of the Pd-H system....

  10. Experimental tests and calculation methods for missile crashing effects on a reactor containment

    International Nuclear Information System (INIS)

    Goldstein, S.; Berriaud, C.; Labrot, R.

    1975-01-01

    In the analysis of missile crashing on a reactor containment there are two main effects to be taken into account: the overall behaviour of the building; the local perforation. The overall behaviour of the building is easily calculated when the applied force as a function of time is known. Two calculation examples are presented. The local perforation is a much more difficult problem and experimental work is necessary. The report presents a series of perforation tests of concrete plates by cylindrical missiles with a flat nose. The aim of these tests is to extrapolate for the lower speeds the existing experimental correlations and to check the calculation methods. The calculations are made with the PASTEL code (Finite elements, implicit integration), with elastoplasticity of the reinforcing steel bars and the concrete. Various plastification and fracturation laws are tested. (Auth.)

  11. Experimental tests and calculation methods for missile crashing effects on a reactor containment

    International Nuclear Information System (INIS)

    Goldstein, S.; Berriaud, C.

    1975-01-01

    In the analysis of missile crashing on a reactor containment there are two main effects to be taken into account: the overall behavior of the building; the local perforation. The overall behavior of the building is easily calculated when the applied force as a function of time is known. Two calculation examples are presented. The local perforation is a much more difficult problem and experimental work is necessary. The report presents a series of perforation tests of concrete plates by cylindrical missiles with a flat nose. The aim of these tests is to extrapolate for the lower speeds the existing experimental correlations (Petry, HN-NDRC, BRL...) and to check the calculation methods. The calculations are made with the PASTEL Code (Finite elements, implicit integration), with elastoplasticity of the reinforcing steel bars and the concrete. Various plastification and fracturation laws will be tested

  12. Effect of Functional diversity on Software Performance

    OpenAIRE

    Viswanatha Rao, Balajee

    2011-01-01

    For the past few decades, there has been numerous literature produced on functional diversity and performance. However, the relationship between functional diversity and performance in software industry is clearly not explained and results are found to be inconsistent. The main focus of this research is to explore the effects of functional diversity on software project performance by conducting a qualitative study. Four metrics were chosen from literature namely decision making, creativity an...

  13. Performance of exchange-correlation functionals in density functional theory calculations for liquid metal: A benchmark test for sodium

    Science.gov (United States)

    Han, Jeong-Hwan; Oda, Takuji

    2018-04-01

    The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.

  14. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  15. Unfolding and effective bandstructure calculations as discrete real- and reciprocal-space operations

    Energy Technology Data Exchange (ETDEWEB)

    Boykin, Timothy B., E-mail: boykin@ece.uah.edu [Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ajoy, Arvind [School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 (United States); Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard [Network for Computational Nanotechnology, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2016-06-15

    In recent years, alloy electronic structure calculations based on supercell Brillouin zone unfolding have become popular. There are a number of formulations of the method which on the surface might appear different. Here we show that a discrete real-space description, based on discrete Fourier transforms, is fully general. Furthermore, such an approach can more easily show the effects of alloy scattering. We present such a method for treating the random alloy problem. This treatment features straightforward mathematics and a transparent physical interpretation of the calculated effective (i.e., approximate) energy bands.

  16. First and second collision source for mitigating ray effects in discrete ordinate calculations

    International Nuclear Information System (INIS)

    Gomes, L.T.; Stevens, P.N.

    1991-01-01

    This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations that enables its application to a variety of source configurations, and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. (author)

  17. Calculation of the hyperfine interaction using an effective-operator form of many-body theory

    International Nuclear Information System (INIS)

    Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.

    1975-01-01

    The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given

  18. Model for incorporating fuel swelling and clad shrinkage effects in diffusion theory calculations (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schick, W.C. Jr.; Milani, S.; Duncombe, E.

    1980-03-01

    A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model

  19. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  20. Effects of cell asymmetry on the performance of a large heterogeneous critical assembly

    International Nuclear Information System (INIS)

    Scholtyssek, W.; Humbert, G.; Martini, M.; Norvez, G.

    1981-09-01

    Calculations were performed to investigate asymmetry effects observed in the RACINE reference configuration. The perturbation sources -material shifts in fissile rodlet cells- were identified and influences on various experimental parameters were estimated. Improvements of the relatively simple methods used in this work could lead to applications, considering similar effects, in project calculations for large power reactor cores

  1. Effectiveness of a computer based medication calculation education and testing programme for nurses.

    Science.gov (United States)

    Sherriff, Karen; Burston, Sarah; Wallis, Marianne

    2012-01-01

    The aim of the study was to evaluate the effect of an on-line, medication calculation education and testing programme. The outcome measures were medication calculation proficiency and self efficacy. This quasi-experimental study involved the administration of questionnaires before and after nurses completed annual medication calculation testing. The study was conducted in two hospitals in south-east Queensland, Australia, which provide a variety of clinical services including obstetrics, paediatrics, ambulatory, mental health, acute and critical care and community services. Participants were registered nurses (RNs) and enrolled nurses with a medication endorsement (EN(Med)) working as clinicians (n=107). Data pertaining to success rate, number of test attempts, self-efficacy, medication calculation error rates and nurses' satisfaction with the programme were collected. Medication calculation scores at first test attempt showed improvement following one year of access to the programme. Two of the self-efficacy subscales improved over time and nurses reported satisfaction with the online programme. Results of this study may facilitate the continuation and expansion of medication calculation and administration education to improve nursing knowledge, inform practise and directly improve patient safety. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. EFFECTS OF CIRCADIAN RHYTHM ON BALANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Karagul Osman

    2017-09-01

    Full Text Available Introduction. The aim of the study was to examine the effect of circadian rhythm on dynamic balance performance and to determine the role of physical activity level, body temperature, chronotype, and gender in this possible effect. Material and

  3. High performance W-AIN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [The University of Sydney (Australia). School of Physics; Shen, Y.G. [City University of Hong Kong (Hong Kong). Department of Manufacturing Engineering and Engineering Management

    2004-01-25

    High solar performance W-AIN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric functions and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80{sup o}C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80{sup o}C have been achieved for deposited W-AlN cermet solar coatings. (author)

  4. High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Chu [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shen, Y.G. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong (Hong Kong)

    2004-01-25

    High solar performance W-AlN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric function and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80C have been achieved for deposited W-AlN cermet solar coatings.

  5. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Calculation and analysis of whiplash effect in multi-DOF system

    Science.gov (United States)

    Chen, Gong; Qi, Qunfu; Yang, Hongmei; Li, Ling

    2017-04-01

    The response of structural vibration depends on the degree of freedomss, mass, stiffness, external effect of the structure. Natural frequency of structure is its inherent property, also it is related to its own factors, but not related to the external factors. Firstly the nature and characteristics of resonance effect and whiplash effect are analyzed. Secondly whiplash effect of multi-degree freedomss system is analyzed, then orthogonality in main models is used to verify the results of calculation. Then the improvements of whiplash effect are proposed, also the improved models are analyzed. Finally the conclusions are made.

  7. Adjust of effective cross sections of some actinides in inventory calculation with HAMOR-2

    International Nuclear Information System (INIS)

    Guimaraes, L.N.F.; Marzo, M.A.S.

    1985-01-01

    A comparative study of the adjustment of effective cross sections generated by HAMOR-2 for the following actinides U-238, Pu-239 and Pu-240 is done. The adjustment were made to calculate the inventory of two different PWRs reactors. (M.C.K.) [pt

  8. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Science.gov (United States)

    2010-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Calculation of Annual Committed Effective Dose B Appendix B to Part 191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  9. Incorporating the effect of ionic strength in free energy calculations using explicit ions

    NARCIS (Netherlands)

    Donnini, S; Mark, AE; Juffer, AH; Villa, Alessandra

    2005-01-01

    The incorporation of explicit ions to mimic the effect of ionic strength or to neutralize the overall charge on a system in free energy calculations using molecular dynamics simulations is investigated. The difference in the free energy of hydration between two triosephosphate isomerase inhibitors

  10. Calculation of the effective D-d neutron energy distribution incident on a cylindrical shell sample

    International Nuclear Information System (INIS)

    Gotoh, Hiroshi

    1977-07-01

    A method is proposed to calculate the effective energy distribution of neutrons incident on a cylindrical shell sample placed perpendicularly to the direction of the deuteron beam bombarding a deuterium metal target. The Monte Carlo method is used and the Fortran program is contained. (auth.)

  11. The effective atomic numbers of some biomolecules calculated by two methods: A comparative study

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2009-01-01

    The effective atomic numbers Z(eff) of some fatty acids and amino acids have been calculated by two numerical methods, a direct method and an interpolation method, in the energy range of 1 keV-20 MeV. The notion of Z(eff) is given a new meaning by using a modern database of photon interaction cro...

  12. Code package for calculation of damage effects of medium-energy protons in metal targets

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1976-12-01

    A program package was developed to calculate radiation damage effects produced in a metal target by protons in the 100-MeV to 3.5-GeV energy range. A detailed description is given of the control cards and data cards required to use the code package

  13. The effect of rock electrical parameters on the calculation of reservoir saturation

    International Nuclear Information System (INIS)

    Li, Xiongyan; Qin, Ruibao; Liu, Chuncheng; Mao, Zhiqiang

    2013-01-01

    The error in calculating a reservoir saturation caused by the error in the cementation exponent, m, and the saturation exponent, n, should be analysed. In addition, the influence of m and n on the reservoir saturation should be discussed. Based on the Archie formula, the effect of variables m and n on the reservoir saturation is analysed, while the formula for the error in calculating the reservoir saturation, caused by the error in m and n, is deduced, and the main factors affecting the error in reservoir saturation are illustrated. According to the physical meaning of m and n, it can be interpreted that they are two independent parameters, i.e., there is no connection between m and n. When m and n have the same error, the impact of the variables on the calculation of the reservoir saturation should be compared. Therefore, when the errors of m and n are respectively equal to 0.2, 0.4 and 0.6, the distribution range of the errors in calculating the reservoir saturation is analysed. However, in most cases, the error of m and n is about 0.2. When the error of m is 0.2, the error in calculating the reservoir saturation ranges from 0% to 35%. Meanwhile, when the error in n is 0.2, the error in calculating the reservoir saturation is almost always below 5%. On the basis of loose sandstone, medium sandstone, tight sandstone, conglomerate, tuff, breccia, basalt, andesite, dacite and rhyolite, this paper first analyses the distribution range and change amplitude of m and n. Second, the impact of m and n on the calculation of reservoir saturation is elaborated upon. With regard to each lithology, the distribution range and change amplitude of m are greater than those of n. Therefore, compared with n, the effect of m on the reservoir saturation is stronger. The influence of m and n on the reservoir saturation is determined, and the error in calculating the reservoir saturation caused by the error of m and n is calculated. This is theoretically and practically significant for

  14. An assessment of methods of calculating Doppler effects in plutonium fuelled sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Reddell, G.

    1979-01-01

    After a survey of the requirements, an assessment of UK methods and data is made on the basis of the following work. First, the analysis of the SEFOR Doppler experiments, carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code and whole reactor diffusion theory calculations of the neutron flux. Second, the analysis of some Japanese FCA central sample perturbation measurements of structural material Doppler effects. Third, an assessment of the accuracy of Doppler predictions in a sodium voided core using results from Zebra 5 and BIZET, and theoretical studies of additional effects relevant to power reactors and not covered by the above analyses, including the following, the calculation of Doppler effects at high temperature, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. The importance of crystalline binding effects in the fuel are discussed as is the importance of reactor material boundaries in the calculation of resonance shielding effects. Some suggestions for further Doppler studies are made. (U.K.)

  15. Effect of transition metal-doped Ni(211) for CO dissociation: Insights from DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kuiwei; Zhang, Minhua [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China)

    2017-03-31

    Highlights: • Doping the step edge of Ni(211) with Fe or Ru observably enhances CO dissociation. • Rh doping is unfavorable for CO activation both kinetically and thermodynamically. • Two neat linear relations are proposed besides the Brønsted–Evans–Polanyi relation. • The differences of CO adsorption are rationalized via the Blyholder model. - Abstract: Density functional theory slab calculations were performed to investigate the adsorption and dissociation of CO over pure and M-doped Ni(211) (M = Fe, Co, Ru and Rh) with the aim to elucidate the effect of transition metal doping for CO activation. Doping the step edge of Ni(211) with Fe, Co and Ru is found to enhance the binding of CO in the initial state (IS) (in the sequence by the improvement degree: Fe > Ru > Co) as well as the co-adsorption of C and O in the final state (FS) (Ru > Fe > Co). In contrast, Rh doping is unfavorable both in the IS and in the FS. Analysis of the overall potential energy surfaces (PES) suggests CO dissociation is facilitated by Fe, Ru and Co doping both kinetically and thermodynamically, wherein Fe and Ru behave extraordinary. Interestingly, Fe substitute is slightly superior to Ru in kinetics whereas the contrary is the case in thermodynamics. Rh doping elevates the energy height from 0.97 eV on Ni(211) to 1.32 eV and releases 0.39 eV less heat relative to Ni(211), again manifesting a negative effect. Besides the classical Brønsted–Evans–Polanyi relationship, we put forward another two neat linear relations, which can well describe the feature of CO dissociation. The differences of CO adsorption and activation in the IS over pure and doped Ni(211) surfaces are rationalized via electronic structure analysis. The findings presented herein are expected to provide theoretical guidance for catalyst design and optimization in relevant processes.

  16. Target dose study of effects of changes in the AAA calculation resolution on lung SABR plan

    International Nuclear Information System (INIS)

    Kim, Dae Il; Son, Sang Jun; Ahn, Bum Seok; Jung, Chi Hoon; Yoo, Suk Hyun

    2014-01-01

    Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan(Eclipse TM ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid V98 of the prescribed dose is about 99.5%±1.5%, Dmin of the prescribed dose is about 92.5±1.5% and Homogeneity Index(HI) is 1.0489±0.0025. In the case of use a 3.0 mm calculation grid V98 dose of the prescribed dose is about 90±4.5% , Dmin of the prescribed dose is about 87.5±3% and HI is about 1.07±1. In the case of use a 5.0 mm calculation grid V98 dose of the prescribed dose is about 63±15%, Dmin of the prescribed dose is about 83±4% and HI is about 1.13±0.2, respectively. The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm

  17. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shtabovenko, Vladyslav

    2017-05-22

    }υ{sup 2}, where m{sub Q} is the heavy quark mass and υ is the relative velocity of the heavy quarks in the quarkonium. The novelty of this study is the inclusion of the effects from higher order Fock states vertical stroke Q anti Qg right angle, that were incorrectly ignored in the previous investigations of the O(α{sup 0}{sub s}υ{sup 2}) relativistic corrections for e{sup +}e{sup -}→χ{sub cJ}γ. Physically, these effects describe the situation, when a heavy quark pair and a soft gluon together undergo a nonperturbative evolution into the heavy quarkonium χ{sub cJ}. In this work we explicitly compute the matching coefficients multiplying the corresponding long distance matrix elements (LDMEs) in the NRQCD-factorized production cross sections. The phenomenological importance of these contribution remains unclear, due to the lack of experimental data and large uncertainties in the estimates of the nonperturbative LDMEs. Good perspectives for the measurement of the electromagnetic χ{sub cJ} production will exist at Belle II in Japan. The last part of this thesis is dedicated to the development of software tools for automatic calculations in relativistic and nonrelativistic EFTs. First of all, we describe the recent progress in the FEYNCALC project. FEYNCALC is a MATHEMATICA package for semi-automatic symbolic QFT calculations that was originally developed by Rolf Mertig in 1991. Since 2001 the active development of the package almost halted, despite its large popularity among theorists and phenomenologists. In 2014 the author of this thesis became lead developer of the package. Apart from fixing numerous bugs, he has also improved the overall performance of FEYNCALC and added many new functions relevant for 1-loop and multi-loop calculations. In the next step, an interface called FEYNHELPERS was developed. FEYNHELPERS connects FEYNCALC to PACKAGE-X and FIRE. The former provides a library of analytic results for scalar 1-loop integrals with up to 4 legs, while the

  18. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    International Nuclear Information System (INIS)

    Shtabovenko, Vladyslav

    2017-01-01

    velocity of the heavy quarks in the quarkonium. The novelty of this study is the inclusion of the effects from higher order Fock states vertical stroke Q anti Qg right angle, that were incorrectly ignored in the previous investigations of the O(α 0 s υ 2 ) relativistic corrections for e + e - →χ cJ γ. Physically, these effects describe the situation, when a heavy quark pair and a soft gluon together undergo a nonperturbative evolution into the heavy quarkonium χ cJ . In this work we explicitly compute the matching coefficients multiplying the corresponding long distance matrix elements (LDMEs) in the NRQCD-factorized production cross sections. The phenomenological importance of these contribution remains unclear, due to the lack of experimental data and large uncertainties in the estimates of the nonperturbative LDMEs. Good perspectives for the measurement of the electromagnetic χ cJ production will exist at Belle II in Japan. The last part of this thesis is dedicated to the development of software tools for automatic calculations in relativistic and nonrelativistic EFTs. First of all, we describe the recent progress in the FEYNCALC project. FEYNCALC is a MATHEMATICA package for semi-automatic symbolic QFT calculations that was originally developed by Rolf Mertig in 1991. Since 2001 the active development of the package almost halted, despite its large popularity among theorists and phenomenologists. In 2014 the author of this thesis became lead developer of the package. Apart from fixing numerous bugs, he has also improved the overall performance of FEYNCALC and added many new functions relevant for 1-loop and multi-loop calculations. In the next step, an interface called FEYNHELPERS was developed. FEYNHELPERS connects FEYNCALC to PACKAGE-X and FIRE. The former provides a library of analytic results for scalar 1-loop integrals with up to 4 legs, while the latter is a general-purpose tool for reduction of multi-loop scalar integrals using Integration-by-Parts (IBP

  19. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  20. Calculation of background effects on the VESUVIO eV neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6 Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given

  1. Calculation of background effects on the VESUVIO eV neutron spectrometer

    Science.gov (United States)

    Mayers, J.

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given.

  2. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mairani, A [University of Pavia, Department of Nuclear and Theoretical Physics, and INFN, via Bassi 6, 27100 Pavia (Italy); Brons, S; Parodi, K [Heidelberg Ion Beam Therapy Center and Department of Radiation Oncology, Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Cerutti, F; Ferrari, A; Sommerer, F [CERN, 1211 Geneva 23 (Switzerland); Fasso, A [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kraemer, M; Scholz, M, E-mail: Andrea.Mairani@mi.infn.i [GSI Biophysik, Planck-Str. 1, D-64291 Darmstadt (Germany)

    2010-08-07

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fuer Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed {sup 12}C ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-dose distributions in water used as input basic data in TRiP98 and the FLUKA recalculated ones. On the other hand, taking into account the differences in the physical beam modeling, the FLUKA-based biological calculations of the CHO cell survival profiles are found in good agreement with the experimental data as well with the TRiP98 predictions. The developed approach that combines the MC transport/interaction capability with the same biological model as in the treatment planning system (TPS) will be used at HIT to support validation/improvement of both dose and RBE-weighted dose calculations performed by the analytical TPS.

  3. A method for calculating effective lifetime risk of radiation-induced cancer from screening mammography

    International Nuclear Information System (INIS)

    Ali, R.M.; England, A.; McEntee, M.F.; Hogg, P.

    2015-01-01

    Purpose: To propose a method for evaluating the effective lifetime risk of radiation-induced cancer from screening mammography and to present initial data for the UK National Breast Screening Programme. Material and methods: The imaging was undertaken using a Hologic Selenia full field digital mammographic unit. The proposed method utilises an ATOM phantom containing thermoluminescent dosimeters and a perspex-polyethylene breast phantom to measure organ doses during a standard four view screening mammogram. Effective dose was calculated and effective risk was modelled for a range of client ages. The total lifetime effective risk was then calculated for the UK national screening programme. Calculation of effective risk includes the radiation dose to examined and contralateral breasts in addition to other body organs; this is an advantage over the mean glandular dose. Results: The contralateral breast, thyroid, thymus, brain, lung, salivary glands, and bone marrow all receive more than 1 μGy radiation dose during screening mammography. A major difference exists for total effective lifetime risk of radiation-induced cancer between clients with average and high breast cancer risk. Differences are attributed to the commencement age of screening and time interval between screens. Conclusion: This study proposes a method to evaluate effective lifetime risk of radiation-induced cancer from screening mammography in order to compare different mammography screening programmes. - Highlights: • We proposed a method for the calculation of radiation-induced cancer from screening mammography. • We measured the radiation absorbed dose of different organs during screening mammography. • There are major differences between mammography screening programme categories with regard to radiation effective risk.

  4. A covariant technique for the calculation of the one-loop effective action

    International Nuclear Information System (INIS)

    Avramidi, I.G.

    1991-01-01

    We develop a manifestly covariant technique for a heat kernel calculation in the presence of arbitrary background fields in a curved space. The four lowest-order coefficients of the Schwinger-De Witt asymptotic expansion are explicitly computed. We also calculate the heat kernel asymptotic expansion up to terms of third order in rapidly varying background fields (curvatures). This approximate series is summed and covariant nonlocal expressions for the heat kernel, ξ-function and one-loop effective action are obtained. Other related problems are discussed. (orig.)

  5. Estimation of small perturbation effects in multiversion calculations by the PRIZMA-D code

    International Nuclear Information System (INIS)

    Kandiev, Ya.Z.; Malakhov, A.A.; Serova, E.V.; Spirina, S.G.

    2005-01-01

    The PRIZMA-D code is intended for solving by the Monte Carlo method of the problems, connected with calculations of nuclear reactors and critical assemblies. Taking into account the effect of the perturbation on the distribution of the source division points is carried out by means of the method of small iterations for the division points. This method is described in the paper. Possibilities of its application are shown by the examples of calculations of some problems. The comparative results are presented [ru

  6. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  7. The effect of magnetic field models on cosmic ray cutoff calculations

    International Nuclear Information System (INIS)

    Pfitzer, K.A.

    1979-01-01

    The inaccuracies in the 1974 Olson-Pfitzer model appeared to be the probable cause for discrepancies between the observed and calculated cosmic ray cutoff values. An improved version of the Olson-Pfitzer model is now available which includes the effects of the tilt of the earth's dipole axis and which has removed most of the problems encountered in the earlier model. The paper demonstrates that when this new accurate magnetic field model is used, the calculated and observed cutoff values agree with the experimental error without the need for invoking anomalous diffusion mechanisms. This tilt-dependent model also permits a study of cutoffs versus the tilt of the dipole axis

  8. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  9. User effects on the thermal-hydraulic transient system code calculations

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.; Staedtke, H.

    1993-01-01

    In the paper, the results of the investigations on the user effects for the thermalhydraulic transient system codes will be presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects will be discussed in detail and general recommendations and conclusions will be presented to control and limit them. (orig.)

  10. The Effect of Movement on Cognitive Performance

    Directory of Open Access Journals (Sweden)

    Raed Mualem

    2018-04-01

    Full Text Available The study examines the relationship between walking, cognitive, and academic skills. Students from elementary, middle, high school, and college were required to walk for 10 min prior to completing feature detection, Simon-type memory, and mathematical problem-solving tasks. Participants were counterbalanced to remove a time bias. Ten minutes of walking had a significant positive effect on Simon-type memory and critical feature-detection tasks among all age groups. Separately, with mathematical problem-solving ability, higher performing high-school students demonstrated significant positive effects on mathematical reasoning tasks based on the Bloom Taxonomy. However, poorly achieving high-school students performed significantly better than those with higher grades in mathematics on tests of mathematical problem-solving ability based on the Bloom’s Taxonomy. The study indicates that there is justification to employ relatively simple means to effect lifestyle, academic, and cognitive performance.

  11. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    García-Garduño, O. A., E-mail: oagarciag@innn.edu.mx, E-mail: amanda.garcia.g@gmail.com [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México and Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México City 11500, México (Mexico); Rodríguez-Ponce, M. [Departamento de Biofísica, Instituto Nacional de Cancerología, Mexico City 14080, México (Mexico); Gamboa-deBuen, I. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Rodríguez-Villafuerte, M. [Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Galván de la Cruz, O. O. [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México (Mexico); and others

    2014-09-15

    . Finally, the dose volume histogram results were independent of the size of the calculation grid used. Conclusions: The results of this study showed that all of the studied detectors produced similar commissioned data sets for the TPS dose calculations. However, this result only validated the dose distribution calculation in the TPS and could not be used to assess the dose delivery to the target in which the TFS data were used to calculate the monitor units (the TFS data were not used in the TPS dose distribution calculation). Therefore, this study could not be used to determine the most accurate detector commissioning data set; however, all of the detectors exhibited superior performance for the relative dosimetry of small photon beams.

  12. Practical Calculational Scheme Implementing the Wilsonian RG Results for Nuclear Effective Field Theory Including Pions

    International Nuclear Information System (INIS)

    Kubo, H.; Harada, K.; Sakaeda, T.; Yamamoto, Y.

    2013-01-01

    On the basis of the Wilsonian renormalization group (WRG) analysis of nuclear effective field theory (NEFT) including pions, we propose a practical calculational scheme in which the short-distance part of one-pion exchange (S-OPE) is removed and represented as contact terms. The long-distance part of one-pion exchange (L-OPE) is treated as perturbation. The use of dimensional regularization (DR) for diagrams consisting only of contact interactions considerably simplifies the calculation of scattering amplitude and the renormalization group equations. NLO results for nucleon-nucleon elastic scattering in the S-waves are obtained and compared with experiments. A brief comment on NNLO calculations is given. (author)

  13. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...

  14. Calculation of thermal effects occuring during the manufacture of CR-39 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, S.; Somogyi, G.

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles a computer program was developed to study the trends of thermal effects under different casting conditions. These calculations are based on the solution of the one-dimensional heat transport equation and take into account the relations proposed by Dial et. al. for describing the chemical kinetics of CR-39 polymerization. The authors have revised the empirical parameters available to such calculations. With new ''Dial constants'' they have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile in the depth of cast CR-39 sheets.

  15. Delayed Neutron Fraction (beta-effective) Calculation for VVER 440 Reactor

    International Nuclear Information System (INIS)

    Hascik, J.; Michalek, S.; Farkas, G.; Slugen, V.

    2008-01-01

    Effective delayed neutron fraction (β eff ) is the main parameter in reactor dynamics. In the paper, its possible determination methods are summarized and a β eff calculation for a VVER 440 power reactor as well as for training reactor VR1 using stochastic transport Monte Carlo method based code MCNP5 is made. The uncertainties in determination of basic delayed neutron parameters lead to the unwished conservatism in the reactor control system design and operation. Therefore, the exact determination of the β eff value is the main requirement in the field of reactor dynamics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of experiments and measurements what do you mean differences between different calculation approaches and experimental results. In consequence of difficulties in β eff experimental measurement, this value in exact state is determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. An accurate estimate of β eff is essential for converting reactivity, as measured in dollars, to an absolute reactivity and/or to an absolute k eff . In the past, k eff has been traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum-weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. The summary of the possible β eff determination methods can be found in this work and also a calculation of β eff first for the training reactor VR1 in one operation state and then for VVER 440 power reactor in two different operation states are made using the prompt method, by MCNP5 code.(author)

  16. The effect of fasting on surgical performance

    DEFF Research Database (Denmark)

    Schefte, David Fenger; Rosenstock, Steffen Jais

    2016-01-01

    BACKGROUND: It is unknown whether fasting has any impact on surgical performance. This simulator-based study investigates whether fasting affects surgical performance. METHODS: Twelve healthy medical students [seven women, mean age 26.5 years (range 23-34)] with no prior experience with surgical...... simulators underwent a short course introduction to the LapSim(®) simulator. After having reached a predefined level, the participants performed five simulated salpingectomies on the LapSim(®) simulator 5-30 days after the initial introduction. The procedures took place at 9 a.m. and 2 p.m. after fasting...... in the longitudinal axis with the left hand. CONCLUSION: The simulator-based study suggests that 17 h of fasting does not deteriorate surgical performance. Further studies on the effect of fasting on surgical performance are needed....

  17. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Tülin Atan

    2013-01-01

    Full Text Available For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p>0.05. On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise.

  18. The GMD Method for Inductance Calculation Applied to Conductors with Skin Effect

    Directory of Open Access Journals (Sweden)

    H. A. Aebischer

    2017-09-01

    Full Text Available The GMD method (geometric mean distance to calculate inductance offers undoubted advantages over other methods. But so far it seemed to be limited to the case where the current is uniformly distributed over the cross section of the conductor, i.e. to DC (direct current. In this paper, the definition of the GMD is extended to include cases of nonuniform distribution observed at higher frequencies as the result of skin effect. An exact relation between the GMD and the internal inductance per unit length for infinitely long conductors of circularly symmetric cross section is derived. It enables much simpler derivations of Maxwell’s analytical expressions for the GMD of circular and annular disks than were known before. Its salient application, however, is the derivation of exact expressions for the GMD of infinitely long round wires and tubular conductors with skin effect. These expressions are then used to verify the consistency of the extended definition of the GMD. Further, approximate formulae for the GMD of round wires with skin effect based on elementary functions are discussed. Total inductances calculated with the help of the derived formulae for the GMD with and without skin effect are compared to measurement results from the literature. For conductors of square cross section, an analytical approximation for the GMD with skin effect based on elementary functions is presented. It is shown that it allows to calculate the total inductance of such conductors for frequencies from DC up to 25 GHz to a precision of better than 1 %.

  19. High-performance whole core Pin-by-Pin calculation based on EFEN-SP_3 method

    International Nuclear Information System (INIS)

    Yang Wen; Zheng Youqi; Wu Hongchun; Cao Liangzhi; Li Yunzhao

    2014-01-01

    The EFEN code for high-performance PWR whole core pin-by-pin calculation based on the EFEN-SP_3 method can be achieved by employing spatial parallelization based on MPI. To take advantage of the advanced computing and storage power, the entire problem spatial domain can be appropriately decomposed into sub-domains and the assigned to parallel CPUs to balance the computing load and minimize communication cost. Meanwhile, Red-Black Gauss-Seidel nodal sweeping scheme is employed to avoid the within-group iteration deterioration due to spatial parallelization. Numerical results based on whole core pin-by-pin problems designed according to commercial PWRs demonstrate the following conclusions: The EFEN code can provide results with acceptable accuracy; Communication period impacts neither the accuracy nor the parallel efficiency; Domain decomposition methods with smaller surface to volume ratio leads to greater parallel efficiency; A PWR whole core pin-by-pin calculation with a spatial mesh 289 × 289 × 218 and 4 energy groups could be completed about 900 s by using 125 CPUs, and its parallel efficiency is maintained at about 90%. (authors)

  20. Analysis of pumping performances in one-stage turbomolecular pump by 3D direct simulation Monte Carlo calculation

    International Nuclear Information System (INIS)

    Sheng Wang; Hisashi Ninokata

    2005-01-01

    The turbomolecular pump (TMP) has been applied in many fields for producing high and ultrahigh vacuum. It works mainly in conditions of free molecular and transitional flow where the mathematical model is the Boltzmann equation. In this paper, direct simulation Monte Carlo (DSMC) method is applied to simulate the one-stage TMP with a 3D analysis in a rotating reference frame. Considering the Coriolis and centrifugal accelerations, the equations about the molecular velocities and position are deduced. The VSS model and NTC collision schemes are used to calculate the intermolecular collisions. The diffuse reflection is employed on the molecular reflection from the surfaces of boundary. The transmission probabilities of gas flow in two opposite flow direction, the relationship between the mass flow rate and the pressure difference, the pumping performances including the maximum compression ratio on different outlet pressures in free molecular flow and transitional flow and the maximum pumping efficiency on different blade angles are calculated. The transmission probabilities are applied to analyze the relationship between the outlet pressure and the maximum pressure ratio. The numerical results show good quantitative agreement with the existing experiment data. (authors)

  1. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent LER Calculations

    Science.gov (United States)

    Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.

    2017-12-01

    In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.

  2. NMR investigation and theoretical calculations of the solvent effect on the conformation of valsartan

    Science.gov (United States)

    Chashmniam, Saeed; Tafazzoli, Mohsen

    2017-11-01

    Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.

  3. Effectiveness of a Clinical Skills Workshop for drug-dosage calculation in a nursing program.

    Science.gov (United States)

    Grugnetti, Anna Maria; Bagnasco, Annamaria; Rosa, Francesca; Sasso, Loredana

    2014-04-01

    Mathematical and calculation skills are widely acknowledged as being key nursing competences if patients are to receive care that is both effective and safe. Indeed, weaknesses in mathematical competence may lead to the administration of miscalculated drug doses, which in turn may harm or endanger patients' lives. However, little attention has been given to identifying appropriate teaching and learning strategies that will effectively facilitate the development of these skills in nurses. One such approach may be simulation. To evaluate the effectiveness of a Clinical Skills Workshop on drug administration that focused on improving the drug-dosage calculation skills of second-year nursing students, with a view to promoting safety in drugs administration. A descriptive pre-post test design. Educational. Simulation center. The sample population included 77 nursing students from a Northern Italian University who attended a 30-hour Clinical Skills Workshop over a period of two weeks. The workshop covered integrated teaching strategies and innovative drug-calculation methodologies which have been described to improve psychomotor skills and build cognitive abilities through a greater understanding of mathematics linked to clinical practice. Study results showed a significant improvement between the pre- and the post-test phases, after the intervention. Pre-test scores ranged between 0 and 25 out of a maximum of 30 points, with a mean score of 15.96 (SD 4.85), and a median score of 17. Post-test scores ranged between 15 and 30 out of 30, with a mean score of 25.2 (SD 3.63) and a median score of 26 (pstudy shows that Clinical Skills Workshops may be tailored to include teaching techniques that encourage the development of drug-dosage calculation skills, and that training strategies implemented during a Clinical skills Workshop can enhance students' comprehension of mathematical calculations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Acute effects of firefighting on cardiac performance.

    Science.gov (United States)

    Fernhall, Bo; Fahs, Christopher A; Horn, Gavin; Rowland, Thomas; Smith, Denise

    2012-02-01

    This study examined standard echocardiographic measures of cardiac size and performance in response to a 3-h firefighting training exercise. Forty experienced male personnel completed a standardized 3 h live firefighting exercise. Before and after the firefighting activities, participants were weighed, height, heart rate, blood pressure and blood samples were obtained, and echocardiographic measurements were made. Firefighting produced significant decreases in left ventricular diastolic dimension, stroke volume, fractional shortening, and mitral E velocity, tachycardia, a rise in core temperature, and a reduction in calculated plasma volume. On tissue Doppler imaging, there were no changes in systolic contractile function, but a decreased lateral wall diastolic velocity was observed. These findings show that 3 h of live firefighting produced cardiac changes consistent with cardiac fatigue, coupled with a decrease in systemic arterial compliance. These data show that live firefighting produces significant cardiovascular changes and future work is needed to evaluate if these changes are related to the increase in cardiovascular risk during live firefighting.

  5. Calculation of actual cross sections and thermalization of neutrons; Calcul des sections efficaces effectives et thermalisation des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, R.

    1963-05-15

    This report gathers and presents in a simple way results of studies performed at the CEA on issues of spectra in thermal reactors. It is in fact a synthesis of results eventually published in different documents. It first presents the notion of actual cross section as it was introduced by Westcott to characterize the dependence of neutron behaviour on speed distribution. It addresses the case of a homogeneous medium with a conventional model, with the heavy gas model, and with the hydrogen gas model. It generalizes the approach by the differential model. The next part addresses the case of a heterogeneous medium, and the case of presence of moderator nuclei within the fuel [French] Le present rapport a pour objet de rassembler et de presenter de maniere simple les resultats des etudes effectuees au CE.A. sur les problemes de spectres dans les reacteurs thermiques. Ces resultats se trouvaient disperses dans plusieurs documents, ou n'etaient pas encore rediges, et bien que les etudes se poursuivent, il a paru utile d'en faire une synthese provisoire. On a cherche d'autre part a en donner une presentation elementaire, accessible aux lecteurs peu familiarises avec les problemes de thermalisation; dans cet esprit l'expose a une forme didactique, et comporte des rappels de notions bien connues comme par exemple le formalisme de Westcott. (auteur)

  6. The effect of gamma-ray transport on afterheat calculations for accident analysis

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-01-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed

  7. Calculation of total cross sections and effective emission coefficients for B5+ collisions with ground-state and excited hydrogen

    International Nuclear Information System (INIS)

    Guzman, F; Errea, L F; Illescas, Clara; Mendez, L; Pons, B

    2010-01-01

    Classical and semiclassical calculations of nl-resolved charge exchange cross sections in B 5 + collisions with H(n i ) are performed to compute effective emission coefficients for the n = 7 → n = 6 transition in B 4 + for plasma conditions typical of the ASDEX-U tokamak. For n i = 1, the value of the emission coefficient is larger than that obtained from ADAS database by a factor of 2 at energies of 10 keV amu -1 , but no differences are found at energies above 50 keV amu -1 . For n i = 2, our calculation yields emission coefficients close to those derived from ADAS data from low to high impact energies. The emission coefficients corresponding to B 5 + + H(n i = 3) collisions are of the same order of magnitude as those for n i = 2.

  8. Structural effects on electromagnetic flow coupler performance

    International Nuclear Information System (INIS)

    Aoyama, Goro; Yokota, Norikatsu; Mine, Masao; Watanabe, Takashi; Takuma, Tadasu; Takenaka, Kiyoshi.

    1992-01-01

    A prototype electromagnetic flow coupler was tested using 300degC liquid sodium to estimate the effect on performance of generator flow velocity, magnetic flux density, magnetic core length and bus bar length. Its performance was not affected by changes in fluid velocity and magnetic flux density up to 8.3 m/s and 0.51 T, respectively. Besides the experiments, a two-dimensional numerical analysis program based on Ohm's law and the current continuity equation was prepared to estimate the effects of magnetic core length and bus bar construction. The current transferred from the generator to the pump, the current transfer ratio, increased by lengthening the magnetic core being a maximum of 0.706 for a 100 mm core and 0.764 for a 300 mm core. The numerical results showed that the presence of the bus bar in the outer region of the magnetic core gave inferior performance to that in its absence. (author)

  9. Effect of Managers on Public Service Performance

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Falk

    This report provides an overview of the PhD dissertation “Effects of Managers on Public Service Performance” carried out at the Department of Political Science, Aarhus University and SFI – The Danish National Centre for Social Research. The dissertation is part of the research project “School...... Management, Teaching, and Student Performance” supported by the Danish Strategic Research Council (now Innovation Fund Denmark) and headed by professor Søren Winter. The dissertation explores the effects of managers on public service performance. By combining theoretical insights and research designs from......?”, “How can we improve organizational performance?”, and “How can we measure public service performance?” The setting for the dissertation is Danish middle schools (folkeskoler). The education system is generally considered an important service area as it affects later life outcomes of individual children...

  10. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    International Nuclear Information System (INIS)

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-01-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  11. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y; Kapp, D; Kim, Y; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Suh, T [Catholic UniversityMedical College, Seoul, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  12. A Comparison of Effective Tension Calculation for Design Belt Conveyor between CEMA and DIN Standard

    Directory of Open Access Journals (Sweden)

    Satria Iman

    2018-01-01

    Full Text Available In the present era, many industries are demanding material transfer equipment that works maximally and cheaply. Belt Conveyor is one of the most efficient material transfer equipment compared to heavy equipment or other transportation equipment, because it can transport the material in large capacity. When designing conveyor belts, many industries want large transport capacity at low cost. One of the cost savings can be done with low motor power consumption. Many standards describe the effective tension calculation on the conveyor belt in detail with the parameters, since the effective tension calculation results are essential for determining motor power. This paper aims to analyze the effective tension on conveyor belts using CEMA 5th, CEMA 6th and DIN 22101 standards with case studies of 1000 TPH carrying capacity and 3 m/s conveyor speed. The difference between CEMA and DIN when determining the effective tension is on the use of coefficient of friction, because DIN uses a global coefficient of friction while CEMA uses different friction coefficients on idler, belt and material. This difference in coefficient of friction results in different ways of calculating the resistance being the accumulation of the effective tension. The result is an effective tension value using DIN 22101 standard of 22,148.16 N with motor power consumption of 66.5 kW, while effective tension value using CEMA 5th standard is 32.201.66 N with motor power consumption 96.47 kW, and effective tension value using CEMA 6th standard is 29,686.48 N with 89.06 kW motor power consumption.

  13. Shielding performances analysis for the IFMIF test facility based on high-fidelity Monte Carlo neutronic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp; Arbeiter, Frederik; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Tian, Kuo

    2015-10-15

    Highlights: • A detailed geometry model with pipe penetrations and gaps was prepared for the IFMIF test cell. • The neutron streaming effect due to gaps and pipes with shielding plugs was investigated. • The present analysis revealed that the streaming effect can be mitigated by some counter measures. • Occupational workers can access to the room above the test cell during operation. - Abstract: The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.

  14. Shielding performances analysis for the IFMIF test facility based on high-fidelity Monte Carlo neutronic calculations

    International Nuclear Information System (INIS)

    Kondo, Keitaro; Arbeiter, Frederik; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Tian, Kuo

    2015-01-01

    Highlights: • A detailed geometry model with pipe penetrations and gaps was prepared for the IFMIF test cell. • The neutron streaming effect due to gaps and pipes with shielding plugs was investigated. • The present analysis revealed that the streaming effect can be mitigated by some counter measures. • Occupational workers can access to the room above the test cell during operation. - Abstract: The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.

  15. Structural instability of atmospheric flows under perturbations of the mass balance and effect in transport calculations

    International Nuclear Information System (INIS)

    Núñez, M A; Mendoza, R

    2015-01-01

    Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation

  16. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    Science.gov (United States)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  17. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  18. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  19. Reassessment of calculation of effective dose equivalent for the CRCN-CO Environmental Radiological Monitoring Program

    International Nuclear Information System (INIS)

    Carneiro, L.B.; Dourado, M.A.; Barbosa, R.C.

    2017-01-01

    To reassess the calculations of the effective dose equivalent to obtain data of dosimetry and the accomplishment of the analysis comparing the data of several techniques that record doses of radiation originating from the cosmogenic and terrestrial contributions that make up the so-called background radiation. the basic information to be obtained is the contribution of the difference between the terrestrial dose equivalents, even the lowest concentration of primordial radionuclides, and that of the dose equivalent, deduced from TLD readings. (author)

  20. Reassessment of calculation of effective dose equivalent for the CRCN-CO Environmental Radiological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, L.B.; Dourado, M.A.; Barbosa, R.C., E-mail: research.photonics@gmail.com [Centro Regional de Ciências Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goiás, GO (Brazil)

    2017-07-01

    To reassess the calculations of the effective dose equivalent to obtain data of dosimetry and the accomplishment of the analysis comparing the data of several techniques that record doses of radiation originating from the cosmogenic and terrestrial contributions that make up the so-called background radiation. the basic information to be obtained is the contribution of the difference between the terrestrial dose equivalents, even the lowest concentration of primordial radionuclides, and that of the dose equivalent, deduced from TLD readings. (author)

  1. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  2. Deterministic calculation of the effective delayed neutron fraction without using the adjoint neutron flux - 299

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Zhong, Z.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.; Serafimovich, I.

    2010-01-01

    In 1997, Bretscher calculated the effective delayed neutron fraction by the k-ratio method. The Bretscher's approach is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Bretscher evaluated the effective delayed neutron fraction as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as k-ratio method). In the present work, the k-ratio method is applied by deterministic nuclear codes. The ENDF/B nuclear data library of the fuel isotopes ( 238 U and 238 U) have been processed by the NJOY code with and without the delayed neutron data to prepare multigroup WIMSD nuclear data libraries for the DRAGON code. The DRAGON code has been used for preparing the PARTISN macroscopic cross sections. This calculation methodology has been applied to the YALINA-Thermal assembly of Belarus. The assembly has been modeled and analyzed using PARTISN code with 69 energy groups and 60 different material zones. The deterministic and Monte Carlo results for the effective delayed neutron fraction obtained by the k-ratio method agree very well. The results also agree with the values obtained by using the adjoint flux. (authors)

  3. Using Standard-Sole Cost Method for Performance Gestion Accounting and Calculation Cost in the Machine Building Industry

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu

    2006-07-01

    Full Text Available The main purpose of improving and varying cost calculation methods in the machine building industry is to make them more operational and efficient in supplying the information necessary to the management in taking its decisions. The present cost calculation methods used in the machine building plants - global method and the method per orders - by which a historical cost is determined a posteriori used in deducting and post factum justification of manufacturing expenses does not offer the management the possibility to fully satisfy its need for information. We are talking about a change of conception in applying certain systems, methods and work techniques, according to the needs of efficient administration of production and the plant seen as a whole. The standard-cost method best answers to the needs of the effective management of the value side of the manufacturing process and raising economic efficiency. We consider that, in the machine building industry, these objectives can be achieved by using the standard - sole cost alternative of the standard-cost method.

  4. Using Standard-Sole Cost Method for Performance Gestion Accounting and Calculation Cost in the Machine Building Industry

    Directory of Open Access Journals (Sweden)

    Aureliana Geta Roman

    2006-09-01

    Full Text Available The main purpose of improving and varying cost calculation methods in the machine building industry is to make them more operational and efficient in supplying the information necessary to the management in taking its decisions. The present cost calculation methods used in the machine building plants – global method and the method per orders – by which a historical cost is determined a posteriori used in deducting and post factum justification of manufacturing expenses does not offer the management the possibility to fully satisfy its need for information. We are talking about a change of conception in applying certain systems, methods and work techniques, according to the needs of efficient administration of production and the plant seen as a whole. The standard-cost method best answers to the needs of the effective management of the value side of the manufacturing process and raising economic efficiency. We consider that, in the machine building industry, these objectives can be achieved by using the standard - sole cost alternative of the standard-cost method.

  5. Calculations of Financial Incentives for Providers in a Pay-for-Performance Program: Manual Review Versus Data From Structured Fields in Electronic Health Records.

    Science.gov (United States)

    Urech, Tracy H; Woodard, LeChauncy D; Virani, Salim S; Dudley, R Adams; Lutschg, Meghan Z; Petersen, Laura A

    2015-10-01

    Hospital report cards and financial incentives linked to performance require clinical data that are reliable, appropriate, timely, and cost-effective to process. Pay-for-performance plans are transitioning to automated electronic health record (EHR) data as an efficient method to generate data needed for these programs. To determine how well data from automated processing of structured fields in the electronic health record (AP-EHR) reflect data from manual chart review and the impact of these data on performance rewards. Cross-sectional analysis of performance measures used in a cluster randomized trial assessing the impact of financial incentives on guideline-recommended care for hypertension. A total of 2840 patients with hypertension assigned to participating physicians at 12 Veterans Affairs hospital-based outpatient clinics. Fifty-two physicians and 33 primary care personnel received incentive payments. Overall, positive and negative agreement indices and Cohen's kappa were calculated for assessments of guideline-recommended antihypertensive medication use, blood pressure (BP) control, and appropriate response to uncontrolled BP. Pearson's correlation coefficient was used to assess how similar participants' calculated earnings were between the data sources. By manual chart review data, 72.3% of patients were considered to have received guideline-recommended antihypertensive medications compared with 65.0% by AP-EHR review (κ=0.51). Manual review indicated 69.5% of patients had controlled BP compared with 66.8% by AP-EHR review (κ=0.87). Compared with 52.2% of patients per the manual review, 39.8% received an appropriate response by AP-EHR review (κ=0.28). Participants' incentive payments calculated using the 2 methods were highly correlated (r≥0.98). Using the AP-EHR data to calculate earnings, participants' payment changes ranged from a decrease of $91.00 (-30.3%) to an increase of $18.20 (+7.4%) for medication use (interquartile range, -14.4% to 0

  6. Effects of respirator use on worker performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  7. The Logistics Performance Effect in International Trade

    Directory of Open Access Journals (Sweden)

    Azmat Gani

    2017-12-01

    Full Text Available The continuous growth in world trade depends on the efficiency of trade support structures such as the logistics services. Despite logistics integral role in supporting commercial activities, there has generally been a low level of analysis and trade policy research focus from trade practitioners. This paper explores the effect of logistics performance in international trade. The analysis draws on overall logistics performance as well as disaggregated measures of logistics specificities data for a large sample of countries. The empirical analysis involved the estimation of standard export and import equations incorporating measures of logistics performance. The findings show that the overall logistics performance is positively and statistically significantly correlated with exports and imports. The analysis is also extended by investigating if logistics specificities mattered for international trade. The findings reveal that several dimensions capturing logistics performance have statistically significant and positive effect, mostly on exports. The main policy implication is that continuous investment in logistics infrastructure and services can positively impact international trade.

  8. Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling

    Science.gov (United States)

    Cao, L.; Elliot, W.

    2017-12-01

    Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates

  9. [Features of dual--postural and calculation--task performance in patients with consequences of traumatic brain injury].

    Science.gov (United States)

    Zharikova, A V; Zhavoronkova, L A; Maksakova, O A; Kuptsova, S V

    2012-01-01

    Dual tasks with voluntary postural control and calculation have been done by 14 patients (25.7 +/- 4.7 yo.) after traumatic brain injury and 40 healthy volunteers (29.8 +/- 2.5 y.o.). Complex clinical (MMSE, FIM, MPAI-3 and Berg scales) and stabilographic evaluation has been performed. According to clinical evaluation 8 patients were included into group 1 with less severe functional deficit and 6 patients formed group 2 with more severe deficit. Parameters of motor and especially cognitive sub-tasks in patients were lower than in healthy subjects in both separate and dual tasks. In group 2 these parameters were lower than in group 1. Certain types of dual task where the quality of sub-tasks, especially of the motor-one increased in healthy subjects and patients of the first group were revealed. The complex of stabilographic parameters which could be used for estimation of quality of sub-tasks performance has been revealed. Dual tasks could be an additional method of evaluation of patients' adaptive possibilities and certain type of dual task could become a promising approach to recovery at late period of rehabilitation.

  10. Monte Carlo Calculated Effective Dose to Teenage Girls from Computed Tomography Examinations

    International Nuclear Information System (INIS)

    Caon, M.; Bibbo, G.; Pattison, J.

    2000-01-01

    Effective doses from CT to paediatric patients are not common in the literature. This article reports some effective doses to teenage girls from CT examinations. The voxel computational model ADELAIDE, representative of a 14-year-old girl, was scaled in size by ±5% to represent also 11-12-year-old and 16-year-old girls. The EGS4 Monte Carlo code was used to calculate the effective dose from chest, abdomen and whole torso CT examinations to the three version of ADELAIDE using a 120 kV spectrum. For the whole torso CT examination, in order of increasing model size, the effective doses were 9.0, 8.2 and 7.8 mSv per 100 mA.s. Data are presented that allow the estimation of effective dose from CT examinations of the torso for girls between the ages of 11 and 16. (author)

  11. Automatic 2D scintillation camera and computed tomography whole-body image registration to perform dosimetric calculations

    International Nuclear Information System (INIS)

    Cismondi, F.; Mosconi, S.L.

    2008-01-01

    Full text: In this work a software tool that has been developed to allow automatic registrations of 2D Scintillation Camera (SC) and Computed Tomography (CT) images is presented. This tool, used with a dosimetric software with Integrated Activity or Residence Time as input data, allows the user to assess physicians about effects of radiodiagnostic or radiotherapeutic practices that involves nuclear medicine 'open sources'. Images are registered locally and globally, maximizing Mutual Information coefficient between regions been registered. In the regional case whole-body images are segmented into five regions: head, thorax, pelvis, left and right legs. Each region has its own registration parameters, which are optimized through Powell-Brent minimization method that 'maximizes' Mutual Information coefficient. This software tool allows the user to draw ROIs, input isotope characteristics and finally calculate Integrated Activity or Residence Time in one or many specific organ. These last values can be introduced in many dosimetric software to finally obtain Absorbed Dose values. (author)

  12. Interaction and collective effects in classical-equations-of-motion calculations

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1981-01-01

    We discuss results obtained with the classical-equations-of-motion (CEOM) approach, with particular reference to interaction (potential energy) and collective effects in central collisions of equal mass nuclei. The essence of the CEOM approach is the classical calculation of all A = A/sub P/ + A/sub T/ trajectories using a 2-body potential V between all pairs of nucleons; V = V/sub short/ + V/sub long/ has a short range repulsion and a longer range attractive tail. In contrast to hydrodynamics, the CEOM approach is microscopic and includes transparency and nonequilibrium effects

  13. Calculation of longitudinal and transverse wake-field effects in dielectric structures

    International Nuclear Information System (INIS)

    Gai, W.

    1989-01-01

    The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs

  14. The inclusion of shadowing effect in the reaction-rates calculation

    International Nuclear Information System (INIS)

    Monteiro, M.A.M.

    1990-03-01

    A method for the Resonance Integral calculation in the fuel and moderator regions is presented including the Shadowing effect. This effect appears due to the presence of several fuel rods in a infinite moderator region. The method is based on the approximations to the J (ζ, β) function and theirs partial derivatives in relation to β. The dependence of the Resonance Integral in the J (ζ, β) comes from the rational approximation to the neutron escape probability. The final results are obtained in a very simple and fast way, and show the good accuracy of the method. (author)

  15. The effects of filament magnetization in superconducting magnets as calculated by POISSON

    International Nuclear Information System (INIS)

    Caspi, S.; Gilbert, W.S.; Helm, M.; Laslett, L.J.

    1986-09-01

    Magnetization of superconducting material can be introduced into POISSON through a field dependent permeability table (in the same way that iron characteristics are introduced). This can be done by representing measured magnetization data of the increasing and decreasing field by two independent B-γ curves (γ = 1/μ). Magnetization curves of this type were incorporated into the current regions of the program POISSON and their effect on the field coefficients observed. We have used this technique to calculate the effect of magnetization on the multipole coefficients of a SSC superconducting dipole magnet and to compare these coefficients with measured values

  16. MatchingTools: A Python library for symbolic effective field theory calculations

    Science.gov (United States)

    Criado, Juan C.

    2018-06-01

    MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.

  17. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools.

    Science.gov (United States)

    Kirschstein, Timo; Wolters, Alexander; Lenz, Jan-Hendrik; Fröhlich, Susanne; Hakenberg, Oliver; Kundt, Günther; Darmüntzel, Martin; Hecker, Michael; Altiner, Attila; Müller-Hilke, Brigitte

    2016-01-01

    The amendment of the Medical Licensing Act (ÄAppO) in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality. In the spring of 2014, the students' dean commissioned the "core group" for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and - in analogy to impact factors and third party grants - a ranking among faculty. Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  18. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools

    Directory of Open Access Journals (Sweden)

    Kirschstein, Timo

    2016-05-01

    Full Text Available Objective: The amendment of the Medical Licensing Act (ÄAppO in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality.Methods: In the spring of 2014, the students‘ dean commissioned the „core group“ for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. Results: This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and – in analogy to impact factors and third party grants – a ranking among faculty. Conclusion: Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  19. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  20. A Comparison between Effective Cross Section Calculations using the Intermediate Resonance Approximation and More Exact Methods

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1969-02-15

    In order to investigate some aspects of the 'Intermediate Resonance Approximation' developed by Goldstein and Cohen, comparative calculations have been made using this method together with more accurate methods. The latter are as follows: a) For homogeneous materials the slowing down equation is solved in the fundamental mode approximation with the computer programme SPENG. All cross sections are given point by point. Because the spectrum can be calculated for at most 2000 energy points, the energy regions where the resonances are accurately described are limited. Isolated resonances in the region 100 to 240 eV are studied for {sup 238}U/Fe and {sup 238}U/Fe/Na mixtures. In the regions 161 to 251 eV and 701 to 1000 eV, mixtures of {sup 238}U and Na are investigated. {sup 239}Pu/Na and {sup 239}Pu/{sup 238}U/Na mixtures are studied in the region 161 to 251 eV. b) For heterogeneous compositions in slab geometry the integral transport equation is solved using the FLIS programme in 22 energy groups. Thus, only one resonance can be considered in each calculation. Two resonances are considered, namely those belonging to {sup 238}U at 190 and 937 eV. The compositions are lattices of {sup 238}U and Fe plates. The computer programme DORIX is used for the calculations using the Intermediate Resonance Approximation. Calculations of reaction rates and effective cross sections are made at 0, 300 and 1100 deg K for homogeneous media and at 300 deg K for heterogeneous media. The results are compared to those obtained by using the programmes SPENG and FLIS and using the narrow resonance approximation.

  1. Calculation of the biological effect of fractionated radiotherapy: the importance of radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Olsen, D.R.

    1995-01-01

    The total effect (TE) has been calculated for two different fractionation formalisms: the consecutive and repetitive fractionation mechanism, using a modified linear quadratic (LQ) model which includes the effect of apoptosis. For a given total dose, an increase in TE is seen when increasing the dose per fraction as well as the apoptotic fraction (F a ). Also, the TE increases with increasing α/β ratio (of the modified LQ model). The ratio of TE for tumour tissue and TE for late reacting tissue is calculated assuming the absence of apoptosis in late reacting tissue and a common value of α/β (of the modified LQ model). The biological effect ratio (BR) is higher for a large F a and low doses per fraction, than for large doses per fraction and a small F a . Assuming a consecutive fractionation mechanism, the TE formalism is unable to predict a log cell kill of more than 3 for β values of 0.010-0.028. It is less dependent on dose per fraction and F a than the repetitive fractionation mechanism. The biological effect ratio is only slightly higher than 1, and is less influenced by F a , dose per fraction and α/β ratio. A repetitive fractionation mechanism is also consistent with the preliminary results of published fractionation experiments. The calculations indicate that designing fractionation regimes for optimization of biological effect is a process where the role of apoptotic cell inactivation must be maximized, and where the influence of mitotic cell inactivation may be of less importance. (author)

  2. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  3. The effect of CT urography in the diagnosis of non-calculous urinary obstruction diseases

    International Nuclear Information System (INIS)

    Zhang Zhuiyang; Shen Yuanliang; Li Xin; Cao Rongmei; Xu Xiqi; Dong Jian; Hua Dongying

    2004-01-01

    Objective: To evaluate the diagnostic effect of CT urography (CTU) in patients with non-calculous obstructive diseases of urinary tract. Methods: Forty cases with non-calculous urinary obstruction underwent helical CT during nephrographic and excretory phases. Three dimensional CTU was obtained with the reconstruction of excretory phase axial images through the workstation. Results: 24 of 40 cases with benign obstruction had a slight or severe urinary dilation. Among them,18 congenital urinary malformations showed specific findings. Four ureteric inflammations revealed a gradual taper of the lumen just like a beak, and another two prostatic hypertrophy appeared oval impression upon the middle of the posterior bladder. Six intrinsic and 10 extrinsic tumors were seen irregular filling defects of the urinary tracts as well as soft tissue mass surrounding the obstructive site, accompanied by the middle urinary dilation in 12 cases and severe in four. Meanwhile, bilateral ureterohydronephroses were also found in four extrinsic tumors. In six patients with unilateral nonfunctioning urinary tracts, CTU could be imaged with minimum intensity projection (MinIP) and then be merged with contralateral maximum intensity projection (MaxIP). Conclusion: CTU is an effective modality in the evaluation of non-calculous urinary obstruction diseases. (authors)

  4. Review and comparison of effective delayed neutron fraction calculation methods with Monte Carlo codes

    International Nuclear Information System (INIS)

    Bécares, V.; Pérez-Martín, S.; Vázquez-Antolín, M.; Villamarín, D.; Martín-Fuertes, F.; González-Romero, E.M.; Merino, I.

    2014-01-01

    Highlights: • Review of several Monte Carlo effective delayed neutron fraction calculation methods. • These methods have been implemented with the Monte Carlo code MCNPX. • They have been benchmarked against against some critical and subcritical systems. • Several nuclear data libraries have been used. - Abstract: The calculation of the effective delayed neutron fraction, β eff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for β eff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue technique and other techniques based on different interpretations of the physical meaning of the adjoint weighting. To test the validity of all these techniques we have implemented them with the MCNPX code and we have benchmarked them against a range of critical and subcritical systems for which either experimental or deterministic values of β eff are available. Furthermore, several nuclear data libraries have been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of β eff

  5. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  6. Concerta cf Ritalin Effects on Driving Performance

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-03-01

    Full Text Available The effects of different methylphenidate (MPH delivery profiles on driving performance of 6 male ADHD adolescents, aged 16 to 19 years, were evaluated by a randomized, crossover, single-blind study comparing controlled-release (OROS MPH (Concerta given q.d. to immediate-release MPH (Ritalin in equal doses t.i.d. in a study at the University of Virginia, Charlottesville, VA.

  7. Calculation of viscous effects on transonic flow for oscillating airfoils and comparisons with experiment

    Science.gov (United States)

    Howlett, James T.; Bland, Samuel R.

    1987-01-01

    A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.

  8. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    International Nuclear Information System (INIS)

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent

  9. The effective atomic numbers of some biomolecules calculated by two methods: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Manohara, S. R.; Hanagodimath, S. M.; Gerward, L. [Department of Physics, Gulbarga University, Gulbarga, Karnataka 585 106 (India); Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark)

    2009-01-15

    The effective atomic numbers Z{sub eff} of some fatty acids and amino acids have been calculated by two numerical methods, a direct method and an interpolation method, in the energy range of 1 keV-20 MeV. The notion of Z{sub eff} is given a new meaning by using a modern database of photon interaction cross sections (WinXCom). The results of the two methods are compared and discussed. It is shown that for all biomolecules the direct method gives larger values of Z{sub eff} than the interpolation method, in particular at low energies (1-100 keV) At medium energies (0.1-5 MeV), Z{sub eff} for both methods is about constant and equal to the mean atomic number of the material. Wherever possible, the calculated values of Z{sub eff} are compared with experimental data.

  10. The effective atomic numbers of some biomolecules calculated by two methods: A comparative study

    International Nuclear Information System (INIS)

    Manohara, S. R.; Hanagodimath, S. M.; Gerward, L.

    2009-01-01

    The effective atomic numbers Z eff of some fatty acids and amino acids have been calculated by two numerical methods, a direct method and an interpolation method, in the energy range of 1 keV-20 MeV. The notion of Z eff is given a new meaning by using a modern database of photon interaction cross sections (WinXCom). The results of the two methods are compared and discussed. It is shown that for all biomolecules the direct method gives larger values of Z eff than the interpolation method, in particular at low energies (1-100 keV) At medium energies (0.1-5 MeV), Z eff for both methods is about constant and equal to the mean atomic number of the material. Wherever possible, the calculated values of Z eff are compared with experimental data.

  11. Effect of the improvement of the HITRAN database on the radiative transfer calculation

    International Nuclear Information System (INIS)

    Feng Xuan; Zhao Fengsheng; Gao Wenhua

    2007-01-01

    The line parameters of the HITRAN 2004 have been updated, as compared with the older editions (the 2000 edition and the 1996 edition). In order to know the effect of the modifications on radiative transfer calculation with high spectral resolution, comparison in optical depth and radiance spectrum have been given between different editions. Four infrared spectral regions are selected, and they cover the three bands of atmospheric infrared sounder (AIRS) and one of geosynchronous imaging fourier transform spectrometer (GIFTS). The comparison has shown that the relative difference between HITRAN 2000 and 2004 and that between HITRAN 1996 and 2004 is decreasing. But the maximal discrepancy between the latest two editions in some spectral intervals is over 1%. It is important to estimate the error of calculation with the line parameters correctly or one has to use the new edition of HITRAN

  12. Consistent calculation of the screening and exchange effects in allowed β- transitions

    Science.gov (United States)

    Mougeot, X.; Bisch, C.

    2014-07-01

    The atomic exchange effect has previously been demonstrated to have a great influence at low energy on the Pu241 β- transition. The screening effect has been given as a possible explanation for a remaining discrepancy. Improved calculations have been made to consistently evaluate these two atomic effects, compared here to the recent high-precision measurements of Pu241 and Ni63 β spectra. In this paper a screening correction has been defined to account for the spatial extension of the electron wave functions. Excellent overall agreement of about 1% from 500 eV to the end-point energy has been obtained for both β spectra, which demonstrates that a rather simple β decay model for allowed transitions, including atomic effects within an independent-particle model, is sufficient to describe well the current most precise measurements.

  13. Calculation of the poloidal ambipolar field in a stellarator and its effect on transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1984-01-01

    The portion Phi 1 of the ambipolar potential Phi which produces an electric field in the flux surfaces of a stellarator is self-consistently calculated, and its effect on stellarator transport at low collisionality is considered. The effect is small in a parameter delta/sub h/, which is proportional to the square root of the ripple amplitude, epsilon/sub h/. However, since delta/sub h/ can be an appreciable fraction of 1 for realistic parameters, the effect of Phi 1 on transport can also be appreciable. Whether the effect is harmful or beneficial to confinement depends on the degree of pressure anisotropy and on the sign of p/sub perpendicular/-p/sub parallel/

  14. Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes

    International Nuclear Information System (INIS)

    Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William

    2002-01-01

    Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)

  15. The effect of subconscious performance goals on academic performance

    NARCIS (Netherlands)

    Bipp, T.; Kleingeld, P.A.M.; van Mierlo, H.; Kunde, W.

    2017-01-01

    We investigated the impact of subconscious goals on academic performance in two field experiments. We show that unobtrusive priming of goals with regard to achievement motivation by means of a photograph improves performance in different educational contexts. High-school students who were exposed to

  16. The Effect of Subconscious Performance Goals on Academic Performance

    Science.gov (United States)

    Bipp, Tanja; Kleingeld, Ad; van Mierlo, Heleen; Kunde, Wilfried

    2017-01-01

    We investigated the impact of subconscious goals on academic performance in two field experiments. We show that unobtrusive priming of goals with regard to achievement motivation by means of a photograph improves performance in different educational contexts. High-school students who were exposed to an achievement-related photograph achieved…

  17. Use of Monte Carlo simulation software for calculating effective dose in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    This study aimed to develop a geometry of irradiation applicable to the software PCXMC and the consequent calculation of effective dose in applications of the Computed Tomography Cone Beam (CBCT). We evaluated two different CBCT equipment s for dental applications: Care stream Cs 9000 3-dimensional tomograph; i-CAT and GENDEX GXCB-500. Initially characterize each protocol measuring the surface kerma input and the product kerma air-area, P{sub KA}, with solid state detectors RADCAL and PTW transmission chamber. Then we introduce the technical parameters of each preset protocols and geometric conditions in the PCXMC software to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for 3-dimensional computer 9000 Cs; within the range 44.5 to 89 μSv for GXCB-500 equipment and in the range of 62-111 μSv for equipment Classical i-CAT. These values were compared with results obtained dosimetry using TLD implanted in anthropomorphic phantom and are considered consistent. Os effective dose results are very sensitive to the geometry of radiation (beam position in mathematical phantom). This factor translates to a factor of fragility software usage. But it is very useful to get quick answers to regarding process optimization tool conclusions protocols. We conclude that use software PCXMC Monte Carlo simulation is useful assessment protocols for CBCT tests in dental applications. (Author)

  18. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations.

    Science.gov (United States)

    Kendall, Alissa; Chang, Brenda; Sharpe, Benjamin

    2009-09-15

    This paper proposes a time correction factor (TCF) to properly account for the timing of land use change-derived greenhouse gas emissions in the biofuels life cycle. Land use change emissions occur at the outset of biofuel feedstock production, and are typically amortized over an assumed time horizon to assign the burdens of land use change to multiple generations of feedstock crops. Greenhouse gas intensity calculations amortize emissions by dividing them equally over a time horizon, overlooking the fact that the effect of a greenhouse gas increases with the time it remains in the atmosphere. The TCF is calculated based on the relative climate change effect of an emission occurring at the outset of biofuel feedstock cultivation versus one amortized over a time horizon. For time horizons between 10 and 50 years, the TCF varies between 1.7 and 1.8 for carbon dioxide emissions, indicating that the actual climate change effect of an emission is 70-80% higher than the effect of its amortized values. The TCF has broad relevance for correcting the treatment of emissions timing in other life cycle assessment applications, such as emissions from capital investments for production systems or manufacturing emissions for renewable energy technologies.

  19. Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1982-10-01

    The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was 0 C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain

  20. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  1. Effect of effective microorganisms on broiler chicken performance ...

    African Journals Online (AJOL)

    A study was conducted between January and March 2001 to assess the effects of Effective Microorganisms (EM) as feed additive in broiler chicken production on growth performance. The experiment involved 210 day-old broiler chicks which were randomly allocated to 14 pens of 15 birds each. There were seven ...

  2. Effect of Concussion on Performance of National Football League Players.

    Science.gov (United States)

    Reams, Nicole; Hayward, Rodney A; Kutcher, Jeffrey S; Burke, James F

    2017-09-01

    Lingering neurologic injury after concussion may expose athletes to increased risk if return to play is premature. The authors explored whether on-field performance after concussion is a marker of lingering neurologic injury. Retrospective cohort study on 1882 skill-position players who played in the National Football League (NFL) during 2007-2010. Players with concussion based on the weekly injury report were compared with players with other head and neck injuries (controls) on measures of on-field performance using Football Outsiders' calculation of defense-adjusted yards above replacement (DYAR), a measure of a player's contribution controlling for game context. Changes in performance, relative to a player's baseline level of performance, were estimated before and after injury using fixed-effects models. The study included 140 concussed players and 57 controls. Players with concussion performed no better or worse than their baseline on return to play. However, a decline in DYAR relative to their prior performance was noted 2 wk and 1 wk before appearing on the injury report. Concussed players performed slightly better than controls in situations where they returned to play the same week as appearing on the injury report. On return, concussed NFL players performed at their baseline level of performance, suggesting that players have recovered from concussion. Decline in performance noted 2 wk and 1 wk before appearing on the injury report may suggest that concussion diagnosis was delayed or that concussion can be a multihit phenomenon. Athletic performance may be a novel tool for assessing concussion injury and recovery.

  3. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  4. Cardiovascular Effects of Performance-Enhancing Drugs.

    Science.gov (United States)

    La Gerche, André; Brosnan, Maria J

    2017-01-03

    Exercise and competitive sports should be associated with a wide range of health benefits with the potential to inspire a positive community health legacy. However, the reputation of sports is being threatened by an ever-expanding armamentarium of agents with real or perceived benefits in performance enhancement. In addition to the injustice of unfair advantage for dishonest athletes, significant potential health risks are associated with performance-enhancing drugs. Performance-enhancing drugs may have an effect on the cardiovascular system by means of directly altering the myocardium, vasculature, and metabolism. However, less frequently considered is the potential for indirect effects caused through enabling athletes to push beyond normal physiological limits with the potential consequence of exercise-induced arrhythmias. This review will summarize the known health effects of PEDs but will also focus on the potentially greater health threat posed by the covert search for performance-enhancing agents that have yet to be recognized by the World Anti-Doping Agency. History has taught us that athletes are subjected to unmonitored trials with experimental drugs that have little or no established efficacy or safety data. One approach to decrease drug abuse in sports would be to accept that there is a delay from when athletes start experimenting with novel agents to the time when authorities become aware of these drugs. This provides a window of opportunity for athletes to exploit with relative immunity. It could be argued that all off-label use of any agent should be deemed illegal. © 2016 American Heart Association, Inc.

  5. Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    International Nuclear Information System (INIS)

    Chvosta, Petr; Holubec, Viktor; Ryabov, Artem; Einax, Mario; Maass, Philipp

    2010-01-01

    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven at a constant rate. The time evolutions of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the work performed during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility

  6. Masticatory performance alters stress relief effect of gum chewing.

    Science.gov (United States)

    Nishigawa, Keisuke; Suzuki, Yoshitaka; Matsuka, Yoshizo

    2015-10-01

    We evaluated the effects of gum chewing on the response to psychological stress induced by a calculation task and investigated the relationship between this response and masticatory performance. Nineteen healthy adult volunteers without dental problems undertook the Uchida-Kraepelin (UK) test (30 min of reiterating additions of one-digit numbers). Before and immediately after the test, saliva samples were collected from the sublingual area of the participants. Three min after the UK test, the participants were made to chew flavorless gum for 3 min, and the final saliva samples were collected 10 min after the UK test. The experiment was performed without gum chewing on a different day. Masticatory performance was evaluated using color-changing chewing gum. Salivary CgA levels at immediately and 10 min after the UK test were compared with and without gum chewing condition. Two-way repeated measures analysis of variance revealed significant interaction between gum chewing condition and changes in CgA levels during post 10 min UK test period. A significant correlation was found between changes in CgA levels and masticatory performance in all participants. Our results indicate that gum chewing may relieve stress responses; however, high masticatory performance is required to achieve this effect. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Effects of ownership and financial performance on corporate environmental performance

    Czech Academy of Sciences Publication Activity Database

    Earnhart, D.; Lízal, Lubomír

    2006-01-01

    Roč. 34, č. 1, (2006), s. 111-129 ISSN 0147-5967 Institutional research plan: CEZ:MSM0021620846 Keywords : Czech Republic * environmental protection * financial performance Subject RIV: AH - Economics Impact factor: 0.964, year: 2006

  8. Effects of shape differences in the level densities of three formalisms on calculated cross-sections

    International Nuclear Information System (INIS)

    Fu, C.Y.; Larson, D.C.

    1998-01-01

    Effects of shape differences in the level densities of three formalisms on calculated cross-sections and particle emission spectra are described. Reactions for incident neutrons up to 20 MeV on 58 Ni are chosen for illustrations. Level density parameters for one of the formalisms are determined from the available neutron resonance data for one residual nuclide in the binary channels and from fitting the measured (n,n'), (n,p) and (n,α) cross-sections for the other two residual nuclides. Level density parameters for the other two formalisms are determined such that they yield the same values as the above one at two selected energies. This procedure forces the level densities from the three formalisms used for the binary pat of the calculation to be as close as possible. The remaining differences are in their energy dependences (shapes). It is shown that these shape differences alone are enough to cause the calculated cross-sections and particle emission spectra to be different by up to 60%. (author)

  9. Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

    International Nuclear Information System (INIS)

    T.S. Park; L.E. Marcucci; R. Schiavilla; M. Viviani; A. Kievsky; S. Rosati; K. Kubodera; D.P. Min; M. Rho

    2002-01-01

    Spurred by the recent complete determination of the weak currents in two-nucleon systems up to Ο(Q 3 ) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S-factors for the solar pp (proton-fusion) and hep processes in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium β-decay rate as an input to fix the only unknown parameter in the theory, we can evaluate the threshold S factors with drastically improved precision; the results are S pp (0) = 3.94 x (1 ± 0.004) x 10 -25 MeV-b and S hep (0) = (8.6 ± 1.3) x 10 -20 keV-b. The dependence of the calculated S-factors on the momentum cutoff parameter Λ has been examined for a physically reasonable range of Λ. This dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep process, substantiating the consistency of our calculational scheme

  10. Calculation of thermal effects occurring during the manufacture of CR-39 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, S.; Somogyi, G. (Magyar Tudomanyos Akademia, Debrecen. Atommag Kutato Intezete)

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be chosen below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles, especially for thick CR-39 sheets, a computer programme was developed by which we could study the trends of thermal effects under different casting conditions. Our calculations are based on the solution of the one dimensional heat transport equation, taking into account the relations proposed by Dial et al (1955) for describing the chemical kinetics of CR-39 polymerization. We have revised the empirical parameters available to such calculations. With new 'Dial constants' we have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile developing in the depth of cast CR-39 sheets.

  11. Calculation of thermal effects occurring during the manufacture of CR-39 sheets

    International Nuclear Information System (INIS)

    Szilagyi, S.; Somogyi, G.

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be chosen below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles, especially for thick CR-39 sheets, a computer programme was developed by which we could study the trends of thermal effects under different casting conditions. Our calculations are based on the solution of the one dimensional heat transport equation, taking into account the relations proposed by Dial et al (1955) for describing the chemical kinetics of CR-39 polymerization. We have revised the empirical parameters available to such calculations. With new 'Dial constants' we have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile developing in the depth of cast CR-39 sheets. (author)

  12. Calculation of the Huang-Rhys parameter in spherical quantum dots: the optical deformation potential effect

    International Nuclear Information System (INIS)

    Hamma, M; Miranda, R P; Vasilevskiy, M I; Zorkani, I

    2007-01-01

    An accurate calculation of the exciton-phonon interaction matrix elements and Huang-Rhys parameter for nearly spherical nanocrystals (NCs) of polar semiconductor materials is presented. The theoretical approach is based on a continuum lattice dynamics model and the effective mass approximation for electronic states in the NCs. A strong confinement regime is considered for both excitons and optical phonons, taking into account both the Froehlich-type and optical deformation potential (ODP) mechanisms of the exciton-phonon interaction. The effects of exchange electron-hole interaction and possible hexagonal crystal structure of the underlying material are also taken into account. The theory is applied to CdSe and InP quantum dots. It is shown that the ODP mechanism, almost unimportant for CdSe, dominates the exciton-phonon coupling in small InP dots. The effect of the non-diagonal interaction, not included in the Huang-Rhys parameter, is briefly discussed

  13. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  14. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  15. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-01-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  16. Calculation of effect of burnup history on spent fuel reactivity based on CASMO5

    International Nuclear Information System (INIS)

    Li Xiaobo; Xia Zhaodong; Zhu Qingfu

    2015-01-01

    Based on the burnup credit of actinides + fission products (APU-2) which are usually considered in spent fuel package, the effect of power density and operating history on k_∞ was studied. All the burnup calculations are based on the two-dimensional fuel assembly burnup program CASMO5. The results show that taking the core average power density of specified power plus a bounding margin of 0.0023 to k_∞, and taking the operating history of specified power without shutdown during cycle and between cycles plus a bounding margin of 0.0045 to k_∞ can meet the bounding principle of burnup credit. (authors)

  17. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    Science.gov (United States)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  18. Analytical calculation of dE/dx cluster-charge loss due to threshold effects

    International Nuclear Information System (INIS)

    Brady, F.P.; Dunn, J.

    1997-01-01

    This letter presents a simple analytical approximation which allows one to estimate the effect of ADC threshold on the measured cluster-charge size as used for dE/dx determinations. The idea is to gain some intuitive understanding of the cluster-charge loss and not to replace more accurate simulations. The method is applied to the multiple sampling measurements of energy loss in the main time projection chambers (TPCs) of the NA49 experiment at CERN SPS. The calculations are in reasonable agreement with data. (orig.)

  19. Calculations of relativistic effects in atoms and molecules from the Schroedinger wave function

    International Nuclear Information System (INIS)

    Detrich, J.H.; Roothaan, C.C.J.

    1981-01-01

    The traditional method for dealing with relativistic effects in atoms and molecules consists of a somewhat heuristic combination of quantum electrodynamics and a many-electron quantum mechanics generalized from the one-electron Dirac theory. On the whole, results calculated from this theory agree with experimental data. Nevertheless, the theory is by no means entirely satisfactory; in its development, certain ambiguities and divergencies must be resolved by somewhat arbitrary and/or questionable means. This paper illuminates - and sidesteps - some of the more questionable aspects of the traditional method, by reformulating electromagnetic interactions between particles in a different way

  20. Calculating many-body effects in resonant [(dtμ)d2e] formation

    International Nuclear Information System (INIS)

    Leon, M.

    1986-01-01

    A method is developed for calculating the effect of neighboring molecules on the resonant molecular formation reaction tμ + D 2 → [(dtμ)d2e]*, avoiding any expansion in powers of the density. Using a simplified model, the role of collisional broadening, motional narrowing, and the interference of different formation amplitudes is examined. This model is used to generate molecular formation rates as functions of density for fixed temperature. The generalization which will allow comparison with experimental data is discussed

  1. Calculation of melatonin and resveratrol effects on steatosis hepatis using soft computing methods.

    Science.gov (United States)

    Talu, M Fatih; Gül, Mehmet; Alpaslan, Nuh; Yiğitcan, Birgül

    2013-08-01

    In this work, beneficial effects of melatonin and resveratrol drugs on liver damage in rats, induced by application of acute and chronic carbon tetrachloride (CCl4) have been examined. The study consists of three main stages: (1) DATA ACQUISITION: light microscopic images were obtained from 60 rats separated into 10 groups after the preparation of liver tissue samples for histological examination. Rats in first five experimental groups for the four-day and the other five groups for twenty-day were examined. (2) Data processing: by the help of histograms of oriented gradient (HOG) method, obtaining low-dimensional image features (color, shape and texture) and classifying five different group characteristics by using these features with artificial neural networks (ANNs), and support vector machines (SVMs) have been provided. (3) Calculation of drug effectiveness: firstly to determine the differences between group characteristics of rats, a pilot group has been selected (diseased group-CCl4), and the responses of ANN and SVM trained by HOG features have been calculated. As a result of ANN, it has been seen that melatonin and resveratrol drugs have %65.62-%75.12 positive effects at the end of the fourth day, %84.12-%98.89 positive effects on healing steatosis hepatis at the end of the twentieth day respectively and as a result of SVM, it has been seen that melatonin and resveratrol drugs have %62.5-%68.75 positive effects at the end of the fourth day, %45.12-%60.89 positive effects on healing steatosis hepatis at the end of the twentieth day respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Dust Effect on The Performance of Optical Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Fadel Abdul-Zahra Murad

    2017-11-01

    Full Text Available In this paper wireless optical communication system (FSO is designed through the use of software (Optisystem . The paper also study  the effect of atmospheric dust on the performance of communication system (FSO, the effect of dust concentration on the visibility by taking a different concentrations of dust (9, 20, 40, 60, 80 100, 120 gm / month / m2 . The effect of the visibility on the attenuation of dust concentration on each of these concentrations , and calculate attenuation of dust for the  wavelengths  (784 nm, 1550 nm. The Paper also deals with effect of the transmitted laser  power on the transmitter range (propagation distance where five different values of transmitted laser power (10mw, 20mw, 30mw, 40mw, 50mw are taken  and the study calculates the maximum transmitter range of  each value of the transmitted power under the influence of attenuation atmospheric dust concentrations for each concentration of dust used and also for the two wavelengths (1550nm, 784nm.

  3. Study of Tungsten effect on CFETR performance

    Science.gov (United States)

    Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration

    2017-10-01

    An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).

  4. OPAL shield design performance assessment. Comparison of measured dose rates against the corresponding design calculated values. A designer perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brizuela, Martin; Albornoz, Felipe [INVAP SE, Av. Cmte. Piedrabuena, Bariloche (Argentina)

    2012-03-15

    A comparison of OPAL shielding calculations against measurements carried out during Commissioning, is presented for relevant structures such as the reactor block, primary shutters, neutron guide bunker, etc. All the results obtained agree very well with the measured values and contribute to establish the confidence on the calculation tools (MCNP4, DORT, etc.) and methodology used for shielding design. (author)

  5. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  6. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage

    DEFF Research Database (Denmark)

    Aarup, Lasse Rye; Nahum, Alan E; Zacharatou, Christina

    2009-01-01

    PURPOSE: To evaluate against Monte-Carlo the performance of various dose calculations algorithms regarding lung tumour coverage in stereotactic body radiotherapy (SBRT) conditions. MATERIALS AND METHODS: Dose distributions in virtual lung phantoms have been calculated using four commercial Treatm...... target dose, the AAA(Ecl) and CCC(OMP) algorithms appear to be adequate alternatives to MC....

  7. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600-MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600-MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV

  8. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurements of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV. (auth)

  9. Background music: effects on attention performance.

    Science.gov (United States)

    Shih, Yi-Nuo; Huang, Rong-Hwa; Chiang, Hsin-Yu

    2012-01-01

    Previous studies indicate that noise may affect worker attention. However, some background music in the work environment can increase worker satisfaction and productivity. This study compared how music with, and without, lyrics affects human attention. One hundred and two participants, aged 20-24 years, were recruited into this study. Fifty-six males and 46 females participated in this study. Background music with, and without lyrics, was tested for effects on listener concentration in attention testing using a randomized controlled trial (RCT) study. The comparison results revealed that background music with lyrics had significant negative effects on concentration and attention. The findings suggest that, if background music is played in the work environment, music without lyrics is preferable because songs with lyrics are likely to reduce worker attention and performance.

  10. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations

    Science.gov (United States)

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-01

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  11. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1968-08-01

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances

  12. Consideration of relativistic effects in band structure calculations based on the empirical tight-binding method

    International Nuclear Information System (INIS)

    Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.

    1988-01-01

    The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available

  13. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1968-08-15

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances.

  14. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments

    International Nuclear Information System (INIS)

    Aydarous, A. Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 μm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 μm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed. (authors)

  15. A track length estimator method for dose calculations in low-energy X-ray irradiations. Implementation, properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, F.; Delaire, F.; Letang, J.M.; Sarrut, D.; Smekens, F.; Freud, N. [Lyon-1 Univ. - CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Centre Leon Berard (France); Mittone, A.; Coan, P. [LMU Munich (Germany). Dept. of Physics; LMU Munich (Germany). Faculty of Medicine; Bravin, A.; Ferrero, C. [European Synchrotron Radiation Facility, Grenoble (France); Gasilov, S. [LMU Munich (Germany). Dept. of Physics

    2015-05-01

    The track length estimator (TLE) method, an 'on-the-fly' fluence tally in Monte Carlo (MC) simulations, recently implemented in GATE 6.2, is known as a powerful tool to accelerate dose calculations in the domain of low-energy X-ray irradiations using the kerma approximation. Overall efficiency gains of the TLE with respect to analogous MC were reported in the literature for regions of interest in various applications (photon beam radiation therapy, X-ray imaging). The behaviour of the TLE method in terms of statistical properties, dose deposition patterns, and computational efficiency compared to analogous MC simulations was investigated. The statistical properties of the dose deposition were first assessed. Derivations of the variance reduction factor of TLE versus analogous MC were carried out, starting from the expression of the dose estimate variance in the TLE and analogous MC schemes. Two test cases were chosen to benchmark the TLE performance in comparison with analogous MC: (i) a small animal irradiation under stereotactic synchrotron radiation therapy conditions and (ii) the irradiation of a human pelvis during a cone beam computed tomography acquisition. Dose distribution patterns and efficiency gain maps were analysed. The efficiency gain exhibits strong variations within a given irradiation case, depending on the geometrical (voxel size, ballistics) and physical (material and beam properties) parameters on the voxel scale. Typical values lie between 10 and 103, with lower levels in dense regions (bone) outside the irradiated channels (scattered dose only), and higher levels in soft tissues directly exposed to the beams.

  16. Calculation of the effective environmental dose rate for ESR and luminescence dating

    International Nuclear Information System (INIS)

    Brennan, B.J.

    2001-01-01

    The determination of the age of a sample using luminescence and ESR dating techniques requires knowledge of the sample's average effective environmental dose rate due to natural radiation sources (alpha, beta, gamma, and cosmic), and age estimates can never be more accurate than the estimate of this dose rate. The estimation process is often complicated by spatial and temporal inhomogeneities in the distribution of natural radiation sources. This paper discusses applications of radiation physics in modelling the effects of these inhomogeneities to ensure accurate estimation of the average dose rate for the sample. For natural alpha, beta, and gamma sources, 'dose point kernels' are employed in calculations using an assumed model for the spatial and temporal dependence of source concentrations. These three types of radiation have rather different penetration properties, with their typical effective ranges being multiples of 10 micrometre, 1 mm, and 100 mm respectively. For each type of radiation, applications are discussed where spatial inhomogeneity in the distribution of sources around and in a sample has a serious effect on the average dose rate to the sample. In some cases, (e.g. gamma dose estimation in 'lumpy' environments) lack of detailed knowledge precludes accurate modelling of the site for a particular sample, but useful statistical information can still be obtained. Temporal variation of radioactive source concentrations is usually coupled with spatial effects and can arise from processes such as parent-daughter disequilibrium, uptake or leaching of sources, or variation in burial depth or water saturation. Again, calculations based non a known or assumed history can be employed to obtain a time-averaged dose rate for a sample. The accuracy with which these calculations can reflect the true environmental dose rate is limited principally by the reliability of the model assumed, which in turn depends on the state of knowledge of the site and its history

  17. Nuisance levels of noise effects radiologists' performance

    Science.gov (United States)

    McEntee, Mark F.; Coffey, Amina; Ryan, John; O'Beirne, Aaron; Toomey, Rachel; Evanoff, Micheal; Manning, David; Brennan, Patrick C.

    2010-02-01

    This study aimed to measure the sound levels in Irish x-ray departments. The study then established whether these levels of noise have an impact on radiologists performance Noise levels were recorded 10 times within each of 14 environments in 4 hospitals, 11 of which were locations where radiologic images are judged. Thirty chest images were then presented to 26 senior radiologists, who were asked to detect up to three nodular lesions within 30 posteroanterior chest x-ray images in the absence and presence of noise at amplitude demonstrated in the clinical environment. The results demonstrated that noise amplitudes rarely exceeded that encountered with normal conversation with the maximum mean value for an image-viewing environment being 56.1 dB. This level of noise had no impact on the ability of radiologists to identify chest lesions with figure of merits of 0.68, 0.69, and 0.68 with noise and 0.65, 0.68, and 0.67 without noise for chest radiologists, non-chest radiologists, and all radiologists, respectively. the difference in their performance using the DBM MRMC method was significantly better with noise than in the absence of noise at the 90% confidence interval (p=0.077). Further studies are required to establish whether other aspects of diagnosis are impaired such as recall and attention and the effects of more unexpected noise on performance.

  18. Dehydration: physiology, assessment, and performance effects.

    Science.gov (United States)

    Cheuvront, Samuel N; Kenefick, Robert W

    2014-01-01

    This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill). © 2014 American Physiological Society.

  19. Evaluating performance measures to determine training effectiveness

    International Nuclear Information System (INIS)

    Klemm, R.W.; Feiza, A.S.

    1987-01-01

    This research was conceived and dedicated to helping the CECo training organization become a more integrated part of the corporate business. The target population for this study was nuclear and fossil generating station employees who directly impacted the production of electricity. The target sample (n = 150) included: instrument, mechanical, and electrical maintenance personnel; control room operators; engineers, radiation chemists, and other technical specialists; and equipment operators and attendants. A total of four instruments were utilized by this study. Three instruments were administered to the generating station personnel. These included a demographic form, a learning style profile, and a motivational style profile. The focal instrument, a performance skills rating form, was administered to supervisory personnel. Data analysis consisted of three major parts. Part one established internal consistency through Cronbach alpha statistics. Part two provides summary statistics and breakdown tables for important variables. Part three provides inferential statistics responding to the research questions. All six Performance Skills variables discriminated significantly between the trained and non-trained groups (p .001). In all cases, the mean value for the trained group exceeded the mean value for the non-trained group. Implications for further research indicate that training does have a quantifiable effect on job performance

  20. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    Science.gov (United States)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    Co-seismic deformation and stress changes, which reflect the elasticity of the earth, are very important in the earthquake dynamics, and also to other issues, such as the evaluation of the seismic risk, fracture process and triggering of earthquake. Lots of scholars have researched the dislocation theory and co-seismic deformation and obtained the half-space homogeneous model, half-space stratified model, spherical stratified model, and so on. Especially, models of Okada (1992) and Wang (2003, 2006) are widely applied in the research of calculating co-seismic and post-seismic effects. However, since both semi-infinite space model and layered model do not take the role of the earth curvature or heterogeneity or topography into consideration, there are large errors in calculating the co-seismic displacement of a great earthquake in its impacted area. Meanwhile, the computational methods of calculating the co-seismic strain and stress are different between spherical model and plane model. Here, we adopted the finite element method which could well deal with the complex characteristics (such as anisotropy, discontinuities) of rock and different conditions. We use the mash adaptive technique to automatically encrypt the mesh at the fault and adopt the equivalent volume force replace the dislocation source, which can avoid the difficulty in handling discontinuity surface with conventional (Zhang et al., 2015). We constructed an earth model that included earth's layered structure and curvature, the upper boundary was set as a free surface and the core-mantle boundary was set under buoyancy forces. Firstly, based on the precision requirement, we take a testing model - - a strike-slip fault (the length of fault is 500km and the width is 50km, and the slippage is 10m) for example. Because of the curvature of the Earth, some errors certainly occur in plane coordinates just as previous studies (Dong et al., 2014; Sun et al., 2012). However, we also found that: 1) the co

  1. Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.

    Science.gov (United States)

    Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo

    2012-10-18

    Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.

  2. Effects of creatine supplementation on exercise performance.

    Science.gov (United States)

    Demant, T W; Rhodes, E C

    1999-07-01

    While creatine has been known to man since 1835, when a French scientist reported finding this constitutent of meat, its presence in athletics as a performance enhancer is relatively new. Amid claims of increased power and strength, decreased performance time and increased muscle mass, creatine is being hailed as a true ergogenic aid. Creatinine is synthesised from the amino acids glycine, arginine and methionine in the kidneys, liver and pancreas, and is predominantly found in skeletal muscle, where it exists in 2 forms. Approximately 40% is in the free creatine form (Crfree), while the remaining 60% is in the phosphorylated form, creatine phosphate (CP). The daily turnover rate of approximately 2 g per day is equally met via exogenous intake and endogenous synthesis. Although creatine concentration (Cr) is greater in fast twitch muscle fibres, slow twitch fibres have a greater resynthesis capability due to their increased aerobic capacity. There appears to be no significant difference between males and females in Cr, and training does not appear to effect Cr. The 4 roles in which creatine is involved during performance are temporal energy buffering, spatial energy buffering, proton buffering and glycolysis regulation. Creatine supplementation of 20 g per day for at least 3 days has resulted in significant increases in total Cr for some individuals but not others, suggesting that there are 'responders' and 'nonresponders'. These increases in total concentration among responders is greatest in individuals who have the lowest initial total Cr, such as vegetarians. Increased concentrations of both Crfree and CP are believed to aid performance by providing more short term energy, as well as increase the rate of resynthesis during rest intervals. Creatine supplementation does not appear to aid endurance and incremental type exercises, and may even be detrimental. Studies investigating the effects of creatine supplementation on short term, high intensity exercises have

  3. Transfer of 137Cs in two farm ecosystems. Calculated effects of counter-measures following a postulated fallout land contamination

    International Nuclear Information System (INIS)

    Andersson, I.; Loensjoe, H.

    1988-01-01

    Studies were performed on two farms, B and R, in southern Sweden to calculate the consequences after a postulated nuclear reactor accident involving contamination of land by 137Cs (1 MBq per m2). The activity transfer to crops and animal products during the sixth year after the fallout was calculated for situations without and with counter-measures taken. The effects of counter-measures, fertilizing with potassium, deep-ploughing and also modified crop and animal production, were supposed to have reached all parts of the agricultural systems. Steady state conditions were assumed to be prevailing in both situations. Calculations based on the present (in 1985) production on the farms and compiled for the situation without any counter-measures taken, indicate the root uptake of 137Cs in the crops during the year to be 53 MBq (B) and 280 MBq (R) corresponding to 1.0 and 1.6 MBq per hectare, respectively. Through the crops 46 MBq (B) and 187 MBq (R) are ingested by the animals. On the basis of the mean daily activity intake per animal, a total of about 5 MBq on each farm is calculated to be transferred to the animal products (milk and meat). Related to the land area this corresponds to 0.09 and 0.03 MBq per hectare on B and R respectively. The mean internal radiation dose during the year per person on the farms through home-produced food is calculated to be 0.1 mSv (B) and 0.2 mSv (R), and the mean external radiation dose to people working on the farms to be the same as that from the natural background. Calculations for the year in the situation with counter-measures taken indicate that the transferred activity of 137Cs to the crops per hectare is reduced by factors of 10 (B) and 3 (R). The corresponding transfer to animal products is by factors of 23 or 45 (B) and 3 (R), although in the latter case the size of animal production is considerably increased. The external and possibly also the internal radiation doses to people on both farms will be reduced

  4. Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain

    DEFF Research Database (Denmark)

    Han, Xingxing; Liu, Deyou; Xu, Chang

    2018-01-01

    This paper evaluates the influence of atmospheric stability and topography on wind turbine performance and wake properties in complex terrain. To assess atmospheric stability effects on wind turbine performance, an equivalent wind speed calculated with the power output and the manufacture power...... and topography have significant influences on wind turbine performance and wake properties. Considering effects of atmospheric stability and topography will benefit the wind resource assessment in complex terrain....

  5. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    International Nuclear Information System (INIS)

    Ha, Huiun; Suh, Jungsoo

    2016-01-01

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR

  6. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Suh, Jungsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR.

  7. Cliff´s Delta Calculator: A non-parametric effect size program for two groups of observations

    Directory of Open Access Journals (Sweden)

    Guillermo Macbeth

    2011-05-01

    Full Text Available The Cliff´s Delta statistic is an effect size measure that quantifies the amount of difference between two non-parametric variables beyond p-values interpretation. This measure can be understood as a useful complementary analysis for the corresponding hypothesis testing. During the last two decades the use of effect size measures has been strongly encouraged by methodologists and leading institutions of behavioral sciences. The aim of this contribution is to introduce the Cliff´s Delta Calculator software that performs such analysis and offers some interpretation tips. Differences and similarities with the parametric case are analysed and illustrated. The implementation of this free program is fully described and compared with other calculators. Alternative algorithmic approaches are mathematically analysed and a basic linear algebra proof of its equivalence is formally presented. Two worked examples in cognitive psychology are commented. A visual interpretation of Cliff´s Delta is suggested. Availability, installation and applications of the program are presented and discussed.

  8. Ab-initio study on the absorption spectrum of color change sapphire based on first-principles calculations with considering lattice relaxation-effect

    Science.gov (United States)

    Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi

    2018-01-01

    In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.

  9. Calculations of kinetic isotope effects in the Hofmann eliminations of substituted (2-phenylethyl)trimethylammonium ions

    International Nuclear Information System (INIS)

    Lewis, D.E.; Sims, L.B.; Yamataka, H.; McKenna, J.

    1980-01-01

    Theoretical calculations of kinetic isotope effects (KIE) for the Hofmann elimination of the (2-phenylethyl)trimethylammonium ion (I,Z = H) have been carried out for an extensive series of transition-state models encompassing the Elcb-like region of the E2 mechanistic spectrum. The reaction coordinate employed corresponded to the irreversible fragmentation of the base-H'-C/sub β/-C/sub α/-N system, with proton transfer being the dominant contributor. Structural parameters (bond distances and angles) were related to the independent bond orders n/sub α-N/ and n/sub β-H'/ by empirical and semiempirical relationships. The most probable transition-state structure for the reaction was determined by interpolation of the experimental values for the β-D 2 and 15 N KIE into plots of the trends of the calculated KIE. The nonsolvated models obtained in this manner gave only poor agreement between calculated and experimental secondary deuterium (α-D 2 ) and leaving group deuterium [N(CD 3 )/sub x/(CH 3 )/sub 3-x/, x = 1 to 3) KIE; explicit consideration of differential solvation of the reactant and transition state afforded the most chemically reasonable resolution of these discrepancies. Using solvated models, transition-state structures were also determined for the Hofmann elimination of parasubstituted derivatives of I (Z = OCH 3 , Cl, CF 3 ). These transition states are related by a shift parallel to the central E2 diagogonal of an O'Ferrall-Jencks reaction diagram, as predicted by Thorton, indicating that, in the absence of other factors (differing solvent or base, etc.), the extent to which negative charge is accumulated at Cβ in the transition state is solely a factor of the leaving group. Both independent bond orders (n/sub α-N/ and n/sub β-H'/) exhibit a linear dependence on the sigma value of the substituent, allowing for the first time prediction of transition states

  10. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Directory of Open Access Journals (Sweden)

    Ian J Fiske

    Full Text Available BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5, and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high

  11. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Science.gov (United States)

    Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M

    2008-08-28

    Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.

  12. Buoyancy effects in overcooling transients calculated for the NRC pressurized thermal shock study

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Iyer, K.; Nourbakhsh, H.P.; Gherson, P.

    1986-05-01

    The thermal-hydraulic responses of three PWRs (Oconee, Calvert Cliffs, and H.B. Robinson), to postulated Pressurized Thermal Shock (PTS) scenarios, which were originally determined by RELAP5 and TRAC calculations, are being further developed here with regard to buoyancy/stratification effects. These three PWRs were the subject of the NRC PTS study, and the present results helped define the thermal-hydraulic conditions utilized in the fracture mechanics calculations carried out at ORNL. The computer program REMIX, which is based on the Regional Mixing Model (RMM), was the analytical tool employed, while Purdue's 1/2-Scale HPI Thermal Mixing facility provided the basis for experimental support. Important mixing and wall heat transfer regimes are delineated on the basis of these results. We conclude that stratification is important only in cases of complete loop stagnation and that mixed-convection effects are important for downcomer flow velocities below approx.0.25 m/s. The stratification is small in magnitude, however it is important in creating a recirculating flow pattern which activates the lower plenum, pump and loop seal volumes, to participate in the mixing process. This mixing process together with the heat input from the wall metal significantly impact the cooldown rates. Heat transfer in the plume region is dominated by forced convection. On the other hand, the presence of the Reactor Pressure Vessel (RPV) wall cladding and wall conduction significantly dampen the free convection effects in the low velocity, mixed-convection, regime. For the stagnant loop cases, all locations outside the plume region are included in this regime. In the presence of natural loop circulation and a uniformly distributed downcomer flow, the mixed convection regime is also expected, however, the forced convection regime can also be observed in highly asymmetric flow behavior

  13. A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology

    International Nuclear Information System (INIS)

    Hoseyni, Seyed Mohsen; Pourgol-Mohammad, Mohammad; Tehranifard, Ali Abbaspour; Yousefpour, Faramarz

    2014-01-01

    This paper describes a systematic framework for characterizing important phenomena and quantifying the degree of contribution of each parameter to the output in severe accident uncertainty assessment. The proposed methodology comprises qualitative as well as quantitative phases. The qualitative part so called Modified PIRT, being a robust process of PIRT for more precise quantification of uncertainties, is a two step process for identifying and ranking based on uncertainty importance in severe accident phenomena. In this process identified severe accident phenomena are ranked according to their effect on the figure of merit and their level of knowledge. Analytical Hierarchical Process (AHP) serves here as a systematic approach for severe accident phenomena ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the severe accident model(s) used to represent the important phenomena. The methodology uses subjective justification by evaluating available information and data from experiments, and code predictions for this step. The quantitative part utilizes uncertainty importance measures for the quantification of the effect of each input parameter to the output uncertainty. A response surface fitting approach is proposed for estimating associated uncertainties with less calculation cost. The quantitative results are used to plan in reducing epistemic uncertainty in the output variable(s). The application of the proposed methodology is demonstrated for the ACRR MP-2 severe accident test facility. - Highlights: • A two stage framework for severe accident uncertainty analysis is proposed. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • Uncertainty importance measure quantitatively calculates effect of each uncertainty source. • Methodology is applied successfully on ACRR MP-2 severe accident test facility

  14. Development of an atmospheric diffusion numerical model for a nuclear facility. Numerical calculation method incorporating building effects

    International Nuclear Information System (INIS)

    Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi

    2002-01-01

    Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)

  15. Age and Practice Effects on Inter-manual Performance Asymmetry

    Directory of Open Access Journals (Sweden)

    Karen L Francis

    2015-01-01

    Full Text Available Manual dexterity declines with increasing age however, the way in which inter-manual asymmetry responds to aging is unclear. Our purpose was to determine the effect of age and practice on inter-manual performance asymmetry in an isometric force pinch line tracing task that varied in difficulty within segments. Thirty right handed participants, 5 males and 5 females in each of three age groups, young (Y20, young-old (O70, and old-old (O80, practiced an isometric force pinch task for 10 trials with each hand on each of five consecutive days. Inter-manual performance asymmetry of the right and left hands was analyzed with a repeated measures ANOVA of asymmetry with age groups, practice, task difficulty, and hand as factors. The within-individual magnitude of asymmetry was also analyzed with a repeated measures ANOVA of manual asymmetry calculated as an asymmetry index (AI. Post hoc pair-wise comparisons were performed when significance was found. We observed no inter-manual performance asymmetry on this isometric tracing task among any of the age groups, either in the hand performance differences or in the magnitude of the asymmetry index (AI. Age and practice interacted in terms of manual performance: the Y20 and O70 group improved accuracy and task time across the five days of practice but the O80 group did not. However, practice did not differentially affect the AI for accuracy or task time for any group. Accuracy of performance of the two hands was differentially affected by practice. All age groups exhibited poorer performance and larger AIs on the most difficult segments of the task (3 and 6 and this did not change with practice.

  16. Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)

  17. Effect of the embolization material in the dose calculation for stereotactic radiosurgery of arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Galván de la Cruz, Olga Olinca [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Lárraga-Gutiérrez, José Manuel, E-mail: jlarraga@innn.edu.mx [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía (Mexico); Moreno-Jiménez, Sergio [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); García-Garduño, Olivia Amanda [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía (Mexico); Celis, Miguel Angel [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico)

    2013-07-01

    It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.

  18. Effect of the embolization material in the dose calculation for stereotactic radiosurgery of arteriovenous malformations

    International Nuclear Information System (INIS)

    Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel; Moreno-Jiménez, Sergio; García-Garduño, Olivia Amanda; Celis, Miguel Angel

    2013-01-01

    It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs

  19. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Use of CPXSD for generation of effective fast multigroup libraries for pressure vessel fluence calculations

    International Nuclear Information System (INIS)

    Alpan, F. Arzu; Haghighat, Alireza

    2008-01-01

    Multigroup (i.e., broad-group) libraries play a significant role in the accuracy of transport calculations. There are several broad-group libraries available for particular applications. For example the 47-neutron (26 fast groups), 20-gamma-group BUGLE libraries are commonly used for light water reactor shielding and pressure vessel dosimetry problems. However, there is no publicly available methodology to construct group structures for a problem and objective of interest. Therefore, we have developed the Contribution and Point-wise Cross-Section Driven (CPXSD) methodology, which constructs effective fine-and broad-group structures. In this paper, we use the CPXSD methodology to construct broad-group structures for fast neutron dosimetry problems. It is demonstrated that the broad-group libraries generated from CPXSD constructed group structures, while only 14 groups (rather than 26 groups) in the fast energy range are in good agreement (similar to 1 %-2 %) with the fine-group library from which they were derived, in reaction rate calculations.

  1. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  2. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials

    International Nuclear Information System (INIS)

    Damla, N.; Baltas, H.; Celik, A.; Kiris, E.; Cevik, U.

    2008-01-01

    Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Z eff ), effective electron densities (N e ) and photon interaction cross section (σ a ) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)

  3. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle

    Science.gov (United States)

    Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng

    2016-05-01

    The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.

  4. Cardiovascular Effects of Altitude on Performance Athletes.

    Science.gov (United States)

    Shah, Ankit B; Coplan, Neil

    Altitude plays an important role in cardiovascular performance and training for athletes. Whether it is mountaineers, skiers, or sea-level athletes trying to gain an edge by training or living at increased altitude, there are many potential benefits and harms of such endeavors. Echocardiographic studies done on athletes at increased altitude have shown evidence for right ventricular dysfunction and pulmonary hypertension, but no change in left ventricular ejection fraction. In addition, 10% of athletes are susceptible to pulmonary hypertension and high-altitude pulmonary edema. Some studies suggest that echocardiography may be able to identify athletes susceptible to high-altitude pulmonary edema prior to competing or training at increased altitudes. Further research is needed on the long-term effects of altitude training, as repeated, transient episodes of pulmonary hypertension and right ventricular dysfunction may have long-term implications. Current literature suggests that performance athletes are not at higher risk for ventricular arrhythmias when training or competing at increased altitudes. For sea-level athletes, the optimal strategy for attaining the benefits while minimizing the harms of altitude training still needs to be clarified, although-for now-the "live high, train low" approach appears to have the most rationale.

  5. The considering of the slowing down effect in the formalism of probability tables. Application to the effective cross section calculation

    International Nuclear Information System (INIS)

    Bouhelal, O.K.A.

    1990-01-01

    The exact determination of the effective multigroup cross sections imposes the numerical solution of the slowing down equation on a very fine energy mesh. Given the complexity of these calculations, different approximation methods have been developed but without a satisfactory treatment of the slowing-down effect. The usual methods are essentially based on interpolations using precalculated tables. The models that use the probability tables allow to reduce the amount of data and the computational effort. A variety of methods proposed by Soviets, then by Americans, and finally the French method, based on the ''moments of a probability distribution'' are incontestably valid within the framework of the statistical hypothesis. This stipulates that the collision densities do not depend on cross section and there is no ambiguity in the effective cross section calculation. The objective of our work is to show that the non statistical phenomena, such as the slowing-down effect which is taken into account, can be described by probability tables which are able to represent the neutronic values and collision densities. The formalism involved in the statistical hypothesis, is based on the Gauss quadrature of the cross sections moments. In the non-statistical hypothesis we introduce the crossed probability tables using the quadratures of double integrals of cross sections, comments. Moreover, a mathematical formalism allowing to establish a relationship between the crossed probability tables and the collision densities was developed. This method was applied on uranium-238 in the range of resolved resonances where the slowing down effect is significant. Validity of the method and the analysis of the obtained results are studied through a reference calculation based on a solution of a discretized slowing down equation using a very fine mesh in which each microgroup can be correctly defined via the statistical probability tables. 42 figs., 32 tabs., 49 refs. (author)

  6. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  7. Density-density functionals and effective potentials in many-body electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, Fernando A.; Kent, Paul R.

    2008-01-01

    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.

  8. Numerical Calculation of Coherent Synchrotron Radiation Effects Using TraFiC4

    International Nuclear Information System (INIS)

    Kabel, Andreas C.

    2000-01-01

    Coherent synchrotron radiation (CSR) occurs when short bunches travel on strongly bent trajectories. Its effects on high-quality beams can be severe and are well understood qualitatively. For quantitative results, however, one has to rely on numerical methods. There exist several simulation codes utilizing different approaches. The authors describe in some detail the code TraFiC 4 developed at DESY for design and analysis purposes, which approaches the problem from first principles and solves the equations of motion either perturbatively or self-consistently. They present some calculational results and comparison with experimental data. Also, they give examples of how the code can be used to design beamlines with minimal emittance growth due to CSR

  9. Land Subsidence Prediction by Back Calculation Method and its Effects on Sewage Network

    Directory of Open Access Journals (Sweden)

    Mohammad Mohsen Toufigh

    2009-03-01

    Full Text Available Groundwater overdraft is one of the main reasons of land subsidence. Differential subsidence leads to earth fissures and damages to structures, roads, railroads, pipelines, irrigation canals, and sewage networks. In order to simulate land subsidence due to groundwater overdraft, a fully coupled finite element consolidation model was developed. Formulation of finite element was based on Biot three-dimensional consolidation theory. Land subsidence studies inRafsanjanCitywere conducted by collecting and analyzing data on geology, geophysics, hydrology, soil properties, and observed land subsidence. Due to lack of sufficient experimental data about different soil profiles, land subsidence monitoring and back calculation were used in several spots to obtain the necessary data for use in other places. A computer model was finally developed to predict the subsidence of the city and its effects on the sewage network were studied.

  10. Calculation of the effects of pumping, divertor configuration and fueling on density limit in a tokamak model problem

    International Nuclear Information System (INIS)

    Stacey, W. M.

    2001-01-01

    Several series of model problem calculations have been performed to investigate the predicted effect of pumping, divertor configuration and fueling on the maximum achievable density in diverted tokamaks. Density limitations due to thermal instabilities (confinement degradation and multifaceted axisymmetric radiation from the edge) and to divertor choking are considered. For gas fueling the maximum achievable density is relatively insensitive to pumping (on or off), to the divertor configuration (open or closed), or to the location of the gas injection, although the gas fueling rate required to achieve this maximum achievable density is quite sensitive to these choices. Thermal instabilities are predicted to limit the density at lower values than divertor choking. Higher-density limits are predicted for pellet injection than for gas fueling

  11. Calculations of kinetic isotope effects in the syn-eliminations of (2-phenylethyl)dimethylamine oxides

    International Nuclear Information System (INIS)

    Shafiei-Kermani, H.R.

    1987-01-01

    Transition state theory (TST) calculations of kinetic isotope effects (KIE) for the syn-elimination of (2-phenylethyl)dimethylamine oxides have been carried out for a series of transition state (TS) models encompassing both E1-like and E1cB-like regions of the E2 mechanistic spectrum. A large number of different reaction coordinates were explored for both unsolvated and for coordination of solvent dimethylsulfoxide in the cyclic transition state models. The models of reaction for both solvated and unsolvated models of proton transfer are presented. A simplified method for easier initial screening of reaction coordinate contributions is developed, discussed, and found to produce accurate approximations to the full model KIE values. Both unsolvated and solvated models show E1-like E2 mechanism and the calculated values from both models are in extremely good agreement with experimentally measured KIE. Both models were used to investigate para-substituted derivatives (Z = CL, OCH 3 ) of the parent compound (Z = H). The transition states are related by a shift in structure parallel to the central E2 diagonal of an O'Ferrall-Jencks-Fry reaction diagram, as predicted by Thornton, indicating that in the absence of other factors, the extent to which negative charge is accumulated at C/sub β/ in the transition state is a function primarily of the leaving group. All of the structural parameters such as bond distances and bond angles were related to independent bond orders. Beta-deuterium isotope effects produced by both solvated and nonsolvated models are temperature dependent

  12. Burnout calculation

    International Nuclear Information System (INIS)

    Li, D.

    1980-01-01

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru

  13. Effects of recent modeling developments in prompt burst hypothetical core disruptive accident calculations

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Abramson, P.B.

    1978-01-01

    The main objective of the development of multifield, multicomponent thermohydrodynamic computer codes is the detailed study of hypothetical core disruptive accidents (HCDAs) in liquid-metal fast breeder reactors. The main contributions such codes are expected to make are the inclusion of detailed modeling of the relative motion of liquid and vapor (slip), the inclusion of modeling of nonequilibrium/nonsaturation thermodynamics, and the use of more detailed neutronics methods. Scoping studies of the importance of including these phenomena performed with the parametric two-field, two-component coupled neutronic/thermodynamic/hydrodynamic code FX2-TWOPOOL indicate for the prompt burst portion of an HCDA that: (1) Vapor-liquid slip plays a relatively insignificant role in establishing energetics, implying that analyses that do not model vapor-liquid slip may be adequate. Furthermore, if conditions of saturation are assumed to be maintained, calculations that do not permit vapor-liquid slip appear to be conservative. (2) The modeling of conduction-limited fuel vaporization and condensation causes the energetics to be highly sensitive to variations in the droplet size (i.e., in the parametric values) for the sizes of interest in HCDA analysis. Care must therefore be exercised in the inclusion of this phenomenon in energetics calculations. (3) Insignificant differences are observed between the use of space-time kinetics (quasi-static diffusion theory) and point kinetics, indicating again that point kinetics is normally adequate for analysis of the prompt burst portion of an HCDA. (4) No significant differences were found to result from assuming that delayed neutron precursors remain stationary where they are created rather than assuming that they move together with fuel. (5) There is no need for implicit coupling between the neutronics and the hydrodynamics/thermodynamics routines, even outside the prompt burst portion

  14. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of

  15. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    Science.gov (United States)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  16. CPV performance versus soiling effects: Cleaning policies

    Science.gov (United States)

    Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.

    2012-10-01

    In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.

  17. Effects of buffer thickness on ATW blanket performances

    International Nuclear Information System (INIS)

    Yang, Won Sik

    2001-01-01

    This paper presents the preliminary results of target and buffer design studies for a lead-bismuth eutectic (LBE) cooled accelerator transmutation of waste (ATW) system, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using an 840 MWt LBE cooled ATW design, the effects of buffer thickness on the blanket performances have been studied. Varying the buffer thickness for a given blanket configuration, system performances have been estimated by a series of calculations using MCNPX and REBUS-3 codes. The effects of source importance change are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. As the irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. The results show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable

  18. Experimental method for calculation of effective doses in interventional radiology; Metodo experimental para calculo de dosis efectivas en radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz Lblanca, M. D.; Diaz Romero, F.; Casares Magaz, O.; Garrido Breton, C.; Catalan Acosta, A.; Hernandez Armas, J.

    2013-07-01

    This paper proposes a method that allows you to calculate the effective dose in any interventional radiology procedure using an anthropomorphic mannequin Alderson RANDO and dosimeters TLD 100 chip. This method has been applied to an angio Radiology procedure: the biliary drainage. The objectives that have been proposed are: to) put together a method that, on an experimental basis, allows to know dosis en organs to calculate effective dose in complex procedures and b) apply the method to the calculation of the effective dose of biliary drainage. (Author)

  19. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  20. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    Science.gov (United States)

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  1. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  2. Scattering effects on the performance of carbon nanotube field effect transistor in a compact model

    Science.gov (United States)

    Hamieh, S. D.; Desgreys, P.; Naviner, J. F.

    2010-01-01

    Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.

  3. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2005-01-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions

  4. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Science.gov (United States)

    Findlay, R. P.; Dimbylow, P. J.

    2005-08-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  5. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2005-08-21

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  6. [Development and effectiveness of a drug dosage calculation training program using cognitive loading theory based on smartphone application].

    Science.gov (United States)

    Kim, Myoung Soo; Park, Jung Ha; Park, Kyung Yeon

    2012-10-01

    This study was done to develop and evaluate a drug dosage calculation training program using cognitive loading theory based on a smartphone application. Calculation ability, dosage calculation related self-efficacy and anxiety were measured. A nonequivalent control group design was used. Smartphone application and a handout for self-study were developed and administered to the experimental group and only a handout was provided for control group. Intervention period was 4 weeks. Data were analyzed using descriptive analysis, χ²-test, t-test, and ANCOVA with the SPSS 18.0. The experimental group showed more 'self-efficacy for drug dosage calculation' than the control group (t=3.82, psmartphone application is effective in improving dosage calculation related self-efficacy and calculation ability. Further study should be done to develop additional interventions for reducing anxiety.

  7. Effects of weight training on power performance

    Directory of Open Access Journals (Sweden)

    KAUKAB AZEEM

    2011-06-01

    Full Text Available Introduction: Harris et al. declared that some researchers claim the use of 80% of 1RM is recommended toimprove power characteristics, while others suggest 50-60% of 1RM and below. Kawamori and Haff agreed withHarris et al., stating that there is inconsistency in the optimal load to produce the highest power. They claimedthat some studies that used untrained subjects, single joint exercises, and upper-body exercises reported 30-45%of 1RM, while others using trained subjects, multi-joint exercises, and lower-body exercises reported 30-70% of1RM.Method: The purpose of the study was to find out the effect of weight training in the developing the powerperformance among 20 students between 16 to 18 years of age enrolled for physical education course for theacademic year 2010, were selected as subjects. Pre and post test was conducted for the group on 1RM of squats,bench press and dead lift. 45 minutes weight training program, twice a week, for 12 weeks was given to thesubjects. The statistical tools used were mean, SD, and ‘t’ –test.Results & Discussion: The analysis of the data reveals that the subjects with the training have shownimprovement in the performance of squats from pre to post test with the mean and S.D being (76.00, 26.59 and(93.75, 27.19 respectively. The improvement is quite encouraging and highly significant (p<0.0001.With regard to bench press exercise of the subjects the mean and S.D in the pre and post test were (53.00, 23.14and (70.25, 23.37. The data clearly speaks of an improved performance from pre to post scores of the studentswhich is highly significant at (p<0.0001. The mean and S.D in the pre and post test were (104.00, 28.31 and(135.00, 24.97 respectively with respect to dead lift exercise. There is an increase in the power of the studentswhich is encouraging and highly significant with (p<0.0001.Conclusions: It is concluded from this study, that there was a marked improvement in the performance of thestudents in

  8. Improved algorithms for the calculation of resolved resonance cross sections with applications to the structural Doppler effect in fast reactors

    International Nuclear Information System (INIS)

    Hwang, R.N.; Toppel, B.J.; Henryson, H. II.

    1980-10-01

    Motivated by a need for an economical yet rigorous tool which can address the computation of the structural material Doppler effect, an extremely efficient improved RABANL capability has been developed utilizing the fact that the Doppler broadened line shape functions become essentially identical to the natural line shape functions or Lorentzian limits beyond about 100 Doppler widths from the resonance energy, or when the natural width exceeds about 200 Doppler widths. The computational efficiency has been further enhanced by preprocessing or screening a significant number of selected resonances during library preparation into composition and temperature independent smooth background cross sections. The resonances which are suitable for such pre-processing are those which are either very broad or those which are very weak. The former contribute very little to the Doppler effect and their self-shielding effect can readily be averaged into slowly varying background cross section data, while the latter contribute very little to either the Doppler or to self-shielding effects. To illustrate the accuracy and efficiency of the improved RABANL algorithms and resonance screening techniques, calculations have been performed for two systems, the first with a composition typical of the STF converter region and the second typical of an LMFBR core composition. Excellent agreement has been found for RABANL compared to the reference Monte Carlo solution obtained using the code VIM, and improved results have also been obtained for the narrow resonance approximation in the ultra-fine-group option of MC 2 -2

  9. Ethanol-metabolizing pathways in deermice. Estimation of flux calculated from isotope effects

    International Nuclear Information System (INIS)

    Alderman, J.; Takagi, T.; Lieber, C.S.

    1987-01-01

    The apparent deuterium isotope effects on Vmax/Km (D(V/K] of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH] were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels

  10. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    International Nuclear Information System (INIS)

    Fuenzalida, M.; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C.

    2011-01-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  11. Calculation of effective dose in whole body in dependence of angle of collimator for photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica

    2011-07-01

    The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)

  12. Effective Approach to Calculate Analysis Window in Infinite Discrete Gabor Transform

    Directory of Open Access Journals (Sweden)

    Rui Li

    2018-01-01

    Full Text Available The long-periodic/infinite discrete Gabor transform (DGT is more effective than the periodic/finite one in many applications. In this paper, a fast and effective approach is presented to efficiently compute the Gabor analysis window for arbitrary given synthesis window in DGT of long-periodic/infinite sequences, in which the new orthogonality constraint between analysis window and synthesis window in DGT for long-periodic/infinite sequences is derived and proved to be equivalent to the completeness condition of the long-periodic/infinite DGT. By using the property of delta function, the original orthogonality can be expressed as a certain number of linear equation sets in both the critical sampling case and the oversampling case, which can be fast and efficiently calculated by fast discrete Fourier transform (FFT. The computational complexity of the proposed approach is analyzed and compared with that of the existing canonical algorithms. The numerical results indicate that the proposed approach is efficient and fast for computing Gabor analysis window in both the critical sampling case and the oversampling case in comparison to existing algorithms.

  13. Specific Effects of Ionizing Energy on the Displacement Damage Calculation in Insulators

    International Nuclear Information System (INIS)

    Vila, R.; Mota, F.; Ortiz, C. J.

    2012-01-01

    The level of damage expected in functional materials for future fusion reactors is generally much lower than structural materials, but the degradation of their physical properties is also generally observed at very low dose levels compared to the latter. Normally the properties of interest (DC Electrical resistivity, HF dielectric absorption, optical transmission etc.) degrade long before mechanical integrity is an issue. This weakness is in part related to the more important effects of ionizing energy on both, covalent and ionic, insulators or semiconductors. As irradiation in fission and fusion reactors (even spallation sources) also involves the participation of gamma radiation, it has to be taken into account for total damage calculation. In the case of ions, the energy partition provides the amount of electronic (ionizing) energy lost in the material. In general and regarding radiation, insulating materials can be divided in two groups depending on whether they experience radiolysis, (i.e. purely ionizing radiation can produce noticeable amounts of atomic displacements) or not. First group includes for example alkali halides and fluorides. But, although radiolysis is negligible in the second group (radiation-hard materials), collateral effects of ionizing radiation have been observed (when combined with displacement damage). Therefore it is important to make some comments about the concept and use of dpa (displacements per atom) in this large family of materials

  14. Comparison of the observed and calculated clear sky greenhouse effect - Implications for climate studies

    Science.gov (United States)

    Kiehl, J. T.; Briegleb, B. P.

    1992-01-01

    The clear sky greenhouse effect is defined in terms of the outgoing longwave clear sky flux at the top of the atmosphere. Recently, interest in the magnitude of the clear sky greenhouse effect has increased due to the archiving of the clear sky flux quantity through the Earth Radiation Budget Experiment (ERBE). The present study investigates to what degree of accuracy this flux can be analyzed by using independent atmospheric and surface data in conjunction with a detailed longwave radiation model. The conclusion from this comparison is that for most regions over oceans the analyzed fluxes agree to within the accuracy of the ERBE-retrieved fluxes (+/- 5 W/sq m). However, in regions where deep convective activity occurs, the ERBE fluxes are significantly higher (10-15 W/sq m) than the calculated fluxes. This bias can arise from either cloud contamination problems or variability in water vapor amount. It is argued that the use of analyzed fluxes may provide a more consistent clear sky flux data set for general circulation modeling validation. Climate implications from the analyzed fluxes are explored. Finally, results for obtaining longwave surface fluxes over the oceans are presented.

  15. Effects of tropospheric aerosols on radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.

    1994-08-01

    The surface fluxes in the wavelength range 175 to 735nm have been calculated for an atmosphere which contains a uniformly mixed aerosol layer of thickness 1km at the earth's surface. Two different aerosol types were considered, a rural aerosol, and an urban aerosol. The visibility range for the aerosol layers was 95 to 15 km. Surface flux ratios (15km/95km) were in agreement with previously published results for the rural aerosol layer to within about 2%. The surface flux ratios vary from 7 to 14% for the rural aerosol layer and from 13 to 23% for the urban aerosol layer over the wavelength range. A tropospheric radiative forcing of about 1.3% of the total tropospheric flux was determined for the 95km to 15km visibility change in the rural aerosol layer, indicating the potential of tropospheric feedback effects on the surface flux changes. This effect was found to be negligible for the urban aerosol layer. Stratospheric layer heating rate changes due to visibility changes in either the rural or urban aerosol layer were found to be negligible

  16. Effects of projection and background correction method upon calculation of right ventricular ejection fraction using first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Caplin, J.L.; Flatman, W.D.; Dymond, D.S.

    1985-01-01

    There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)

  17. Evaluation of tension stiffening effect on the crack width calculation of flexural RC members

    Directory of Open Access Journals (Sweden)

    Said M. Allam

    2013-06-01

    Full Text Available Building codes consider the tension stiffening when calculating the crack width of the flexural members. A simple analytical procedure is proposed for the determination of forces, stresses and strains acting on a reinforced concrete section subjected to flexure considering the concrete contribution in tension up to tensile concrete strain corresponding to the cracking strength of concrete. This analytical method gives the minimum value (lower bound of tension stiffening. Also, a commercial Finite Element Program (ABAQUS 2007 was used to perform non-linear analysis in order to evaluate the total contribution of the tensioned concrete in carrying loads which may be considered as the upper bound of tension stiffening. In addition, a comparison is carried out among the different codes using four reinforced concrete rectangular models to compare and evaluate the tension stiffening with proposed analytical lower bound tension stiffening and upper bound as obtained by ABAQUS. The models include different percentages of flexural steel ratio. The comparison revealed that the codes’ equations always consider tension stiffening lying between lower and upper bound of tension stiffening proposed in this study. Also, the study showed that the tension stiffening decreases with the increase of the percentage of the flexural reinforcement ratio.

  18. Bullying effect on student’s performance

    Directory of Open Access Journals (Sweden)

    Felipe Resende Oliveira

    2018-01-01

    Full Text Available This article seeks to measure the effect of bullying in math scores of students in the 6th grade of public (Nansel et al., 2001. school in the city of Recife, Pernambuco, Brazil with the use of data from a survey by Joaquim Nabuco Foundation in 2013. The methodology applied is Propensity Score Matching (PSM in order to compare students who reported having suffered bullying with a control group, consisting of students who did not suffer bullying. Specifically, we aim to understand the role of social emotional skills and their potential influence on bullying. The results suggest that bullying has a negative impact on performance in mathematics and that social emotional skills can help students deal with bullying. Several econometric techniques were used to circumvent endogeneity problems. To identify personality traits, we use a factor model that also serves to correct for prediction error bias. The sensitivity analysis indicated potential problems of omitted variables. The results indicate that anti-bullying programs should take into account social emotional skills. JEL classification: I21, I28, J24, Keywords: Bullying, Propensity Score Matching, Impact evaluation, Personality traits, Mathematics

  19. The effect of spatial discretization in LWR cell calculations with HELIOS 1.9

    International Nuclear Information System (INIS)

    Merk, B.; Koch, R.

    2008-01-01

    Cell and lattice calculations are the basis for all deterministic static and transient 3D full core calculations. The spatial discretization used for the cell and lattice calculations influences the results for these transport solutions significantly. The arising differences in the neutron flux distribution due to different spatial discretization are demonstrated. These differences in the flux distribution cause significant changes in the kinf value. An evaluation of the kinf value for the case of infinitely fine discretization is made. The influence of the discretization on the calculation of homogenized few group cross sections which are forwarded to the 3D full core calculations is investigated. Strategies for improving the discretization are developed and their influence on the calculation time is evaluated. (Authors)

  20. Effects of aerosol polydispersity on theoretical calculations of unattached fractions of radon progeny

    International Nuclear Information System (INIS)

    Bandi, F.; Khan, A.; Phillips, C.R.

    1987-01-01

    Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol