WorldWideScience

Sample records for perform cell biology

  1. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  2. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  3. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Developmental biology, the stem cell of biological disciplines

    OpenAIRE

    Gilbert, Scott F.

    2017-01-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  5. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  7. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  8. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  10. cellPACK: a virtual mesoscope to model and visualize structural systems biology.

    Science.gov (United States)

    Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J

    2015-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.

  11. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  12. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  13. Studying cell biology in the skin.

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-11-15

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  15. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    Science.gov (United States)

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  16. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  17. AFM Nanotools for Surgery of Biological Cells

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N [Department of Physics, Claverton Down, University of Bath, Bath, BA2 7AY (United Kingdom); Guy, R H, E-mail: jdb28@bath.ac.uk [Department of Pharmacy and Pharmacology, Claverton Down, University of Bath, Bath, BA2 7AY (United Kingdom)

    2011-03-01

    Using a method of electron-beam induced deposition, we have been able to fabricate specialized AFM probes with application as 'nanotools' for the manipulation of biological structures ('nanosurgery'). We describe several such tools, including a 'nanoscalpel', 'nanoneedles' for probing intracellular structures, and a 'nanotome' which can separate surface layers from a biological structure. These applications are demonstrated by performing nanomanipulation on corneocyte cells from the outer layer of human skin.

  18. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  19. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  20. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  1. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  3. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  5. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  6. Cell illustrator 4.0: a computational platform for systems biology.

    Science.gov (United States)

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2011-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  7. Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances

    Energy Technology Data Exchange (ETDEWEB)

    Montaño-Machado, Vanessa, E-mail: vanessa.montano-machado.1@ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); Noël, Céline, E-mail: celine.noel@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Chevallier, Pascale, E-mail: pascale.chevallier@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Turgeon, Stéphane, E-mail: stephane.turgeon@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Houssiau, Laurent, E-mail: laurent.houssiau@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Pauthe, Emmanuel, E-mail: emmanuel.pauthe@u-cergy.fr [ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); and others

    2017-02-28

    Highlights: • Fibronectin/phosphorylcholine coatings on plasma deposited fluorocarbon films were created. • The effect of several coating techniques on the surface biological performances was evaluated. • XPS, DWCA, immunostaining and ToF-SIMS (imaging and depth profiling) techniques were applied. • Potential for cardiovascular applications was showed by endothelial cell and blood interactions. - Abstract: Coating medical devices with several bioactive molecules is an interesting approach to achieve specific biological targets upon the interaction of the biomaterial with the living environment. In this work, a fluorocarbon polymer (CF{sub x}) was first deposited by plasma treatment on stainless steel (SS) substrate and thereafter, coatings containing fibronectin (FN) and phosphorylcholine (PRC) were created for cardiovascular applications. These two biomolecules were chosen to promote endothelialization and to avoid thrombus formation, respectively. Adsorption and grafting techniques were applied – and combined – to accomplish 4 different coatings containing both molecules. However, big challenge was found to characterize a small molecule (PRC: 184 g/mol) interacting with a protein (FN: 450 kD). For the first time XPS, dynamic water contact angle, immunostaining and ToF-SIMS (imaging and depth profiling) analyses were combined to accomplish the characterization of such a coating. The most encouraging biological performances were obtained for samples where FN was grafted to the CF{sub x} film followed by the adsorption of PRC: proliferation of endothelial cells and hemocompatibility properties were observed. Promising coatings for cardiovascular applications were developed. The relevance of characterizing the coatings with high sensitive techniques and the further correlation with their biological performances were evidenced.

  8. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  9. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    Science.gov (United States)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  10. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Artificial cell mimics as simplified models for the study of cell biology.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  12. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    Science.gov (United States)

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  13. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  14. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  15. Cell-free synthetic biology: thinking outside the cell.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2012-05-01

    Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  17. TinkerCell: modular CAD tool for synthetic biology

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2009-01-01

    Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at . Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily

  18. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  19. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  20. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  1. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  2. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    Directory of Open Access Journals (Sweden)

    Zhenzhen eQiao

    2013-11-01

    Full Text Available Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e. uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes, the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

  3. Computer-aided design of biological circuits using TinkerCell.

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience

  4. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    TermehYousefi, Amin, E-mail: at.tyousefi@gmail.com [Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech) (Japan); Bagheri, Samira; Shahnazar, Sheida [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, Md. Habibur [Department of Computer Science and Engineering, University of Asia Pacific, Green Road, Dhaka-1215 (Bangladesh); Kadri, Nahrizul Adib [Department of Biomedical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-02-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. - Graphical abstract: This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well

  5. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  6. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  7. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  8. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electromagnetic effects - From cell biology to medicine.

    Science.gov (United States)

    Funk, Richard H W; Monsees, Thomas; Ozkucur, Nurdan

    2009-01-01

    In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.

  10. Seeing Cells: Teaching the Visual/Verbal Rhetoric of Biology

    Science.gov (United States)

    Dinolfo, John; Heifferon, Barbara; Temesvari, Lesly A.

    2007-01-01

    This pilot study obtained baseline information on verbal and visual rhetorics to teach microscopy techniques to college biology majors. We presented cell images to students in cell biology and biology writing classes and then asked them to identify textual, verbal, and visual cues that support microscopy learning. Survey responses suggest that…

  11. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  12. Biological 2-Input Decoder Circuit in Human Cells

    Science.gov (United States)

    2015-01-01

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2n outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions. PMID:24694115

  13. Biological 2-input decoder circuit in human cells.

    Science.gov (United States)

    Guinn, Michael; Bleris, Leonidas

    2014-08-15

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2(n) outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions.

  14. Evolving cell models for systems and synthetic biology.

    Science.gov (United States)

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  15. Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology.

    Science.gov (United States)

    Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S

    2014-12-02

    Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Cell biology of the Koji mold Aspergillus oryzae.

    Science.gov (United States)

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  17. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Molecular biology of the cell

    National Research Council Canada - National Science Library

    Alberts, Bruce; Walter, Peter; Raff, Martin; Roberts, Keith; Lewis, Julian; Johnson, Alexander

    2007-01-01

    .... By extracting fundamental concepts and meaning from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers...

  19. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Biological interaction of living cells with COSAN-based synthetic vesicles.

    Science.gov (United States)

    Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J

    2015-01-15

    Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.

  1. Tomography studies of biological cells on polymer scaffolds

    International Nuclear Information System (INIS)

    Thurner, P; Mueller, B; Sennhauser, U; Hubbell, J; Mueller, R

    2004-01-01

    Advances in cell biology and tissue engineering rely heavily on performing 2D cell culture experiments. Analysis of these is conventionally done with 2D imaging techniques such as light (LM) or electron microscopy (SEM), since they are readily available. Cells, however, might act significantly differently when cultured in 2D or 3D environments. In order to analyse cells in a 3D arrangement, new imaging techniques are necessary not only in order to visualize the periphery of the cell culture in reflection mode but also to perform qualitative and quantitative investigations of the inner parts. Synchrotron radiation micro-computed tomography (SRμCT) using hard x-rays was shown to be a promising tool that can be used for 3D cell culture visualization. SRμCT allows not only visualization of cell cultures in their native 3D environment but also use of the volumetric nature of this imaging procedure to evaluate the cells quantitatively. In our approach, cells were seeded on polymer yarns, stained and measured with SRμCT in absorption and in differential absorption contrast mode. A new segmentation procedure was developed and the measured volumetric data were quantitatively assessed. Quantification parameters included total cell volume, total yarn volume, cell volume density, which is the ratio of cell to yarn volume, and the radial cell mass distribution. The applied variation of the staining parameter of gold enhancement incubation time was shown to have significant influence on the cell volume density. Differential absorption contrast mode was found to provide similar but no additional information on the investigated sample. Using novel approaches of hierarchical volumetric imaging allows closure of the gap between imaging of whole organs and single cells and might be expanded to even higher resolutions, offering investigation of the cell machinery in closer detail

  2. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  3. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  4. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  5. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  6. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  7. Mesangial cell biology

    International Nuclear Information System (INIS)

    Abboud, Hanna E.

    2012-01-01

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  8. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Ki, S H; Park, J K; Sung, C; Lee, C B; Uhm, H; Choi, E H; Baik, K Y

    2016-01-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H 2 O 2 . This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  9. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  10. Quantitative stem cell biology: the threat and the glory.

    Science.gov (United States)

    Pollard, Steven M

    2016-11-15

    Major technological innovations over the past decade have transformed our ability to extract quantitative data from biological systems at an unprecedented scale and resolution. These quantitative methods and associated large datasets should lead to an exciting new phase of discovery across many areas of biology. However, there is a clear threat: will we drown in these rivers of data? On 18th July 2016, stem cell biologists gathered in Cambridge for the 5th annual Cambridge Stem Cell Symposium to discuss 'Quantitative stem cell biology: from molecules to models'. This Meeting Review provides a summary of the data presented by each speaker, with a focus on quantitative techniques and the new biological insights that are emerging. © 2016. Published by The Company of Biologists Ltd.

  11. High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP

    Directory of Open Access Journals (Sweden)

    Khaled Benkrid

    2012-01-01

    Full Text Available This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs, Graphics Processor Units (GPUs, and IBM’s Cell Broadband Engine (Cell BE, in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools, FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs.

  12. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  13. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  14. Automatic detection of biological cells

    International Nuclear Information System (INIS)

    Alves Da Costa, Caiuby

    1983-01-01

    The present research work has dealt with the analysis of biological cell images in general, and more specially with the cervical cells. This work was carried out in order to develop an automaton leading to a better prevention of cancer through automated mass screening. The device has been implemented on Motorola 68.000 microprocessor system. The automaton carries out cell nucleus analysis in several steps. The main steps are: - First: the automaton focuses on an individual cell nucleus among the smear's cell (about 10.000), - Second: it process each nucleus image. The digital processing yields geometrical of the nucleus (area and perimeter) for each cell. These data are stored in a local memory for further discriminant analysis by a microcomputer. In this way smears are classed in two groups: hale smears and uncertain smears. The automaton uses a wired logic for image acquisition and its software algorithms provide image reconstruction. The reconstruction algorithms are general purpose. Tests have proved that they can reconstruct any two dimensional images independently of its geometrical form. Moreover they can make the reconstruction of any image among the several images present in observation field. The processing times registered during the tests (for different cases) were situated, all of them, below three minutes for 10,000 images (each of them formed by an average of 450 pixels). The interest of the method is generality and speed. The only restriction is the primary device sensor (CCD linear array) length. Thus the automaton application can be extended beyond the biological image field. (author) [fr

  15. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  16. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  17. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  18. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  19. METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY

    Directory of Open Access Journals (Sweden)

    Paula Jouhten

    2012-10-01

    Full Text Available Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.

  20. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    Science.gov (United States)

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

  1. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques.

    Science.gov (United States)

    Volokhov, Dmitriy V; Graham, Laurie J; Brorson, Kurt A; Chizhikov, Vladimir E

    2011-01-01

    Mycoplasmas, particularly species of the genera Mycoplasma and Acholeplasma, are known to be occasional microbial contaminants of cell cultures that produce biologics. This presents a serious concern regarding the risk of mycoplasma contamination for research laboratories and commercial facilities developing and manufacturing cell-derived biological and biopharmaceutical products for therapeutic use. Potential undetected contamination of these products or process intermediates with mycoplasmas represents a potential safety risk for patients and a business risk for producers of biopharmaceuticals. To minimize these risks, monitoring for adventitious agents, such as viruses and mycoplasmas, is performed during the manufacture of biologics produced in cell culture substrates. The "gold standard" microbiological assay, currently recommended by the USP, EP, JP and the US FDA, for the mycoplasma testing of biologics, involves the culture of viable mycoplasmas in broth, agar plates and indicator cells. Although the procedure enables highly efficient mycoplasma detection in cell substrates and cell-derived products, the overall testing strategy is time consuming (a minimum of 28 days) and requires skilled interpretation of the results. The long time period required for these conventional assays does not permit their use for products with short shelf-lives or for timely 'go/no-go' decisions during routine in-process testing. PCR methodology has existed for decades, however PCR based and other alternative methods for mycoplasma detection have only recently been considered for application to biologics manufacture. The application of alternative nucleic acid-based, enzyme-based and/or recombinant cell-culture methods, particularly in combination with efficient sample preparation procedures, could provide advantages over conventional microbiological methods in terms of analytical throughput, simplicity, and turnaround time. However, a challenge to the application of alternative

  2. The changing world of modern cell biology.

    Science.gov (United States)

    Misteli, Tom

    2009-01-12

    Change is always ambiguous. There is the enticing prospect of novelty and better times ahead, but at the same time the concern of losing the good of the past. It is with these sentiments that I take over as the Editor-in-Chief from Ira Mellman who for a decade has cleverly and effectively lead the JCB. During this time he directed and oversaw an extensive modernization of the journal and guided it through dramatic changes in the publishing world. Ira lead the journal with unyielding dedication and enthusiasm and we in the cell biology community must thank him profoundly for his service. It is his work, together with the invaluable contribution of the best editorial board and the most dedicated professional editorial staff in the scientific publishing business, that allows me to now take over the stewardship of the JCB with a tremendous sense of excitement and determination to continue and expand the JCB's role as the leading journal in the cell biology community and as a trendsetter in the rapidly changing world of modern cell biology.

  3. Investigating the role of retinal Müller cells with approaches in genetics and cell biology.

    Science.gov (United States)

    Fu, Suhua; Zhu, Meili; Ash, John D; Wang, Yunchang; Le, Yun-Zheng

    2014-01-01

    Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.

  4. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  5. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    Science.gov (United States)

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  7. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  8. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  9. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.

  10. CellNet: Network Biology Applied to Stem Cell Engineering

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  11. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  13. The Emerging Cell Biology of Thyroid Stem Cells

    Science.gov (United States)

    Latif, Rauf; Minsky, Noga C.; Ma, Risheng

    2011-01-01

    Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219

  14. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  15. A proposal of collaborative education for biochemistry and cell biology teaching

    Directory of Open Access Journals (Sweden)

    A. A. Souza-Júnior

    2015-08-01

    Full Text Available INTRODUCTION: Currently students grow up in a world of digital tools that allow you to connect instantly with the world. At the same time, teachers face several challenges to increase student interest and learning efficiency. One such challenge is the pedagogical commitment of the density of biochemistry and cell biology contents, producing a conflict scenario, between meeting content and maintain the class quality. OBJECTIVES: From this perspective, this study aimed to evaluate the learning biochemistry and cell biology contents in high school classes of IFRN, using collaborative and digital tools in the Moodle. MATERIAL AND METHODS: The contents were offered using various tools such as video lectures, forums, questionnaires, portfolios, glossaries and electronic books. Then these tools were evaluated using an electronic form.  In addition to the tools, we evaluated the platform interaction, the performance of activities and the content gamification. RESULTS: The quantitative results revealed directly proportional relationship of the interaction of Moodle with the performance of activities. The content gamification was also assessed positively, with 61% of students considered good, very good or excellent. The best evaluated tools were video lectures, with 31% preference, and questionnaires, with 24%; followed by electronic book, with 10%, and portfolio, with 5.5%. The other tools totaled 30% of the preference. Qualitative results revealed an educational gain of content, because the student lived the experience of teaching and learning collaboratively. In addition, these tools decreased conflicts between content and schedule. CONCLUSION: Thus, the use of information and communication technology (ICT in a collaborative learning provides relevant results, bringing the reality of the world connected to the classroom. In addition, it assists in defining the content and creative development of a strategy for the construction of the concepts applied

  16. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  17. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU......-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16...... quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how...

  18. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  19. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  20. Non-invasive optoacoustic probing of the density and stiffness of single biological cells

    Science.gov (United States)

    Dehoux, T.; Audoin, B.

    2012-12-01

    Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.

  1. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  2. Illuminating cell signaling: Using Vibrio harveyi in an introductory biology laboratory.

    Science.gov (United States)

    Hrizo, Stacy L; Kaufmann, Nancy

    2009-05-01

    Cell signaling is an essential cellular process that is performed by all living organisms. Bacteria communicate with each other using a chemical language in a signaling pathway that allows bacteria to evaluate the size of their population, determine when they have reached a critical mass (quorum sensing), and then change their behavior in unison to carry out processes that require many cells acting together to be effective. Here, we describe a laboratory exercise in which the students observe the induction of bioluminescence or light production as an output of the quorum sensing pathway in Vibrio harveyi. Using both wildtype and mutant bacterial strains they explore the induction of community behavior via cell-cell communication by determining whether there is a correlation between the density of the bacterial population and the production of light by the bacterial culture. Using data from a cross-feeding assay the students make predictions about the identity of their strains and directly test these predictions using conditioned media from various liquid cultures. This two part exercise is designed for an introductory biology course to begin familiarizing students with collecting data, making predictions based upon the data and directly testing their hypotheses using a model organism with a cell signaling pathway that has a simple visual output: light production. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  3. Influence of cell printing on biological characters of chondrocytes.

    Science.gov (United States)

    Qu, Miao; Gao, Xiaoyan; Hou, Yikang; Shen, Congcong; Xu, Yourong; Zhu, Ming; Wang, Hengjian; Xu, Haisong; Chai, Gang; Zhang, Yan

    2015-01-01

    To establish a two-dimensional biological printing technique of chondrocytes and compare the difference of related biological characters between printed chondrocytes and unprinted cells so as to control the cell transfer process and keep cell viability after printing. Primary chondrocytes were obtained from human mature and fetal cartilage tissues and then were regularly sub-cultured to harvest cells at passage 2 (P2), which were adjusted to the single cell suspension at a density of 1×10(6)/mL. The experiment was divided into 2 groups: experimental group P2 chondrocytes were transferred by rapid prototype biological printer (driving voltage value 50 V, interval in x-axis 300 μm, interval in y-axis 1500 μm). Afterwards Live/Dead viability Kit and flow cytometry were respectively adopted to detect cell viability; CCK-8 Kit was adopted to detect cell proliferation viability; immunocytochemistry, immunofluorescence and RT-PCR was employed to identify related markers of chondrocytes; control group steps were the same as the printing group except that cell suspension received no printing. Fluorescence microscopy and flow cytometry analyses showed that there was no significant difference between experimental group and control group in terms of cell viability. After 7-day in vitro culture, control group exhibited higher O.D values than experimental group from 2nd day to 7th day but there was no distinct difference between these two groups (P>0.05). Inverted microscope observation demonstrated that the morphology of these two groups had no significant difference either. Similarly, Immunocytochemistry, immunofluorescence and RT-PCR assays also showed that there was no significant difference in the protein and gene expression of type II collagen and aggrecan between these two groups (P>0.05). Conclusion Cell printing has no distinctly negative effect on cell vitality, proliferation and phenotype of chondrocytes. Biological printing technique may provide a novel approach

  4. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  5. Tiny cells meet big questions: a closer look at bacterial cell biology.

    Science.gov (United States)

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  6. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    Science.gov (United States)

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  7. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    Science.gov (United States)

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  8. Cell biology and biotechnology research for exploration of the Moon and Mars

    Science.gov (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  9. Cell adhesive ability of a biological foam ceramic with surface modification

    International Nuclear Information System (INIS)

    Zhang Yong; Li Xiaoyu; Feng Fan; Lin Yunfeng; Liao Yunmao; Tian, Weidong; Liu Lei

    2008-01-01

    Biological foam ceramic is a promising material for tissue engineering scaffold because of its biocompatibility, biodegradation and adequate pores measured from micrometer to nanometers. The aim of this study was to evaluate the adhesion and proliferation of adipose-derived stromal cells (ADSCs) on the biological foam ceramic coated with fibronectin. ADSCs were harvested from SD rats and passaged three times prior to seeding onto biological foam surface modified with fibronectin (50 μg/ml). Scaffold without surface modification served as control. To characterize cellular attachment, cells were incubated on the scaffold for 1 h and 3 h and then the cells attached onto the scaffold were counted. The difference of proliferation was appraised using MTT assay at day 1, 3, 5 and 7 before the cells reached confluence. After 7 days of culture, scanning electron microscope (SEM) was chosen to assess cell morphology and attachment of ADSCs on the biological foam ceramic. Attachment of ADSCs on the biological foam ceramic surface modified with fibronectin at 1 h or 3 h was substantially greater than that in control. MTT assay revealed that ADSCs proliferation tendency of the experimental group was nearly parallel to that of control. SEM view showed that ADSCs in the experimental groups connected more tightly and excreted more collagen than that in control. The coating of fibronectin could improve the cell adhesive ability of biological foam ceramics without evident effect on proliferation

  10. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  11. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  12. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  13. Plasma cell leukemia: update on biology and therapy.

    Science.gov (United States)

    Mina, Roberto; D'Agostino, Mattia; Cerrato, Chiara; Gay, Francesca; Palumbo, Antonio

    2017-07-01

    Plasma cell leukemia (PCL) is a rare, but very aggressive, plasma cell dyscrasia, representing a distinct clinicopathological entity as compared to multiple myeloma (MM), with peculiar biological and clinical features. A hundred times rarer than MM, the disease course is characterized by short remissions and poor survival. PCL is defined by an increased percentage (>20%) and absolute number (>2 × 10 9 /l) of plasma cells in the peripheral blood. PCL is defined as 'primary' when peripheral plasmacytosis is detected at diagnosis, 'secondary' when leukemization occurs in a patient with preexisting MM. Novel agents have revolutionized the outcomes of MM patients and have been introduced also for the treatment of PCL. Here, we provide an update on biology and treatment options for PCL.

  14. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  15. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.

    Science.gov (United States)

    Mathew, B; Schmitz, A; Muñoz-Descalzo, S; Ansari, N; Pampaloni, F; Stelzer, E H K; Fischer, S C

    2015-06-08

    Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. We developed a novel and

  16. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw

    2018-01-01

    Our understanding of satellite cells, now known to be the obligate stem cells of skeletal muscle, has increased dramatically in recent years due to the introduction of new molecular, genetic, and technical resources. In addition to their role in acute repair of damaged muscle, satellite cells are of interest in the fields of aging, exercise, neuromuscular disease, and stem cell therapy, and all of these applications have driven a dramatic increase in our understanding of the activity and potential of satellite cells. However, many fundamental questions of satellite cell biology remain to be answered, including their emergence as a specific lineage, the degree and significance of heterogeneity within the satellite cell population, the roles of their interactions with other resident and infiltrating cell types during homeostasis and regeneration, and the relative roles of intrinsic vs extrinsic factors that may contribute to satellite cell dysfunction in the context of aging or disease. This review will address the current state of these open questions in satellite cell biology. © 2018 Elsevier Inc. All rights reserved.

  17. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  18. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.; Kaji, Noritada; Habuchi, Satoshi; Bianco, Alberto; Baba, Yoshinobu

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  19. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  20. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, Simon, E-mail: simon.vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, bus 2419, 3001 Heverlee (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Desmet, Tim [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Chai, Yoke Chin [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Pyka, Gregory [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, bus 2450, 3001 Leuven (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Kruth, Jean-Pierre [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, Jan [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium)

    2013-08-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O{sub 2} plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O{sub 2} plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization.

  1. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Van Bael, Simon; Desmet, Tim; Chai, Yoke Chin; Pyka, Gregory; Dubruel, Peter; Kruth, Jean-Pierre; Schrooten, Jan

    2013-01-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O 2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O 2 plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization

  2. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  4. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The central dogma of cell biology.

    Science.gov (United States)

    Cooper, S

    1981-06-01

    The Continuum Model proposes that preparations for DNA synthesis occur continuously during all phases of the division cycle. Various stimuli activate cell proliferation by changing the rate of initiator (protein) synthesis. Cell division does not initiate any process regulating cell proliferation. Cell division is the end of a process and the beginning of nothing. The alternative model which has cell proliferation regulated in the G1 phase of the division cycle is reexamined and the two types of evidence for this model, G1-variability and G1-arrest are shown to be compatible with the Continuum Model. Here, the Continuum Model is generalized to produce a new look at the logic of the division cycle in prokaryotes and eukaryotes. This new view, the Central Dogma of Cell Biology, is presented and two predictions are made. I propose that (i) cell division does not have any regulatory function, and (ii) that DNA synthesis may, indeed, have some affect on the synthesis of initiator.

  6. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  7. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  8. Biophysical mechanisms complementing "classical" cell biology.

    Science.gov (United States)

    Funk, Richard H W

    2018-01-01

    This overview addresses phenomena in cell- and molecular biology which are puzzling by their fast and highly coordinated way of organization. Generally, it appears that informative processes probably involved are more on the biophysical than on the classical biochemical side. The coordination problem is explained within the first part of the review by the topic of endogenous electrical phenomena. These are found e.g. in fast tissue organization and reorganization processes like development, wound healing and regeneration. Here, coupling into classical biochemical signaling and reactions can be shown by modern microscopy, electronics and bioinformatics. Further, one can follow the triggered reactions seamlessly via molecular biology till into genetics. Direct observation of intracellular electric processes is very difficult because of e.g. shielding through the cell membrane and damping by other structures. Therefore, we have to rely on photonic and photon - phonon coupling phenomena like molecular vibrations, which are addressed within the second part. Molecules normally possess different charge moieties and thus small electromagnetic (EMF) patterns arise during molecular vibration. These patterns can now be measured best within the optical part of the spectrum - much less in the lower terahertz till kHz and lower Hz part (third part of this review). Finally, EMFs facilitate quantum informative processes in coherent domains of molecular, charge and electron spin motion. This helps to coordinate such manifold and intertwined processes going on within cells, tissues and organs (part 4). Because the phenomena described in part 3 and 4 of the review still await really hard proofs we need concerted efforts and a combination of biophysics, molecular biology and informatics to unravel the described mysteries in "physics of life".

  9. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    Science.gov (United States)

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  10. Getting the measure of things: the physical biology of stem cells.

    Science.gov (United States)

    Lowell, Sally

    2013-10-01

    In July 2013, the diverse fields of biology, physics and mathematics converged to discuss 'The Physical Biology of Stem Cells', the subject of the third annual symposium of the Cambridge Stem Cell Institute, UK. Two clear themes resonated throughout the meeting: the new insights gained from advances in the acquisition and interpretation of quantitative data; and the importance of 'thinking outside the nucleus' to consider physical influences on cell fate.

  11. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  12. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    Science.gov (United States)

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  13. Progenitor cells in the kidney: biology and therapeutic perspectives

    NARCIS (Netherlands)

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  14. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Implications of Big Data for cell biology

    OpenAIRE

    Dolinski, Kara; Troyanskaya, Olga G.

    2015-01-01

    “Big Data” has surpassed “systems biology” and “omics” as the hottest buzzword in the biological sciences, but is there any substance behind the hype? Certainly, we have learned about various aspects of cell and molecular biology from the many individual high-throughput data sets that have been published in the past 15–20 years. These data, although useful as individual data sets, can provide much more knowledge when interrogated with Big Data approaches, such as applying integrative methods ...

  16. Fluid models and simulations of biological cell phenomena

    Science.gov (United States)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  17. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  18. Molecular biological features of male germ cell differentiation

    Science.gov (United States)

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  19. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Directory of Open Access Journals (Sweden)

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  20. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  1. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  2. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  3. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    Science.gov (United States)

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  4. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  5. Cell Hydration as a Biomarker for Estimation of Biological Effects of Nonionizing Radiation on Cells and Organisms

    Directory of Open Access Journals (Sweden)

    Sinerik Ayrapetyan

    2014-01-01

    Full Text Available “Changes in cell hydration” have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR. To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV, static magnetic field (SMF, extremely low frequency electromagnetic field (ELF EMF, and microwave (MW pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q10 of seed hydration in distilled water (DW was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48–72 hours seeds hydration exhibited temperature sensitivity Q10>2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  6. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    Science.gov (United States)

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  7. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  9. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  10. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  11. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    Science.gov (United States)

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.

  12. The biologic effects of cigarette smoke on cancer cells.

    Science.gov (United States)

    Sobus, Samantha L; Warren, Graham W

    2014-12-01

    Smoking is one of the largest preventable risk factors for developing cancer, and continued smoking by cancer patients is associated with increased toxicity, recurrence, risk of second primary cancer, and mortality. Cigarette smoke (CS) contains thousands of chemicals, including many known carcinogens. The carcinogenic effects of CS are well established, but relatively little work has been done to evaluate the effects of CS on cancer cells. In this review of the literature, the authors demonstrate that CS induces a more malignant tumor phenotype by increasing proliferation, migration, invasion, and angiogenesis and by activating prosurvival cellular pathways. Significant work is needed to understand the biologic effect of CS on cancer biology, including the development of model systems and the identification of critical biologic mediators of CS-induced changes in cancer cell physiology. © 2014 American Cancer Society.

  13. Special Issue: International Congress of Cell Biology 2016, Prague

    Czech Academy of Sciences Publication Activity Database

    Stick, R.; Dráber, Pavel

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1141-1142 ISSN 0033-183X R&D Projects: GA ČR GA16-25159S Institutional support: RVO:68378050 Keywords : cellular structures and functions, ,, , * tubulin isotypes * actin * transcription regulation * signaling pathways Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  14. Synthetic biology in cell-based cancer immunotherapy.

    Science.gov (United States)

    Chakravarti, Deboki; Wong, Wilson W

    2015-08-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Tumor necrosis factor (TNF) biology and cell death.

    Science.gov (United States)

    Bertazza, Loris; Mocellin, Simone

    2008-01-01

    Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.

  16. Biological effects of space radiation on human cells. History, advances and outcomes

    International Nuclear Information System (INIS)

    Maalouf, M.; Foray, N.; Durante, M.

    2011-01-01

    Exposure to radiation is one of the main concerns for space exploration by humans. By focusing deliberately on the works performed on human cells, we endeavored to review, decade by decade, the technological developments and conceptual advances of space radiation biology. Despite considerable efforts, the cancer and the toxicity risks remain to be quantified: the nature and the frequency of secondary heavy ions need to be better characterized in order to estimate their contribution to the dose and to the final biological response; the diversity of radiation history of each astronaut and the impact of individual susceptibility make very difficult any epidemiological analysis for estimating hazards specifically due to space radiation exposure. Cytogenetic data undoubtedly revealed that space radiation exposure produce significant damage in cells. However, our knowledge of the basic mechanisms specific to low-dose, to repeated doses and to adaptive response is still poor. The application of new radiobiological techniques, like immunofluorescence, and the use of human tissue models different from blood, like skin fibroblasts, may help in clarifying all the above items. (author)

  17. Heavy ion induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Vilaithong, T.; Yu, L.D.; Apavatjrut, P.; Phanchaisri, B.; Sangyuenyongpipat, S.; Anuntalabhochai, S.; Brown, I.G.

    2004-01-01

    Low-energy ion beam bombardment of biological materials for genetic modification purposes has experienced rapid growth in the last decade, particularly for the direct DNA transfer into living organisms including both plants and bacteria. Attempts have been made to understand the mechanisms involved in ion-bombardment-induced direct gene transfer into biological cells. Here we summarize the present status of the application of low-energy ions for genetic modification of living sample materials

  18. Micro and nano-platforms for biological cell analysis

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Castillo, Jaime; Moresco, Jacob Lange

    2011-01-01

    In this paper some technological platforms developed for biological cell analysis will be presented and compared to existing systems. In brief, we present a novel micro cell culture chamber based on diffusion feeding of cells, into which cells can be introduced and extracted after culturing using...... from the cells, while passive modifications involve the presence of a peptide nanotube based scaffold for the cell culturing that mimics the in vivo environment. Two applications involving fluorescent in situ hybridization (FISH) analysis and cancer cell sorting are presented, as examples of further...... analysis that can be done after cell culturing. A platform able to automate the entire process from cell culturing to cell analysis by means of simple plug and play of various self-contained, individually fabricated modules is finally described....

  19. Cell biology, MRI and geometry: insight into a microscopic/macroscopic marriage.

    Science.gov (United States)

    de Oliveira, Sérgio Almeida; Gowdak, Luís Henrique W; Buckberg, Gerald; Krieger, José Eduardo

    2006-04-01

    The concept of cell therapy as an adjunctive therapy to myocardial surgical revascularization for patients with severe coronary artery disease is illustrated by two case reports of ischemic cardiac disease that were unsuitable for revascularization by coronary grafting. The potential interaction of cell therapy, magnetic resonance imaging (MRI) of viability, and left ventricle (LV) restoration is described. Each patient had an ejection fraction below 30%, a relatively conical heart, and MRI gadolinium scan showing predominantly viable muscle. Intramyocardial injections of autologous bone marrow-derived cells (BMC) were performed along with either incomplete coronary artery bypass grafting (CABG) (to mother regions) or with transmyocardial laser revascularization (TMLR). An improvement in contractile function was seen at 6-12-month intervals after the procedure. The implications of possible underlying mechanisms of improvement in both myocardial perfusion and contractility suggest the striking importance of both micro- and macroenvironment for any cell-based therapeutic strategy. These observations imply that the interaction of cell biology, viability by MRI and geometry may be important in the future, as geometry can be restored surgically, and the new architectural form may develop enhanced function if it contains viable tissue and cell-based treatment can be delivered.

  20. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com [ChECA IKohza, Dept. Environmental & Green Technology (EGT), Malaysia, Japan International Institute of Technology (MJIIT), University Technology Malaysia - UTM, Kualalumpur (Malaysia); Mahmood, Mohamad Rusop, E-mail: nano@uitm.gmail.com [NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor (Malaysia)

    2016-07-06

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.

  1. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  2. Using Femtosecond Laser Subcellular Surgery as a Tool to Study Cell Biology

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Colvin, M E; Huser, T

    2007-02-27

    Research on cellular function and regulation would be greatly advanced by new instrumentation using methods to alter cellular processes with spatial discrimination on the nanometer-scale. We present a novel technique for targeting submicrometer sized organelles or other biologically important regions in living cells using femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we can vaporize cellular material inside the cell through nonlinear optical processes. This technique enables non-invasive manipulation of the physical structure of a cell with sub-micrometer resolution. We propose to study the role mitochondria play in cell proliferation and apoptosis. Our technique provides a unique tool for the study of cell biology.

  3. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  4. BioBenchmark Toyama 2012: an evaluation of the performance of triple stores on biological data

    Science.gov (United States)

    2014-01-01

    Background Biological databases vary enormously in size and data complexity, from small databases that contain a few million Resource Description Framework (RDF) triples to large databases that contain billions of triples. In this paper, we evaluate whether RDF native stores can be used to meet the needs of a biological database provider. Prior evaluations have used synthetic data with a limited database size. For example, the largest BSBM benchmark uses 1 billion synthetic e-commerce knowledge RDF triples on a single node. However, real world biological data differs from the simple synthetic data much. It is difficult to determine whether the synthetic e-commerce data is efficient enough to represent biological databases. Therefore, for this evaluation, we used five real data sets from biological databases. Results We evaluated five triple stores, 4store, Bigdata, Mulgara, Virtuoso, and OWLIM-SE, with five biological data sets, Cell Cycle Ontology, Allie, PDBj, UniProt, and DDBJ, ranging in size from approximately 10 million to 8 billion triples. For each database, we loaded all the data into our single node and prepared the database for use in a classical data warehouse scenario. Then, we ran a series of SPARQL queries against each endpoint and recorded the execution time and the accuracy of the query response. Conclusions Our paper shows that with appropriate configuration Virtuoso and OWLIM-SE can satisfy the basic requirements to load and query biological data less than 8 billion or so on a single node, for the simultaneous access of 64 clients. OWLIM-SE performs best for databases with approximately 11 million triples; For data sets that contain 94 million and 590 million triples, OWLIM-SE and Virtuoso perform best. They do not show overwhelming advantage over each other; For data over 4 billion Virtuoso works best. 4store performs well on small data sets with limited features when the number of triples is less than 100 million, and our test shows its

  5. BioBenchmark Toyama 2012: an evaluation of the performance of triple stores on biological data.

    Science.gov (United States)

    Wu, Hongyan; Fujiwara, Toyofumi; Yamamoto, Yasunori; Bolleman, Jerven; Yamaguchi, Atsuko

    2014-01-01

    Biological databases vary enormously in size and data complexity, from small databases that contain a few million Resource Description Framework (RDF) triples to large databases that contain billions of triples. In this paper, we evaluate whether RDF native stores can be used to meet the needs of a biological database provider. Prior evaluations have used synthetic data with a limited database size. For example, the largest BSBM benchmark uses 1 billion synthetic e-commerce knowledge RDF triples on a single node. However, real world biological data differs from the simple synthetic data much. It is difficult to determine whether the synthetic e-commerce data is efficient enough to represent biological databases. Therefore, for this evaluation, we used five real data sets from biological databases. We evaluated five triple stores, 4store, Bigdata, Mulgara, Virtuoso, and OWLIM-SE, with five biological data sets, Cell Cycle Ontology, Allie, PDBj, UniProt, and DDBJ, ranging in size from approximately 10 million to 8 billion triples. For each database, we loaded all the data into our single node and prepared the database for use in a classical data warehouse scenario. Then, we ran a series of SPARQL queries against each endpoint and recorded the execution time and the accuracy of the query response. Our paper shows that with appropriate configuration Virtuoso and OWLIM-SE can satisfy the basic requirements to load and query biological data less than 8 billion or so on a single node, for the simultaneous access of 64 clients. OWLIM-SE performs best for databases with approximately 11 million triples; For data sets that contain 94 million and 590 million triples, OWLIM-SE and Virtuoso perform best. They do not show overwhelming advantage over each other; For data over 4 billion Virtuoso works best. 4store performs well on small data sets with limited features when the number of triples is less than 100 million, and our test shows its scalability is poor; Bigdata

  6. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.

    Science.gov (United States)

    Das, Debanjan; Biswas, Karabi; Das, Soumen

    2014-06-01

    The present study demonstrates the design, simulation, fabrication and testing of a label-free continuous manipulation and separation micro-device of particles/biological cells suspended on medium based on conventional dielectrophoresis. The current dielectrophoretic device uses three planner electrodes to generate non-uniform electric field and induces both p-DEP and n-DEP force simultaneously depending on the dielectric properties of the particles and thus influencing at least two types of particles at a time. Numerical simulations were performed to predict the distribution of non-uniform electric field, DEP force and particle trajectories. The device is fabricated utilizing the advantage of bonding between PDMS and SU8 polymer. The p-DEP particles move away from the center of the streamline, while the n-DEP particles will follow the central streamline along the channel length. Dielectrophoretic effects were initially tested using polystyrene beads followed by manipulation of HeLa cells. In the experiment, it was observed that polystyrene beads in DI water always response as n-DEP up to 1MHz frequency, whereas HeLa cells in PBS medium response as n-DEP up to 400kHz frequency and then it experiences p-DEP up to 1MHz. Further, the microscopic observations of DEP responses of HeLa cells were verified by performing trapping experiment at static condition. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Cell biology, biophysics, and mechanobiology: From the basics to Clinics.

    Science.gov (United States)

    Zeng, Y

    2017-04-29

    Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...

  8. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review.

    Science.gov (United States)

    Taatjes, Douglas J; Roth, Jürgen

    2016-03-01

    We provide here our annual review/synopsis of all of the articles published in Histochemistry and Cell Biology (HCB) for the preceding year. In 2015, HCB published 102 articles, representing a wide variety of topics and methodologies. For ease of access to these differing topics, we have created categories, as determined by the types of articles presented to provide a quick index representing the general areas covered. This year, these categories include: (1) advances in methodologies; (2) molecules in health and disease; (3) organelles, subcellular structures, and compartments; (4) the nucleus; (5) stem cells and tissue engineering; (6) cell cultures: properties and capabilities; (7) connective tissues and extracellular matrix; (8) developmental biology; (9) nervous system; (10) musculoskeletal system; (11) respiratory and cardiovascular system; (12) liver and gastrointestinal tract; and (13) male and female reproductive systems. Of note, the categories proceed from methods development, to molecules, intracellular compartments, stem cells and cell culture, extracellular matrix, developmental biology, and finishing with various organ systems, hopefully presenting a logical journey from methods to organismal molecules, cells, and whole tissue systems.

  9. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  10. Unravelling biology and shifting paradigms in cancer with single-cell sequencing.

    Science.gov (United States)

    Baslan, Timour; Hicks, James

    2017-08-24

    The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.

  11. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  12. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    Science.gov (United States)

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Proteomics in studying cancer stem cell biology.

    Science.gov (United States)

    Kranenburg, Onno; Emmink, Benjamin L; Knol, Jaco; van Houdt, Winan J; Rinkes, Inne H M Borel; Jimenez, Connie R

    2012-06-01

    Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. However, very little is known about the regulation of SC maintenance pathways in cancer and how these are affected by cancer-specific genetic alterations and by treatment. Proteomics is emerging as a powerful tool to identify the signaling complexes and pathways that control multi- and pluri-potency and SC differentiation. Here, the authors review the novel insights that these studies have provided and present a comprehensive strategy for the use of proteomics in studying cancer SC biology.

  14. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    Science.gov (United States)

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  15. After the Greeting: Realizing the Potential of Physical Models in Cell Biology.

    Science.gov (United States)

    Paluch, Ewa K

    2015-12-01

    Biophysics is increasingly taking center stage in cell biology as the tools for precise quantifications of cellular behaviors expand. Interdisciplinary approaches, combining quantitative physical modeling with cell biology, are of growing interest to journal editors, funding agencies, and hiring committees. However, despite an ever-increasing emphasis on the importance of interdisciplinary research, the student trained in biology may still be at a loss as to what it actually means. I discuss here some considerations on how to achieve meaningful and high-quality interdisciplinary work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.

    Science.gov (United States)

    Bechtel, William; Abrahamsen, Adele

    2007-01-01

    Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.

  17. Biological performance of Liquidambar orientalis Mill. heartwood

    Science.gov (United States)

    Evren Terzi; S. Nami Kartal; Claudia Marcela Ibáñez; Coþkun Köse; Rachel Arango; Carol A. Clausen; Frederick. Green III

    2012-01-01

    New approaches for wood protection based on green technologies have increased interest in using heartwood portions of certain wood species for the effects (toxic and antioxidant properties, chelate formation, hydrophobicity) of extractives located in heartwood. This study evaluated the biological performance of heartwood of Liquidambar orientalis...

  18. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  19. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  20. Scale-free flow of life: on the biology, economics, and physics of the cell

    Directory of Open Access Journals (Sweden)

    Kurakin Alexei

    2009-05-01

    Full Text Available Abstract The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies.

  1. Günter Blobel: Pioneer of molecular cell biology (1936-2018).

    Science.gov (United States)

    2018-04-02

    Günter Blobel was a scientific colossus who dedicated his career to understanding the mechanisms for protein sorting to membrane organelles. His monumental contributions established research paradigms for major arenas of molecular cell biology. For this work, he received many accolades, including the Nobel Prize in Medicine or Physiology in 1999. He was a scientist of extreme passion and a nurturing mentor for generations of researchers, imbuing them with his deep love of cell biology and galvanizing them to continue his scientific legacy. Günter passed away on February 18, 2018, at the age of 81. © 2018 Rockefeller University Press.

  2. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  3. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  4. Editorial Introduction [to Female Germ Cells: Biology and Genetic Risk

    Science.gov (United States)

    This is an editorial introduction to the special issue of utation Research, titled, emale Germ Cells: Biology and Genetic isk, which is an attempt to present a collection of papers that emphasize the distinct properties of female germ cells and their characteristic response to mu...

  5. The Emerging Role of PEDF in Stem Cell Biology

    Science.gov (United States)

    Elahy, Mina; Baindur-Hudson, Swati; Dass, Crispin R.

    2012-01-01

    Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency. PMID:22675247

  6. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    Science.gov (United States)

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  7. Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology

    Czech Academy of Sciences Publication Activity Database

    Pantalacci, S.; Gueguen, L.; Petit, C.; Lambert, A.; Peterková, Renata; Sémon, E.

    2017-01-01

    Roč. 18, feb (2017), s. 29 ISSN 1474-760X R&D Projects: GA ČR(CZ) GB14-37368G Institutional support: RVO:68378041 Keywords : comparative transcriptomics * developmental biology * transcriptomic signature Subject RIV: EA - Cell Biology OBOR OECD: Developmental biology Impact factor: 11.908, year: 2016

  8. Dynamic Open Inquiry Performances of High-School Biology Students

    Science.gov (United States)

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  9. Lessons we learned from high-throughput and top-down systems biology analyses about glioma stem cells.

    Science.gov (United States)

    Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel

    2014-01-01

    A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.

  10. B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus.

    Directory of Open Access Journals (Sweden)

    Jean-Claude Garaud

    Full Text Available Systemic lupus erythematosous (SLE is an autoimmune disease with an important clinical and biological heterogeneity. B lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomas of quiescent lupus patients to normal B cell transcriptomas. When the statistical analysis is performed on the entire group of patients, the differences between patients and controls appear quite weak with only 14 mRNA genes having a false discovery rate ranging between 11 and 17%, with 6 underexpressed genes (PMEPA1, TLR10, TRAF3IP2, LDOC1L, CD1C and EGR1. However, unforced hierarchical clustering of the microarrays reveals a subgroup of lupus patients distinct from both the controls and the other lupus patients. This subgroup has no detectable clinical or immunological phenotypic peculiarity compared to the other patients, but is characterized by 1/an IL-4 signature and 2/the abnormal expression of a large set of genes with an extremely low false discovery rate, mainly pointing to the biological function of the endoplasmic reticulum, and more precisely to genes implicated in the Unfolded Protein Response, suggesting that B cells entered an incomplete BLIMP1 dependent plasmacytic differentiation which was undetectable by immunophenotyping. Thus, this microarray analysis of B cells during quiescent lupus suggests that, despite a similar lupus phenotype, different biological roads can lead to human lupus.

  11. Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach.

    Science.gov (United States)

    Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A

    2017-07-01

    Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete

  12. Using synthetic biology to make cells tomorrow's test tubes.

    Science.gov (United States)

    Garcia, Hernan G; Brewster, Robert C; Phillips, Rob

    2016-04-18

    The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.

  13. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  14. Emerging concepts and future challenges in innate lymphoid cell biology

    Science.gov (United States)

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  15. Helping struggling students in introductory biology: a peer-tutoring approach that improves performance, perception, and retention.

    Science.gov (United States)

    Batz, Zachary; Olsen, Brian J; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K

    2015-01-01

    The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly "leaky" point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. © 2015 Z. Batz et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. SYSTEMS BIOLOGY AND METABOLIC ENGINEERING OF ARTHROSPIRA CELL FACTORIES

    Directory of Open Access Journals (Sweden)

    Amornpan Klanchui

    2012-10-01

    Full Text Available Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented.

  17. Thematic minireview series: cell biology of G protein signaling.

    Science.gov (United States)

    Dohlman, Henrik G

    2015-03-13

    This thematic series is on the topic of cell signaling from a cell biology perspective, with a particular focus on G proteins. G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors) are typically found at the cell surface. Upon agonist binding, these receptors will activate a GTP-binding G protein at the cytoplasmic face of the plasma membrane. Additionally, there is growing evidence that G proteins can also be activated by non-receptor binding partners, and they can signal from non-plasma membrane compartments. The production of second messengers at multiple, spatially distinct locations represents a type of signal encoding that has been largely neglected. The first minireview in the series describes biosensors that are being used to monitor G protein signaling events in live cells. The second describes the implementation of antibody-based biosensors to dissect endosome signaling by G proteins and their receptors. The third describes the function of a non-receptor, cytoplasmic activator of G protein signaling, called GIV (Girdin). Collectively, the advances described in these articles provide a deeper understanding and emerging opportunities for new pharmacology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Autotaxin: Its Role in Biology of Melanoma Cells and as a Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Maciej Jankowski

    2011-01-01

    Full Text Available Autotaxin (ATX is an extracellular lysophospholipase D (lysoPLD released from normal cells and cancer cells. Activity of ATX is detected in various biological fluids. The lysophosphatidic acid (LPA is the main product of ATX. LPA acting through specific G protein-coupled receptors (LPA1-LPA6 affects immunological response, normal development, and malignant tumors' formation and progression. In this review, the impact of autotoxin on biology of melanoma cells and potential treatment is discussed.

  19. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  20. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  1. Nanoscopical dissection of ancestral nucleoli in Archaea: a case of study in Evolutionary Cell Biology

    KAUST Repository

    Islas Morales, Parsifal

    2018-01-01

    Evolutionary cell biology (ECB) has raised increasing attention in the last decades. Is this a new discipline and an historical opportunity to combine functional and evolutionary biology towards the insight that cell

  2. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  3. Teaching Cell and Molecular Biology for Gender Equity

    Science.gov (United States)

    Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel

    2006-01-01

    Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…

  4. Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells.

    Science.gov (United States)

    Morris, Sydney E; Feldman, Aaron W; Romesberg, Floyd E

    2017-10-20

    To bestow cells with novel forms and functions, the goal of synthetic biology, we have developed the unnatural nucleoside triphosphates dNaMTP and dTPT3TP, which form an unnatural base pair (UBP) and expand the genetic alphabet. While the UBP may be retained in the DNA of a living cell, its retention is sequence-dependent. We now report a steady-state kinetic characterization of the rate with which the Klenow fragment of E. coli DNA polymerase I synthesizes the UBP and its mispairs in a variety of sequence contexts. Correct UBP synthesis is as efficient as for a natural base pair, except in one sequence context, and in vitro performance is correlated with in vivo performance. The data elucidate the determinants of efficient UBP synthesis, show that the dNaM-dTPT3 UBP is the first generally recognized natural-like base pair, and importantly, demonstrate that dNaMTP and dTPT3TP are well optimized and standardized parts for the expansion of the genetic alphabet.

  5. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  6. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  7. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  8. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  9. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    Science.gov (United States)

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    Science.gov (United States)

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of

  11. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  12. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  13. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  14. Insights into female germ cell biology: from in vivo development to in vitro derivations.

    Science.gov (United States)

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.

  15. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  16. Cellular Analysis of Adult Neural Stem Cells for Investigating Prion Biology.

    Science.gov (United States)

    Haigh, Cathryn L

    2017-01-01

    Traditional primary and secondary cell cultures have been used for the investigation of prion biology and disease for many years. While both types of cultures produce highly valid and immensely valuable results, they also have their limitations; traditional cell lines are often derived from cancers, therefore subject to numerous DNA changes, and primary cultures are labor-intensive and expensive to produce requiring sacrifice of many animals. Neural stem cell (NSC) cultures are a relatively new technology to be used for the study of prion biology and disease. While NSCs are subject to their own limitations-they are generally cultured ex vivo in environments that artificially force their growth-they also have their own unique advantages. NSCs retain the ability for self-renewal and can therefore be propagated in culture similarly to secondary cultures without genetic manipulation. In addition, NSCs are multipotent; they can be induced to differentiate into mature cells of central nervous system (CNS) linage. The combination of self-renewal and multipotency allows NSCs to be used as a primary cell line over multiple generations saving time, costs, and animal harvests, thus providing a valuable addition to the existing cell culture repertoire used for investigation of prion biology and disease. Furthermore, NSC cultures can be generated from mice of any genotype, either by embryonic harvest or harvest from adult brain, allowing gene expression to be studied without further genetic manipulation. This chapter describes a standard method of culturing adult NSCs and assays for monitoring NSC growth, migration, and differentiation and revisits basic reactive oxygen species detection in the context of NSC cultures.

  17. Development of an Instrument for Measuring Self-Efficacy in Cell Biology

    Science.gov (United States)

    Reeve, Suzanne; Kitchen, Elizabeth; Sudweeks, Richard R.; Bell, John D.; Bradshaw, William S.

    2011-01-01

    This article describes the development of a ten-item scale to assess biology majors' self-efficacy towards the critical thinking and data analysis skills taught in an upper-division cell biology course. The original seven-item scale was expanded to include three additional items based on the results of item analysis. Evidence of reliability and…

  18. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology.

    Science.gov (United States)

    Guan, Jun-Jie; Niu, Xin; Gong, Fei-Xiang; Hu, Bin; Guo, Shang-Chun; Lou, Yuan-Lei; Zhang, Chang-Qing; Deng, Zhi-Feng; Wang, Yang

    2014-07-01

    Stem cells in human urine have gained attention in recent years; however, urine-derived stem cells (USCs) are far from being well elucidated. In this study, we compared the biological characteristics of USCs with adipose-derived stem cells (ASCs) and investigated whether USCs could serve as a potential cell source for neural tissue engineering. USCs were isolated from voided urine with a modified culture medium. Through a series of experiments, we examined the growth rate, surface antigens, and differentiation potential of USCs, and compared them with ASCs. USCs showed robust proliferation ability. After serial propagation, USCs retained normal karyotypes. Cell surface antigen expression of USCs was similar to ASCs. With lineage-specific induction factors, USCs could differentiate toward the osteogenic, chondrogenic, adipogenic, and neurogenic lineages. To assess the ability of USCs to survive, differentiate, and migrate, they were seeded onto hydrogel scaffold and transplanted into rat brain. The results showed that USCs were able to survive in the lesion site, migrate to other areas, and express proteins that were associated with neural phenotypes. The results of our study demonstrate that USCs possess similar biological characteristics with ASCs and have multilineage differentiation potential. Moreover USCs can differentiate to neuron-like cells in rat brain. The present study shows that USCs are a promising cell source for tissue engineering and regenerative medicine.

  19. Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells.

    Science.gov (United States)

    Guo, Jinhong; Chen, Liang; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-03-01

    Portable diagnostic devices have emerged as important tools in various biomedical applications since they can provide an effective solution for low-cost and rapid clinical diagnosis. In this paper, we present a micropore-based resistive cytometer for the detection and enumeration of biological cells. The proposed device was fabricated on a silicon wafer by a standard microelectromechanical system processing technology, which enables a mass production of the proposed chip. The working principle of this cytometer is based upon a bias potential modulated pulse, originating from the biological particle's physical blockage of the micropore. Polystyrene particles of different sizes (7, 10, and 16 μm) were used to test and calibrate the proposed device. A finite element simulation was developed to predict the bias potential modulated pulse (peak amplitude vs. pulse bandwidth), which can provide critical insight into the design of this microfluidic flow cytometer. Furthermore, HeLa cells (a type of tumor cell lines) spiked in a suspension of blood cells, including red blood cells and white blood cells, were used to assess the performance for detecting and counting tumor cells. The proposed microfluidic flow cytometer is able to provide a promising platform to address the current unmet need for point-of-care clinical diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  1. Children's biological responsivity to acute stress predicts concurrent cognitive performance.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A

    2018-04-10

    Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.

  2. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  3. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  4. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  5. The time is right: proteome biology of stem cells.

    NARCIS (Netherlands)

    Whetton, A.D.; Williamson, A.J.K.; Krijgsveld, J.; Lee, B.H.; Lemischka, I.; Oh, S.; Pera, M.; Mummery, C.L.; Heck, A.J.R.

    2008-01-01

    In stem cell biology, there is a growing need for advanced technologies that may help to unravel the molecular mechanisms of self-renewal and differentiation. Proteomics, the comprehensive analysis of proteins, is such an emerging technique. To facilitate interactions between specialists in

  6. Human mesenchymal stromal cells : biological characterization and clinical application

    NARCIS (Netherlands)

    Bernardo, Maria Ester

    2010-01-01

    This thesis focuses on the characterization of the biological and functional properties of human mesenchymal stromal cells (MSCs), isolated from different tissue sources. The differentiation capacity of MSCs from fetal and adult tissues has been tested and compared. Umbilical cord blood (UCB) has

  7. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  8. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1984-08-01

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  9. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    Science.gov (United States)

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  11. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  13. Recent advances in the cell biology of aging.

    Science.gov (United States)

    Hayflick, L

    1980-01-01

    Cultured normal human and animal cells are predestined to undergo irreversible functional decrements that mimic age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occurs in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  14. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  15. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  16. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    Science.gov (United States)

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  17. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  18. Multilayer microfluidic systems with indium-tin-oxide microelectrodes for studying biological cells

    International Nuclear Information System (INIS)

    Wu, Hsiang-Chiu; Chen, Hsin; Lyau, Jia-Bo; Lin, Min-Hsuan; Chuang, Yung-Jen

    2017-01-01

    Contemporary semiconductor and micromachining technologies have been exploited to develop lab-on-a-chip microsystems, which enable parallel and efficient experiments in molecular and cellular biology. In these microlab systems, microfluidics play an important role for automatic transportation or immobilization of cells and bio-molecules, as well as for separation or mixing of different chemical reagents. However, seldom microlab systems allow both morphology and electrophysiology of biological cells to be studied in situ . This kind of study is important, for example, for understanding how neuronal networks grow in response to environmental stimuli. To fulfill this application need, this paper investigates the possibility of fabricating multi-layer photoresists as microfluidic systems directly above a glass substrate with indium-tin-oxide (ITO) electrodes. The microfluidic channels are designed to guide and trap biological cells on top of ITO electrodes, through which the electrical activities of cells can be recorded or elicited. As both the microfluidic system and ITO electrodes are transparent, the cellular morphology is observable easily during electrophysiological studies. Two fabrication processes are proposed and compared. One defines the structure and curing depth of each photoresist layer simply by controlling the exposure time in lithography, while the other further utilizes a sacrificial layer to defines the structure of the bottom layer. The fabricated microfluidic system is proved bio-compatible and able to trap blood cells or neurons. Therefore, the proposed microsystem will be useful for studying cultured cells efficiently in applications such as drug-screening. (paper)

  19. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells.

    Science.gov (United States)

    Barnes, D W

    2012-04-01

    Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  1. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  2. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  3. Assessing Students' Performances in Decision-Making: Coping Strategies of Biology Teachers

    Science.gov (United States)

    Steffen, Benjamin; Hößle, Corinna

    2017-01-01

    Decision-making in socioscientific issues (SSI) constitutes a real challenge for both biology teachers and learners. The assessment of students' performances in SSIs constitutes a problem, especially for biology teachers. The study at hand was conducted in Germany and uses a qualitative approach following the research procedures of grounded theory…

  4. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Perception analysis of undergraduate students in the health field about the topic Cell Biology

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Andrade Monerat

    2015-06-01

    Full Text Available The Brazilian education has been changing over time, especially with the increased offer on the various levels of education. In undergraduate courses, in the health area, the cell biology becomes an essential discipline, because various sectors are directly influenced by their recent discoveries and research. This work aimed to analyze, with undergraduate students, perceptions about the themes at Cell Biology, revealing, with its results, pertinent aspects, as insufficient knowledge about the proposed theme. The definition of a concept of cell, considered a basic aspect, however relevant in this context, exemplifies this situation, because it showed a considerable rate of unsatisfactory answers. On the other hand, was verified the recognition of Cell Biology as an area that presents important contents in the training of these students, due the numerous scientific researches that show its constant evolution in association with themes of medicine and public health.

  6. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    Science.gov (United States)

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  7. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  8. Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.

    Science.gov (United States)

    Savage, Philip

    2016-11-21

    Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies

  9. Attributions of Academic Performance among Third Year and Fourth Year Biology Major Students

    Directory of Open Access Journals (Sweden)

    Nick John B. Solar

    2015-08-01

    Full Text Available This is a descriptive study aimed to determine the attributions of academic performance of third year and fourth year biology major students in the College of Education, West Visayas State University, School Year 2013-2014. The academic performance were categorized or measured in terms of test, projects, workbooks, and laboratory experiments, class participation, and attendance. The Attributions in academic performance were evaluated using the closed-form questionnairechecklist,categorized intoin termsof ability, effort, luck, or task difficulty. Mean frequency, mean percentage, Mann-Whitney U-test, two-sampled test set at 0.05 level of significance were used to determine if there were significant difference in the attribution when the students were taken according to their year level. The result of the study revealed that the Third Year biology majors attributed their academic performance to effort which is shown to have the highest percentage attribution in overall rank. There was no significant difference in the attributions of academic performance for third year and fourth year biology major students in termsof test, whilethe result forprojects, workbooks, and laboratory experiment and class participation and attendance categories,was found out to havea significant difference in the attributionfor the third and fourth years biology Major students’ academic performances.

  10. Lessons learned about spaceflight and cell biology experiments

    Science.gov (United States)

    Hughes-Fulford, Millie

    2004-01-01

    Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.

  11. Multiweek cell culture project for use in upper-level biology laboratories.

    Science.gov (United States)

    Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D

    2012-06-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.

  12. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  13. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation.

    Science.gov (United States)

    Dontu, Gabriela; Ince, Tan A

    2015-06-01

    Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.

  15. Ovary and fimbrial stem cells: biology, niche and cancer origins.

    Science.gov (United States)

    Ng, Annie; Barker, Nick

    2015-10-01

    The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.

  16. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. At the cutting edge: applications and perspectives of laser nanosurgery in cell biology.

    Science.gov (United States)

    Ronchi, Paolo; Terjung, Stefan; Pepperkok, Rainer

    2012-04-01

    Laser-mediated nanosurgery has become popular in the last decade because of the previously unexplored possibility of ablating biological material inside living cells with sub-micrometer precision. A number of publications have shown the potential applications of this technique, ranging from the dissection of sub-cellular structures to surgical ablations of whole cells or tissues in model systems such as Drosophila melanogaster or Danio rerio . In parallel, the recent development of micropatterning techniques has given cell biologists the possibility to shape cells and reproducibly organize the intracellular space. The integration of these two techniques has only recently started yet their combination has proven to be very interesting. The aim of this review is to present recent applications of laser nanosurgery in cell biology and to discuss the possible developments of this approach, particularly in combination with micropattern-mediated endomembrane organization.

  18. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  19. From cell biology to immunology: Controlling metastatic progression of cancer via microRNA regulatory networks.

    Science.gov (United States)

    Park, Jae Hyon; Theodoratou, Evropi; Calin, George A; Shin, Jae Il

    2016-01-01

    Recently, the study of microRNAs has expanded our knowledge of the fundamental processes of cancer biology and the underlying mechanisms behind tumor metastasis. Extensive research in the fields of microRNA and its novel mechanisms of actions against various cancers has more recently led to the trial of a first cancer-targeted microRNA drug, MRX34. Yet, these microRNAs are mostly being studied and clinically trialed solely based on the understanding of their cell biologic effects, thus, neglecting the important immunologic effects that are sometimes opposite of the cell biologic effects. Here, we summarize both the cell biologic and immunologic effects of various microRNAs and discuss the importance of considering both effects before using them in clinical settings. We stress the importance of understanding the miRNA's effect on cancer metastasis from a "systems" perspective before developing a miRNA-targeted therapeutic in treating cancer metastasis.

  20. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qili [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China); Shirinzadeh, Bijan [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Cui, Maosheng [Biotechnology Lab of Animal Reproduction, Tianjin Animal Sciences, Tianjin 300112 (China); Sun, Mingzhu; Liu, Yaowei; Zhao, Xin, E-mail: zhaoxin@nankai.edu.cn [Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China)

    2015-07-28

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  1. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    International Nuclear Information System (INIS)

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Liu, Yaowei; Zhao, Xin

    2015-01-01

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10 −15  kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections

  2. Expression Profiling of Genes Related to Endothelial Cells Biology in Patients with Type 2 Diabetes and Patients with Prediabetes

    Directory of Open Access Journals (Sweden)

    Sara Moradipoor

    2016-01-01

    Full Text Available Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.

  3. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  4. The role of EMMPRIN in T cell biology and immunological diseases.

    Science.gov (United States)

    Hahn, Jennifer Nancy; Kaushik, Deepak Kumar; Yong, V Wee

    2015-07-01

    EMMPRIN (CD147), originally described as an inducer of the expression of MMPs, has gained attention in its involvement in various immunologic diseases, such that anti-EMMPRIN antibodies are considered as potential therapeutic medications. Given that MMPs are involved in the pathogenesis of various disease states, it is relevant that targeting an upstream inducer would make for an effective therapeutic strategy. Additionally, EMMPRIN is now appreciated to have multiple roles apart from MMP induction, including in cellular functions, such as migration, adhesion, invasion, energy metabolism, as well as T cell activation and proliferation. Here, we review what is known about EMMPRIN in numerous immunologic/inflammatory disease conditions with a particular focus on its complex roles in T cell biology. © Society for Leukocyte Biology.

  5. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    Science.gov (United States)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  6. Effectiveness of a Low-Cost, Graduate Student-Led Intervention on Study Habits and Performance in Introductory Biology.

    Science.gov (United States)

    Hoskins, Tyler D; Gantz, J D; Chaffee, Blake R; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J

    2017-01-01

    Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami University. Our approach aimed to improve performance for underachieving students by combining an existing framework for the process of learning (the study cycle) with concrete tools (outlines and concept maps) that have been shown to encourage deep understanding. To assess the effectiveness of our efforts, we asked 1) how effective our voluntary recruitment model was at enrolling the target cohort, 2) how the course impacted performance on lecture exams, 3) how the course impacted study habits and techniques, and 4) whether there are particular study habits or techniques that are associated with large improvements on exam scores. Voluntary recruitment attracted only 11-17% of our target cohort. While focal students improved on lecture exams relative to their peers who did not enroll, gains were relatively modest, and not all students improved. Further, although students across both semesters of our study reported improved study habits (based on pre and post surveys) and on outlines and concept maps (based on retrospectively scored assignments), gains were more dramatic in the Fall semester. Multivariate models revealed that, while changes in study habits and in the quality of outlines and concept maps were weakly associated with change in performance on lecture exams, relationships were only significant in the Fall semester and were sometimes counterintuitive. Although benefits of the course were offset somewhat by the inefficiency of voluntary recruitment, we demonstrate the effectiveness our course, which is inexpensive to implement and has advantage of providing pedagogical experience to future educators. © 2017 T. D

  7. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells.

    Science.gov (United States)

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A

    2013-06-01

    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  9. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research.

    Science.gov (United States)

    Abraham, Parvin; Maliekal, Tessy Thomas

    2017-04-01

    Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.

  10. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  11. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  12. Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology).

    Science.gov (United States)

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-04-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer-initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies, including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (eg, a lack of response, partial response, or nonpermanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of repopulating the tumor after subcurative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that use cell surface markers to identify cancer-initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed.

  13. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    Science.gov (United States)

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  14. Symposium on single cell analysis and genomic approaches, Experimental Biology 2017 Chicago, Illinois, April 23, 2017.

    Science.gov (United States)

    Coller, Hilary A

    2017-09-01

    Emerging technologies for the analysis of genome-wide information in single cells have the potential to transform many fields of biology, including our understanding of cell states, the response of cells to external stimuli, mosaicism, and intratumor heterogeneity. At Experimental Biology 2017 in Chicago, Physiological Genomics hosted a symposium in which five leaders in the field of single cell genomics presented their recent research. The speakers discussed emerging methodologies in single cell analysis and critical issues for the analysis of single cell data. Also discussed were applications of single cell genomics to understanding the different types of cells within an organism or tissue and the basis for cell-to-cell variability in response to stimuli. Copyright © 2017 the American Physiological Society.

  15. Theories and models on the biological of cells in space

    Science.gov (United States)

    Todd, P.; Klaus, D. M.

    1996-01-01

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  16. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  17. Cell biological and biomechanical evaluation of two different fixation techniques for rotator cuff repair.

    Science.gov (United States)

    Klinger, H-M; Koelling, S; Baums, M H; Kahl, E; Steckel, H; Smith, M M; Schultz, W; Miosge, N

    2009-06-01

    Our objective was to evaluate the cell biology and biomechanical aspects of the healing process after two different techniques in open rotator cuff surgery - double-loaded bio-absorbable suture anchors combined with so-called arthroscopic Mason-Allen stitches (AAMA) and a trans-osseous suture technique combined with traditional modified Mason-Allen stitches (SMMA). Thirty-six mature sheep were randomized into two repair groups. After 6, 12, or 26 weeks, evaluation of the reinsertion site of the infraspinatus tendon was performed. The mechanical load-to-failure and stiffness results did not indicate a significant difference between the two groups. After 26 weeks, fibrocartilage was sparse in the AAMA group, whereas the SMMA group showed the most pronounced amount of fibrocartilage. We found no ultrastructural differences in collagen fiber organization between the two groups. The relative expression of collagen type II mRNA in the normal group was 1.11. For the AAMA group, 6 weeks after surgery, the relative expression was 55.47, whereas for the SMMA group it was 1.90. This in vivo study showed that the AAMA group exhibited a tendon-to-bone healing process more favorable in its cell biology than that of the traditional SMMA technique. Therefore, the AAMA technique might also be more appropriate for arthroscopic repair.

  18. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  19. SU-G-TeP3-07: On the Development of Mechano-Biological Assessment of Leukemia Cells Using Optical Tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Brost, E; Brooks, J; Piepenburg, J; Watanabe, Y; Hui, S [Therapeutic Radiology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Chakraborty, S; Das, T [Max Planck Institute for Intelligent Systems Department of New Materials and Biosystems Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur (India); Green, A [Department of Physics, University of Saint Thomas, Saint Paul, MN (United States)

    2016-06-15

    Purpose: Patients with BCR-ABL (Ph +ve) acute lymphoblastic leukemia are at very high risk of relapse and mortality. In line with the NIH mission to understand the physical and biological processes, we seek to report mechano-biological method to assessment and distinguish treated/untreated leukemia cells. Methods: BCR-ABL leukemia cell populations and silica microspheres were trapped in a 100x magnification optical trapping system (λ=660 nm, 70 mW). Light refracted through the trapped sample was collected in the back focal plane by a quadrant detector to measure the positions of individual cells. The sample was driven at a known frequency and amplitude with a flexure translation stage, and the target’s response was recorded. The measured response was calibrated using the known driving parameters, and information about cell movements due to mechano-biological effects was extracted. Two leukemia cell populations were tested: a control group and a group treated with 2 Gy. Results: The mechano-biological movements of 10 microspheres, control cells, and treated cells were tracked over a ∼30 minute window at 1 minute intervals. The microsphere population did not see significant change in mechano-biological movements over the testing interval and remained constant. The control cell population saw a two-fold rise in activity that peaked around 1200 seconds, then dropped off sharply. The treated cell population saw a two-fold rise in activity that peaked at 400 seconds, and dropped off slowly. Conclusion: The investigated technique allows for direct measurement the movements of a trapped object due to mechano-biological effects such as thermal and extracellular motion. When testing microspheres, the mechano-biological activity remained constant over time due to the lack of biological factors. In both the control and treated cell populations, the mechano-biological activity was increased, possibly due to mitochondrial activation. This extra activity decreased over time

  20. Nanobodies and recombinant binders in cell biology.

    Science.gov (United States)

    Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich

    2015-06-08

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.

  1. Nanobodies and recombinant binders in cell biology

    Science.gov (United States)

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  2. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  3. Accumulation and biological effects of gallium in malignant cell lines in vitro

    International Nuclear Information System (INIS)

    Awano, Takayuki; Matsuzawa, Taiju

    1977-01-01

    Accumulation and biological effects of gallium (Ga) in malignant cells in vitro were studied. Biological effects were investigated cytokinetically and morphologically. The malignant cultured FM3A cells (originated from mammary carcinoma of C3H mice) accumulated 67 Ga actively. This accumulation was more intensive in proliferating cells than in non-proliferating cells. 6.5 percent of 67 Ga accumulated in the cultured FM3A cells was bound loosely at the cell surface. The colony forming capacity of C2W cells (originated from amelanotic melanoma of C57 Black mice ) was studied. The capacity decreased markedly when stable Ga was added to the medium in low concentration, but it decreased very little more in the range of rather high concentration. The growth response of FM3A cells to various concentrations of stable Ga was studied. The saturation density decreased and the doubling time became prolonged with increased Ga concentration. When 0.5 mM of stable Ga was added to the medium, the speed of proliferation changed markedly. The doubling time increased 1.7 times as compared to that before addition of Ga. The shape of the FM3A cells was usually spheroid in the medium. Swelling of the cells was observed when stable Ga was added to the culture medium. In particular, several per cent of these cells showed remarkable changes; that is, the cells were flattened and adhered to the dish and showed remarkable locomotion. It may be that these results are related to cell differentiation rather than to the cytotoxicity of stable Ga. (auth.)

  4. Accumulation and biological effects of gallium in malignant cell lines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Awano, T; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1977-02-01

    Accumulation and biological effects of gallium (Ga) in malignant cells in vitro were studied. Biological effects were investigated cytokinetically and morphologically. The malignant cultured FM3A cells (originated from mammary carcinoma of C3H mice) accumulated /sup 67/Ga actively. This accumulation was more intensive in proliferating cells than in non-proliferating cells. 6.5 percent of /sup 67/Ga accumulated in the cultured FM3A cells was bound loosely at the cell surface. The colony forming capacity of C2W cells (originated from amelanotic melanoma of C57 Black mice ) was studied. The capacity decreased markedly when stable Ga was added to the medium in low concentration, but it decreased very little more in the range of rather high concentration. The growth response of FM3A cells to various concentrations of stable Ga was studied. The saturation density decreased and the doubling time became prolonged with increased Ga concentration. When 0.5 mM of stable Ga was added to the medium, the speed of proliferation changed markedly. The doubling time increased 1.7 times as compared to that before addition of Ga. The shape of the FM3A cells was usually spheroid in the medium. Swelling of the cells was observed when stable Ga was added to the culture medium. In particular, several per cent of these cells showed remarkable changes; that is, the cells were flattened and adhered to the dish and showed remarkable locomotion. It may be that these results are related to cell differentiation rather than to the cytotoxicity of stable Ga.

  5. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective.

    Science.gov (United States)

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M; Bezbradica, Jelena S; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.

  6. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Science.gov (United States)

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M.; Bezbradica, Jelena S.; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective. PMID:29312339

  7. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Directory of Open Access Journals (Sweden)

    Amrendra Kumar

    2017-12-01

    Full Text Available Type I natural killer T (NKT cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo perspective.

  8. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  9. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  10. Discrepancy of biologic behavior influenced by bone marrow derived cells in lung cancer.

    Science.gov (United States)

    Zhang, Jie; Niu, Xiao-Min; Liao, Mei-Lin; Liu, Yun; Sha, Hui-Fang; Zhao, Yi; Yu, Yong-Feng; Tan, Qiang; Xiang, Jia-Qing; Fang, Jing; Lv, Dan-Dan; Li, Xue-Bing; Lu, Shun; Chen, Hai-Quan

    2010-11-01

    Disseminated cancer cells may initially require local nutrients and growth factors to thrive and survive in bone marrow. However, data on the influence of bone marrow derived cells (BMDC, also called bone stromal cells in some publications) on lung cancer cells is largely unexplored. This study explored the mechanism of how bone stromal factors contribute to the bone tropism in lung cancer. The difference among lung cancer cell lines in their abilities to metastasize to bone was found using the SCID animal model. Supernatant of bone marrow aspiration (BM) and condition medium from human bone stromal cells (BSC) were used to study the activity of bone stromal factors. We found bone stromal factors significantly increased the proliferation, invasion, adhesion and expression of angiogenosis-related factors, and inhibited the apoptosis for high bone metastasis H460 lung cancer cells. These biologic effects were not seen in SPC-A1 or A549 cells, which are low bone metastasis lung cancer cells. Adhesion of H460 cells to surface coated with bone stromal cells can activate some signal transduction pathways, and alter the expression of adhesion associated factors, including integrin β 3 and ADAMTS-1, two potential targets related with bone metastasis. We concluded that bone marrow derived cells had a profound effect on biological behavior of lung cancers, therefore favoring the growth of lung cancer cells in bone.

  11. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  12. In Vitro and In Vivo Studies of the Biological Effects of Bioceramic (a Material of Emitting High Performance Far-Infrared Ray) Irradiation.

    Science.gov (United States)

    Leung, Ting-Kai

    2015-06-30

    Bioceramic is a material that emits high performance far-infrared ray, and possess physical, chemical and biological characteristics on irradiation of water, particularly to in reducing the size of water clusters, weakening of the hydrogen bonds of water molecules and other effects on physical and chemical properties of water. In this review paper, we summarized the in vivo and in vitro biological effects of Biocermaic, and included previous published data on nitric oxide, calmodulin induction on cells, effects of bioceramic on intracellular heat shock protein and intracellular nitric oxide contents of melanoma cells, antioxidant effects of Bioceramic on cells and plants under H₂O₂-mediated oxidative stress, effects on anti-oxidative stress of myoblast cells and on preventing fatigue of amphibian skeletal muscle during exercise, anti-inflammatory and pain relief mechanism, effects on the chondrosarcoma cell line with prostaglandin E2 production, effects on the rabbit with inflammatory arthritis by injection of lipopolysaccharides under monitoring by positron emission tomography scan, effects on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility, and protective effects of non-ionized radiation against oxidative stress on human breast epithelial cell. We anticipate that the present work will benefit medical applications.

  13. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy

    International Nuclear Information System (INIS)

    Shangguan, Yongming; Sun, Lina; Wan, Peng; Tan, Lili; Wang, Chengyue; Fan, Xinmin; Qin, Ling; Yang, Ke

    2016-01-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. - Highlights: • The MAO, PED and Sr-P coating were fabricated on Mg-Sr alloy to evaluate the degradation. • The MAO coating showed the greatest degradation performance among these three coatings. • The PED coating exhibited worse corrosion resistance even than Mg-Sr substrate. • The value of cell proliferation and ALP activity were ranked in the following order: MAO > Sr-P > PED.

  14. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Yongming [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sun, Lina [Jinzhou Medical University, Jinzhou 121000 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Tan, Lili [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Chengyue [Jinzhou Medical University, Jinzhou 121000 (China); Fan, Xinmin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Qin, Ling [Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-12-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. - Highlights: • The MAO, PED and Sr-P coating were fabricated on Mg-Sr alloy to evaluate the degradation. • The MAO coating showed the greatest degradation performance among these three coatings. • The PED coating exhibited worse corrosion resistance even than Mg-Sr substrate. • The value of cell proliferation and ALP activity were ranked in the following order: MAO > Sr-P > PED.

  15. Computational Biology Methods for Characterization of Pluripotent Cells.

    Science.gov (United States)

    Araúzo-Bravo, Marcos J

    2016-01-01

    Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

  16. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    Science.gov (United States)

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  17. Cell biology apps for Apple devices.

    Science.gov (United States)

    Stark, Louisa A

    2012-01-01

    Apps for touch-pad devices hold promise for guiding and supporting learning. Students may use them in the classroom or on their own for didactic instruction, just-in-time learning, or review. Since Apple touch-pad devices (i.e., iPad and iPhone) have a substantial share of the touch-pad device market (Campbell, 2012), this Feature will explore cell biology apps available from the App Store. My review includes iPad and iPhone apps available in June 2012, but does not include courses, lectures, podcasts, audiobooks, texts, or other books. I rated each app on a five-point scale (1 star = lowest; 5 stars = highest) for educational and production values; I also provide an overall score.

  18. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  19. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, J.H.J.

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I

  20. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Vasilescu, Ecaterina; Drob, Paula [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cinca, Ion, E-mail: ion_cinca@hotmail.com [Faculty of Material Science and Engineering, Politehnica University, Spl. Independentei 313, 060042 Bucharest (Romania); Vasilescu, Cora; Anastasescu, Mihai [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, Valentina [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Drob, Silviu Iulian [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2014-05-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances.

  1. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-01-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances

  2. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  3. Three-dimensional printing of human skeletal muscle cells: An interdisciplinary approach for studying biological systems.

    Science.gov (United States)

    Bagley, James R; Galpin, Andrew J

    2015-01-01

    Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex biological systems. Here, we utilize technology available at most universities to print three-dimensional (3D) scale models of actual human muscle cells (myofibers) out of bioplastic materials. The same methodological approach could be applied to nearly any cell type or molecular structure. This advancement is significant because historically, two-dimensional (2D) myocellular images have proven insufficient for detailed analysis of organelle organization and morphology. 3D imaging fills this void by providing accurate and quantifiable myofiber structural data. Manipulating tangible 3D models combats 2D limitation and gives students new perspectives and alternative learning experiences that may assist their understanding. This approach also exposes learners to 1) human muscle cell extraction and isolation, 2) targeted fluorescence labeling, 3) confocal microscopy, 4) image processing (via open-source software), and 5) 3D printing bioplastic scale-models (×500 larger than the actual cells). Creating these physical models may further student's interest in the invisible world of molecular and cellular biology. Furthermore, this interdisciplinary laboratory project gives instructors of all biological disciplines a new teaching tool to foster integrative thinking. © 2015 The International Union of Biochemistry and Molecular Biology.

  4. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  5. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    Science.gov (United States)

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  6. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    Science.gov (United States)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  7. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    International Nuclear Information System (INIS)

    Jeong, Du Won; Jin Kim, Ju; Jung, Jongjin; Yang, Cheol-Soo; Lee, Jeong-O; Hwa Kim, Gook; Don Jung, Sang

    2015-01-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV–ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions. (paper)

  8. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  9. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater...

  10. Sub-terahertz resonance spectroscopy of biological macromolecules and cells

    Science.gov (United States)

    Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

    2013-05-01

    Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

  11. WWW.Cell Biology Education: Using the World Wide Web to Develop a New Teaching Topic

    Science.gov (United States)

    Blystone, Robert V.; MacAlpine, Barbara

    2005-01-01

    "Cell Biology Education" calls attention each quarter to several Web sites of educational interest to the biology community. The Internet provides access to an enormous array of potential teaching materials. In this article, the authors describe one approach for using the World Wide Web to develop a new college biology laboratory exercise. As a…

  12. Cell Migration Analysis: A Low-Cost Laboratory Experiment for Cell and Developmental Biology Courses Using Keratocytes from Fish Scales

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R.

    2017-01-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level…

  13. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.S., E-mail: jinsong-wu@northwestern.edu [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Kim, A.M. [Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Bleher, R. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Myers, B.D. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Marvin, R.G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Inada, H.; Nakamura, K. [Hitachi High-Technologies Corporation, Ibaraki 312-8504 (Japan); Zhang, X.F. [Hitachi High Technologies America, Inc., 5960 Inglewood Drive, Pleasanton, California 94588 (United States); Roth, E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Li, S.Y. [Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208 (United States); and others

    2013-05-15

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed.

  14. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Wu, J.S.; Kim, A.M.; Bleher, R.; Myers, B.D.; Marvin, R.G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. - Highlights: ► Applications of STEM in characterization of biological samples are demonstrated. ► Elemental analyses are performed by dual EDS and EELS. ► Both the surface and internal structure of cells can be studied simultaneously. ► The imaging contrast in low-dose cryo-STEM has been analyzed

  15. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy

    Science.gov (United States)

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle

    2009-01-01

    Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016

  16. Implementing recommendations for introductory biology by writing a new textbook.

    Science.gov (United States)

    Barsoum, Mark J; Sellers, Patrick J; Campbell, A Malcolm; Heyer, Laurie J; Paradise, Christopher J

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p biology.

  17. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Regulation of mutagenesis by exogenous biological factors in the eukaryotic cell systems

    Directory of Open Access Journals (Sweden)

    Lukash L. L.

    2013-07-01

    Full Text Available The representations of the mutations and the nature of spontaneous mutation process and mutagenesis induced by exogenous oncoviruses, DNAs and proteins-mitogens are analysed. Exogenous biological factors induce DNA damages in regulatory-informational way, acting on the cellular systems for maintenance of genetical stability. Molecular mechanisms are the same as at spontaneous mutagenesis but they are realized with the participation of alien genetical material. Among biological mutagens, the oncoviruses and mobile genetic elements (MGEs are distinguished as the strongest destabilizing factors which direct tumor transformation of somatic mammalian cells. Genetical reprogramming or changing the programs of gene expression at the differentiation of stem and progenitor cells under growth factors and citokines is probably followed by mutations and recombinations as well.

  19. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  20. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization.

    Science.gov (United States)

    Hazim, Roni A; Karumbayaram, Saravanan; Jiang, Mei; Dimashkie, Anupama; Lopes, Vanda S; Li, Douran; Burgess, Barry L; Vijayaraj, Preethi; Alva-Ornelas, Jackelyn A; Zack, Jerome A; Kohn, Donald B; Gomperts, Brigitte N; Pyle, April D; Lowry, William E; Williams, David S

    2017-10-02

    corroborating findings of others, and providing important new information on essential RPE cell biological properties.

  1. Relative biological effectiveness (RBE) of alpha radiation in cultured porcine aortic endothelial cells.

    Science.gov (United States)

    Thomas, Patricia; Tracy, Bliss; Ping, Tilly; Baweja, Anar; Wickstrom, Mark; Sidhu, Narinder; Hiebert, Linda

    2007-03-01

    Northern peoples can receive elevated radiation doses (1- 10 mSv/y) from transfer of polonium-210 (210Po) through the lichen-caribou-human food chain. Ingested 210Po is primarily blood-borne and thus many of its short range alpha particles irradiate the endothelial cells lining the blood vessels. The relative biological effectiveness (RBE) of alpha particles vs. x-rays was examined in porcine aortic endothelial cells as a surrogate for understanding what might happen to human endothelial cells in northern populations consuming traditional foods. Cultured porcine aortic endothelial cells were exposed to x-ray and 210Po alpha particle radiation. Alpha irradiation was applied to the cell cultures internally via the culture medium and externally, using thin-bottomed culture dishes. The results given here are based on the external irradiation method, which was found to be more reliable. Dose-response curves were compared for four lethal endpoints (cell viability, live cell fraction, release of lactate dehydrogenase [LDH] and clonogenic survival) to determine the relative biological effectiveness (RBE) of alpha radiation. The alpha RBE for porcine cells varied from 1.6-21, depending on the endpoint: 21.2+/-4.5 for cell viability, 12.9+/-2.7 for decrease in live cell number, 5.3+/-0.4 for LDH release to the medium but only 1.6 +/-0.1 for clonogenic survival. The low RBE of 1.6 was due to x-ray hypersensitivity of endothelial cells at low doses.

  2. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    Science.gov (United States)

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  3. Prediction and optimization of fuel cell performance using a multi-objective genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Marques Hobold, Gustavo [Laboratory of Energy Conversion Engineering and Technology, Federal University of Santa Catarina (Brazil); Washington University in St. Louis, MO 63130 (United States); Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, MO 63130 (United States)

    2013-07-01

    The attention that is currently being given to the emission of pollutant gases in the atmosphere has made the fuel cell (FC), an energy conversion device that cleanly converts chemical energy into electrical energy, a good alternative to other technologies that still use carbon-based fuels. The temperature plays an important role on the efficiency of an FC as it influences directly the humidity of the membrane, the reversible thermodynamic potential and the partial pressure of water; therefore the thermal control of the fuel cell is the focus of this paper. We present models for both high and low temperature fuel cells based on the solid-oxide fuel cell (SOFC) and the polymer electrolyte membrane fuel cell (PEMFC). A thermodynamic analysis is performed on the cells and the methods of controlling their temperature are discussed. The cell parameters are optimized for both high and low temperatures using a Java-based multi-objective genetic algorithm, which makes use of the logic of the biological theory of evolution to classify individual parameters based on a fitness function in order to maximize the power of the fuel cell. Applications to high and low temperature fuel cells are discussed.

  4. My Dog's Cheeks: A PBL Project on Collagen for Cell Biology and Genetics Courses

    Science.gov (United States)

    Casla, Alberto Vicario; Zubiaga, Isabel Smith

    2010-01-01

    Students often have an oversimplified view of biological facts, which may hinder subsequent understanding when conceptual complexity gives rise to cognitive conflicts. To avoid this situation here, we present a PBL approach for the analysis of Ehlers-Danlos syndrome (EDS), which integrates a variety of topics in cell biology, genetics, and…

  5. Cognitive Difficulty and Format of Exams Predicts Gender and Socioeconomic Gaps in Exam Performance of Students in Introductory Biology Courses.

    Science.gov (United States)

    Wright, Christian D; Eddy, Sarah L; Wenderoth, Mary Pat; Abshire, Elizabeth; Blankenbiller, Margaret; Brownell, Sara E

    2016-01-01

    Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom's level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom's level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students. © 2016 C. D. Wright, S. L. Eddy, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Biological response of cancer cells to radiation treatment

    Directory of Open Access Journals (Sweden)

    Rajamanickam eBaskar

    2014-11-01

    Full Text Available Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability to spread or metastasize throughout the body. In recent years, remarkable progress has been made towards the understanding of proposed hallmarks of cancer development, care and treatment modalities. Radiation therapy or radiotherapy is an important and integral component of cancer management, mostly conferring a survival benefit. Radiation therapy destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years, radiation therapy has been driven by constant technological advances and approximately 50% of all patients with localized malignant tumors are treated with radiation at some point in the course of their disease. In radiation oncology, research and development in the last three decades has led to considerable improvement in our understanding of the differential responses of normal and cancer cells. The biological effectiveness of radiation depends on the linear energy transfer (LET, total dose, number of fractions and radiosensitivity of the targeted cells or tissues. Radiation can either directly or indirectly (by producing free radicals damages the genome of the cell. This has been challenged in recent years by a newly identified phenomenon known as radiation induced bystander effect (RIBE. In RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues demonstrate similar responses to that of the directly irradiated cells. Understanding the cancer cell responses during the fractions or after the course of irradiation will lead to improvements in therapeutic efficacy and potentially, benefitting a significant proportion of cancer patients. In this review, the clinical implications of radiation induced direct and bystander effects on the cancer cell are discussed.

  7. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology

    Science.gov (United States)

    RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN

    2010-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691

  8. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology.

    Science.gov (United States)

    Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min

    2009-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.

  9. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  10. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans.

    Science.gov (United States)

    Voss, Matthias; Bryceson, Yenan T

    2017-04-01

    Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology. Copyright © 2015. Published by Elsevier Inc.

  11. Stem cell biology meets systems biology

    OpenAIRE

    Roeder, I.; Radtke, F.

    2009-01-01

    Stem cells and their descendents are the building blocks of life. How stem cell populations guarantee their maintenance and/or self-renewal, and how individual stem cells decide to transit from one cell stage to another to generate different cell types are long-standing and fascinating questions in the field. Here, we review the discussions that took place at a recent EMBO conference in Cambridge, UK, in which these questions were placed in the context of the latest advances in stem cell biol...

  12. Autophagy in Stem Cell Biology: A Perspective on Stem Cell Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Xihang Chen

    2018-01-01

    Full Text Available Autophagy is a highly conserved cellular process that degrades modified, surplus, or harmful cytoplasmic components by sequestering them in autophagosomes which then fuses with the lysosome for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis, as well as for remodeling during normal development. Impairment of this process has been implicated in various diseases, in the pathogenic response to bacterial and viral infections, and in aging. Pluripotent stem cells, with their ability to self-replicate and to give rise to any specialized cell type, are very valuable resources for cell-based medical therapies and open a number of promising avenues for studying human development and disease. It has been suggested that autophagy is vital for the maintenance of cellular homeostasis in stem cells, and subsequently more in-depth knowledge about the regulation of autophagy in stem cell biology has been acquired recently. In this review, we describe the most significant advances in the understanding of autophagy regulation in hematopoietic and mesenchymal stem cells, as well as in induced pluripotent stem cells. In particular, we highlight the roles of various autophagy activities in the regulation of self-renewal and differentiation of these stem cells.

  13. The rise of developmental genetics - a historical account of the fusion of embryology and cell biology with human genetics and the emergence of the Stem Cell Initiative.

    Science.gov (United States)

    Kidson, S H; Ballo, R; Greenberg, L J

    2016-05-25

    Genetics and cell biology are very prominent areas of biological research with rapid advances being driven by a flood of theoretical, technological and informational knowledge. Big biology and small biology continue to feed off each other. In this paper, we provide a brief overview of the productive interactions that have taken place between human geneticists and cell biologists at UCT, and credit is given to the enabling environment created led by Prof. Peter Beighton. The growth of new disciplines and disciplinary mergers that have swept away division of the past to make new exciting syntheses are discussed. We show how our joint research has benefitted from worldwide advances in developmental genetics, cloning and stem cell technologies, genomics, bioinformatics and imaging. We conclude by describing the role of the UCT Stem Cell Initiative and show how we are using induced pluripotent cells to carry out disease-in-the- dish studies on retinal degeneration and fibrosis.

  14. Review: the development of neural stem cell biology and technology in regenerative medicine

    OpenAIRE

    Shanmuganathan, Divyanjali; Sivakumaran, Nivethika

    2018-01-01

    In the middle of the last century, it has been known that neural stem cells (NSCs) play a key role in regenerative medicine to cure the neurodegenerative disease. This review article covers about the introduction to neural stem cell biology and the isolation, differentiation and transplantation methods/techniques of neural stem cells. The neural stem cells can be transplanted into the human brain in the future to replace the damaged and dead neurons. The highly limited access to embryonic ste...

  15. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  16. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    Science.gov (United States)

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that

  17. Mathematical simulation of biologically equivalent doses for LDR-HDR

    International Nuclear Information System (INIS)

    Slosarek, K.; Zajusz, A.

    1996-01-01

    Based on the LQ model examples of biologically equivalent doses LDR, HDR and external beams were calculated. The biologically equivalent doses for LDR were calculated by appending to the LQ model the corrector for the time of repair of radiation sublethal damages. For radiation continuously delivered at a low dose rate the influence of sublethal damage repair time changes on biologically equivalent doses were analysed. For fractionated treatment with high dose rate the biologically equivalent doses were calculated by adding to the LQ model the formula of accelerated repopulation. For total biologically equivalent dose calculation for combine LDR-HDR-Tele irradiation examples are presented with the use of different parameters of the time of repair of sublethal damages and accelerated repopulation. The calculations performed show, that the same biologically equivalent doses can be obtained for different parameters of cell kinetics changes during radiation treatment. It also shows, that during biologically equivalent dose calculations for different radiotherapy schedules, ignorance of cell kinetics parameters can lead to relevant errors

  18. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  19. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  20. Biological behaviour of buccal cells exposed to blue light

    International Nuclear Information System (INIS)

    Gritsch, Kerstin; Ponsonnet, Laurence; Schembri, Catherine; Farge, Pierre; Pourreyron, Laurence; Grosgogeat, Brigitte

    2008-01-01

    Blue light is used in dental practise to cure resin-based materials, but the path of the light often includes oral tissues such as gingival tissues. While adverse effects of blue light exposure on cells - such as retina cells - are well known, few studies have investigated the impact of blue light exposure on oral cells. The aim of the present in vitro study was to assess the biological effects of blue light emitted by two dental curing devices (a plasma-arc and a light-emitting diode curing unit) on human gingival fibroblasts. Light intensities and light-induced temperature rise were respectively measured with a radiometer and a thermocouple. Cellular response to blue light exposure was assessed by the observation of cell morphology (scanning electron microscopy) and the estimation of cell mitochondrial activity (MTT assay). Light intensities measured at the clinical distance were 488 ± 42 mW/cm 2 for the plasma-arc unit and ranged from 61 ± 5 to 140 ± 16 mW/cm 2 for the light-emitting diodes unit, according to the curing program used. The highest temperature rise was 0.5 and 3.5 deg. C for exposure to the plasma-arc light and to the light-emitting diodes light, respectively. Results showed no differences between exposed- and non-exposed cells in regards to cell morphology. However, cells exposed to blue light presented an increased mitochondrial activity compared to control cells (non-exposed), and mostly those exposed to plasma-arc light

  1. Female versus male biological identities of nanoparticles determine the interaction with immune cells in fish

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Murugadoss, Sivakumar

    2017-01-01

    Biomolecule decoration of nanoparticles provides a corona that modulates how the nanoparticles interact with biological milieus. The corona composition has proved to reflect the differences in the repertoire of proteins to which the nanoparticles are exposed, and as a result the same nanoparticles...... and myeloid populations of the blood cells preferentially accumulated the nanoparticles with a female biological identity, irrespective of the sex of the fish from which the cells were obtained. The concept of repertoire differences in the corona proteome therefore deserves further attention, as various...

  2. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  3. Ultra-Fast Glyco-Coating of Non-Biological Surfaces

    Directory of Open Access Journals (Sweden)

    Eleanor Williams

    2016-01-01

    Full Text Available The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL has been used to glycosylate cells. Because it is known that lipid-based material can adsorb onto surfaces, we explored the potential and performance of cell-labelling FSL constructs to “glycosylate” non-biological surfaces. Using blood group A antigen as an indicator, the performance of a several variations of FSL constructs to modify a large variety of non-biological surfaces was evaluated. It was found the FSL constructs when optimised could in a few seconds glycosylate almost any non-biological surface including metals, glass, plastics, rubbers and other polymers. Although the FSL glycan coating was non-covalent, and therefore temporary, it was sufficiently robust with appropriate selection of spacer and surface that it could capture anti-glycan antibodies, immobilize cells (via antibody, and withstand incubation in serum and extensive buffer washing, making it suitable for diagnostic and research applications.

  4. Pectin: cell biology and prospects for functional analysis.

    Science.gov (United States)

    Willats, W G; McCartney, L; Mackie, W; Knox, J P

    2001-09-01

    Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.

  5. Proceedings from the National Cancer Institute's Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: Part I. Biology of relapse after transplantation.

    Science.gov (United States)

    Gress, Ronald E; Miller, Jeffrey S; Battiwalla, Minoo; Bishop, Michael R; Giralt, Sergio A; Hardy, Nancy M; Kröger, Nicolaus; Wayne, Alan S; Landau, Dan A; Wu, Catherine J

    2013-11-01

    In the National Cancer Institute's Second Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation, the Scientific/Educational Session on the Biology of Relapse discussed recent advances in understanding some of the host-, disease-, and transplantation-related contributions to relapse, emphasizing concepts with potential therapeutic implications. Relapse after hematopoietic stem cell transplantation (HSCT) represents tumor escape, from the cytotoxic effects of the conditioning regimen and from immunologic control mediated by reconstituted lymphocyte populations. Factors influencing the biology of the therapeutic graft-versus-malignancy (GVM) effect-and relapse-include conditioning regimen effects on lymphocyte populations and homeostasis, immunologic niches, and the tumor microenvironment; reconstitution of lymphocyte populations and establishment of functional immune competence; and genetic heterogeneity within the malignancy defining potential for clonal escape. Recent developments in T cell and natural killer cell homeostasis and reconstitution are reviewed, with implications for prevention and treatment of relapse, as is the application of modern genome sequencing to defining the biologic basis of GVM, clonal escape, and relapse after HSCT. Published by Elsevier Inc.

  6. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  7. Biological fuel-cell converts sugar into electric power; Biologinen polttokenno muuttaa sokerin saehkoeksi

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    1994-12-31

    The Automation Technology Laboratory at the Helsinki University of Technology has developed a fuel-cell which produces electric power and water from glucose. The fuel-cell opens new possibilities for utilization of biologically disintegrable matter, e.g. different kinds of carbage, in power generation. The glucose is converted in the reactor by baking yeast into a metabolite, which is feeded into the fuel-cell of volume 55 ml. Graphite, wound into the nickel wire net, is used as anode in the system. Porous graphite is used as cathode. Anode and cathode are separated from each other by ion- exchange membrane, which is penetrable by hydrogen iones, but not by salt solution of the cathode half-cell. The metabolite is oxidized at the anode, donating electrons and hydrogen iones to the ande. The electrones flow through the circuit into the cathode there they react with hydrogen iones and oxygen feeded through the cathode to form water. The fuel-cell, based on direct oxygenation-reduction, has operated without any disturbances for 280 hours. The efficiency, calculated from the heating value of the glucose, is 44 %, which is better than that of the chemical fuel-cells. The disadvantage of the biological reactions is the low speed of them, so the current densities of the cell still remain into the class 2.0 W/m{sup 2}, which is about 1.0 % of that of the developed phosphoric acid fuel-cells

  8. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity.

    Science.gov (United States)

    Shuch, Brian; Amin, Ali; Armstrong, Andrew J; Eble, John N; Ficarra, Vincenzo; Lopez-Beltran, Antonio; Martignoni, Guido; Rini, Brian I; Kutikov, Alexander

    2015-01-01

    Once believed to represent a uniform malignant phenotype, renal cell carcinoma (RCC) is now viewed as a diverse group of cancers that arise from the nephron. To review the pathologic characteristics, clinical behavior, molecular biology, and systemic therapy options of recognized RCC histologic subtypes. A systematic review of English-language articles was performed using the Medline and Web of Science databases. Manuscripts were selected with consensus of the coauthors and evaluated using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) criteria. The major findings of the evaluated manuscripts are discussed with an emphasis on the description of the pathologic features, clinical behavior, prognosis, and therapeutic strategies. Classification schemes for kidney cancer have undergone dramatic changes over the past two decades. Improvements in these classification schemes are important, as pathologic variants differ not only in disease biology, but also in clinical behavior, prognosis, and response to systemic therapy. In the era of genomic medicine, further refinements in characterization of RCC subtypes will be critical to the progress of this burgeoning clinical space. Kidney cancer can be subdivided into related but different cancers that arise from the kidney's tubules. In this article we review current classifications for kidney cancer, discuss their characteristics, and provide an overview of each subtype's clinical behavior and treatment. We stress that each subtype harbors unique biology and thus responds differently to available treatment strategies. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  9. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  10. Very small embryonic-like stem cells: implications in reproductive biology.

    Science.gov (United States)

    Bhartiya, Deepa; Unni, Sreepoorna; Parte, Seema; Anand, Sandhya

    2013-01-01

    The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  11. Very Small Embryonic-Like Stem Cells: Implications in Reproductive Biology

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2013-01-01

    Full Text Available The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs whereas primordial follicles (PFs are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  12. Strategies for Assessment of the Biological Performance and Design of Hydroturbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Richmond, Marshall C.

    2011-05-05

    The biological response of fish to turbine passage has been of concern for several decades and emphasized recently by consideration of hydro as a 'green' power source. The current state-of-the-art of hydro-turbine biological performance assessment, while still inadequate, has advanced considerably the past 10 years. For example, the importance of assessment of exposure to pressure changes during turbine passage has been emphasized by findings of laboratory studies of rapid decompression. It is now very clear that hydroturbine biological assessment must consider the physiological state and behavior of fish at turbine entry and changes in physiological state that drive aspects of behavior during tailrace passage. Such considerations are in addition to concerns about exposure of fish to mechanical and pressure sources of injury during turbine passage. Experimental designs and assessment tools have evolved for acclimation of test fish, observation of test fish behavior at approach and upon exit from the turbine environment, and precise estimation of turbine passage mortality. Fish condition assessment continues to improve permitting better classification of observed injuries to injury mechanisms. Computational fluid dynamics (CFD) models and other computer models permit detailed investigation of the turbine passage environment and development of hypotheses that can be tested in field studies using live fish. Risk assessment techniques permit synthesis of laboratory and in-field study findings and estimation of population level effects over a wide range of turbine operation scenarios. Risk assessment is also evolving to provide input to turbine runner design. These developments, and others, have resulted in more productive biological performance assessment studies and will continue to evolve and improve the quantity and quality of information obtained from costly live fish hydroturbine passage studies. This paper reviews the history of hydro-turbine biological

  13. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    Science.gov (United States)

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  14. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  15. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.

    1991-02-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space

  16. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  17. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  18. Relative biological effectiveness of 160 MeV protons. II. Biological data and their interpretation in terms of microdosimetry

    International Nuclear Information System (INIS)

    Hall, E.J.; Kellerer, A.M.; Rossi, H.H.; Lam, Y.M.P.

    1978-01-01

    The radiobiological effectiveness of 160 MeV protons was measured relative to 60 Co γ rays using Chinese hamster cells cultured in vitro. Separate experiments were performed with cells irradiated in suspension, or attached to plastic tissue culture flasks. Proton irradiations were performed in the incident plateau of the depth dose profile and with the Bragg peak spread out to cover 10 cm. In all cases the relative biological effectiveness (RBE) for protons relative to gamma rays was 1.2 for doses in excess of about 200 rad. The attached cell experiments indicate an increasing RBE at low doses, which is consistent with the microdosimetric measurements

  19. [Effect of NOR1 gene knockdown on the biological behavior of HeLa cells].

    Science.gov (United States)

    Tan, Yixin; Li, Wenjuan; Yi, Mei; Wang, Wei; Zheng, Pan; Zhang, Haijing; Xiang, Bo; Li, Guiyuan

    2014-08-01

    To explore the effect of the oxidored nitro domain containing protein 1 (NOR1) gene knockdown on the biological behavior of HeLa cells in cervical carcinoma. The recombinant plasmids pSUPER-shNOR1-1, pSUPER-shNOR1-2 and pSUPERscramble, which targeted to NOR1 gene, were constructed by pSUPER.neo+GFP vector, transfected into HeLa cells respectively using Lipofectamine 2000 reagent, and followed by G418 selection. The expression level of NOR1 mRNA and protein were determined by RT-PCR and Western blotting, respectively. Methyl thiazolyl tetrazolium (MTT) assay was performed to determine the growth curve of cell viability. The stable transfectants were treated with H₂O₂ and cell apoptosis was determined by Hoechst 33258 staining and terminal deoxynucleotidyl transferasemediated dUTP nick end labeling (TUNEL) assay. The expression levels of Bcl-2, cleaved caspase 9 and poly ADP-ribose polymerase (PARP) were measured by Western blot. NOR1- knockdown HeLa cells were successfully constructed by transfection of pSUPER-shNOR1-1 or pSUPER-shNOR1-2 plasmids into HeLa cells. MTT assay showed that the silence of endogenous NOR1 in HeLa cells could lead to the increase in cell viability and proliferation, and the inhibition of H₂O₂-induced apoptosis compared with the negative control. Western blot showed that the expression level of active caspase 9 and cleaved PARP was inhibited in NOR1-knockdown cells when they were treated with H₂O₂ while the expression level of Bcl-2 protein increased. Silence of endogenous NOR1 facilitates the cell viability and growth of HeLa cells, and attenuates HeLa cells apoptosis induced by H₂O₂, which might be mediated by up-regulation of Bcl-2 level and down-regulation of the cleaved caspase 9 cascade.

  20. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources.

    Science.gov (United States)

    Bleda, Marta; Tarraga, Joaquin; de Maria, Alejandro; Salavert, Francisco; Garcia-Alonso, Luz; Celma, Matilde; Martin, Ainoha; Dopazo, Joaquin; Medina, Ignacio

    2012-07-01

    During the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositories and some databases are no longer supported or they contain too specific and unconnected information. In addition, data size is increasingly becoming an obstacle when accessing or storing biological data. All these issues make very difficult to extract and integrate information from different sources, to analyze experiments or to access and query this information in a programmatic way. CellBase provides a solution to the growing necessity of integration by easing the access to biological data. CellBase implements a set of RESTful web services that query a centralized database containing the most relevant biological data sources. The database is hosted in our servers and is regularly updated. CellBase documentation can be found at http://docs.bioinfo.cipf.es/projects/cellbase.

  1. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    Directory of Open Access Journals (Sweden)

    Luca Gentile

    2011-01-01

    Full Text Available Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  2. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  3. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Victor Trevino

    2016-04-01

    Full Text Available The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell

  4. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    Science.gov (United States)

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  5. Embryonic stem cell interactomics: the beginning of a long road to biological function.

    Science.gov (United States)

    Yousefi, Maram; Hajihoseini, Vahid; Jung, Woojin; Hosseinpour, Batol; Rassouli, Hassan; Lee, Bonghee; Baharvand, Hossein; Lee, KiYoung; Salekdeh, Ghasem Hosseini

    2012-12-01

    Embryonic stem cells (ESCs) are capable of unlimited self-renewal while maintaining pluripotency. They are of great interest in regenerative medicine due to their ability to differentiate into all cell types of the three embryonic germ layers. Recently, induced pluripotent stem cells (iPSCs) have shown similarities to ESCs and thus promise great therapeutic potential in regenerative medicine. Despite progress in stem cell biology, our understanding of the exact mechanisms by which pluripotency and self-renewal are established and maintained is largely unknown. A better understanding of these processes may lead to discovery of alternative ways for reprogramming, differentiation and more reliable applications of stem cells in therapies. It has become evident that proteins generally function as members of large complexes that are part of a more complex network. Therefore, the identification of protein-protein interactions (PPI) is an efficient strategy for understanding protein function and regulation. Systematic genome-wide and pathway-specific PPI analysis of ESCs has generated a network of ESC proteins, including major transcription factors. These PPI networks of ESCs may contribute to a mechanistic understanding of self-renewal and pluripotency. In this review we describe different experimental approaches for the identification of PPIs along with various databases. We discuss biological findings and technical challenges encountered with interactome studies of pluripotent stem cells, and provide insight into how interactomics is likely to develop.

  6. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  7. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial–mesenchymal transition and cancer-stem cell trait as biological end points

    Energy Technology Data Exchange (ETDEWEB)

    Narang, Himanshi, E-mail: narangh@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Amit [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhat, Nagesh [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Badri N.; Ghosh, Anu [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-10-15

    Highlights: • Biological effectiveness of proton and gamma irradiation is compared in A549 cells. • Proton irradiation is two times more cytotoxic than gamma irradiation. • It alters ten times more number of early genes, as observed by microarray study. • It does not enhance cell migration, invasion and adhesion, unlike gamma irradiation. • It was more effective in reducing the percentage of cancer stem cell like cells. - Abstract: Proton beam therapy is a cutting edge modality over conventional gamma radiotherapy because of its physical dose deposition advantage. However, not much is known about its biological effects vis-a-vis gamma irradiation. Here we investigated the effect of proton- and gamma- irradiation on cell cycle, death, epithelial-mesenchymal transition (EMT) and “stemness” in human non-small cell lung carcinoma cells (A549). Proton beam (3 MeV) was two times more cytotoxic than gamma radiation and induced higher and longer cell cycle arrest. At equivalent doses, numbers of genes responsive to proton irradiation were ten times higher than those responsive to gamma irradiation. At equitoxic doses, the proton-irradiated cells had reduced cell adhesion and migration ability as compared to the gamma-irradiated cells. It was also more effective in reducing population of Cancer Stem Cell (CSC) like cells as revealed by aldehyde dehydrogenase activity and surface phenotyping by CD44{sup +}, a CSC marker. These results can have significant implications for proton therapy in the context of suppression of molecular and cellular processes that are fundamental to tumor expansion.

  8. [Human myoblast culture as muscle stem cells in medical and biological studies].

    Science.gov (United States)

    Terekhov, S M; Krokhina, T B; Shishkin, S S; Krakhmaleva, I N; Zakharov, S F; Ershova, E S

    2001-01-01

    The method for obtaining human myoblast culture has been modified to consider the specific histological localization of the satellite cells as well as their growth properties; the cultivation conditions have been selected to grow up to 150000 cells/cm2. At high densities, the cells remain mononuclear and preserve their typical myoblast morphology as well as the capacity for fusion and the formation of myotubes. By contrast to fibroblasts, up to 80% of the cells in the myoblast culture were positive in the acid phosphatase test, which indicates their stem nature. The obtained myoblast cultures were used in the clinical tests of cell-mediated gene therapy of Duchenne's muscular dystrophy as well as in the bioassay for the effects of biologically active compounds.

  9. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications

    Science.gov (United States)

    Castro-Manrreza, Marta E.; Montesinos, Juan J.

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059

  10. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Progress is reported on the following research projects: the effects of N-ethyl-maleimide and hydroxyurea on hamster cells in culture; sensitization of synchronized human cells to x rays by N-ethylmaleimide; sensitization of hypoxic mammalian cells with a sulfhydryl inhibitor; damage interaction due to ionizing and nonionizing radiation in mammalian cells; DNA damage relative to radioinduced cell killing; spurious photolability of DNA labeled with methyl- 14 C-thymidine; radioinduced malignant transformation of cultured mouse cells; a comparison of properties of uv and near uv light relative to cell function and DNA damage; Monte Carlo simulation of DNA damage and repair mechanisms; and radiobiology of fast neutrons

  11. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    Science.gov (United States)

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  13. Synergistic effects of arsenic trioxide combined with ascorbic acid in human osteosarcoma MG-63 cells: a systems biology analysis.

    Science.gov (United States)

    Huang, X C; Maimaiti, X Y M; Huang, C W; Zhang, L; Li, Z B; Chen, Z G; Gao, X; Chen, T Y

    2014-01-01

    To further understand the synergistic mechanism of As2O3 and asscorbic acid (AA) in human osteosarcoma MG-63 cells by systems biology analysis. Human osteosarcoma MG-63 cells were treated by As2O3 (1 µmol/L), AA (62.5 µmol/L) and combined drugs (1 µmol/L As2O3 plus 62.5 µmol/L AA). Dynamic morphological characteristics were recorded by Cell-IQ system, and growth rate was calculated. Illumina beadchip assay was used to analyze the differential expression genes in different groups. Synergic effects on differential expression genes (DEGs) were analyzed by mixture linear model and singular value decomposition model. KEGG pathway annotations and GO enrichment analysis were performed to figure out the pathways involved in the synergic effects. We captured 1987 differential expression genes in combined therapy MG-63 cells. FAT1 gene was significantly upregulated in all three groups, which is a promising drug target as an important tumor suppressor analogue; meanwhile, HIST1H2BD gene was markedly downregulated in the As2O3 monotherapy group and the combined therapy group, which was found to be upregulated in prostatic cancer. These two genes might play critical roles in synergetic effects of AA and As2O3, although the exact mechanism needs further investigation. KEGG pathway analysis showed many DEGs were related with tight junction, and GO analysis also indicated that DEGs in the combined therapy cells gathered in occluding junction, apical junction complex, cell junction, and tight junction. AA potentiates the efficacy of As2O3 in MG-63 cells. Systems biology analysis showed the synergic effect on the DEGs.

  14. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  15. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    Science.gov (United States)

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  16. Systems biology of stored blood cells: can it help to extend the expiration date?

    Science.gov (United States)

    Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E

    2012-12-05

    With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  18. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  19. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-08-01

    Full Text Available Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  20. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  1. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    Science.gov (United States)

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  2. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    Science.gov (United States)

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  3. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Systems biology perspectives on minimal and simpler cells.

    Science.gov (United States)

    Xavier, Joana C; Patil, Kiran Raosaheb; Rocha, Isabel

    2014-09-01

    The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Systems Biology Perspectives on Minimal and Simpler Cells

    Science.gov (United States)

    Xavier, Joana C.; Patil, Kiran Raosaheb

    2014-01-01

    SUMMARY The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. PMID:25184563

  6. Oral cancer cells with different potential of lymphatic metastasis displayed distinct biologic behaviors and gene expression profiles.

    Science.gov (United States)

    Zhuang, Zhang; Jian, Pan; Longjiang, Li; Bo, Han; Wenlin, Xiao

    2010-02-01

    Oral squamous cell carcinoma (OSCC) often spreads from the primary tumor to regional lymph nodes in the early stage. Better understanding of the biology of lymphatic spread of oral cancer cells is important for improving the survival rate of cancer patients. We established the cell line LNMTca8113 by repeated injections in foot pads of nude mice, which had a much higher lymphatic metastasis rate than its parental cell line Tca8113. Then, we compared the biologic behaviors of cancer cells between them. Moreover, microarray-based expression profiles between them were also compared, and a panel of differential genes was validated using real-time-PCR. In contrast to Tca8113 cells, LNMTca8113 cells were more proliferative and resistant to apoptosis in the absence of serum, and had enhanced ability of inducing capillary-like structures. Moreover, microarray-based expression profiles between them identified 1341 genes involved in cell cycle, cell adhesion, lymphangiogenesis, regulation of apoptosis, and so on. Some genes dedicating to the metastatic potential, including JAM2, TNC, CTSC, LAMB1, VEGFC, HAPLN1, ACPP, GDF9 and FGF11, were upregulated in LNMTca8113 cells. These results suggested that LNMTca8113 and Tca8113 cells were proper models for lymphatic metastasis study because there were differences in biologic behaviors and metastasis-related genes between them. Additionally, the differentially expressed gene profiles in cancer progression may be helpful in exploring therapeutic targets and provide the foundation for further functional validation of these specific candidate genes for OSCC.

  7. Estimation of raw material performance in mammalian cell culture using near infrared spectra combined with chemometrics approaches.

    Science.gov (United States)

    Lee, Hae Woo; Christie, Andrew; Liu, Jun Jay; Yoon, Seongkyu

    2012-01-01

    Understanding variability in raw materials and their impacts on product quality is of critical importance in the biopharmaceutical manufacturing processes. For this purpose, several spectroscopic techniques have been studied for raw material characterization, providing fast and nondestructive ways to measure quality of raw materials. However, investigations of correlation between spectra of raw materials and cell culture performance have been scarce due to their complexity and uncertainty. In this study, near-infrared spectra and bioassays of multiple soy hydrolysate lots manufactured by different vendors were analyzed using chemometrics approaches in order to address variability of raw materials as well as correlation between raw material properties and corresponding cell culture performance. Principal component analysis revealed that near-infrared spectra of different soy lots contain enough physicochemical information about soy hydrolysates to allow identification of lot-to-lot variability as well as vendor-to-vendor differences. The identified compositional variability was further analyzed in order to estimate cell growth and protein production of two mammalian cell lines under the condition of varying soy dosages using partial least square regression combined with optimal variable selection. The performance of the resulting models demonstrates the potential of near-infrared spectroscopy as a robust lot selection tool for raw materials while providing a biological link between chemical composition of raw materials and cell culture performance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  8. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems.

    Science.gov (United States)

    Bashor, Caleb J; Horwitz, Andrew A; Peisajovich, Sergio G; Lim, Wendell A

    2010-01-01

    The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for a synthetic biology toolkit that could be used to interrogate the design principles of diverse systems.

  9. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017

    Directory of Open Access Journals (Sweden)

    Fatemeh Akyash

    2017-09-01

    Full Text Available This report explains briefly the minutes of a 1-day workshop entitled; “human embryonic stem cells (hESCs and good manufacturing practice (GMP” held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  10. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017.

    Science.gov (United States)

    Akyash, Fatemeh; Sadeghian-Nodoushan, Fatemeh; Tahajjodi, Somayyeh Sadat; Nikukar, Habib; Farashahi Yazd, Ehsan; Azimzadeh, Mostafa; D Moore, Harry; Aflatoonian, Behrouz

    2017-05-01

    This report explains briefly the minutes of a 1-day workshop entitled; "human embryonic stem cells (hESCs) and good manufacturing practice (GMP)" held by Stem Cell Biology Research Center based in Yazd Reproductive Sciences Institute at Shahid Sadoughi University of Medical Sciences, Yazd, Iran on 27 th April 2017. In this workshop, in addition to the practical sessions, Prof. Harry D. Moore from Centre for Stem Cell Biology, University of Sheffield, UK presented the challenges and the importance of the biotechnology of clinical-grade human embryonic stem cells from first derivation to robust defined culture for therapeutic applications.

  11. Implementing Recommendations for Introductory Biology by Writing a New Textbook

    Science.gov (United States)

    Barsoum, Mark J.; Sellers, Patrick J.; Campbell, A. Malcolm; Heyer, Laurie J.; Paradise, Christopher J.

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p < 0.05). We conclude that ICB improves critical thinking, metacognition, and disciplinary perceptions without compromising content knowledge in introductory biology. PMID:23463233

  12. Improved method and apparatus for electrostatically sorting biological cells. [DOE patent application

    Science.gov (United States)

    Merrill, J.T.

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  13. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.

    Science.gov (United States)

    Elani, Yuval

    2016-06-15

    The quest to construct artificial cells from the bottom-up using simple building blocks has received much attention over recent decades and is one of the grand challenges in synthetic biology. Cell mimics that are encapsulated by lipid membranes are a particularly powerful class of artificial cells due to their biocompatibility and the ability to reconstitute biological machinery within them. One of the key obstacles in the field centres on the following: how can membrane-based artificial cells be generated in a controlled way and in high-throughput? In particular, how can they be constructed to have precisely defined parameters including size, biomolecular composition and spatial organization? Microfluidic generation strategies have proved instrumental in addressing these questions. This article will outline some of the major principles underpinning membrane-based artificial cells and their construction using microfluidics, and will detail some recent landmarks that have been achieved. © 2016 The Author(s).

  14. iPS-Cinderella Story in Cell Biology

    Directory of Open Access Journals (Sweden)

    Editorial

    2010-01-01

    Full Text Available As we step through the frontiers of modern Science, we are all witnesses to the Cinderella story repeating itself in the form of the iPS. The process of re-programming adult somatic cells to derive Induced Pluripotent stem cells (iPS with the wand of transcription factors and then differentiating them back to adult somatic cells resembles the transformation of Cinderella from a Cinder girl to princess and back to a Cinder girl after the ball; but the iPS-Cinderella is the most fascinating thing ever in cell biology!From the day iPS first made its headlines when it was first produced by Shinya Yamanaka at Kyoto University in Japan, Stem Cell scientists all over the world are re- doing their experiments so far done using other sources like embryonic and adult Stem cells with the iPS cells exploring their potential to the fullest. A Stem Cell science news page without this magic word of iPS is difficult to imagine these days and Scientists have been successful in growing most of the adult Cell types from iPS cells.iPS cells was the key to solve the problems of Immune rejection and Immunosupression required when using other allogeneic Stem cell types which had baffled scientists previously. But the issues raised by scientists about the use of viruses and Oncogenes in producing iPS cells were made groundless when scientists in February 2008 published the discovery of a technique that could remove oncogenes after the induction of pluripotency and now it is possible to induce pluripotency using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. The word of the day is pIPS which are protein-induced Pluripotent stem cells which are iPS cells that were generated without any genetic alteration of the adult cell. This research by the group of Sheng Ding in La Jolla, California made public in April 2009 showed that the generation of poly-arginine anchors was sufficient to induce

  15. Natural killer cells: the journey from puzzles in biology to treatment of cancer.

    Science.gov (United States)

    Bodduluru, Lakshmi Narendra; Kasala, Eshvendar Reddy; Madhana, Rajaram Mohan Rao; Sriram, Chandra Shaker

    2015-02-28

    Natural Killer (NK) cells are innate immune effectors that are primarily involved in immunosurveillance to spontaneously eliminate malignantly transformed and virally infected cells without prior sensitization. NK cells trigger targeted attack through release of cytotoxic granules, and secrete various cytokines and chemokines to promote subsequent adaptive immune responses. NK cells selectively attack target cells with diminished major histocompatibility complex (MHC) class I expression. This "Missing-self" recognition by NK cells at first puzzled researchers in the early 1990s, and the mystery was solved with the discovery of germ line encoded killer immunoglobulin receptors that recognize MHC-I molecules. This review summarizes the biology of NK cells detailing the phenotypes, receptors and functions; interactions of NK cells with dendritic cells (DCs), macrophages and T cells. Further we discuss the various strategies to modulate NK cell activity and the practice of NK cells in cancer immunotherapy employing NK cell lines, autologous, allogeneic and genetically engineered cell populations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Understanding the biological effects of thorium in human cells and animals and developing efficient approaches for its decorporation and mitigation

    International Nuclear Information System (INIS)

    Kumar, Amit; Ali, Manjoor; Pandey, Badri N.

    2016-01-01

    Thorium-232 (Th) is being realized as a potential source of nuclear fuel for meeting long-term energy generation in India/other nations. In view of utilizing Th, it is hoped that mining, extraction, purification, back-end processing and disposal would increase significantly in near future. Therefore, understanding the biological effects of Th would enable its efficient utilization with adequate human health protection. Biological half-life and associated health effects of Th govern by its speciation, bio-kinetics, radiation decay and organ-specific accumulation due to Fe-like behaviour inside the body system. Our animal studies showed that Th mainly accumulates in liver and bone, in contrast to the accumulation of uranium in kidney. Cell culture experiments were performed to study the binding/internalization mechanism of Th (IV) with human liver cells (HepG2). Experiments using HepG2 cells suggested the role of transferrin (Tf), a blood protein in Th internalization. Recently, our in vitro study observed that the low concentration of Th nitrate induced proliferation in HepG2 through IGF-1R pathway. This study may have relevance to prevent early effects of Th using IGF-1 receptor-specific inhibitor. One of the major goals of our research group is to develop biological approaches for efficient decorporation of Th from liver. In this direction, liposomal form of DTPA has been optimized to effectively deliver DTPA to the liver. Testing of liposomal-DTPA in Th injected animal showed significant enhancement in removal of Th from liver and blood as compared to non-liposomal DTPA. Using ex-vivo human erythrocytes hemolysis assay and in whole blood condition, further efforts are in-progress to evaluate metal binding molecules in search of more effective decorporating agent than DTPA. In conclusion, this paper would discuss the results on mechanism of biological effects of Th on cells and proteins and newer molecules/approaches for its decorporation for human application

  17. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    International Nuclear Information System (INIS)

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  18. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  19. Physical Principles of Development of the State Standard of Biological Cell Polarizability

    Science.gov (United States)

    Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.

    2018-03-01

    A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.

  20. Effect of repeated irradiation on biological characteristics of lung adenocarcinoma cell line Anip973 in vitro

    International Nuclear Information System (INIS)

    Xu Qingyong; Xu Xiangying; Yang Zhiwei

    2008-01-01

    Objective: To study the effect of repeated irradiation on biological characteristics of human lung adenocarcinoma cell line Anip973 in vitro. Methods: Anip973 cells were treated with high energy X-ray to a total dose of 60 Gy at 4 Gy fractions. The radiosensitivity of Anip973R and its parental cell were measured by clonogenic assay. The biological parameters were fitted to the single hit multitarget formula. Furthermore, the population double time(PDT) and cell cycle distribution were measured by cell growth curve and flow cytometry, respectively. Results: Comparing with its parental cell, Anip973 R acquired radioresistance showing increased D 0 , D q and SF 2 and a broader shoulder. PDT of Anip973R extended 3 h more than that of Anip973. The Anip973R also showed higher and lower percentage of cells in G 1 and S phase (P 2 /M distribution (P>0.05). Conclusions: A radioresistant lung adenocarcinoma cell line Anip973R is established by repeatedly irradiation. Its radioresistance displays obviously in lower dose area. However, its characteristic of cell cycle is not completely coincident with the classical radiobiological theory. (authors)

  1. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  2. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  3. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    Science.gov (United States)

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-12-01

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  4. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Science.gov (United States)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  5. DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells.

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  6. [THE PHYSICAL CHEMICAL, BIOLOGICAL BASICS OF CELLS ABSORPTION OF UNESTERIFIED FATTY ACIDS; ALBUMIN, CAVEOLIN, CLATHRIN AND LIPID-BINDING PROTEINS OF CYTOPLASM (THE LECTURE)].

    Science.gov (United States)

    Titov, V N; Shoibonov, B B

    2016-03-01

    From aposition of phylogenetic theory of general pathology, obesity and metabolic syndrome are pathology of fatty cells. However, the first is a pathology of phylogenetically early visceral fatty cells of omentum. They supply with substratum of energy realization of biologic function of trophology, homeostasis, endoecology and adaptation. The visceral fatty cells of omentum have no receptors to insulin and synthesize adaptively insulin and they are not characterized by biologic reaction of proliferation. The obesity is a pathology of late in phylogenesis subcutaneous adpocytes. They are insulin-dependent and supply with substratum of energy realization of one biologic function of locomotion--movement at the expense of constriction of cross-striated miocytes. The adipocytes in terms of adaptation synthesize humoral mediator adponectin and actively implement biologic function of proliferation. Under both aphysiologic conditions increases passive by gradient of concentration, absorption by cells albumin-unbound free fatty acids in unionized form in micellae's composition. The passive aphysiologic absorption of free fatty acids by cells which under intracellular compartmentalization don't oxidize mitochondria results in synthesis, accumulation of triglycerides in cytoplasm of cells which don't implement it physiologically. The aphysiologic absorption of free fatty acids by cells, their etherification in triglyceride, in particular, in phylogenetically late β-cells of islets and either late cardiomyocytes which fatty acids don't synthesize de novo results in development of aphysiologic processes and disorder of function. From position of biology, these cells in vivo are subjected to loss similar to apoptosis. The formation of corpuscles of apoptosis compromise biologic function of endoecology activating biologic reaction of inflammation.

  7. Dendritic cells and skin sensitization: Biological roles and uses in hazard identification

    International Nuclear Information System (INIS)

    Ryan, Cindy A.; Kimber, Ian; Basketter, David A.; Pallardy, Marc; Gildea, Lucy A.; Gerberick, G. Frank

    2007-01-01

    Recent advances have been made in our understanding of the roles played by cutaneous dendritic cells (DCs) in the induction of contact allergy. A number of associated changes in epidermal Langerhans cell phenotype and function required for effective skin sensitization are providing the foundations for the development of cellular assays (using DC and DC-like cells) for skin sensitization hazard identification. These alternative approaches to the identification and characterization of skin sensitizing chemicals were the focus of a Workshop entitled 'Dendritic Cells and Skin Sensitization: Biological Roles and Uses in Hazard Identification' that was given at the annual Society of Toxicology meeting held March 6-9, 2006 in San Diego, California. This paper reports information that was presented during the Workshop

  8. Ovarian stem cells and neo-oogenesis: A breakthrough in reproductive biology research

    Directory of Open Access Journals (Sweden)

    S Mooyottu1

    2011-04-01

    Full Text Available The concept of ovarian stem cells which can replenish the ovarian reserve in postnatal mammalian females is a revolutionary breakthrough in reproductive biology. This idea overturned the central dogma existed in female reproductive physiology. Contradicting the popular belief that oogenesis does not occur in post natal life, researchers proved the existence of putative stem cells in ovary, which can supply functional follicles in post natal ovaries. Even though the idea of neo-oogenesis in postnatal ovaries in normal conditions is controversial, the isolation and manipulation of ovarian stem cells have got tremendous application in medical, veterinary and animal production fields. [Veterinary World 2011; 4(2.000: 89-91

  9. Nanoscopical dissection of ancestral nucleoli in Archaea: a case of study in Evolutionary Cell Biology

    KAUST Repository

    Islas Morales, Parsifal

    2018-04-01

    Is the nucleolus a sine qua non condition of eukaryotes? The present project starts from this central question to contribute to our knowledge about the origin and the evolution of the cells. The nucleolus is a cryptic organelle that plays a central role in cell function. It is responsible for the orchestration of ribosomal RNA expression, maturation and modification in the regulatory context of cellular homeostasis. Ribosomal expression is undoubtedly the greatest transcriptional and regulatory activity of any cell. The nucleolus is not just a conventional organelle –membrane-limited-, but a magnificent transcriptional puff: a dichotomy between structure and process, form and function. What is the minimum nucleolus? Evolution should bring some light into these questions. Evolutionary cell biology (ECB) has raised increasing attention in the last decades. Is this a new discipline and an historical opportunity to combine functional and evolutionary biology towards the insight that cell evolution underlies organismic complexity? In the post-genomic era, we have developed the potential of combining high throughput acquisition of data with functional in situ and in sillico approaches: integration understood as omics approaches. Can this provide a real consilience between evolutionary and functional approaches? The reduced number of model organisms and cultivation techniques still excludes the majority of the extant diversity of cells from the scope of experimental inquiry. Furthermore, at the conceptual level, the simplification of evolutionary processes in biosciences still limits the conformation of a successful disciplinary link between functional and evolutionary biology. This limits the formulation of questions and experiments that properly address the mechanistic nature of cellular events that underlie microbial and organismic diversity and evolution. Here we provide a critical and comparative review to the historical background of ECB. This project takes the

  10. Analysis of Cell Biomechanics Response to Gravity:A Fluids for Biology Study Utilizing NASA Glenns Zero Gravity Research Facility

    Science.gov (United States)

    Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.

    2016-01-01

    It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.

  11. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  13. Metastasis in renal cell carcinoma: Biology and implications for therapy

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2016-10-01

    Full Text Available Although multiple advances have been made in systemic therapy for renal cell carcinoma (RCC, metastatic RCC remains incurable. In the current review, we focus on the underlying biology of RCC and plausible mechanisms of metastasis. We further outline evolving strategies to combat metastasis through adjuvant therapy. Finally, we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.

  14. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  15. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  16. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  17. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    Science.gov (United States)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155

  18. Biological lifestyle factors in adult distance education: predicting cognitive and learning performance

    NARCIS (Netherlands)

    Gijselaers, Jérôme

    2015-01-01

    Gijselaers, H. J. M. (2015, 20 October). Biological lifestyle factors in adult distance education: predicting cognitive and learning performance. Presentation given for the inter-faculty Data Science group at the Open University of the Netherlands, Heerlen, The Netherlands.

  19. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  20. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  1. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  2. Optimizing nitrification in biological rapid sand filters: Diagnosing and supplementing micronutrients needed for proper filter performance

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Wagner, Florian Benedikt; Boe-Hansen, Rasmus

    Nitrification is an important biological process commonly used in biological drinking water filters to remove ammonium from drinking water. Recent research has shown that a lack of micronutrients could be limiting the performance of these filters. Because nitrification is a biological process, ca...... to be an important diagnostic tool that could decrease regulatory hurdles, and save time and money....

  3. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  4. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  5. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  6. Dentinoameloblastoma with ghost cells: A rare case report with emphasis on its biological behavior

    Directory of Open Access Journals (Sweden)

    Kiran Kumar

    2013-01-01

    Full Text Available Ameloblastomas are regarded as a homogeneous group of neoplasms with locally invasive character. They generally do not show induction of dental hard tissue formation except in few cases. Biological behavior and histogenesis of these tumors is still unexplored as there is lack of relevant studies and long follow-up of these patients. So, we aimed to report this rare case of dentinoameloblastoma with unique presence of ghost cells in middle-aged female involving maxilla with emphasis on its biological behavior. We conclude that although histogenesis of this tumor is not clear but biological potential is similar to conventional ameloblastoma requiring wider excision.

  7. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  8. A tensile machine with a novel optical load cell for soft biological tissues application.

    Science.gov (United States)

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  9. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  10. Performance analysis of a potassium-base AMTEC cell

    International Nuclear Information System (INIS)

    Huang, C.; Hendricks, T.J.; Hunt, T.K.

    1998-01-01

    Sodium-BASE Alkali-Metal-Thermal-to-Electric-Conversion (AMTEC) cells have been receiving increased attention and funding from the Department of Energy, NASA and the United States Air Force. Recently, sodium-BASE (Na-BASE) AMTEC cells were selected for the Advanced Radioisotope Power System (ARPS) program for the next generation of deep-space missions and spacecraft. Potassium-BASE (K-BASE) AMTEC cells have not received as much attention to date, even though the vapor pressure of potassium is higher than that of sodium at the same temperature. So that, K-BASE AMTEC cells with potentially higher open circuit voltage and higher power output than Na-BASE AMTEC cells are possible. Because the surface tension of potassium is about half of the surface tension of sodium at the same temperature, the artery and evaporator design in a potassium AMTEC cell has much more challenging pore size requirements than designs using sodium. This paper uses a flexible thermal/fluid/electrical model to predict the performance of a K-BASE AMTEC cell. Pore sizes in the artery of K-BASE AMTEC cells must be smaller by an order of magnitude than in Na-BASE AMTEC cells. The performance of a K-BASE AMTEC cell was higher than a Na-BASE AMTEC cell at low voltages/high currents. K-BASE AMTEC cells also have the potential of much better electrode performance, thereby creating another avenue for potentially better performance in K-BASE AMTEC cells

  11. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    Science.gov (United States)

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Rimpelová, S.; Knejzlík, Z.; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Repiska, V.; D'Acunto, C.W.; Ruml, T.; Vítek, L.

    2017-01-01

    Roč. 16, zima (2017), č. článku 250. ISSN 1476-511X R&D Projects: GA MZd(CZ) NT13112 Institutional support: RVO:68378050 Keywords : Farmesyl pyrophosphate * Gene expression * Geranylgeranyl pyrophosphate * HMG-CoA reductase inhibitors * Isoprenoids * K-Ras oncogene * Mevalonate * Pncreatic cancer * Prenylation * Statins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.073, year: 2016

  13. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.

    Science.gov (United States)

    Kobayashi, Tetsuro; Fujisawa, Akiko; Amagai, Masayuki; Iwasaki, Toshiroh; Ohyama, Manabu

    2011-10-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, our understanding of the biology of the canine DP is extremely limited. The aim of this study was to elucidate molecular biological and immunohistochemical characteristics of canine DP cells and determine appropriate conditions for in vitro expansion. Histological investigation revealed that the canine DP expressed biomarkers of human and rodent DP, including alkaline phosphatase (ALP) and versican. When microdissected, canine DP, but not fibroblasts, strongly expressed the DP-related genes for alkaline phosphatase, Wnt inhibitory factor 1 and lymphoid enhancer-binding factor 1, confirming successful isolation. The growth rate of isolated canine DP cells was moderate in conventional culture conditions for rodent and human DP; however, AmnioMAX-C100 complete medium allowed more efficient cultivation. Dermal papilla marker gene expression was maintained in early passage cultured DP cells, but gradually lost after the third passage. Approaches to mimic the in vivo DP environment in culture, such as supplementation of keratinocyte-conditioned medium or use of extracellular matrix-coated dishes, moderately ameliorated loss of DP gene expression in canine DP cells. It is possible that constituent factors in AmnioMAX may influence culture. These findings suggested that further refinements of culture conditions may enable DP cell expansion without impairing intrinsic properties and, importantly, demonstrated that AmnioMAX-cultured early passage canine DP cells partly maintained the biological characteristics of in vivo canine DP cells. This study provides crucial information necessary for further optimization of culture conditions of canine DP. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  14. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.

    1995-01-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  15. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Couto Jason I

    2012-12-01

    Full Text Available Abstract Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS. Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  16. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells

    DEFF Research Database (Denmark)

    Bantleon, Frank; Wolf, Sara; Seismann, Henning

    2016-01-01

    the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited...... a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the r......IgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the Ig...

  17. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    Science.gov (United States)

    Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...

  18. Imaging modes of atomic force microscopy for application in molecular and cell biology

    NARCIS (Netherlands)

    Dufrêne, Yves F.; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, A.H.; Gerber, Christoph; Müller, Daniel J.

    2017-01-01

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM

  19. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Science.gov (United States)

    Grunspan, Daniel Z; Eddy, Sarah L; Brownell, Sara E; Wiggins, Benjamin L; Crowe, Alison J; Goodreau, Steven M

    2016-01-01

    Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  20. Establishing elements of a synthetic biology platform for Vaccinia virus production: BioBrick™ design, serum-free virus production and microcarrier-based cultivation of CV-1 cells.

    Science.gov (United States)

    Liu, Shuchang; Ruban, Ludmila; Wang, Yaohe; Zhou, Yuhong; Nesbeth, Darren N

    2017-02-01

    Vaccinia virus (VACV) is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS) Dulbecco's Modified Eagle Medium (DMEM) were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h -1 and 0.044 h -1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h -1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU) per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.

  1. Establishing elements of a synthetic biology platform for Vaccinia virus production: BioBrick™ design, serum-free virus production and microcarrier-based cultivation of CV-1 cells

    Directory of Open Access Journals (Sweden)

    Shuchang Liu

    2017-02-01

    Full Text Available Vaccinia virus (VACV is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS Dulbecco’s Modified Eagle Medium (DMEM were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h−1 and 0.044 h−1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h−1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.

  2. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.

    Science.gov (United States)

    Lenzen, Sigurd

    2017-08-01

    Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H 2 O 2 inactivation at all major subcellular sites. Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC

    DEFF Research Database (Denmark)

    Becker, Juergen C.; Stang, Andreas; zur Hausen, Axel

    2018-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive, often lethal neuroendocrine cancer. Its carcinogenesis may be either caused by the clonal integration of the Merkel cell polyomavirus into the host genome or by UV-induced mutations. Notably, virally-encoded oncoproteins and UV-induced mutations...... knowledge on epidemiology, biology and therapy of MCC as conclusion of the project 'Immune Modulating strategies for treatment of Merkel Cell Carcinoma', which was funded over a 5-year period by the European Commission to investigate innovative immunotherapies for MCC....

  4. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells.

    Science.gov (United States)

    Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori

    2017-10-01

    We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.

  6. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  7. Biological aspects of salivary hormones in male half-marathon performance

    OpenAIRE

    Radosavljević Branimir B.; Žarković Miloš P.; Ignjatović Svetlana D.; Dajak Marijana M.; Milinković Neda Lj.

    2016-01-01

    Physical effort is known to alter the blood levels of many hormones, but there are only a few studies about the biological changes of salivary hormones. The aim of this work was to determine whether salivary testosterone and salivary cortisol levels, measured two weeks before a half-marathon race, relate to running performance in male recreational athletes. A group of eleven male recreational athletes preparing for a half-marathon was included in the study....

  8. Proceedings of the first international conference on trends in cell and molecular biology: conference abstract book

    International Nuclear Information System (INIS)

    2015-01-01

    This conference throws light on topics for understanding the importance of nanotechnology as a potential treatment option for some important diseases. Computational biology with its vibrant research outputs needs to be integrated with modern cell biology as a whole to understand, analyze and predict the impacts in a much better way. Papers relevant to INIS are indexed separately

  9. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  10. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  11. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts

    International Nuclear Information System (INIS)

    Zhang Yumei; Zhao Yimin; Chai Feng; Hildebrand, Hartmut F; Hornez, Jean-Christophe; Li, Chang Liang; Traisnel, Michel

    2009-01-01

    Corrosion behaviour of biomedical alloys is generally determined in mineral electrolytes: unbuffered NaCl 0.9% (pH 7.4) or artificial saliva (pH 6.8). The assays with exclusive utilization of these electrolytes are of low relevance for the biological condition, to which the alloys will be exposed once implanted in the human organism. As an approach to the biological situation regarding the interaction of proteins, electrolytes and metals, we added the RPMI cell culture medium containing foetal calf serum as a biological electrolyte (pH 7.0). The analysis of corrosion behaviour was also performed in the presence of human lymphoid cells (CEM). The rest potential (E r ) and the global polarization were determined on cp-Ti, micro-arc oxidized cp-Ti (MAO-Ti), four different Ti-alloys (Ti6Al4V, Ti12Zr, Ti(AlMoZr), Ti(NbTaZr)) and 316L stainless steel. The 316L exhibited an appropriate E r and a good passive current density (I p ), but a high corrosion potential (E c ) and a very low breakdown potential (E b ) in all electrolytes. All Ti-alloys exhibited a much better electrochemical behaviour: better E r and E c and very high E b . No significant differences of the above parameters existed between the Ti-alloys, except for Zr-containing alloys that showed better corrosion behaviour. A remarkable difference, however, was stated with respect to the electrolytes. NaCl 0.9% induced strong variations between the Ti-alloys. More homogeneous results were obtained with artificial saliva and RPMI medium, which induced a favourable E c and an increased I p . The presence of cells further decreased these values. The unbuffered NaCl solution seems to be less appropriate for the analysis of corrosion of metals. Additional in vitro biological assessments with CEM cell suspensions and MC3T3-E1 osteoblasts confirmed the advantages of the Ti(AlMoZr) and Ti(NbTaZr) alloys with an improved cell proliferation and vitality rate.

  12. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts.

    Science.gov (United States)

    Zhang, Yu Mei; Chai, Feng; Hornez, Jean-Christophe; Li, Chang Liang; Zhao, Yi Min; Traisnel, Michel; Hildebrand, Hartmut F

    2009-02-01

    Corrosion behaviour of biomedical alloys is generally determined in mineral electrolytes: unbuffered NaCl 0.9% (pH 7.4) or artificial saliva (pH 6.8). The assays with exclusive utilization of these electrolytes are of low relevance for the biological condition, to which the alloys will be exposed once implanted in the human organism. As an approach to the biological situation regarding the interaction of proteins, electrolytes and metals, we added the RPMI cell culture medium containing foetal calf serum as a biological electrolyte (pH 7.0). The analysis of corrosion behaviour was also performed in the presence of human lymphoid cells (CEM). The rest potential (Er) and the global polarization were determined on cp-Ti, micro-arc oxidized cp-Ti (MAO-Ti), four different Ti-alloys (Ti6Al4V, Ti12Zr, Ti(AlMoZr), Ti(NbTaZr)) and 316L stainless steel. The 316L exhibited an appropriate Er and a good passive current density (Ip), but a high corrosion potential (Ec) and a very low breakdown potential (Eb) in all electrolytes. All Ti-alloys exhibited a much better electrochemical behaviour: better Er and Ec and very high Eb. No significant differences of the above parameters existed between the Ti-alloys, except for Zr-containing alloys that showed better corrosion behaviour. A remarkable difference, however, was stated with respect to the electrolytes. NaCl 0.9% induced strong variations between the Ti-alloys. More homogeneous results were obtained with artificial saliva and RPMI medium, which induced a favourable Ec and an increased Ip. The presence of cells further decreased these values. The unbuffered NaCl solution seems to be less appropriate for the analysis of corrosion of metals. Additional in vitro biological assessments with CEM cell suspensions and MC3T3-E1 osteoblasts confirmed the advantages of the Ti(AlMoZr) and Ti(NbTaZr) alloys with an improved cell proliferation and vitality rate.

  13. Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals.

    Science.gov (United States)

    Zmurko, Joanna; Vasey, Douglas B; Donald, Claire L; Armstrong, Alison A; McKee, Marian L; Kohl, Alain; Clayton, Reginald F

    2018-02-01

    Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.

  14. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  15. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  16. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    Science.gov (United States)

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    Science.gov (United States)

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  18. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    Science.gov (United States)

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  19. Applications of Synchrotron Radiation Micro Beams in Cell Micro Biology and Medicine

    CERN Document Server

    Ide-Ektessabi, Ari

    2007-01-01

    This book demonstrates the applications of synchrotron radiation in certain aspects of cell microbiology, specifically non-destructive elemental analyses, chemical-state analyses and imaging (distribution) of the elements within a cell. The basics for understanding and applications of synchrotron radiation are also described to make the contents easier to be understood for a wide group of researchers in medical and biological sciences who might not be familiar with the physics of synchrotron radiation. The two main techniques that are discussed in this book are the x-ray fluorescence spectroscopy (XRF) and the x-ray fine structure analysis (XAFS). Application of these techniques in investigations of several important scientific fields, such as neurodegeneration and other diseases related to cell malfunctioning, are demonstrated in this book.

  20. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  1. What Do Cells Really Look Like? An Inquiry into Students' Difficulties in Visualising a 3-D Biological Cell and Lessons for Pedagogy

    Science.gov (United States)

    Vijapurkar, Jyotsna; Kawalkar, Aisha; Nambiar, Priya

    2014-01-01

    In our explorations of students' concepts in an inquiry science classroom with grade 6 students from urban schools in India, we uncovered a variety of problems in their understanding of biological cells as structural and functional units of living organisms. In particular, we found not only that they visualised the cell as a two-dimensional (2-D)…

  2. A multiwell platform for studying stiffness-dependent cell biology.

    Science.gov (United States)

    Mih, Justin D; Sharif, Asma S; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M; Tschumperlin, Daniel J

    2011-01-01

    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  3. A multiwell platform for studying stiffness-dependent cell biology.

    Directory of Open Access Journals (Sweden)

    Justin D Mih

    Full Text Available Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  4. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    Science.gov (United States)

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  5. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Science.gov (United States)

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  6. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiromi Sato

    2017-07-01

    Full Text Available Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1 extracellular matrix, 2 intercellular adhesion molecules and cell surface receptors, 3 intracellular proteins, 4 cell-cell junction proteins, and 5 a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or

  7. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  8. Review on thin-film transistor technology, its applications, and possible new applications to biological cells

    Science.gov (United States)

    Tixier-Mita, Agnès; Ihida, Satoshi; Ségard, Bertrand-David; Cathcart, Grant A.; Takahashi, Takuya; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2016-04-01

    This paper presents a review on state-of-the-art of thin-film transistor (TFT) technology and its wide range of applications, not only in liquid crystal displays (TFT-LCDs), but also in sensing devices. The history of the evolution of the technology is first given. Then the standard applications of TFT-LCDs, and X-ray detectors, followed by state-of-the-art applications in the field of chemical and biochemical sensing are presented. TFT technology allows the fabrication of dense arrays of independent and transparent microelectrodes on large glass substrates. The potential of these devices as electrical substrates for biological cell applications is then described. The possibility of using TFT array substrates as new tools for electrical experiments on biological cells has been investigated for the first time by our group. Dielectrophoresis experiments and impedance measurements on yeast cells are presented here. Their promising results open the door towards new applications of TFT technology.

  9. Biological Evaluation of Dipyrromethanes in Cancer Cell Lines: Antiproliferative and Pro-apoptotic Properties

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Lopes, S. M.M.; Řezníčková, Eva; Kryštof, Vladimír; Pinho e Melo, T. M.V.D.

    2017-01-01

    Roč. 12, č. 9 (2017), s. 701-711 ISSN 1860-7179 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : anticancer agents * apoptosis * cell cycle * cytotoxicity * dipyrromethanes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Oncology Impact factor: 3.225, year: 2016

  10. A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2008-10-01

    Full Text Available Junko H Ohyashiki1, Ryoko Hamamura2, Chiaki Kobayashi2, Yu Zhang2, Kazuma Ohyashiki21Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan; 2First Department of Internal Medicine, Tokyo Medical University, Tokyo, JapanAbstract: There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene® identified a secreted protein acidic and rich in cysteine (SPARC gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.Keywords: network biology, adult T cell leukemia, bortezomib, SPARC

  11. The use of 'Omics technology to rationally improve industrial mammalian cell line performance.

    Science.gov (United States)

    Lewis, Amanda M; Abu-Absi, Nicholas R; Borys, Michael C; Li, Zheng Jian

    2016-01-01

    Biologics represent an increasingly important class of therapeutics, with 7 of the 10 top selling drugs from 2013 being in this class. Furthermore, health authority approval of biologics in the immuno-oncology space is expected to transform treatment of patients with debilitating and deadly diseases. The growing importance of biologics in the healthcare field has also resulted in the recent approvals of several biosimilars. These recent developments, combined with pressure to provide treatments at lower costs to payers, are resulting in increasing need for the industry to quickly and efficiently develop high yielding, robust processes for the manufacture of biologics with the ability to control quality attributes within narrow distributions. Achieving this level of manufacturing efficiency and the ability to design processes capable of regulating growth, death and other cellular pathways through manipulation of media, feeding strategies, and other process parameters will undoubtedly be facilitated through systems biology tools generated in academic and public research communities. Here we discuss the intersection of systems biology, 'Omics technologies, and mammalian bioprocess sciences. Specifically, we address how these methods in conjunction with traditional monitoring techniques represent a unique opportunity to better characterize and understand host cell culture state, shift from an empirical to rational approach to process development and optimization of bioreactor cultivation processes. We summarize the following six key areas: (i) research applied to parental, non-recombinant cell lines; (ii) systems level datasets generated with recombinant cell lines; (iii) datasets linking phenotypic traits to relevant biomarkers; (iv) data depositories and bioinformatics tools; (v) in silico model development, and (vi) examples where these approaches have been used to rationally improve cellular processes. We critically assess relevant and state of the art research

  12. Biologically-directed modeling reflects cytolytic clearance of SIV-infected cells in vivo in macaques.

    Directory of Open Access Journals (Sweden)

    W David Wick

    Full Text Available The disappointing outcomes of cellular immune-based vaccines against HIV-1 despite strong evidence for the protective role of CD8⁺ T lymphocytes (CTLs has prompted revisiting the mechanisms of cellular immunity. Prior data from experiments examining the kinetics of Simian Immunodeficiency Virus (SIV clearance in infected macaques with or without in vivo CD8 depletion were interpreted as refuting the concept that CTLs suppress SIV/HIV by direct killing of infected cells. Here we briefly review the biological evidence for CTL cytolytic activity in viral infections, and utilize biologically-directed modeling to assess the possibility of a killing mechanism for the antiviral effect of CTLs, taking into account the generation, proliferation, and survival of activated CD4⁺ and CD8⁺ T lymphocytes, as well as the life cycle of the virus. Our analyses of the published macaque data using these models support a killing mechanism, when one considers T lymphocyte and HIV-1 lifecycles, and factors such as the eclipse period before release of virions by infected cells, an exponential pattern of virion production by infected cells, and a variable lifespan for acutely infected cells. We conclude that for SIV/HIV pathogenesis, CTLs deserve their reputation as being cytolytic.

  13. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  14. Changes in Biology Self-Efficacy during a First-Year University Course.

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one's ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument consisted of 21 questions ranking confidence in performing biology-related tasks on a scale from 1 (not at all confident) to 5 (totally confident). The results demonstrated that students increased in self-efficacy during the semester. High school biology and chemistry contributed to self-efficacy at the beginning of the semester; however, this relationship was lost by the end of the semester, when experience within the course became a significant contributing factor. A proportion of high- and low- achieving (24 and 40%, respectively) students had inaccurate self-efficacy judgments of their ability to perform well in the course. In addition, female students were significantly less confident than males overall, and high-achieving female students were more likely than males to underestimate their academic ability. These results suggest that the Biology Self-Efficacy Scale may be a valuable resource for tracking changes in self-efficacy in first-year students and for identifying students with poorly calibrated self-efficacy perceptions. © 2016 L. Ainscough et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. The Respon of IKIP BUDI UTOMO Students Toward The Instructional Book of Cell Biology Subject Aided by Interactive Multimedia

    Directory of Open Access Journals (Sweden)

    Tri Asih Wahyu Hartati

    2017-07-01

    Full Text Available The development of Science and Technology (Science and Technology takes place very rapidly. The development of science and technology will impact on graduate competency changes desired by the industry. This change of course will be followed by updating the curriculum, learning resources and teaching materials are used, one of them teaching materials on the subjects of Cell Biology. In the course of Cell Biology, the students only take textbooks without the support of interactive multimedia. Good teaching materials is the teaching materials arranged in a systematic, according to the needs and character of students, as well as validated by the teaching materials. The purpose of this study was to determine response students Biology Education IKIP Budi Utomo against Cell Biology course textbook aided interactive multimedia. The development method used is the 4D model consisting of stages define, design, develop, and disseminate. This study is limited to the stages develop. Legibility test results showed that students responded well teaching materials and provide proper assessment of the teaching materials.

  16. Induced hemocompatibility and bone formation as biological scaffold for cell therapy implant

    Directory of Open Access Journals (Sweden)

    Keng-Liang Ou

    2016-06-01

    Full Text Available Although stem cells can become almost any type of specialized cell in the human body and may have the potential to generate replacement cells for tissues and organs, the transplantation of these cells are hindered by immune rejection and teratoma formation. However, scientists have found a promising solution for these problems-they have discovered the ability to isolate stem cells from a patient’s umbilical cord blood or bone marrow. Even more recently, small stem cells, such as spore-like stem cells, Blastomere-Like Stem Cells (BLSCs, and Very-Small Embryonic-Like stem cells (VSELs isolated directly from the peripheral blood have beeninvestigated as a novel approach to stem cell therapy as they can be isolated directly from the peripheral blood. A newly-discovered population of multipotent stem cells in this class has been dubbed StemBios (SB cells. The potential therapeutic uses of such stem cells have been explored in many ways, one of which includes dental remodeling and construction. Using adult stem cells, scientists have engineered and cultivated teeth in mice that may one day be used for human implantation.It follows that such regeneration may be possible, to a certain degree, in human patients as well. This idea leads to the present study on the effect of SB cell therapy on early osseointegrationof dental implants. Titanium (Ti dental implants have been proven to be a reliable and predictable treatment for restoration of edentulous regions. The osseointegration process can be described in two stages: primary stability (mechanical stability and secondary stability (biological stability. The mechanical stabilization of the implant reflects the interaction between the bone density and the features of the implant designs and can be determined after implant insertion. Alternatively,the biological stabilization of the implant is a physiologic healing process. It is couple to the biological interaction between the external surface of the

  17. The cell biology of bone growth.

    Science.gov (United States)

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  18. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.

    Science.gov (United States)

    Quesenberry, P; Goldberg, L

    2017-08-01

    The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

  19. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    Science.gov (United States)

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  20. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  1. Primordial germ cell biology at the beginning of the XXI century.

    Science.gov (United States)

    De Felici, Massimo

    2009-01-01

    At the XIV Workshop on the Development and Function of the Reproductive Organs held at the Congress Centre of the University of Rome Tor Vergata, Monteporzio Catone, Rome, Italy, the introduction to the first session entitled Mammalian primordial germ cells dedicated to the memory of Anne McLaren, was the occasion for a concise review of the state of art of research on the biology of primordial germ cells (PGCs). This great, unforgettable scientist, who died in a car accident in July 2007, dedicated most of her studies to this field over the last 25 years. Topics briefly reviewed in this Meeting Report are: 1) how the germ line is determined; 2) what are the mechanisms underlying PGC migration; 3) to what extent PGC survival, proliferation and differentiation are cell autonomous or environmentally controlled processes and 4) how the potential for totipotency is retained in PGCs.

  2. Measurement of the traction force of biological cells by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  3. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    Science.gov (United States)

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.

  4. The Respon of IKIP BUDI UTOMO Students Toward the Instructional Book of Cell Biology Subject Aided by Interactive Multimedia

    OpenAIRE

    Hartati, Tri Asih Wahyu; Safitri, Dini

    2017-01-01

    The development of Science and Technology (Science and Technology) takes place very rapidly. The development of science and technology will impact on graduate competency changes desired by the industry. This change of course will be followed by updating the curriculum, learning resources and teaching materials are used, one of them teaching materials on the subjects of Cell Biology. In the course of Cell Biology, the students only take textbooks without the support of interactive multimedia. ...

  5. Has Modern Biology Entered the Mouth? The Clinical Impact of Biological Research.

    Science.gov (United States)

    Baum, Bruce J.

    1991-01-01

    Three areas of biological research that are beginning to have an impact on clinical medicine are examined, including molecular biology, cell biology, and biotechnology. It is concluded that oral biologists and educators must work cooperatively to bring rapid biological and biomedical advances into dental training in a meaningful way. (MSE)

  6. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications.

    Science.gov (United States)

    Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Sailon, Alexander M; Freeman, James; Vaughan, Adam; Wootton, David; Clark, Elizabeth; Ricci, John L; Warren, Stephen M

    2016-10-01

    Bone lacunocanalicular fluid flow ensures chemotransportation and provides a mechanical stimulus to cells. Traditional static cell-culture methods are ill-suited to study the intricacies of bone biology because they ignore the three-dimensionality of meaningful cellular networks and the lacunocanalicular system; furthermore, reliance on diffusion alone for nutrient supply and waste product removal effectively limits scaffolds to 2-3 mm thickness. In this project, a flow-perfusion system was custom-designed to overcome these limitations: eight adaptable chambers housed cylindrical cell-seeded scaffolds measuring 12 or 24 mm in diameter and 1-10 mm in thickness. The porous scaffolds were manufactured using a three-dimensional (3D) periodic microprinting process and were composed of hydroxyapatite/tricalcium phosphate with variable thicknesses, strut sizes, pore sizes and structural configurations. A multi-channel peristaltic pump drew medium from parallel reservoirs and perfused it through each scaffold at a programmable rate. Hermetically sealed valves permitted sampling or replacement of medium. A gas-permeable membrane allowed for gas exchange. Tubing was selected to withstand continuous perfusion for > 2 months without leakage. Computational modelling was performed to assess the adequacy of oxygen supply and the range of fluid shear stress in the bioreactor-scaffold system, using 12 × 6 mm scaffolds, and these models suggested scaffold design modifications that improved oxygen delivery while enhancing physiological shear stress. This system may prove useful in studying complex 3D bone biology and in developing strategies for engineering thick 3D bone constructs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  7. A statistical analysis of student questions in a cell biology laboratory.

    Science.gov (United States)

    Keeling, Elena L; Polacek, Kelly M; Ingram, Ella L

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students asked about laboratory activities, 2) whether the types or quality of questions changed over time, and 3) whether the quality of questions or degree of improvement was related to academic performance. We found a majority of questions were about laboratory outcomes or seeking additional descriptive information about organisms or processes to be studied. Few questions earned the highest possible ranking, which required demonstration of extended thought, integration of information, and/or hypotheses and future experiments, although a majority of students asked such a question at least once. We found no correlation between types of student questions or improvement in questions and final grades. Only a small improvement in overall question quality was seen despite considerable practice at writing questions about science. Our results suggest that improving students' ability to generate higher-order questions may require specific pedagogical intervention.

  8. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  9. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  11. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  12. Functional Genomics Uncover the Biology behind the Responsiveness of Head and Neck Squamous Cell Cancer Patients to Cetuximab.

    Science.gov (United States)

    Bossi, Paolo; Bergamini, Cristiana; Siano, Marco; Cossu Rocca, Maria; Sponghini, Andrea P; Favales, Federica; Giannoccaro, Marco; Marchesi, Edoardo; Cortelazzi, Barbara; Perrone, Federica; Pilotti, Silvana; Locati, Laura D; Licitra, Lisa; Canevari, Silvana; De Cecco, Loris

    2016-08-01

    To identify the tumor portrait of the minority of head and neck squamous cell carcinoma (HNSCC) patients with recurrent-metastatic (RM) disease who upon treatment with platinum-based chemotherapy plus cetuximab present a long-lasting response. The gene expression of pretreatment samples from 40 HNSCC-RM patients, divided in two groups [14 long-progression-free survival (PFS) and 26 short-PFS (median = 19 and 3 months, respectively)], was associated with PFS and was challenged against a dataset from metastatic colon cancer patients treated with cetuximab. For biologic analysis, we performed functional and subtype association using gene set enrichment analysis, associated biology across all currently available HNSCC signatures, and inferred drug sensitivity using data from the Cancer Genomic Project. The identified genomic profile exhibited a significant predictive value that was essentially confirmed in the single publicly available dataset of cetuximab-treated patients. The main divergence between long- and short-PFS groups was based on developmental/differentiation status. The long-PFS patients are characterized by basal subtype traits such as strong EGFR signaling phenotype and hypoxic differentiation, further validated by the significantly higher association with the hypoxia metagene. The short-PFS patients presented a strong activation of RAS signaling confirmed in an in vitro model of two isogenic HNSCC cell lines sensitive or resistant to cetuximab. The predicted drug sensitivity for all four EGFR inhibitors was higher in long- versus short-PFS patients (P range: biology behind response to platinum-based chemotherapy plus cetuximab in RM-HNSCC cancer and may have translational implications improving treatment selection. Clin Cancer Res; 22(15); 3961-70. ©2016 AACRSee related commentary by Chau and Hammerman, p. 3710. ©2016 American Association for Cancer Research.

  13. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  14. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells.

    Directory of Open Access Journals (Sweden)

    Anders Waldenström

    Full Text Available BACKGROUND: Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions. METHODOLOGY/PRINCIPAL FINDINGS: Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls. CONCLUSIONS/SIGNIFICANCE: Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted "cardiosomes", can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.

  15. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair.

    Science.gov (United States)

    Pucéat, Michel

    2013-04-01

    The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. [Research progress of mammalian synthetic biology in biomedical field].

    Science.gov (United States)

    Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng

    2017-03-25

    Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.

  17. From Never Born Proteins to Minimal Living Cells: two projects in synthetic biology.

    Science.gov (United States)

    Luisi, Pier Luigi; Chiarabelli, Cristiano; Stano, Pasquale

    2006-12-01

    The Never Born Proteins (NBPs) and the Minimal Cell projects are two currently developed research lines belonging to the field of synthetic biology. The first deals with the investigation of structural and functional properties of de novo proteins with random sequences, selected and isolated using phage display methods. The minimal cell is the simplest cellular construct which displays living properties, such as self-maintenance, self-reproduction and evolvability. The semi-synthetic approach to minimal cells involves the use of extant genes and proteins in order to build a supramolecular construct based on lipid vesicles. Results and outlooks on these two research lines are shortly discussed, mainly focusing on their relevance to the origin of life studies.

  18. Estimation of relative biological effectiveness for low energy protons using cytogenetic end points in mammalian cells

    International Nuclear Information System (INIS)

    Bhat, N.N.; Nairy, Rajesh; Chaurasia, Rajesh; Desai, Utkarsha; Shirsath, K.B.; Anjaria, K.B.; Sreedevi, B.

    2013-01-01

    A facility has been designed and developed to facilitate irradiation of biological samples to proton beam using folded tandem ion accelerator (FOTIA) at BARC. The primary proton beam from the accelerator was diffused using gold foil and channelled through a drift tube. Scattered beam was monitored and calibrated. Uniformity and dosimetry studies were conducted to calibrate the setup for precise irradiation of mammalian cells. Irradiation conditions and geometry were optimized for mammalian cells and other biological samples in thin layer. The irradiation facility is housed in a clean air laminar flow to help exposure of samples in aseptic conditions. The set up has been used for studying various radiobiological endpoints in many biological model systems. CHO, MCF-7, A-549 and INT-407 cell lines were studied in the present investigation using micronucleus (MN) induction as an indicator of radiation damage. The mammalian cells grown on petri plates to about 40 % confluence (log phase) were exposed to proton beam of known doses in the range of 0.1 to 2 Gy. The dose estimation was done based on specific ionization in cell medium. Studies were also conducted using 60 Co gamma radiation to compare the results. Linear quadratic response was observed for all the cell lines when exposed to 60 Co gamma radiation. In contrast, linear response was observed for proton beam. In addition, very significant increase in the MN yield was observed for proton beam compared to 60 Co gamma radiation. Estimated α and β values for CHO cells is found to be 0.02±0.003 Gy-1 and 0.042±0.006 Gy-2 respectively for 60 Co gamma radiation. For proton beam, estimated α for linear fit is found to be 0.37±0.011 Gy-1. Estimated RBE was found to be in the range of 4-8 for all the cell lines and dose ranges studied. In conclusion, the proton irradiation facility developed for mammalian cells has helped to study various radiobiological endpoints. In this presentation, facility description, MN as

  19. When nano meets stem: the impact of nanotechnology in stem cell biology.

    Science.gov (United States)

    Kaur, Savneet; Singhal, Barkha

    2012-01-01

    Nanotechnology and biomedical treatments using stem cells are among the latest conduits of biotechnological research. Even more recently, scientists have begun finding ways to mate these two specialties of science. The advent of nanotechnology has paved the way for an explicit understanding of stem cell therapy in vivo and by recapitulation of such in vivo environments in the culture, this technology seems to accommodate a great potential in providing new vistas to stem cell research. Nanotechnology carries in its wake, the development of highly stable, efficient and specific gene delivery systems for both in vitro and in vivo genetic engineering of stem cells, use of nanoscale systems (such as microarrays) for investigation of gene expression in stem cells, creation of dynamic three-dimensional nano-environments for in vitro and in vivo maintenance and differentiation of stem cells and development of extremely sensitive in vivo detection systems to gain insights into the mechanisms of stem cell differentiation and apoptosis in different disease models. The present review presents an overview of the current applications and future prospects for the use of nanotechnology in stem cell biology. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    Science.gov (United States)

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016. © 2016 American Institute of Chemical Engineers.