WorldWideScience

Sample records for perfluorinated nanocomposite membranes

  1. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under the...

  2. Perfluorinated Compounds as Test Media for Porous Membranes.

    Science.gov (United States)

    Clodt, Juliana I; Filiz, Volkan; Shishatskiy, Sergey

    2017-09-05

    We suggest a failure-free method of porous membranes characterization that gives the researcher the opportunity to compare and characterize properties of any porous membrane. This proposal is supported by an investigation of eight membranes made of different organic and inorganic materials, with nine different perfluorinated compounds. It was found that aromatic compounds, perfluorobenzene, and perfluorotoluene, used in the current study show properties different from other perfluorinated aliphatics. They demonstrate extreme deviation from the general sequence indicating the existence of π-π-interaction on the pore wall. The divergence of the flow for cyclic compounds from ideal e.g., linear compounds can be an indication of the pore dimension.

  3. Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum

    Directory of Open Access Journals (Sweden)

    Anatoly Filippov

    2018-03-01

    Full Text Available Three types of bi-layer hybrid nanocomposites on the base of perfluorinated cation-exchange membrane MF-4SC (Russian analogue of Nafion®-117 were synthesized and characterized. It was found that two membranes possess the noticeable asymmetry of the current–voltage curve (CVC under changing their orientation towards the applied electric field, despite the absence of asymmetry of diffusion permeability. These phenomena were explained in the frame of the “fine-porous model” expanded for bi-layer membranes. A special procedure to calculate the real values of the diffusion layers thickness and the limiting current density was proposed. Due to asymmetry effects of the current voltage curves of bi-layer hybrid membranes on the base of MF-4SC, halloysite nanotubes and platinum nanoparticles, it is prospective to assemble membrane switches (membrane relays or diodes with predictable transport properties, founded upon the theory developed here.

  4. Polymer Nanocomposite Membranes for Antifouling Nanofiltration.

    Science.gov (United States)

    Kamal, Tahseen; Ali, Nauman; Naseem, Abbas A; Khan, Sher B; Asiri, Abdullah M

    2016-01-01

    Fouling refers to the unwanted and undesirable attachment of biological macromolecules, inorganic, organic matter, and microorganisms on water contact surfaces. Fouling reduces the performance of devices involving these submerged surfaces and is considered the bottle-neck issue for various applications in the biomedical industry, food processing, and water treatment, especially in reverse osmosis (RO) desalination. Investigations have proven that nanocomposite membranes can exhibit enhanced antifouling performances and can be used for longer life times. The nanocomposite means addition of nanomaterials to main matrix at low loadings, exhibiting better properties compared to virgin matrix. In this review, a summarized description about related methods and their mechanisms for the fabrication of nanocomposite membranes with antifouling properties has been documented. Around 87 manuscripts including 10 patents were used to demonstrate the antifouling applications of of various nanocomposite membranes.

  5. Investigation of interactions between water and ion exchanger perfluorinated membranes

    International Nuclear Information System (INIS)

    Ben Said, Chakir

    1983-01-01

    In this research thesis, the author, by using nuclear magnetic resonance (NMR), shows the privileged situation of the first absorbed water molecules which come and fix about cations and fill up the first hydration sphere. He reports the study of Nafion membranes provided by DuPont de Nemours: chemical definition (chemical structure, properties, and microstructure), interest of the use of NMR, results and discussion (influence of water content, of temperature, of thermal cycling), and other results obtained by using different techniques (electronic paramagnetic resonance or EPR, differential calorimetry and thermo-porometry, mechanical measurements) [fr

  6. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  7. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  8. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Ghosh, Asim K.; Hoek, E.M.V.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  9. Mutual influence of the Na+ and Cs+ ions during their mass electrotransport through a perfluorinated sulfocation membrane

    International Nuclear Information System (INIS)

    Zezina, E.A.; Popkov, Yu.M.; Timashev, S.F.

    1997-01-01

    It is shown that by the Na + and Cs + ions sorption equilibrium conditions in perfluorinated cation-exchange membranes from the 0.1M NaCl and 0.1M CsCl mixtures the Cs + ions are sorbed primarily. The effective self-diffusion coefficients of the Na + and Cs + ions from individual solutions within the range of 0.01-1.00 M concentrations and in the above-mentioned equimolar mixture are found. It is shown that the membranes moisture content is the determining factor for the Cs + ions electrodialysis separation fro the above-mentioned electrolytes mixture

  10. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation.

    Science.gov (United States)

    Homaeigohar, Shahin; Elbahri, Mady

    2014-02-10

    Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their unique chemical and physical properties, are an optimum solution. Accordingly, there is a strong motivation in seeking nano-based approaches for alleviation of environmental problems in an energy efficient, thereby, inexpensive manner. Thanks to a high porosity and surface area presenting an extraordinary permeability (thereby an energy efficiency) and selectivity, respectively, nanofibrous membranes are a desirable candidate. Their functionality and applicability is even promoted when adopting a nanocomposite strategy. In this case, specific nanofillers, such as metal oxides, carbon nanotubes, precious metals, and smart biological agents, are incorporated either during electrospinning or in the post-processing. Moreover, to meet operational requirements, e.g., to enhance mechanical stability, decrease of pressure drop, etc. , nanofibrous membranes are backed by a microfibrous non-woven forming a hybrid membrane. The novel generation of nanocomposite/hybrid nanofibrous membranes can perform extraordinarily well in environmental remediation and control. This reality justifies authoring of this review paper.

  11. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2014-02-01

    Full Text Available Rapid worldwide industrialization and population growth is going to lead to an extensive environmental pollution. Therefore, so many people are currently suffering from the water shortage induced by the respective pollution, as well as poor air quality and a huge fund is wasted in the world each year due to the relevant problems. Environmental remediation necessitates implementation of novel materials and technologies, which are cost and energy efficient. Nanomaterials, with their unique chemical and physical properties, are an optimum solution. Accordingly, there is a strong motivation in seeking nano-based approaches for alleviation of environmental problems in an energy efficient, thereby, inexpensive manner. Thanks to a high porosity and surface area presenting an extraordinary permeability (thereby an energy efficiency and selectivity, respectively, nanofibrous membranes are a desirable candidate. Their functionality and applicability is even promoted when adopting a nanocomposite strategy. In this case, specific nanofillers, such as metal oxides, carbon nanotubes, precious metals, and smart biological agents, are incorporated either during electrospinning or in the post-processing. Moreover, to meet operational requirements, e.g., to enhance mechanical stability, decrease of pressure drop, etc., nanofibrous membranes are backed by a microfibrous non-woven forming a hybrid membrane. The novel generation of nanocomposite/hybrid nanofibrous membranes can perform extraordinarily well in environmental remediation and control. This reality justifies authoring of this review paper.

  12. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael; Estevez, Luis; Lian, Huiqin; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  13. Nafion–clay nanocomposite membranes: Morphology and properties

    KAUST Repository

    Herrera Alonso, Rafael

    2009-05-01

    A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications. © 2009 Elsevier Ltd. All rights reserved.

  14. Ultrapermeable, reverse-selective nanocomposite membranes.

    Science.gov (United States)

    Merkel, T C; Freeman, B D; Spontak, R J; He, Z; Pinnau, I; Meakin, P; Hill, A J

    2002-04-19

    Polymer nanocomposites continue to receive tremendous attention for application in areas such as microelectronics, organic batteries, optics, and catalysis. We have discovered that physical dispersion of nonporous, nanoscale, fumed silica particles in glassy amorphous poly(4-methyl-2-pentyne) simultaneously and surprisingly enhances both membrane permeability and selectivity for large organic molecules over small permanent gases. These highly unusual property enhancements, in contrast to results obtained in conventional filled polymer systems, reflect fumed silica-induced disruption of polymer chain packing and an accompanying subtle increase in the size of free volume elements through which molecular transport occurs, as discerned by positron annihilation lifetime spectroscopy. Such nanoscale hybridization represents an innovative means to tune the separation properties of glassy polymeric media through systematic manipulation of molecular packing.

  15. Nanocomposite Membrane via Magnetite Nanoparticle Assembly

    KAUST Repository

    Xie, Yihui

    2012-07-01

    Membrane technology is one of the most promising technologies for addressing the global water crisis as well as in many other applications. One of the drawbacks of current ultra- and nanofiltration membranes is the relatively broad pore size distribution. Block copolymer membranes with ultrahigh permeability and very regular pore sizes have been recently demonstrated with pores being formed by the supramolecular assembly of core/shell micelles. Our study aimed at developing an innovative and economically efficient alternative method to fabricate isoporous membrane by self-assembly of magnetic nanoparticle with a polystyrene shell, mimicking the behavior of block copolymer micelle. Fe3O4 nanoparticles of ~13 nm diameter were prepared by co-precipitation as cores. The initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles with two strategies. Then the surface initiated ATRP of styrene was carried out to functionalize nanoparticles with polystyrene through a “grafting from” method. Finally, the nanocomposite membrane was cast from 50 wt % Fe3O4@PS brush polymer solution in DMF via non solvent phase inversion. Microscopies reveal an asymmetric membrane with a dense thin layer on top of a porous sponge-like layer. This novel class of asymmetric membrane, based on the pure assembly of functionalized nanoparticles was prepared for the first time. The nanoparticles are well distributed however with no preferential order yet in the as-cast film.I would like to thank my committee chair and advisor, Prof. Suzana Nunes, and other committee members, Prof. Klaus-Viktor Peinemann and Prof. Gary Amy, for their guidance and support throughout the course of this research. My appreciation also goes to my colleagues in our group for useful discussions and suggestions. I also want to extend my gratitude to the staff from the KAUST Core Lab for Advanced Nanofabrication, Imaging and Characterization, especially Dr. Ali Reza Behzad, Dr. Rachid Sougrat, and

  16. Computational simulation of lithium ion transport through polymer nanocomposite membranes

    International Nuclear Information System (INIS)

    Moon, P.; Sandi, G.; Kizilel, R.; Stevens, D.

    2003-01-01

    We think of membranes as simple devices to facilitate filtration. In fact, membranes play a role in chemical, biological, and engineering processes such as catalysis, separation, and sensing by control of molecular transport and recognition. Critical factors that influence membrane discrimination properties include composition, pore size (as well as homogeneity), chemical functionalization, and electrical transport properties. There is increasing interest in using nanomaterials for the production of novel membranes due to the unique selectivity that can be achieved. Clay-polymer nanocomposites show particular promise due to their ease of manufacture (large sheets), their rigidity (self supporting), and their excellent mechanical properties. However, the process of lithium ion transport through the clay-polymer nanocomposite and mechanisms of pore size selection are poorly understood at the ionic and molecular level. In addition, manufacturing of clay-polymer nanocomposite membranes with desirable properties has proved challenging. We have built a general membrane-modeling tool (simulation system) to assist in developing improved membranes for selection, electromigration, and other electrochemical applications. Of particular interest are the recently formulated clay-polymer membranes. The transport mechanisms of the lithium ions membranes are not well understood and, therefore, they make an interesting test case for the model. In order to validate the model, we synthesized polymer nanocomposites membranes.

  17. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  18. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    Science.gov (United States)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  19. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  20. Recent Development of Nanocomposite Membranes for Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Sang-Ho Cha

    2015-01-01

    Full Text Available The vanadium redox flow battery (VRB has received considerable attention due to its long cycle life, flexible design, fast response time, deep-discharge capability, and low pollution emissions in large-scale energy storage. The key component of VRB is an ion exchange membrane that prevents cross mixing of the positive and negative electrolytes by separating two electrolyte solutions, while allowing the conduction of ions. This review summarizes efforts in developing nanocomposite membranes with reduced vanadium ion permeability and improved proton conductivity in order to achieve high performance and long life of VRB systems. Moreover, functionalized nanocomposite membranes will be reviewed for the development of next-generation materials to further improve the performance of VRB, focusing on their properties and performance of VRB.

  1. Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity

    Science.gov (United States)

    Navarrini, Walter; Scrosati, Bruno; Panero, Stefania; Ghielmi, Alessandro; Sanguineti, Aldo; Geniram, Giuliana

    In view of possible applications as single-ion electrolyte for lithium batteries, some aspects of the lithium form of Hyflon Ion ionomer, a sulfonic short side chain (SSC) electrolyte, have been investigated. The synthesis of the ionomer and the successive membrane preparation is reported. An appropriate methodology for the direct salification of the ionomeric membrane from the SO 2F form to lithium salt, using lithium hydroxide in absence of organic solvent has been found. Utilizing these SSC lithium ionomer membranes and though a particular methodology for the dehydration of the lithium ion membrane in non-aqueous media, it has been possible to achieve an ionic conductivity of 10 -3 S cm -1 at room temperature [W. Navarrini, S. Panero, B. Scrosati, A. Sanguineti, European Patent 1,403,958 A1 (2003)]. Surprisingly it was observed that the membrane ionic conductivity depends on the dehydration methodologies adopted.

  2. Nafion/Zeolite nanocomposite membrane for high temperature PEMFCS

    International Nuclear Information System (INIS)

    Chen, Z.

    2009-01-01

    'Full text': The Nafion/Acid Functionalized Zeolite Beta (NAFB) nanocomposite membrane has been successfully prepared by the in situ hydrothermal crystallization method. Acid Functionalized Zeolite Beta (AFB) nanocrystals less than 20 nm were formed and embedded into the Nafion matrix. The physical-chemical properties of all membranes were investigated regarding their tensile strength, water uptake and thermogravimetric analyzer (TGA). The proton conductivity commercial Nafion membrane and the NAFB composite membrane were measured with different relative humidity (RH) at 80 and 120 o C. Compared with the commercial Nafion membrane, the NAFB composite membrane has much higher proton conductivity at 120 o C and reduced RH. The NAFB composite membrane and commercial Nafion membranes were also studied in an H 2 /O 2 PEMFC over a wide range of RH values from 25 to 100% at temperatures of 80 and 120 o C. The NAFB composite membrane showed a pronounced improvement over commercial Nafion membranes when operated at 120 o C and reduced RH. The high performance of the NAFB composite membranes at low RH was attributed to improved water retention due to the presence of absorbed water species within the pores and on the surface of AFB. NAFB composite membranes have the potential for use with high temperature PEMFC. (author)

  3. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  4. Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes.

    Science.gov (United States)

    Homaeigohar, Seyed Shahin; Elbahri, Mady

    2012-04-15

    Despite promising filtration abilities, low mechanical properties of extraordinary porous electrospun nanofibrous membranes could be a major challenge in their industrial development. In addition, such kind of membranes are usually hydrophobic and non-wettable. To reinforce an electrospun nanofibrous membrane made of polyethersulfone (PES) mechanically and chemically (to improve wettability), zirconia nanoparticles as a novel nanofiller in membrane technology were added to the nanofibers. The compressive and tensile results obtained through nanoindentation and tensile tests, respectively, implied an optimum mechanical properties after incorporation of zirconia nanoparticles. Especially compaction resistance of the electrospun nanofibrous membranes improved significantly as long as no agglomeration of the nanoparticles occurred and the electrospun nanocomposite membranes showed a higher tensile properties without any brittleness i.e. a high ductility. Noteworthy, for the first time the compaction level was quantified through a nanoindentation test. In addition to obtaining a desired mechanical performance, the hydrophobicity declined. Combination of promising properties of optimum mechanical and surface chemical properties led to a considerably high water permeability also retention efficiency of the nanocomposite PES nanofibrous membranes. Such finding implies a longer life span and lower energy consumption for a water filtration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Nanoclay embedded mixed matrix PVDF nanocomposite membrane: Preparation, characterization and biofouling resistance

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Civil Engineering, Razi University, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, Negin, E-mail: negin_ghaemi@kut.ac.ir [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Madaeni, Sayed S. [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Daraei, Parisa [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Khadivi, Mohammad Ali [Friedrich-Alexander University, Erlangen-Nuremberg, Egerland Strasse 3, D-91058 Erlangen (Germany); Falsafi, Monir [Department of Chemistry, Faculty of Science, Razi University, 67149 Kermanshah (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Nanocomposite membranes were prepared by addition of OMMT to PVDF membrane. • Addition of nanoclay considerably increased the hydrophilicity of PVDF membrane. • Nanocomposite membranes had higher water flux and antifouling properties. • Fouling of membranes blended with nanoclay (<4 wt.%) reduced. - Abstract: In this paper, nanocomposite PVDF/nanoclay membranes were prepared with addition of different concentrations of organically modified montmorillonite (OMMT) into the polymeric casting solution using combination of solution dispersion and phase inversion methods. Membranes were characterized by use of X-ray diffraction (XRD), water contact angle, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their performances were evaluated in terms of pure water flux and fouling parameters. The surface hydrophilicity of all nanocomposites markedly improved compared to nascent PVDF. In addition, XRD patterns revealed the formation of intercalated layers of mineral clays in PVDF matrix. SEM and AFM images showed that addition of OMMT resulted in nanocomposite membranes with thinner skin layer and higher porosity rather than PVDF membranes. Pure water flux of PVDF/OMMT membranes increased significantly (particularly for fabricated membranes by 4 and 6 wt.% OMMT) compared to that of PVDF membrane. Moreover, nanocomposite membranes showed the elevated antifouling properties, and flux recovery of nascent PVDF membranes increased from 51 to 72% with addition of 2 wt.% OMMT nanoparticles. These nanocomposite membranes also offered a remarkable reusability and durability against biofouling.

  6. Nanoclay embedded mixed matrix PVDF nanocomposite membrane: Preparation, characterization and biofouling resistance

    International Nuclear Information System (INIS)

    Rajabi, Hamid; Ghaemi, Negin; Madaeni, Sayed S.; Daraei, Parisa; Khadivi, Mohammad Ali; Falsafi, Monir

    2014-01-01

    Highlights: • Nanocomposite membranes were prepared by addition of OMMT to PVDF membrane. • Addition of nanoclay considerably increased the hydrophilicity of PVDF membrane. • Nanocomposite membranes had higher water flux and antifouling properties. • Fouling of membranes blended with nanoclay (<4 wt.%) reduced. - Abstract: In this paper, nanocomposite PVDF/nanoclay membranes were prepared with addition of different concentrations of organically modified montmorillonite (OMMT) into the polymeric casting solution using combination of solution dispersion and phase inversion methods. Membranes were characterized by use of X-ray diffraction (XRD), water contact angle, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their performances were evaluated in terms of pure water flux and fouling parameters. The surface hydrophilicity of all nanocomposites markedly improved compared to nascent PVDF. In addition, XRD patterns revealed the formation of intercalated layers of mineral clays in PVDF matrix. SEM and AFM images showed that addition of OMMT resulted in nanocomposite membranes with thinner skin layer and higher porosity rather than PVDF membranes. Pure water flux of PVDF/OMMT membranes increased significantly (particularly for fabricated membranes by 4 and 6 wt.% OMMT) compared to that of PVDF membrane. Moreover, nanocomposite membranes showed the elevated antifouling properties, and flux recovery of nascent PVDF membranes increased from 51 to 72% with addition of 2 wt.% OMMT nanoparticles. These nanocomposite membranes also offered a remarkable reusability and durability against biofouling

  7. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes

    Science.gov (United States)

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-01-01

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored. PMID:24957121

  8. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  9. Polymeric blend nanocomposite membranes for ethanol dehydration-effect of morphology and membrane-solvent interactions

    Science.gov (United States)

    Nanocomposite membranes (NCMs) of sodium alginate/poly(vinyl pyrrolidone) blend polymers incorporated with varying concentrations of phosphotungstic acid (H3PW12O40) (PWA) nanoparticles have been prepared and used in ethanol dehydration by the pervaporation (PV) technique. Effe...

  10. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  11. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: A membrane for sustainable desalination through MD.

    Science.gov (United States)

    Efome, Johnson E; Rana, Dipak; Matsuura, Takeshi; Lan, Christopher Q

    2016-02-01

    Membrane distillation (MD) is a promising separation technique capable of being used in the desalination of marine and brackish water. Poly(vinylidene fluoride) (PVDF) flat sheet nano-composite membranes were surface modified by coating with electro-spun PVDF nano-fibres to increase the surface hydrophobicity. For this purpose, the nano-composite membrane containing 7 wt.% superhydrophobic SiO2 nano-particles, which showed the highest flux in our previous work, was first subjected to pore size augmentation by increasing the concentration of the pore forming agent (Di-ionized water). Then, the prepared flat sheet membranes were subjected to nanofibres coating by electro-spinning. The uncoated and coated composite fabricated membranes were characterized using contact angle, liquid entry pressure of water, and scanning electron microscopy. The membranes were further tested for 6 h desalination by direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD), with a 3.5 wt.% synthetic NaClaq as the feed. In DCMD the feed liquid and permeate side temperature were maintained at 27.5 °C and 15 °C, respectively. For VMD, the feed liquid temperature was 27 °C and a vacuum of 94.8 kPa was applied on the permeate side. The maximum permeate flux achieved was 3.2 kg/m(2).h for VMD and 6.5 kg/m(2).h for DCMD. The salt rejection obtained was higher than 99.98%. The coated membranes showed a more stable flux than the uncoated membranes indicating that the double layered membranes have great potential in solving the pore wetting problem in MD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen

    2017-12-28

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  13. Periodic mesoporous organosilica-doped nanocomposite membranes and systems including same

    KAUST Repository

    Hammami, Mohamed Amen; Francis, Lijo; Croissant, Jonas; Ghaffour, NorEddine; Alsaiari, Shahad; Khashab, Niveen M.

    2017-01-01

    A periodic mesoporous organosilica (PMO) nanoparticle functionalized nanocomposite membrane (NCM) for membrane distillation, the NCM including: polymer fibers such as polyetherimide fibers aggregated into a matrix; and hydrophobic PMO nanoparticles disposed on the polymer fibers. The PMO nanoparticles include a framework connected by organic groups and pentafluorophenyl groups. Good membrane flux and anti-fouling was demonstrated. Membranes can be prepared by electrospinning.

  14. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  15. Development of nano-composite membranes to improve alkaline fuel cell performance

    CSIR Research Space (South Africa)

    Nonjola, P

    2011-09-01

    Full Text Available The work presented here describes modification of commercially available polysulfone (PSU) as well as the formation of nano-composite membrane i.e. TiO2 nano particles incorporated into anion exchange polymer matrix....

  16. Tunable Nanocomposite Membranes for Water Remediation and Separations

    Science.gov (United States)

    Sierra, Sebastian Hernandez

    Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes. Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these responsive materials prevent the loss of nanomaterials to the environment and improve reactivity due to their larger surface areas, expanding their range of applications. The present work describes different techniques used to create nanocomposites based on poly(vinylidene fluoride) (PVDF) hollow fiber and flat sheet membranes, both thick sponge-like and thin. Due to their hydrophobicity, hollow fiber membranes were hydrophilized by a water-based green process of cross-linking polyvinylpyrrolidone (PVP) onto their surface. Commercial hydrophilic and hydrophilized lab-prepared membranes were subsequently functionalized with a poly(acrylic acid) (PAA) hydrogel through free radical polymerizations. This work advanced membrane functionalization, specifically flat sheet membranes, from lab-scale to full-scale by modifications of the polymerization procedures. The hydrogel functionalized membranes by redox polymerization showed an expected responsive behavior, represented by permeability variation at various pH values (4.0 ≤ pH ≤ 9.0), from 53.9 to 3.4 L/(m2EhEbar) and a change in effective pore size from 222 to 111 nm, being 3800 L/(m 2EhEbar) and 650 nm the former permeability and pore size values of the

  17. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

    KAUST Repository

    Pendergast, Mary Theresa M.; Nygaard, Jodie M.; Ghosh, Asim K.; Hoek, Eric M.V.

    2010-01-01

    Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.

  18. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

    KAUST Repository

    Pendergast, Mary Theresa M.

    2010-10-01

    Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.

  19. Synthesis of polyetherimide / halloysite nanotubes (PEI/HNTs) based nanocomposite membrane towards hydrogen storage

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2018-04-01

    Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.

  20. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    OpenAIRE

    Md. Poostforush; H. Azizi

    2014-01-01

    The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low ...

  1. Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane

    Directory of Open Access Journals (Sweden)

    S. M. Momeni

    2013-09-01

    Full Text Available Nanocomposite membranes composed of polymer and inorganic nanoparticles are a novel method to enhance gas separation performance. In this study, membranes were fabricated from polysulfone (PSf containing magnesium oxide (MgO nanoparticles and gas permeation properties of the resulting membranes were investigated. Membranes were prepared by solution blending and phase inversion methods. Morphology of the membranes, void formations, MgO distribution and aggregates were observed by SEM analysis. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA. The effects of MgO nanoparticles on the glass transition temperature (Tg of the prepared nanocomposites were studied by differential scanning calorimetry (DSC. The Tg of nanocomposite membranes increased with MgO loading. Fourier transform infrared (FTIR spectra of nanocomposite membranes were analyzed to identify the variations of the bonds. The results obtained from gas permeation experiments with a constant pressure setup showed that adding MgO nanoparticles to the polymeric membrane structure increased the permeability of the membranes. At 30 wt% MgO loading, the CO2 permeability was enhanced from 25.75×10-16 to 47.12×10-16 mol.m/(m².s.Pa and the CO2/CH4 selectivity decreased from 30.84 to 25.65 when compared with pure PSf. For H2, the permeability was enhanced from 44.05×10-16 to 67.3×10-16 mol.m/(m².s.Pa, whereas the H2/N2 selectivity decreased from 47.11 to 33.58.

  2. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Basile, Maria Assunta; Gomez d' Ayala, Giovanna; Malinconico, Mario [Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, Pozzuoli (Naples) (Italy); Laurienzo, Paola, E-mail: paola.laurienzo@ipcb.cnr.it [Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, Pozzuoli (Naples) (Italy); Coudane, Jean; Nottelet, Benjamin [Institut des Biomolécules Max Mousseron (IBMM), Artificial Biopolymers Group, CNRS UMR 5247, University of Montpellier 1, Faculty of Pharmacy, 15 Av. C. Flahault, Montpellier 34093 (France); Ragione, Fulvio Della [Department of Biochemistry and Biophysics, Second University of Naples, Via L. De Crecchio 7, Naples (Italy); Oliva, Adriana, E-mail: adriana.oliva@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, Via L. De Crecchio 7, Naples (Italy)

    2015-03-01

    In the present work, microporous membranes based on poly(ε-caprolactone) (PCL) and PCL functionalized with amine (PCL-DMAEA) or anhydride groups (PCL-MAGMA) were realized by solvent–non solvent phase inversion and proposed for use in Guided Tissue Regeneration (GTR). Nanowhiskers of hydroxyapatite (HA) were also incorporated in the polymer matrix to realize nanocomposite membranes. Scanning Electron Microscopy (SEM) showed improved interfacial adhesion with HA for functionalized polymers, and highlighted substantial differences in the porosity. A relationship between the developed porous structure of the membrane and the chemical nature of grafted groups was proposed. Compared to virgin PCL, hydrophilicity increases for functionalized PCL, while the addition of HA influences significantly the hydrophilic characteristics only in the case of virgin polymer. A significant increase of in vitro degradation rate was found for PCL-MAGMA based membranes, and at lower extent of PCL-DMAEA membranes. The novel materials were investigated regarding their potential as support for cell growth in bone repair using multipotent mesenchymal stromal cells (MSC) as a model. MSC plated onto the various membranes were analyzed in terms of adhesion, proliferation and osteogenic capacity that resulted to be related to chemical as well as porous structure. In particular, PCL-DMAEA and the relative nanocomposite membranes are the most promising in terms of cell-biomaterial interactions. - Graphical abstract: Functionalized PCL is used to realize nanocomposites with hydroxyapatite (HA) in the form of microporous membranes. The influence of different grafted groups on mechanical properties, in vitro degradation, porous membrane structure and interaction with mesenchymal stromal cells (MSC) is discussed. - Highlights: • Functionalized PCL shows faster in vitro degradation rate. • Functionalized PCL shows superior cell adhesion, proliferation and differentiation. • Nanocomposites based

  3. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration

    International Nuclear Information System (INIS)

    Basile, Maria Assunta; Gomez d'Ayala, Giovanna; Malinconico, Mario; Laurienzo, Paola; Coudane, Jean; Nottelet, Benjamin; Ragione, Fulvio Della; Oliva, Adriana

    2015-01-01

    In the present work, microporous membranes based on poly(ε-caprolactone) (PCL) and PCL functionalized with amine (PCL-DMAEA) or anhydride groups (PCL-MAGMA) were realized by solvent–non solvent phase inversion and proposed for use in Guided Tissue Regeneration (GTR). Nanowhiskers of hydroxyapatite (HA) were also incorporated in the polymer matrix to realize nanocomposite membranes. Scanning Electron Microscopy (SEM) showed improved interfacial adhesion with HA for functionalized polymers, and highlighted substantial differences in the porosity. A relationship between the developed porous structure of the membrane and the chemical nature of grafted groups was proposed. Compared to virgin PCL, hydrophilicity increases for functionalized PCL, while the addition of HA influences significantly the hydrophilic characteristics only in the case of virgin polymer. A significant increase of in vitro degradation rate was found for PCL-MAGMA based membranes, and at lower extent of PCL-DMAEA membranes. The novel materials were investigated regarding their potential as support for cell growth in bone repair using multipotent mesenchymal stromal cells (MSC) as a model. MSC plated onto the various membranes were analyzed in terms of adhesion, proliferation and osteogenic capacity that resulted to be related to chemical as well as porous structure. In particular, PCL-DMAEA and the relative nanocomposite membranes are the most promising in terms of cell-biomaterial interactions. - Graphical abstract: Functionalized PCL is used to realize nanocomposites with hydroxyapatite (HA) in the form of microporous membranes. The influence of different grafted groups on mechanical properties, in vitro degradation, porous membrane structure and interaction with mesenchymal stromal cells (MSC) is discussed. - Highlights: • Functionalized PCL shows faster in vitro degradation rate. • Functionalized PCL shows superior cell adhesion, proliferation and differentiation. • Nanocomposites based

  4. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    International Nuclear Information System (INIS)

    Lu Ping; Hsieh, You-Lo

    2009-01-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  5. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  6. Pervaporation Separation of Water-Ethanol Mixtures Using Organic-Inorganic Nanocomposite Membranes

    Science.gov (United States)

    Preyssler type heteropolyacid viz., H14[NaP5W30O110] incorporated chitosan nanocomposite membranes (NCMs) were prepared by solution casting, characterized using a variety of techniques and employed in the pervaporation separation of water-ethanol mixtures as a function of feed wa...

  7. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    Science.gov (United States)

    Chen, Z.; Yin, C.; Wang, S.; Ito, K.; Fu, Q. M.; Deng, Q. R.; Fu, P.; Lin, Z. D.; Zhang, Y.

    2017-01-01

    A polysulfone/TiO2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result.

  8. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    International Nuclear Information System (INIS)

    Chen, Z; Yin, C; Wang, S; Fu, Q M; Deng, Q R; Fu, P; Lin, Z D; Zhang, Y; Ito, K

    2017-01-01

    A polysulfone/TiO 2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO 2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result. (paper)

  9. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Ghaffarian, Seyed Reza [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Hasani Sadrabadi, Mohammad Hossein [Faculty of Social and Economics Science, Alzahra University, Tehran (Iran); Heidari, Mahdi [Graduate School of Management and Economics, Sharif University of Technology, Tehran (Iran); Moaddel, Homayoun [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2010-01-15

    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g{sup -1}, and 0.145 S cm{sup -1}, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the exfoliated structure of OMMT in the macromolecular matrices. The S-PES nanocomposite membrane with 3.0 wt% of OMMT content showed the maximum selectivity parameter of about 520,000 S s cm{sup -3} which is related to the high conductivity of 0.051 S cm{sup -1} and low methanol permeability of 9.8 x 10{sup -8} cm{sup 2} s{sup -1}. Furthermore, single cell DMFC fuel cell performance test with 4 molar methanol concentration showed a high power density (131 mW cm{sup -2}) of the nanocomposite membrane at the optimum composition (40% of sulfonation and 3.0 wt% of OMMT loading) compared to the Nafion {sup registered} 117 membrane (114 mW cm{sup -2}). Manufactured nanocomposite membranes thanks to their high selectivity, ease of preparation and low cost could be suggested as the ideal candidate for the direct methanol fuel cell applications. (author)

  10. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei

    2015-01-01

    Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014

  11. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    Science.gov (United States)

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  12. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8

    KAUST Repository

    Duan, Jintang; Pan, Yichang; Pacheco Oreamuno, Federico; Litwiller, Eric; Lai, Zhiping; Pinnau, Ingo

    2015-01-01

    A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination

  13. Development of nanocomposites polyamide66/ bentonite clay membranes obtained by solution for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de

    2010-01-01

    Microporous membranes were obtained from nanocomposites polyamide66 and regional bentonite clay, through the technique of immersion precipitation. The nanocomposites were obtained by solution with a pre-established reaction time. The clay was treated with quaternary ammonium salt (Cetremide®) in order to make it organophilic. Untreated and treated clay were characterized by X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD) and thermogravimetry (TG), which confirmed the insertion of the Cetremide® salt in the layers of clay and their thermal stability. While the membranes were characterized by XRD, TG, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and flow measurements. The results of XRD, TG and DSC confirmed the thermal stability and morphological structure with intercalated/partially exfoliated lamellae of clay in the polymer matrix. By SEM, it was revealed an asymmetric morphology consisting of a skin layer and a porous sublayer. The higher clay content in the membrane give the lower film thickness. This influencing directly the flow measurements of the membranes produced from the nanocomposites. In general, the initial flow with distilled water through the membranes decrease and stabilise after 60 min, this due to a compression or swelling occurred in the membranes. In tests of water-oil separation it was found that the relationship J/J0 tends to be greater when using emulsions with lower concentration. The water-oil separation tests at concentrations of 300 and 500 ppm for all membranes showed a significant reduction in oil concentration in the permeate, thus showing that these membranes have potential for this application. (author)

  14. Chitosan/CNTs green nanocomposite membrane: Synthesis, swelling and polyaromatic hydrocarbons removal

    International Nuclear Information System (INIS)

    Bibi, Saira; Yasin, Tariq; Hassan, Safia; Riaz, Muhammad; Nawaz, Mohsan

    2015-01-01

    Carbon nanotubes (CNTs) were irradiated in air at 100 kGy under gamma radiations. The Raman spectroscopy of γ-treated CNTs showed distinctive changes in the absorption bands. The CNTs were mixed with blend of chitosan (Cs)/poly (vinyl alcohol) (PVA) and crosslinked with silane. The chemical reactions between the components affected the position and intensities of the infrared bands. Scanning electron micrograph of Cs/CNTs nanocomposite membrane showed the homogeneous dispersion of CNTs in the polymer matrix. The addition of CNTs lowered its swelling in water. Naphthalene (NAPH) was selected as a model compound and its removal was studied using HPLC technique. This membrane showed fast uptake of NAPH and 87% was removed from water within 30 min. The NAPH loaded membrane showed strong chemical interactions and cannot be desorbed. The fast uptake of PAHs and the green nature of this membrane made them suitable candidates for clean-up purposes. - Highlights: • Radiation modified CNTs and chitosan gave nanocomposite membranes. • This membrane showed hydrogel properties. • This membrane was used for the removal of naphthalene. • The green nature made them suitable candidates for clean-up purposes of PAH

  15. Effects of Concentration of Organically Modified Nanoclay on Properties of Sulfonated Poly(vinyl alcohol Nanocomposite Membranes

    Directory of Open Access Journals (Sweden)

    Apiradee Sanglimsuwan

    2011-01-01

    Full Text Available Electrolyte nanocomposite membranes for proton exchange membrane fuel cells and direct methanol fuel cells were prepared by carrying out a sulfonation of poly(vinyl alcohol with sulfosuccinic acid and adding a type of organically modified montmorillonite (layered silicate nanoclay commercially known as Cloisite 93A. The effects of the different concentrations (0, 2, 4, 6, 8 wt. % of the organoclay in the membranes on water uptake, ion exchange capacity (IEC, proton conductivity, and methanol permeability were measured, respectively, via gravimetry, titration, impedance analysis, and gas chromatography techniques. The IEC values remained constant for all concentrations. Water uptakes and proton conductivities of the nanocomposite membranes changed with the clay content in a nonlinear fashion. While all the nanocomposite membranes had lower methanol permeability than Nafion115, the 6% concentration of Cloisite 93A in sulfonated poly(vinyl alcohol membrane displayed the greatest proton conductivity to methanol permeability ratio.

  16. Mechanism of molecular transport in novel reverse-selective nanocomposite membranes

    International Nuclear Information System (INIS)

    Merkel, T.C.; Freeman, B.D.; Spontak, R.J.; Meakin, P.; Hill, A.J.; Monash University, VIC

    2002-01-01

    Full text: Polymer nanocomposites continue to receive tremendous attention as organic-inorganic hybrid materials exhibiting a wide range of interesting, as well as technologically relevant, properties. This work reports a novel use of polymer nanocomposites as reverse-selective membranes. We have found that physical dispersion of nonporous fumed silica [FS] into glassy poly(4-methyl-2-pentyne) [PMP] simultaneously enhances membrane permeability (by as much as 240%) and selectivity for large organic molecules over small permanent gases. This surprising observation, in stark contrast to conventional filled polymer systems, reflects silica-induced disruption of local polymer chain packing and, as discerned by positron annihilation lifetime spectroscopy [PALS], a resulting subtle increase in the size of free volume elements through which molecular transport occurs. Such nanoscale hybridization represents an innovative means of tuning the transport properties of glassy polymeric media through control of molecular ordering

  17. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis

    Science.gov (United States)

    Salehi, Tahereh Mombeini; Peyravi, Majid; Jahanshahi, Mohsen; Lau, Woei-Jye; Rad, Ali Shokuhi

    2018-04-01

    In this work, microporous substrates modified by zeolite nanoparticles were prepared and used for composite membrane making with the aim of reducing internal concentration polarization (ICP) effect of membranes during engineered osmosis applications. Nanocomposite substrates were fabricated via phase inversion technique by embedding nanostructured zeolite (clinoptilolite) in the range of 0-0.6 wt% into matrix of polyethersulfone (PES) substrate. Of all the substrates prepared, the PES0.4 substrate (with 0.4 wt% zeolite) exhibited unique characteristics, i.e., increased surface porosity, lower structural parameter ( S) (from 0.78 to 0.48 mm), and enhanced water flux. The thin film nanocomposite (TFN) membrane made of this optimized substrate was also reported to exhibit higher water flux compared to the control composite membrane during forward osmosis (FO) and pressure-retarded osmosis (PRO) test, without compromising reverse solute flux. The water flux of such TFN membrane was 43% higher than the control TFC membrane (1.93 L/m2 h bar) with salt rejection recorded at 94.7%. An increment in water flux is ascribed to the reduction in structural parameter, leading to reduced ICP effect.

  18. Carbon nanotubes rooted montmorillonite (CNT-MM) reinforced nanocomposite membrane for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, Dhanagopal, E-mail: dmani_cat@yahoo.co.in [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Mangalaraja, Ramalinga Viswanathan, E-mail: mangal@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Avila, Ricardo E. [Personal Dosimetry Section, Chilean Nuclear Energy Commission, Cas. 188-D, Santiago (Chile); Siddheswaran, Rajendran [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Ananthakumar, Solaiappan [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Novel montmorillonite-CNT (MM-CNT) nanohybrid materials were produced by CVD. Black-Right-Pointing-Pointer Highly selective crystalline carbon nanotubes were grown over montmorillonite. Black-Right-Pointing-Pointer Fabricated Nafion-MM-CNT nanocomposite membrane by solution casting method. Black-Right-Pointing-Pointer Homogeneous dispersion of MM-CNT in the Nafion matrix was achieved. Black-Right-Pointing-Pointer Combined effect of montmorillonite and CNT improves the thermal stability of Nafion. - Abstract: Nafion based nanocomposite membranes containing montmorillonite-carbon nanotubes (a binary hybrid material) were produced to develop high performance polymer electrolyte fuel cells. Multi walled carbon nanotubes were grown over 20 and 25 wt% iron loaded montmorillonite catalysts by CVD using acetylene as the carbon precursor. Growth experiments were carried out at optimised conditions to obtain highly selective crystalline carbon nanotubes. X-ray diffraction spectra of the catalysts were recorded for the structural characterisation and definition of particle size. The carbon nanotubes obtained were examined by various physico chemical characterisation studies such as SEM, TEM, Raman spectroscopy and TG analyses to understand the morphology and crystallinity of the CNTs. The MM-CNT hybrid material with I{sub D}/I{sub G} ratio of Raman spectral band as 0.53 represents the high selectivity towards CNTs. Thus the hybrid material produced was considered as the best nanofiller to develop polymer nanocomposites. Nafion based nanocomposite membranes were prepared by adding MM-CNT as nanofiller by solution casting method. A better dispersion of MM-CNT into the Nafion matrix was observed and the addition of the MM-CNT improved the thermal stability of the Nafion membrane.

  19. Carbon nanotubes rooted montmorillonite (CNT-MM) reinforced nanocomposite membrane for PEM fuel cells

    International Nuclear Information System (INIS)

    Manikandan, Dhanagopal; Mangalaraja, Ramalinga Viswanathan; Avila, Ricardo E.; Siddheswaran, Rajendran; Ananthakumar, Solaiappan

    2012-01-01

    Highlights: ► Novel montmorillonite-CNT (MM-CNT) nanohybrid materials were produced by CVD. ► Highly selective crystalline carbon nanotubes were grown over montmorillonite. ► Fabricated Nafion-MM-CNT nanocomposite membrane by solution casting method. ► Homogeneous dispersion of MM-CNT in the Nafion matrix was achieved. ► Combined effect of montmorillonite and CNT improves the thermal stability of Nafion. - Abstract: Nafion based nanocomposite membranes containing montmorillonite-carbon nanotubes (a binary hybrid material) were produced to develop high performance polymer electrolyte fuel cells. Multi walled carbon nanotubes were grown over 20 and 25 wt% iron loaded montmorillonite catalysts by CVD using acetylene as the carbon precursor. Growth experiments were carried out at optimised conditions to obtain highly selective crystalline carbon nanotubes. X-ray diffraction spectra of the catalysts were recorded for the structural characterisation and definition of particle size. The carbon nanotubes obtained were examined by various physico chemical characterisation studies such as SEM, TEM, Raman spectroscopy and TG analyses to understand the morphology and crystallinity of the CNTs. The MM-CNT hybrid material with I D /I G ratio of Raman spectral band as 0.53 represents the high selectivity towards CNTs. Thus the hybrid material produced was considered as the best nanofiller to develop polymer nanocomposites. Nafion based nanocomposite membranes were prepared by adding MM-CNT as nanofiller by solution casting method. A better dispersion of MM-CNT into the Nafion matrix was observed and the addition of the MM-CNT improved the thermal stability of the Nafion membrane.

  20. Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen

    Science.gov (United States)

    Wu, Xiuling; Wu, Yilin; Dong, Hongjun; Zhao, Juan; Wang, Chen; Zhou, Shi; Lu, Jian; Yan, Yongsheng; Li, He

    2018-01-01

    A novel system for harvesting molecularly imprinted nanocomposite membranes (MINcMs) with Au-modified polyaniline (Au@polyaniline) nanocomposite structure was developed for selective enrichment and separation of ibuprofen. This unique nanocomposite structure obviously enhanced the adsorption capacity, perm-selectivity performance, and regeneration ability of MINcMs. The as-prepared MINcMs showed outstanding adsorption capacity (22.02 mg g-1) of ibuprofen, which was four times higher than that of non-imprinted nanocomposite membranes (NINcMs). Furthermore, the selectivity factor of MINcMs for ibuprofen reached up to 4.67 and the perm-selectivity factor β was about 8.74, which indicated MINcMs had a good selective separation performance of ibuprofen. We envision that this novel synthesis method will open a new direction to manipulation of molecularly imprinted membrane materials and provide a simple yet convenient way to selective separation of ibuprofen.

  1. Novel ion-exchange nanocomposite membrane containing in-situ formed FeOOH nanoparticles: Synthesis, characterization and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Farhad; Kharat, Ali Nemati [University of Tehran, Tehran (Iran, Islamic Republic of); Khodabakhshi, Ali Reza [Faculty of Science, Arak University, Arak (Iran, Islamic Republic of)

    2016-04-15

    A new type of cation-exchange nanocomposite membrane was prepared via in-situ formation of FeOOH nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride by a simple one-step chemical method. Prepared nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The SEM images showed uniform dispersion of FeOOH nanoparticles throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange nanocomposite membranes was studied. Various characterizations showed that the incorporation of different amounts of FeOOH nanoparticles into the basic membrane structure had a significant influence on the membrane performance and could improve the electrochemical properties.

  2. Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics

    Directory of Open Access Journals (Sweden)

    C. Liu

    2018-04-01

    Full Text Available We developed and fabricated novel polyvinylidene fluoride (PVDF-(0.5–2%Ag and PVDF-(0.5–2%Ag-1% graphene oxide (GO nanocomposite membranes with antifouling properties through electrospinning. Silver nanoparticles (AgNPs were in situ synthesized from silver nitrate precursor directly. The tensile properties, wetting, antifouling characteristics of pristine PVDF and its nanocomposite membranes were studied. Tensile tests showed that the addition of 0.5–2% AgNPs to PVDF improves its elastic modulus and tensile strength markedly. A further increase in both tensile modulus and strength of PVDF were obtained by hybridizing AgNPs with 1% GO. Water contact angle measurements revealed that the incorporation of AgNPs or AgNPs/GO nanofillers into PVDF decreases its degree of hydrophobicity. This led to the nanocomposite membranes having higher water flux permeation. In addition, AgNPs and AgNPs/GO fillers played a crucial role against protein and bacterial fouling of the resulting composite membranes. The antibacterial activities of electrospun nanocomposite membranes were assessed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. On the basis of water contact angle, water permeation flux and antifouling results, electrospun PVDF-2% Ag-GO composite membrane was found to exhibit excellent filtration performance, protein antifouling and bactericidal activities. Thus such a fibrous nanocomposite is considered as a high-potential membrane for water purification and disinfection applications.

  3. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  4. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8 based polymer nanocomposite membranes

    Directory of Open Access Journals (Sweden)

    Nay Win Khun

    2014-12-01

    Full Text Available We combined zeolitic imidazolate framework nanoparticles (ZIF-8: ˜150 nm diameter with Matrimid® 5218 polymer to form permeable mixed matrix membranes, featuring different weight fractions of nanoparticles (up to 30 wt. % loading. We used ball-on-disc micro-tribological method to measure the frictional coefficient of the nanocomposite membranes, as a function of nanoparticle loading and annealing heat treatment. The tribological results reveal that the friction and wear of the unannealed samples rise steadily with greater nanoparticle loading because ZIF-8 is relatively harder than the matrix, thus promoting abrasive wear mechanism. After annealing, however, we discover that the nanocomposites display an appreciably lower friction and wear damage compared with the unannealed counterparts. Evidence shows that the major improvement in tribological performance is associated with the greater amounts of wear debris derived from the annealed nanocomposite membranes. We propose that detached Matrimid-encapsulated ZIF-8 nanoparticles could function as “spacers,” which are capable of not only reducing direct contact between two rubbing surfaces but also enhancing free-rolling under the action of lateral forces.

  5. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    International Nuclear Information System (INIS)

    Meng Yao; Liu Man; Wang Shaoan; Mo Anchun; Huang, Cui; Zuo Yi; Li Jidong

    2008-01-01

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membrane

  6. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  7. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  8. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes.

    Science.gov (United States)

    Niazi, Muhammad Bilal Khan; Jahan, Zaib; Berg, Sigrun Sofie; Gregersen, Øyvind Weiby

    2017-12-01

    Cellulose nanofibrils (CNF) have strong reinforcing properties when incorporated in a compatible polymer matrix. This work reports the effect of the addition of phosphorylated nanocellulose (PCNF) on the mechanical, thermal and swelling properties of poly(vinyl alcohol) (PVA) nanocomposite membranes. The incorporation of nanocellulose in PVA reduced the crystallinity at 0%RH. However, when the films were exposed to higher humidities the crystallinity increased. No apparent trend is observed for mechanical properties for dry membranes (0% RH). However, at 93% RH the elastic modulus increased strongly from 0.12MPa to 0.82MPa when adding 6% PCNF. At higher humidities, the moisture uptake has large influence on storage modulus, tan δ and tensile properties. Membranes containing 1% PCNF absorbed most moisture. Swelling, thermal and mechanical properties indicate a good potential for applying of PVA/phosphorylated nanocellulose composite membranes for CO 2 separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  10. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  11. VOCs Air Pollutant Cleaning with Polyacrylonitrile/Fly Ash Nanocomposite Electrospun Nanofibrous Membranes

    Science.gov (United States)

    Cong Ge, Jun; Wang, Zi Jian; Kim, Min Soo; Choi, Nag Jung

    2018-01-01

    Volatile organic compounds (VOCs) as an environmental pollution, which have many kinds of chemical structures, and many of them are very toxic. Therefore, controlling and reducing the presence of VOCs has become a hot topic among researchers for many years. In this study, the VOCs adsorption capacity of polyacrylonitrile/fly ash (PAN/FA) nanocomposite electrospun nanofibrous membranes were investigated. The results indicated that the PAN with different contents of FA powder (20%, 40%, 60%, 80%, and 100% compared with PAN by weight) could be spun well by electrospinning. The diameter of the fiber was very fine and its arrangement was irregular. The PAN nanofibrous membrane containing 60 wt% FA powder had the highest VOCs absorption capacity compared with other nanofibrous membranes due to its large specific surface area.

  12. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  13. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  14. Novel nanocomposite Kevlar fabric membranes: Fabrication characterization, and performance in oil/water separation

    Science.gov (United States)

    Karimnezhad, Hanieh; Rajabi, Laleh; Salehi, Ehsan; Derakhshan, Ali Ashraf; Azimi, Sara

    2014-02-01

    Nanocomposite membranes with hydrophilic surface were fabricated for separation of oil (n-hexane) from oil/water emulsion. Three different nanomaterials namely, para-aminobenzoate alumoxane (PAB-A), boehmite-epoxide and polycitrate alumoxane (PC-A) were coated on the Kevlar fabric (support), according to a three-step dip-coating protocol. FTIR, SEM, TEM, UV/vis spectrophotometer, and wettability analyses were used to characterize the composite membranes. The three coating layers interacted chemically with one another and also physically with the Kevlar fabric. Water uptake measurements indicated that the membrane is a hydrophilic one. SEM and TEM analyses showed the smooth surface of the composite membrane and three-dimensional dendrimeric hyper-branched structure of (PC-A), respectively. A dead-end filtration setup was applied to test the membranes performance under natural gravity force. Effect of pH as an important variable affecting separation process was investigated with the neutral pH provided the optimum condition for the separation. Oil rejection and permeate fluxes were also monitored. The optimum flux and rejection obtained, were 7392 (Lm-2 h-1) and 89.06% at pH 7, respectively. Fouling occurred as a gel layer on the membrane surface. The deposited oil droplets on the surface of the membrane were successfully washed away with satisfactory permeate flux recovery (FRR = 88.88% at neutral pH), using hot distilled water and acidic solution as eluents.

  15. Nafion-based nanocomposite membranes for fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2008-11-01

    Full Text Available . Zhang, J. Wang and F. Sheu, Journal of Electroanalytical Chemistry, 577 (2005) 295 J. James, T.Z. McMaster, J.M. Newton, M.J. Miles, Polymer 41 (2000) 4223 M. Ludvigsson, J. Lindgren, J. Tegenfeldt, Electrochim. Acta (2000) 2267 Shoibal Banerjee..., Dennis E. Curtin Journal of Fluorine Chemistry 125 (2004) 1211–1216 1. 2. 3. 4. 5. CPO-0023 By incorporating multi walled carbon nanotubes onto proton exchange membranes (PEM), its thermal stability is increased, making PEM fuel cells ideal...

  16. Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives

    Directory of Open Access Journals (Sweden)

    Roberto Scipioni

    2014-03-01

    Full Text Available In the research of new nanocomposite proton-conducting membranes, SnO2 ceramic powders with surface functionalization have been synthesized and adopted as additives in Nafion-based polymer systems. Different synthetic routes have been explored to obtain suitable, nanometer-sized sulphated tin oxide particles. Structural and morphological characteristics, as well as surface and bulk properties of the obtained oxide powders, have been determined by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier Transform Infrared (FTIR and Raman spectroscopies, N2 adsorption, and thermal gravimetric analysis (TGA. In addition, dynamic mechanical analysis (DMA, atomic force microscopy (AFM, thermal investigations, water uptake (WU measurements, and ionic exchange capacity (IEC tests have been used as characterization tools for the nanocomposite membranes. The nature of the tin oxide precursor, as well as the synthesis procedure, were found to play an important role in determining the morphology and the particle size distribution of the ceramic powder, this affecting the effective functionalization of the oxides. The incorporation of such particles, having sulphate groups on their surface, altered some peculiar properties of the resulting composite membrane, such as water content, thermo-mechanical, and morphological characteristics.

  17. An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.

    Science.gov (United States)

    Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias

    2012-08-16

    An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bifunctionalized organic-inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol.

    Science.gov (United States)

    Tripathi, Bijay P; Kumar, Mahendra; Saxena, Arunima; Shahi, Vinod K

    2010-06-01

    Chitosan was modified into N-p-carboxy benzyl chitosan (NCBC) by introducing an aromatic ring grafted with acidic -COOH group and highly stable and cross-linked nanostructured NCBC-silica composite membranes were prepared for pervaporation dehydration of water-ethanol mixture. These membranes were tailored to comprise three regions namely: hydrophobic region, highly charged region and selective region, in which weak acidic group (-COOH) was grafted at organic segment while strong acidic group (-SO(3)H) was grafted at inorganic segment to achieve high stability and less swelling in water-ethanol mixture. Cross-linking density and NCBC-silica content in membrane matrix has been systematically optimized to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the swelling, and PV performance. Among prepared membranes, nanocomposite membrane with 3h cross-linking time and 90% (w/w) of NCBC-silica content (PCS-3-3) exhibited 1.66×10(-4)cm(3)(STP) cm/cm(2) s cmHg water permeability (P(W)), while 1.35×10(-7) cm(3)(STP) cm/cm(2) s cmHg ethanol permeability (P(EtOH)) of developed membrane and 1231 PV selectivity factor at 30 °C for separating water from 90% (w/w) ethanol mixture. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings.

    Science.gov (United States)

    Luo, Xiaogang; Zhang, Hao; Cao, Zhenni; Cai, Ning; Xue, Yanan; Yu, Faquan

    2016-06-05

    The objective of this study is to develop transparent porous nanodiamonds/cellulose nanocomposite membranes with controlled release of doxorubicin for potential applications as wound dressings, which were fabricated by tape casting method from dispersing carboxylated nanodiamonds and dissolving cellulose homogeneously in 7 wt% NaOH/12 wt% urea aqueous solution. By adjusting the carboxylated nanodiamonds content, various nanocomposite membranes were obtained. The structure and properties of these membranes have been investigated by light transmittance measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, water loss analyses, etc. The drug loading and release was investigated using doxorubicin hydrochloride as a model drug. In vitro cytotoxicity assay of the membranes was also studied. This work presented a proof-of-concept utility of these membranes for loading and release of bioactive compounds to be employed as a candidate for wound dressing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes

    KAUST Repository

    Duan, Jintang

    2015-01-01

    The application of nanotechnology to thin-film nanocomposites (TFN) is a new route to enhance membrane performance in water desalination. Here, the potential of polyhedral oligomeric silsesquioxane (POSS) as the nanofiller in polyamide (PA) reverse osmosis membranes was systematically investigated. Four POSS materials (P-8Phenyl, P-8NH3Cl, P-8NH2 and P-1NH2) were introduced into the selective layer by physical blending or chemical fixation during standard interfacial polymerization. Water flux and NaCl rejection were measured with 2000ppm NaCl solution under 15.5bar pressure, and SEM and TEM images of membrane selective layers were obtained. Membranes prepared without POSS showed water flux of 20.0±0.5L/m2·h and salt rejection of 98.0±0.2%. TFN membranes prepared with 0.4% (w/v) P-8Phenyl in the organic phase showed a 65% increase in water flux compared to the pristine PA membrane while maintaining high salt rejection. The selective layer of this membrane maintained the typical ridge-and-valley structure of aromatic PA. Results with P-8NH3Cl and P-8NH2 added to the organic phase were similar. TFN membranes prepared with monoamine P-1NH2 in the organic phase had poor water flux of 3.2L/m2·h, a smooth and more hydrophobic surface, and a much thicker (~400nm) selective layer. One of the four POSS compounds studied, P-8NH3Cl, is sufficiently soluble in water for incorporation into the selective layer via the aqueous phase. Membranes were prepared with P-8NH3Cl in the aqueous phase at varying reaction time, loading, and additive (triethylamine) concentration. With these parameters optimized, water flux increased to 35.4L/m2·h.

  1. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  2. Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene

    Science.gov (United States)

    Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.

    2017-05-01

    Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.

  3. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  4. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  5. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  6. Toxicology of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Thorsten [Hessian State Laboratory, Wiesbaden (Germany); Mattern, Daniela; Brunn, Hubertus [Hessian State Laboratory, Giessen (Germany)

    2011-12-15

    Perfluorinated compounds [PFCs] have found a wide use in industrial products and processes and in a vast array of consumer products. PFCs are molecules made up of carbon chains to which fluorine atoms are bound. Due to the strength of the carbon/fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation; therefore, they belong to a class of compounds that tend to persist in the environment. These compounds can bioaccumulate and also undergo biomagnification. Within the class of PFC chemicals, perfluorooctanoic acid and perfluorosulphonic acid are generally considered reference substances. Meanwhile, PFCs can be detected almost ubiquitously, e.g., in water, plants, different kinds of foodstuffs, in animals such as fish, birds, in mammals, as well as in human breast milk and blood. PFCs are proposed as a new class of 'persistent organic pollutants'. Numerous publications allude to the negative effects of PFCs on human health. The following review describes both external and internal exposures to PFCs, the toxicokinetics (uptake, distribution, metabolism, excretion), and the toxicodynamics (acute toxicity, subacute and subchronic toxicities, chronic toxicity including carcinogenesis, genotoxicity and epigenetic effects, reproductive and developmental toxicities, neurotoxicity, effects on the endocrine system, immunotoxicity and potential modes of action, combinational effects, and epidemiological studies on perfluorinated compounds). (orig.)

  7. Perfluorinated polymer grafting: influence of preirradiation conditions

    International Nuclear Information System (INIS)

    Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Sousa, C.A.; Fernandes, W.; Manzoli, J.E; Geraldo, A.B.; Cardozo, P.

    2009-01-01

    The technological interest of perfluorinated polymers is related to its specific properties like low chemical reactivity and high mechanical and temperature resistance. The development of polymeric membranes for PEM fuel cell dispositives requires beyond these characteristics, a long-life time performance and low cost compared to Nafion membranes. By these material have high crystallinity, the radiation grafting indeed occurs but this process generate a low mechanical resistance aggregate. In this way, it is necessary to render the polymer with a low crystallinity or even amorphous. Generally, irradiation under polymer melt temperatures makes the crystallinity breaking and polymer crosslinking. The main objective of this work was promoting the crosslinking process into perfluorinated polymers by pre-irradiation method and to precede styrene grafting by electron beam irradiation in a second step. The experimental methodology consists in pre-irradiate perfluorinated polymers films like PTFE and PFA under high temperature (> 300 deg C) and vacuum conditions by electron beam irradiation at 5 kGy to 30 kGy doses and 2,85 kGy/s to 22,4 kGy/s dose rates. To obtain temperatures above 300 deg C, it was necessary construct a vacuum chamber with a heating system where temperature process could be follow up in real time. Some molecular alterations in polymeric matrix were analyzed by Mid-ATR-FTIR spectroscopy; macroscopic changes are verified by gravimetry. The styrene grafting onto these samples is realized by electron beam irradiation at doses between 30 and 100 kGy. These results are discussed. (author)

  8. Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal.

    Science.gov (United States)

    Bibi, Saira; Yasin, Tariq; Hassan, Safia; Riaz, Muhammad; Nawaz, Mohsan

    2015-01-01

    Carbon nanotubes (CNTs) were irradiated in air at 100 kGy under gamma radiations. The Raman spectroscopy of γ-treated CNTs showed distinctive changes in the absorption bands. The CNTs were mixed with blend of chitosan (Cs)/poly (vinyl alcohol) (PVA) and crosslinked with silane. The chemical reactions between the components affected the position and intensities of the infrared bands. Scanning electron micrograph of Cs/CNTs nanocomposite membrane showed the homogeneous dispersion of CNTs in the polymer matrix. The addition of CNTs lowered its swelling in water. Naphthalene (NAPH) was selected as a model compound and its removal was studied using HPLC technique. This membrane showed fast uptake of NAPH and 87% was removed from water within 30 min. The NAPH loaded membrane showed strong chemical interactions and cannot be desorbed. The fast uptake of PAHs and the green nature of this membrane made them suitable candidates for clean-up purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Novel polyester/SiO2 nanocomposite membranes: Synthesis, properties and morphological studies

    Science.gov (United States)

    Ahmadizadegan, Hashem; Esmaielzadeh, Sheida

    2018-06-01

    In this paper, a new type of soluble polyester/silica (PE/SiO2) hybrid was prepared by the ultrasonic irradiation process. The coupling agent γ-glycidyloxypropyltrimethoxysilane (GOTMS) was chosen to enhance the compatibility between the polyester (PE) and silica (SiO2). Furthermore, the effects of the coupling agent on the morphologies and properties of the PE/SiO2 hybrids were investigated using UV-vis and FT-IR spectroscopies and FE-SEM. The densities and solubilities of the PE/SiO2 hybrids were also measured. The results show that the size of the silica particle was markedly reduced by the introduction of the coupling agent, which made the PE/SiO2 hybrid films become transparent. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). The effects of SiO2 nanoparticles on the glass transition temperature (Tg) of the prepared nanocomposites were studied by differential scanning calorimetry (DSC). Moreover, their mechanical properties were also characterized. It can be observed that the Young's moduli (E) of the hybrid films increase linearly with the silica content. The results obtained from gas permeation experiments with a constant pressure setup showed that adding SiO2 nanoparticles to the polymeric membrane structure increased the permeability of the membranes.

  10. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.

    Science.gov (United States)

    Tang, Haolin; Pan, Mu; Jiang, San Ping

    2011-05-21

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

  11. Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism

    Science.gov (United States)

    Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Terrones, Mauricio; Endo, Morinobu

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The mechanism of water diffusion across reverse osmosis nanocomposite membranes made of carbon nanotubes (CNTs) and aromatic polyamide is not completely understood despite its high potential for desalination applications. While most of the groups have proposed that superflow inside the CNT might positively impact the water flow across membranes, here we show theoretical evidence that this is not likely the case in composite membranes because CNTs are usually oriented parallel to the membrane surface, not to mention that sometimes the nanotube cores are occluded. Instead, we propose an oriented diffusion mechanism that explains the high water permeation by decreasing the diffusion path of water molecules across the membranes, even in the presence of CNTs that behave as impermeable objects. Finally, we provide a comprehensive description of the molecular dynamics occurring in water desalination membranes by considering the bond polarizability caused by dynamic charge transfer and explore the use of molecular-dynamics-derived stochastic diffusion simulations. The proposed water diffusion mechanism offers an alternative and most likely explanation for the high permeation phenomena observed in CNTs and PA nanocomposite membranes, and its understanding can be helpful to design the next generation of reverse osmosis desalination membranes.

  12. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Sarikhani, Kaveh [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Majedi, Fatemeh S. [Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-05-01

    In the present study, polyelectrolyte membranes based on partially sulfonated poly(ether ether ketone) (sPEEK) with various degrees of sulfonation are prepared. The optimum degree of sulfonation is determined according to the transport properties and hydrolytic stability of the membranes. Subsequently, various amounts of the organically modified montmorillonite (MMT) are introduced into the sPEEK matrices via the solution intercalation technique. The proton conductivity and methanol permeability measurements of the fabricated composite membranes reveal a high proton to methanol selectivity, even at elevated temperatures. Membrane based on sPEEK and 1 wt% of MMT, as the optimum nanoclay composition, exhibits a high selectivity and power density at the concentrated methanol feed. Moreover, it is found that the optimum nanocomposite membrane not only provides higher performance compared to the neat sPEEK and Nafion {sup registered} 117 membranes, but also exhibits a high open circuit voltage (OCV) at the elevated methanol concentration. Owing to the high proton conductivity, reduced methanol permeability, high power density, convenient processability and low cost, sPEEK/MMT nanocomposite membranes could be considered as the alternative membranes for moderate temperature direct methanol fuel cell applications. (author)

  13. Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone Membranes: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-03-01

    Full Text Available Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS, were synthesized inside a swollen sulfonated poly(ether ether ketone membrane (sPEEK. The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.

  14. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  15. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification.

    Science.gov (United States)

    Kadhom, Mohammed; Yin, Jun; Deng, Baolin

    2016-12-06

    Thin film nanocomposite (TFN) membranes containing MCM-41 silica nanoparticles (NPs) were synthesized by the interfacial polymerization (IP) process. An m -phenylenediamine (MPD) aqueous solution and an organic phase with trimesoyl chloride (TMC) dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU) support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m²·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi)).

  16. Microporous membranes from polyamide 6/national clay nanocomposites - Part 2: microstructural and permeability evaluation

    International Nuclear Information System (INIS)

    Leite, Amanda M.D.; Araujo, Edcleide M.; Lira, Helio de L.; Paz, Rene Anisio da; Medeiros, Vanessa da Nobrega

    2014-01-01

    Organic/inorganic hybrid membranes of polyamide 6 and mineral clay containing layers of silicate were prepared and compared to those of the pure polymer. Use was made of an as-received sodium clay from industry and another organophilized with ammonium quaternary salts (Dodigen and Cetremide). The salts make the clays surface hydrophobic and improve their incorporation into the polymer matrix in the molten state. Membranes were prepared with these nanocomposites using the immersion-precipitation technique with formic acid as a solvent, and precipitation in a water bath as non-solvent. The acid concentration in the solution containing the polymer and the hybrids was varied to study its influence in morphology and permeability of the membranes. An asymmetric morphology consisting of a filter skin and a porous support was observed, with pores both on the surface and in the cross section being affected by the different salts. This asymmetric morphology was also affected significantly by the acid concentration, with thicker filter skins for higher concentrations. The acid concentration affected the pores size and their distribution. The clay particles probably acted as a barrier to the flow. The permeating flux for the two acid concentrations varied as a function of the distinct morphologies. (author)

  17. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO2 and Polydopamine for Degradation of Tetracycline under Visible Light.

    Science.gov (United States)

    Wang, Chen; Wu, Yilin; Lu, Jian; Zhao, Juan; Cui, Jiuyun; Wu, Xiuling; Yan, Yongsheng; Huo, Pengwei

    2017-07-19

    A bioinspired photocatalytic nanocomposite membrane was successfully prepared via polydopamine (pDA)-coated poly(vinylidene fluoride) (PVDF) membrane, as a secondary platform for vacuum-filtrated Au-TiO 2 nanocomposites, with enhanced photocatalytic activity. The degradation efficiency of Au-TiO 2 /pDA/PVDF membranes reached 92% when exposed to visible light for 120 min, and the degradation efficiency of Au-TiO 2 /pDA/PVDF membranes increased by 26% compared to that of Au-TiO 2 powder and increased by 51% compared to that of TiO 2 /pDA/PVDF nanocomposite membranes. The degradation efficiency remained about 90% after five cycle experiments, and the Au-TiO 2 /pDA/PVDF nanocomposite membranes showed good stability, regeneration performance, and easy recycling. The pDA coating not only served as a bioadhesion interface to improve the bonding force between the catalyst and the membrane substrate but also acted as a photosensitizer to broaden the wavelength response range of TiO 2 , and the structure of Au-TiO 2 /pDA/PVDF also improves the transfer rate of photogenerated electrons; the surface plasmon resonance effect of Au also played a positive role in improving the activity of the catalyst. Therefore, we believe that this study opens up a new strategy in preparing the bioinspired photocatalytic nanocomposite membrane for potential wastewater purification, catalysis, and as a membrane separation field.

  18. Comparative study by TG and DSC Of membranes polyamide66/bentonite clay nanocomposite; Estudo comparativo por TG e DSC de membranas de nanocompositos poliamida66/argila bentonitica

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, K.M. de; Kojuch, L R; Araujo, E M; Lira, H.L., E-mail: keilamm@ig.com.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, F [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Dept. de Quimica

    2010-07-01

    In this study, it was obtained membranes of nanocomposites polyamide66 with 3 and 5% bentonite clay consists of silicates in layers from the interior of Paraiba. The clay was treated with a quaternary ammonium salt in order to make it organophilic. The membranes were prepared by phase inversion technique from the nanocomposites in solution. The clays were characterized by X-ray diffraction (XRD) and thermogravimetry (TG). Also the membranes were characterized by differential scanning calorimetry (DSC) and TG. The XRD and TG confirmed the presence of salt in the clay and thermal stability of the treated clay. For DSC, it was observed that there was no change in melting temperature of the membranes of nanocomposites compared to membrane pure polyamide66. By TG, it was found that the decomposition of the membranes of polyamide66 with treated clay were higher compared with the untreated clay. (author)

  19. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  20. Effect of Graphene and Fullerene Nanofillers on Controlling the Pore Size and Physicochemical Properties of Chitosan Nanocomposite Mesoporous Membranes

    Directory of Open Access Journals (Sweden)

    Irene S. Fahim

    2015-01-01

    Full Text Available Chitosan (CS nanocomposite mesoporous membranes were fabricated by mixing CS with graphene (G and fullerene (F nanofillers, and the diffusion properties through CS membranes were studied. In addition, in order to enhance the binding between the internal CS chains, physical cross-linking of CS by sodium tripolyphosphate (TPP was carried out. F and G with different weight percentages (0.1, 0.5, and 1 wt.% were added on physically cross-linked chitosan (CLCS and non-cross-linked chitosan (NCLCS membranes by wet mixing. Permeability and diffusion time of CLCS and NCLCS membranes at different temperatures were investigated. The results revealed that the pore size of all fabricated CS membranes is in the mesoporous range (i.e., 2–50 nm. Moreover, the addition of G and F nanofillers to CLCS and NCLCS solutions aided in controlling the CS membranes’ pore size and was found to enhance the barrier effect of the CS membranes either by blocking the internal pores or decreasing the pore size. These results illustrate the significant possibility of controlling the pore size of CS membranes by cross-linking and more importantly the careful selection of nanofillers and their percentage within the CS membranes. Controlling the pore size of CS membranes is a fundamental factor in packaging applications and membrane technology.

  1. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    Science.gov (United States)

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  2. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C.

    2013-01-01

    Highlights: • The permeability of vanadium ions through the silica nanocomposite AEM (SNAEM) is ten times lower than that for Nafion 115. • The rates of self-discharge and capacity fading of the VRFB are substantially reduced with the use of the SNAEM. • The Coulombic and energy efficiencies are as high as 92% and 73%, respectively, at 40 mA cm −2 . -- Abstract: Crossover of vanadium ions through the membranes of all-vanadium redox flow batteries (VRFB) is an issue that limits the performance of this type of flow battery. This paper reports on the preparation of a sol–gel derived silica nanocomposite anion exchange membrane (AEM) for VRFBs. The EDS and FT-IR characterizations confirm the presence and the uniformity of the silica nanoparticles formed in the membrane via an in situ sol–gel process. The properties of the obtained membrane, including the ion-exchange capacity, the area resistance, and the water uptake, are evaluated and compared to the pristine AEM and the Nafion cation exchange membrane (CEM). The experimental results show that the permeability of the vanadium ions through the silica nanocomposite AEM is about 20% lower than that of the pristine AEM, and one order of magnitude lower than that of the Nafion CEM. As a result, the rates of self-discharge and the capacity fading of the VRFB are substantially reduced. The Coulombic and energy efficiencies at a current density of 40 mA cm −2 are, respectively, as high as 92% and 73%

  3. Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites

    Science.gov (United States)

    Flyagina, Irina S.; Mahdi, E. M.; Titov, Kirill; Tan, Jin-Chong

    2017-08-01

    Mixed-matrix membranes are contemporary nanocomposite materials with many potential applications, from liquid and gas separations to chemical sensors and biomedicine. We report fabrication of a metal-organic framework (MOF)-based nanocomposite, combining polyvinylidene difluoride (PVDF) polymer as the matrix and ZIF-90 nanocrystals of up to 30 wt. % filler content. The focus is to establish the processing—microstructure—mechanical property relationships. We reveal the importance for quantifying salient effects of the filler contents: (i) tensile strength degrades beyond 10 wt. % and (ii) mechanical toughness declines due to membrane embrittlement. These are vital mechanical aspects but widely overlooked in the emergent field of MOF membranes and composites.

  4. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane

    Science.gov (United States)

    Cheraghi Bidsorkhi, H.; Riazi, H.; Emadzadeh, D.; Ghanbari, M.; Matsuura, T.; Lau, W. J.; Ismail, A. F.

    2016-10-01

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.

  5. Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes

    International Nuclear Information System (INIS)

    Shariatinia, Zahra; Jalali, Azin Mazloom; Taromi, Faramarz Afshar

    2016-01-01

    Molecular dynamics (MD) simulations were performed at 298.15 K and 1 atm in order to study microstructure and transport behaviors of polydimethylsiloxane (PDMS) membranes containing 0%–8% SiO 2 nanoparticles used for the separation of thiophene from n-octane. It was found that the fractional free volume (FFV) of 0% SiO 2 was the highest (47.24%) among five nanocomposite membranes and addition of 2%–8% silica nanoparticles led to dramatic decrease in the FFV of the cells. The x-ray diffraction (XRD) patterns of all membranes showed that they had a semi-crystalline structure containing a broad peak around 15°–18°. The radial distribution function (RDF) analysis proved that the smallest C(CH 2 -octane)–O(SiO 2 ), C(PDMS)–O(SiO 2 ) and H(thiophene)–O(SiO 2 ) distances were present in 4% SiO 2 membrane reflecting the silica–octane, silica–polymer and silica–thiophene interactions were the strongest in this membrane. The mean squared displacement (MSD) and diffusion coefficients of n-octane were both small in the 6% silica membrane but they were high for thiophene suggesting this membrane was the most suitable for the desulfurization process and separation of thiophene from n-octane. (paper)

  6. High-Performance Thin-Film-Nanocomposite Cation Exchange Membranes Containing Hydrophobic Zeolitic Imidazolate Framework for Monovalent Selectivity

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-05-01

    Full Text Available Zeolitic imidazolate framework-8 (ZIF-8 offers good hydrothermal, chemical, and thermal stabilities, and is therefore of interest in membrane synthesis. In this work, an interfacial polymerization (IP method was applied by anchoring ZIF-8 to the skin layer of thin-film nanocomposite (TFN membranes in order to obtain monovalent selectivity in electrodialysis. Organic trimesoyl chloride (TMC, 0.1 wt % solutions and aqueous m-phenyl diamine (MPD, 2% w/v solutions were used during the interfacial polymerization process. A range of polyamine (PA/ZIF-8 based membranes was fabricated by varying the concentration of ZIF-8 in the organic solution. The properties of the primary and modified membrane were characterized by scanning electron microscope (SEM, energy dispersive X-ray analysis (EDAX, atomic force microscopy (AFM, water uptake, ion exchange capacity, and contact angle measurements. No significant changes of the surface structure of the PA/ZIF-8 based membranes were observed. Nevertheless, the presence of ZIF-8 under the PA layer plays a key role in the separation process. For single salt solutions that were applied in electrodialysis (ED, faster transport of Na+ and Mg2+ was obtained after introducing the ZIF-8 nanoparticles, however, the desalination efficiency remained constant. When the hybrid membranes were applied to electrodialysis for binary mixtures containing Na+ as well as Mg2+, it was demonstrated that the monovalent selectivity and Na+ flux were enhanced by a higher ZIF-8 loading.

  7. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  8. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8

    KAUST Repository

    Duan, Jintang

    2015-02-01

    A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m2·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes.

  9. Structural comparison of nanocomposites membranes of polyamide 6 and polyamide 6.6 with a regional clay; Comparacao estrutural de membranas de nanocompositos de poliamida 6 e poliamida 6.6 com uma argila regional

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A M.D.; Medeiros, V N; Paz, R A; Araujo, E M; Lira, H.L., E-mail: amandamelissa.lins@yahoo.com.b [Universidade Federal de Campina Grande (UAEMa/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Ito, Edson N [Universidade Federal do Rio Grande do Norte (DEMat/UFRN), Natal, RN (Brazil). dept. de Engenharia de Materiais

    2010-07-01

    Polyamide membranes do not require wetting agents because they are hydrophilic membranes and show great interest in the separation of aqueous solutions. With this, there is the interest to produce membranes from nanocomposites (polyamide 6 and polyamide 6.6)/organoclay), using the technique of isothermal immersion-precipitation in a bath with distilled water. The objective of this work was to produce, characterize and compare nanocomposites of polyamide 6 and polyamide 6.6/organoclay for use in the preparation of membranes. The nanocomposites were produced with 3 wt% of clay organically modified by quaternary ammonium salt (Cetremide) and were characterized by XRD and TEM. The nanocomposites presented an exfoliated/partially exfoliated structure. The membranes were characterized by SEM and presented a dense layer (selective skin) and another layer with uniform pores distributed along the membrane. (author)

  10. CO2/N2 Gas Separation Using Nanocomposite Membranes Comprised of Ethylene-Propylene-Diene Monomer/Multi-Walled Carbon Nanotube (EPDM/MWCNT

    Directory of Open Access Journals (Sweden)

    Zeinab Rajabi

    2015-07-01

    Full Text Available Nanocomposite membranes of ethylene-propylene-diene monomer/multiwalled carbon nanotubes (EPDM/MWCNT were prepared by solution casting, solvent evaporation and cross-link technique to be applied in CO2/N2 gas separation. Both simple and functionalized MWCNTs have been used. The effect of incorporated different amounts multiwalled carbon nanotubes (0-4 wt%, of both simple and functionalized types, on the performance of nanocomposite membranes was studied. Fourier transform infrared (FTIR spectroscopy and field emission scanning electron microscopy (FESEM were used to evaluate the structural/morphological observations of nanocomposite membranes. Comparing the FTIR results of pure and functionalized nanotubes confirmed the presence of carboxylic groups on the functional carbon nanotubes. The FESEM images indicated that at low concentrations, carbon nanotube particles were dispersed well in the EPDM matrix, but they formed agglomerates at concentrations beyond 1 wt%. By incorporation of MWCNTs, the mechanicalproperties of nanocomposite membranes including tensile strength, Young's modulus and elongation-at-break considerably were improved. By increasing carbon nanotube loading up to 0.75 wt%, the permeability of both CO2 and N2 and the CO2/N2 selectivity increased. Further loading led to higher permeability of CO2/N2, while the selectivity ofthe system decreased that could be attributed to further agglomeration of carbon nanotube particles. Furthermore, functionalization of carbon nanotubes improved their dispersion and the mechanical properties and gas separation performance of nanocomposite membranes. Through functionalizing of MWCNTs, both the CO2 permeability and CO2/N2 selectivity of the optimum membrane (0.75 wt% MWCNTs increased from 37.95 and 18.03 Barrer to 57.57 and 23.43 Barrer, respectively. At ambient temperature, by the increase in feed pressure a slight increase in the permeability of both CO2 and N2 gases was observed, while the CO2

  11. Investigation of physical properties and cell performance of Nafion/TiO{sub 2} nanocomposite membranes for high temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, M.; Peighambardoust, S.J. [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Rowshanzamir, S. [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Fuel Cell Research Laboratory, Green Research Centre, Iran University of Science and Technology, Tehran (Iran); Hosseini, M.G. [Electrochemistry Research Laboratory, Physical Chemistry Department, Chemistry Faculty, Tabriz University, Tabriz (Iran); Eikani, M.H. [Department of Chemical Industries, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran)

    2010-09-15

    Synthesis and characterization of Nafion/TiO{sub 2} membranes for proton exchange membrane fuel cell (PEMFC) operating at high temperatures were investigated in this study. Nafion/TiO{sub 2} nanocomposite membranes have been prepared by in-situ sol-gel and casting methods. In the sol-gel method, preformed Nafion membranes were soaked in tetrabutylortotitanate (TBT) and methanol solution. In order to compare synthesis methods, a Nafion/TiO{sub 2} composite membrane was fabricated with 3 wt.% of TiO{sub 2} particles by the solution casting method. The structures of membranes were investigated by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDXA). Also, water uptake and proton conductivity of modified membranes were measured. Furthermore, the membranes were tested in a real PEMFC. X-Ray spectra of the composite membranes indicate the presence of TiO{sub 2} in the modified membranes. In case of the same doping level, sol-gel method produces more uniform distribution of Ti particles in Nafion/TiO{sub 2} composite membrane than the ones produced by casting method. Water uptake of Nafion/TiO{sub 2} membrane with 3 wt.% of doping level was found to be 51% higher than that of the pure Nafion membrane. EIS measurements showed that the conductivity of modified membranes decreases with increasing the amount of doped TiO{sub 2}. Finally, the membrane electrode assembly (MEA) prepared from Nafion/Titania nanocomposite membrane shows the highest PEMFC performance in terms of voltage vs. current density (V-I) at high temperature (110 C) which is the main goal of this study. (author)

  12. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes

    Science.gov (United States)

    Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei

    2018-02-01

    Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.

  13. Transport properties of aluminophosphate nanocomposite membranes prepared by in-situ polymerization

    Czech Academy of Sciences Publication Activity Database

    Vaughan, B. R.; Peter, Jakub; Marand, E.; Bleha, Miroslav

    2008-01-01

    Roč. 316, 1-2 (2008), s. 153-163 ISSN 0376-7388 R&D Projects: GA MŠk 1P05ME797 Institutional research plan: CEZ:AV0Z40500505 Keywords : layered aluminophosphate * nanocomposites * gas separation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.247, year: 2008

  14. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.

    Science.gov (United States)

    Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V

    2016-09-21

    We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

  15. Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    F. Heidary

    2015-10-01

    Full Text Available A  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  ZnO  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  As-synthesized  nanocomposite  membranes were characterized  using  Fourier  transform  infrared  spectroscopy, scanning  electron  microscopy  and X-ray  diffraction.  The  SEM images  showed  that  ZnO  nanoparticles  were  uniformly  dispersed throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange  nanocomposite  membranes  was  studied.  Various characterizations revealed that  the  incorporation  of  different amounts  of  ZnO  nanoparticles  into  the  basic  membrane  structure had a significant influence on the membrane performance and could improve the electrochemical properties.

  16. Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites

    Directory of Open Access Journals (Sweden)

    Irina S. Flyagina

    2017-08-01

    Full Text Available Mixed-matrix membranes are contemporary nanocomposite materials with many potential applications, from liquid and gas separations to chemical sensors and biomedicine. We report fabrication of a metal-organic framework (MOF-based nanocomposite, combining polyvinylidene difluoride (PVDF polymer as the matrix and ZIF-90 nanocrystals of up to 30 wt. % filler content. The focus is to establish the processing—microstructure—mechanical property relationships. We reveal the importance for quantifying salient effects of the filler contents: (i tensile strength degrades beyond 10 wt. % and (ii mechanical toughness declines due to membrane embrittlement. These are vital mechanical aspects but widely overlooked in the emergent field of MOF membranes and composites.

  17. Purifying arsenic and fluoride-contaminated water by a novel graphene-based nanocomposite membrane of enhanced selectivity and sustained flux.

    Science.gov (United States)

    Pal, Madhubonti; Mondal, Mrinal Kanti; Paine, Tapan Kanti; Pal, Parimal

    2018-06-01

    A novel graphene-based nanocomposite membrane was synthesized by interfacial polymerization (IP) through chemical bonding of the graphene oxide (GO) layer to polyethersulfone surface. Detailed characterization of the composite membrane through AFM, SEM, ATR-FTIR, XRD analysis, and Raman spectroscopy indicates strong potential of the membrane in highly selective removal of the toxic contaminants like arsenic and fluoride while permeating the essential minerals like calcium and magnesium. This makes the membrane suitable for production of safe drinking water from contaminated water. The membrane applied in a flat-sheet cross-flow module succeeded in removal of more than 98% arsenic and around 80% fluoride from contaminated water while selectively retaining the useful calcium and magnesium minerals in drinking water. A sustained pure water flux of around 150 LMH (liter per square meter per hour) during operation over long hours (> 150 h) with only 3-5% drop in flux indicates antifouling character of the membrane module.

  18. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Douglas M. Davenport

    2016-01-01

    Full Text Available Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading of adsorptive and catalytic materials. By applying surface modification techniques, synthetic membranes with different functionality (carboxyl, amine, and nanoparticle-based were obtained. These functionalities provide an opportunity to fine-tune the membrane surface properties such as charge and reactivity. The incorporation of stimuli-responsive acrylic polymers (polyacrylic acid or sodium polyacrylate in membrane pores also results in tunable pore size and ion-exchange capacity. This provides the added benefits of adjustable membrane permeability and metal capture efficiency. The equilibrium and dynamic binding capacity of these functionalized spongy membranes were studied via calcium ion-exchange. Iron/palladium catalytic nanoparticles were immobilized in the polymer matrix in order to perform the challenging degradation of the environmental pollutant trichloroethylene (TCE.

  19. Effect of MWCNT Filler on Properties and Flux of Chitosan/ PEG based Nanocomposites Membranes

    Directory of Open Access Journals (Sweden)

    Khoerunnisa Fitri

    2018-01-01

    Full Text Available Biopolymer are expected to be environmentally compatible and to have great potential application as membranes material. The chitosan-poly (ethylene glycol/PEG based composite membranes was successfully synthesized via inversed phase method. The effect of multiwalled carbon nanotubes (MWCNT as nanofiller on properties and performances of composite membranes were intensively evaluated. The membrane was prepared by mixing of chitosan and PEG solutions at the same composition ratio while MWCNT amount in the mixture was varied. The synthesized membrane was characterized by means of FTIR spectroscopy, scanning electron microscopy (SEM, contact angle, and tensile strength measurement. The performance of composite membrane on filtration was evaluated in term of flux (permeability and rejection (rejection tests. The results showed that the optimum volume ratio of composite membrane solution was found at 30:10:7.5 for chitosan/ PEG/ MWCNT, respectively, as indicated by the largest flux. Insertion of MWCNT nanofiller notably enhanced hydrophilicity, porosity, and mechanical properties of composites membranes that are confirmed by contact angle, SEM images and elongation forces value, respectively. The MWCNT nanofiller remarkably increased both of flux and rejection of composite membranes up to 60 Lm2h-1 and 96%, respectively. The remarkable enhancement of composite membrane performance is attributed to the effective interaction of MWCNT with polymeric matrix.

  20. Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tingxu; Shi, Gui Min; Chung, Tai-Shung [Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore (Singapore)

    2012-11-15

    High-performance zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposites are molecularly designed for hydrogen separation at high temperatures, and demonstrate it in a useful configuration as dual-layer hollow fibers for the first time. By incorporating as-synthesized nanoporous ZIF-8 nanoparticles into the high thermal stability but extremely low permeability polybenzimidazole (PBI), the resultant mixed matrix membranes show an impressive enhancement in H{sub 2} permeability as high as a hundred times without any significant deduction in H{sub 2}/CO{sub 2} selectivity. The 30/70 ZIF-8/PBI dense membrane has a H{sub 2} permeability of 105.4 Barrer and a H{sub 2}/CO{sub 2} selectivity of 12.3. This performance is far superior to ZIF-7/PBI membranes and is the best ever reported data for H{sub 2}-selective polymeric materials in the literature. Meanwhile, defect-free ZIF-8-PBI/Matrimid dual-layer hollow fibers are successfully fabricated, without post-annealing and coating, by optimizing ZIF-8 nanoparticle loadings, spinning conditions, and solvent-exchange procedures. Two types of hollow fibers targeted at either high H{sub 2}/CO{sub 2} selectivity or high H{sub 2} permeance are developed: i) PZM10-I B fibers with a medium H{sub 2} permeance of 64.5 GPU (2.16 x 10{sup -8} mol m{sup -2} s{sup -1} Pa{sup -1}) at 180 C and a high H{sub 2}/CO{sub 2} selectivity of 12.3, and, ii) PZM33-I B fibers with a high H{sub 2} permeance of 202 GPU (6.77 x 10{sup -8} mol m{sup -2} s{sup -1} Pa{sup -1}) at 180 C and a medium H{sub 2}/CO{sub 2} selectivity of 7.7. This work not only molecularly designs novel nanocomposite materials for harsh industrial applications, such as syngas and hydrogen production, but also, for the first time, synergistically combines the strengths of both ZIF-8 and PBI for energy-related applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  2. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    Science.gov (United States)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  3. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects.

    Science.gov (United States)

    Roy, Sagar; Singha, Nayan Ranjan

    2017-09-08

    Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  4. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects

    Directory of Open Access Journals (Sweden)

    Sagar Roy

    2017-09-01

    Full Text Available Pervaporation (PV has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  5. Desalination of Kashan City’s Water Using PEBA-Based Nanocomposite Membranes via Pervaporation

    OpenAIRE

    Soheill Azadikhah Marian; Morteza Asghari; Zahra Amini

    2017-01-01

    In this work, performance of composite membranes was investigated for desalination of Kashan city’s water via pervaporation process. PEBA/PAN/PE, PEBA/PSF/PE and PEBA+NaX/PSF/PE composite membranes that used, was synthesized via a phase inversion route. For all experiments under 45◦C, salt rejection was too high and equals to 99.9% that this quantity dropped by increasing the temperature that cause membrane swelling in high temperatures. Water contact angle and water take-up were measured to ...

  6. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi; Lee, Jong Suk; Bucknall, David G.; Koros, William J.; Nair, Sankar

    2013-01-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower

  7. Reusable Nanocomposite Membranes for the Selective Recovery of Nutrients in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the STTR program, NanoSonic and Virginia Tech will create low-cost, reusable membranes that selectively capture and recycle nutrients (e.g., N, P, K) from...

  8. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  9. Prepare and characterization of nanocomposite - mixed matrix membranes based on polycarbonate

    International Nuclear Information System (INIS)

    Paranhos, Caio M.; Pessan, Luiz A.; Gomes, Ana C. de O.

    2009-01-01

    Mixed matrix membranes based on polycarbonate with different content of sepiolite were prepared by casting. The obtained membranes were characterized by wide-angle X-ray diffraction, thermal analysis, optical transparency and permeation to oxygen. The presence of sepiolite leads to the formation of a polymer-clay interface. The presence of the interface causes the increase in O 2 permeation. Increasing content of sepiolite results in aggregates of sepiolite, which forms preferential channels to the O 2 molecules. This fact is directly related to the strong increasing observed in O 2 permeability. (author)

  10. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes

    KAUST Repository

    Duan, Jintang; Litwiller, Eric; Pinnau, Ingo

    2015-01-01

    osmosis membranes was systematically investigated. Four POSS materials (P-8Phenyl, P-8NH3Cl, P-8NH2 and P-1NH2) were introduced into the selective layer by physical blending or chemical fixation during standard interfacial polymerization. Water flux and Na

  11. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study.

    Science.gov (United States)

    Amouamouha, Maryam; Badalians Gholikandi, Gagik

    2017-11-12

    Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscope (SEM) and atomic force microscopy (AFM) analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units) reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  12. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Maryam Amouamouha

    2017-11-01

    Full Text Available Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride (PVDF and polyethersulfone (PES surfaces by physical vapor deposition (PVD. The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Scanning electron microscope (SEM and atomic force microscopy (AFM analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  13. Desalination of Kashan City’s Water Using PEBA-Based Nanocomposite Membranes via Pervaporation

    Directory of Open Access Journals (Sweden)

    Soheill Azadikhah Marian

    2017-04-01

    Full Text Available In this work, performance of composite membranes was investigated for desalination of Kashan city’s water via pervaporation process. PEBA/PAN/PE, PEBA/PSF/PE and PEBA+NaX/PSF/PE composite membranes that used, was synthesized via a phase inversion route. For all experiments under 45◦C, salt rejection was too high and equals to 99.9% that this quantity dropped by increasing the temperature that cause membrane swelling in high temperatures. Water contact angle and water take-up were measured to evaluate the hydrophilicity of the membrane. Also the effect of operating conditions including feed temperature and permeate pressure on permeability and selectivity is discussed. A permeate flux of 4.93 kg/m2h with salt rejection of 99.9% could be achieved at a feed temperature of 50 °C and a vacuum of 0.04 bar. Apparent diffusion coefficients of water at various permeate pressure and feed temperature are calculated. The most effective parameter was feed temperature.

  14. Irradiation effects on perfluorinated polymers

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Pompe, G.; Scheler, U.; Lunkwitz, K.

    2002-01-01

    Complete text of publication follows. High-energy radiation affects the properties of polymers by chain scission and crosslinking reactions. Both types of reaction occur simultaneously in irradiated polymers. However, one process will usually predominate, depending on the chemical structure of the polymer and the irradiation conditions such as temperature and atmosphere. Polytetrafluoroethylene (PTFE) undergoes predominantly chain scission, if the irradiation is performed at room temperature. This shortcoming is exploited by converting PTFE into low molecular weight micropowders. The use of PTFE micropowders functionalized with COOH groups as additive in polyamides to improve the sliding properties of the materials has been studied. During the compounding process in a twin screw extruder the COOH groups of the irradiated PTFE react with the polyamides. For these studies, it became necessary to investigate the content of end groups in irradiated PTFE by FTIR and 19 F solid-state NMR. These date were used to calculate number-average molecular weights. The ratios of COOH groups to CF 3 groups are discussed in terms of the mechanism of PTFE degradation. If PTFE is irradiated at temperatures above its crystalline melting point in an oxygen-free atmosphere, branching and crosslinking occur. The dependence of radiation effects on perfluorinated copolymers (FEP, PFA) on temperature has been studied. Melt flow index measurements have shown that branching and crosslinking predominate over chain scission with increasing irradiation temperature both in FEP and in PFA. Quantitative analysis of 19 F solid-state NMR data has shown that the content of branching groups (>CF-) exceeds the content of end groups in the case of PFA irradiated above its crystalline melting point. The formation of COF and COOH groups in the irradiated PFA is interpreted as a result of partial degradation of perfluorovinyl ether comonomer units

  15. Perfluorinated Compounds: Emerging POPs with Potential Immunotoxicity

    Science.gov (United States)

    Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, an...

  16. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, A.

    2015-09-29

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices\\' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  17. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    KAUST Repository

    Zaher, Amir; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, Omar; Lin, L.; Khashab, Niveen M.; Kosel, Jü rgen

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  18. Design and synthesis of guest-host nanostructures to enhance ionic conductivity across nanocomposite membranes

    Science.gov (United States)

    Hu, Michael Z [Knoxville, TN; Kosacki, Igor [Oak Ridge, TN

    2010-01-05

    An ion conducting membrane has a matrix including an ordered array of hollow channels and a nanocrystalline electrolyte contained within at least some or all of the channels. The channels have opposed open ends, and a channel width of 1000 nanometers or less, preferably 60 nanometers or less, and most preferably 10 nanometers or less. The channels may be aligned perpendicular to the matrix surface, and the length of the channels may be 10 nanometers to 1000 micrometers. The electrolyte has grain sizes of 100 nanometers or less, and preferably grain sizes of 1 to 50 nanometers. The electrolyte may include grains with a part of the grain boundaries aligned with inner walls of the channels to form a straight oriented grain-wall interface or the electrolyte may be a single crystal. In one form, the electrolyte conducts oxygen ions, the matrix is silica, and the electrolyte is yttrium doped zirconia.

  19. Catalytic phosphonation of high performance polymers and POSS. Novel components for polymer blend and nanocomposite fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bock, T.R.

    2006-10-15

    Aim of this thesis was the preparation and evaluation of phosphonated high performance (HP) polyelectrolytes and polyhedral oligomeric silsesquioxanes (POSS) for polyelectrolyte membrane fuel cell (PEMFC) application. Brominated derivatives of the commercial high performance (HP) polymers poly(ethersulfone) (PES), poly(etheretherketone) (PEEK), poly(phenylsulfone) (PPSu), poly(sulfone) (PSU) and of octaphenyl-POSS of own production were phosphonated by Ni-catalysed Arbuzov reaction. Phosphonated PSU was cast into pure and blend films with sulfonated PEEK (s-PEEK) to investigate H+-conductivity, water uptake and film morphology. Blend films' properties were referenced to films containing unmodified blend partners. Solution-compounding of phosphonated octaphenyl-POSS and s-PEEK was used to produce novel nanocomposite films. An in-situ zirconisation method was assessed as convenient strategy for novel ionically crosslinked membranes of enhanced swelling resistance. Dibromo isocyanuric acid (DBI) and N-bromo succinimide (NBS) as brominating agents allowed polymer analogous preparation of the novel brominated PES and PEEK with precise reaction control. A random distribution of functional groups, i.e. polyelectrolytes' microstructural homogeneity was revealed as decisive factor concerning solubility of phosphonated PSU. Brominated phT8 was prepared with Br2 by a high temperature approach in tetrachloroethane (TCE). Brominated polymers were phosphonated by Ni-catalysis in non-coordinating high temperature solvents, such as diphenylether, benzophenone and diphenylsulfone without notable solvent influence. The lack of solvent - catalyst complexes and high reaction temperatures of 180-200 C led to halogen-free phosphonates with unprecedented high functionalities. Polymer analogous application of P(OSiMe3)3 offered a novel direct access to easily cleavable disilyl ester derivatives. These were obtained from PEEK and PSU in near quantitative yields at NiCl2-loads as

  20. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  1. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  2. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    Science.gov (United States)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  3. Chitosan Membrane Embedded With ZnO/CuO Nanocomposites for the Photodegradation of Fast Green Dye Under Artificial and Solar Irradiation.

    Science.gov (United States)

    Alzahrani, Eman

    2018-01-01

    Fast Green (FCF) dye is commonly used in both cytology and histology applications. Previous studies have found that it can cause mutagenic and tumorigenic effects in experimental human and animal populations. It can also be a source of skin, eye, respiratory, and digestive irritation. The purpose of this study was to examine the use of thin film membranes to degrade FCF. A thin film membrane of chitosan (CS) was fabricated and subsequently filled with zinc oxide nanoparticles (ZnO) or ZnO/CuO-heterostructured nanocomposites. The CS membrane was used as a matrix, and the nanomaterials were used as photocatalysts. The prepared membranes were characterised by four analytical techniques: atomic force microscopy, scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analyses. The photocatalytic activity of the fabricated membranes was evaluated by performing experiments in which aqueous solutions of FCF dye that contained the fabricated membrane were irradiated with solar light or UV light. The photodegradation percentage was spectrophotometrically determined by monitoring the maximum wavelengths (λ max ) of FCF at 623 nm for different irradiation times. The decolourisation percentages of the dye under solar light were 57.90% and 60.23% using the CS-ZnO and CS-ZnO/CuO membranes, respectively. When UV light irradiation was employed as the source of irradiation, the photodegradation percentages of FCF were 71.45% and 91.21% using the CS-ZnO and CS-ZnO/CuO membranes, respectively. These results indicated that the best photocatalytic system for the degradation of FCF dye was CS-ZnO/CuO membrane in combination with UV light irradiation. The study also found that it was easy to separate the prepared membranes after the reaction without the need for a centrifuge or magnet. The results demonstrate the potential for CS-ZnO and CS-ZnO/CuO membranes for use as effective sorbents during the process of photodegradation of harmful dyes within waste water

  4. Electric Response and Conductivity Mechanism in H3PO4‑Doped Polybenzimidazole-4N−HfO2 Nanocomposite Membranes for High Temperature Fuel Cells

    International Nuclear Information System (INIS)

    Nawn, Graeme; Vezzù, Keti; Bertasi, Federico; Pagot, Gioele; Pace, Giuseppe; Conti, Fosca; Negro, Enrico

    2017-01-01

    Relaxation and polarization phenomena of phosphoric acid-doped [PBI4N(HfO 2 ) x ](H 3 PO 4 ) y nanocomposite membranes for high-temperature proton-exchange membrane fuel cells are studied using Dynamic Mechanical Analysis (DMA) and Broadband Electrical Spectroscopy (BES). The membranes are obtained by casting combinations of a polybenzimidazole polymer (PBI4N) with increasing amounts of hafnium oxide nanofiller, resulting in [PBI4N(HfO 2 ) x ] hybrid systems with 0 ≤ x ≤ 0.32. Phosphoric acid at varying content levels (0 ÷ 18 wt%) is used as a doping agent, giving rise to [PBI4N(HfO 2 ) x ](H 3 PO 4 ) y membranes. DMA and BES studies lead us to determine that the electric response of the membranes is modulated by polarization phenomena and by α and β dielectric relaxation events of the polymer matrix. Additionally, the experimental results suggest that in [PBI4N(HfO 2 ) x ](H 3 PO 4 ) y membranes the conductivity occurs owing to three conductivity pathways: two mechanisms involving inter-domain proton migration phenomena by “hopping” events; and one mechanism in which proton exchange occurs between delocalization bodies. These results highlight the significant effect of the hafnium oxide nanofiller content on the conductivity of [PBI4N(HfO 2 ) x ](H 3 PO 4 ) y where, at x ≥ 0.04, demonstrates conductivity higher (9.0 × 10 −2 S/cm) than that of pristine H 3 PO 4 -doped PBI4N (4.8 × 10 −2 S/cm) at T ≥ 155 °C.

  5. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films

  6. Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing.

    Science.gov (United States)

    Shi, Rui; Niu, Yuzhao; Gong, Min; Ye, Jingjing; Tian, Wei; Zhang, Liqun

    2018-06-01

    Bacterial infection is a major problem world-wide, especially in wound treatment where it can severely prolong the healing process. In this study, a double drug co-delivery elastic antibacterial nanocomposite was developed by combining ciprofloxacin (CPX) and polymyxin B sulfate-loaded halloysite clay nanotubes (HNTs-B) into a gelatin elastomer. CPX nanoparticles which act against both gram positive and gram-negative bacterium were dispersed directly in the matrix, and polymyxin B sulfate was loaded in HNTs and then distributed into the matrix. The effect of CPX and HNTs-B content on the physical properties, cytotoxicity, fibroblast adhesion and proliferation, in vitro drug release behavior and anti-bacterial properties were systematically investigated. The ciprofloxacin crystals and HNT-B were distributed in the matrix uniformly. The HNTs in the drug loading system not only enhanced the matrix' tensile strength but also slowed down the release rate of the high dissoluble polymyxin B sulfate. When the amount of HNT in the matrix increased, the thermal stability and tensile strength also increased but the polymyxin B sulfate release rate decreased because the HNTs prevented the drug release inside. All the nanocomposites exhibited antimicrobial activity against both gram-negative and gram-positive bacteria with the dual combination of drugs released from the nanocomposites. Furthermore, this kind of gelatin-based nanocomposites possesses higher water-absorbing quality, low cytotoxicity, adaptable biodegradability and good elasticity which can satisfy the requirements for an ideal biomaterial for use in wound healing applications. Copyright © 2018. Published by Elsevier B.V.

  7. Sol-gel synthesized of nanocomposite palladium-alumina ceramic membrane for H{sub 2} permeability: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, A.L.; Mustafa, N.N.N. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2007-08-15

    Palladium-alumina membrane with mesopore and narrow pore size distribution was prepared by the sol-gel method. Effect of the finely dispersed metal on the microstructure and the characteristic properties of the palladium-alumina membrane were investigated. Observations were made on membrane weight loss, morphology, pore structure, pore size, surface area, pore surface fractal and membrane's crystal structure. Autosorb analysis, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) analysis were employed in the membrane characterization. Autosorb analysis found that, BET surface area decreased and pore size of the membrane increased with the increasing of calcinations temperature (500-1100{sup o}C) and with the increasing of palladium amount in the membrane. FTIR and TG/DTA analysis show that the suitable temperature for calcinations of palladium-alumina membrane is at 700{sup o}C. Palladium metals are highly dispersed at calcinations temperature of 700{sup o}C as observed by TEM analysis. The fine crystallinity of the palladium and {gamma}-alumina phase was obtained after calcined at 700{sup o}C. The SEM morphology shows a smooth and free crack layer of palladium-alumina membrane after repeating the process of dipping, drying and calcinations at temperature of 700{sup o}C. The membrane also successfully coated with a good adhesion on support. The thickness of the final membrane layer was estimated as 9{mu} m. (author)

  8. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Andersen, Elisabeth Wreford; Budtz-Jørgensen, Esben

    2012-01-01

    Perfluorinated compounds (PFCs) have emerged as important food contaminants. They cause immune suppression in a rodent model at serum concentrations similar to those occurring in the US population, but adverse health effects of PFC exposure are poorly understood....

  9. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Heilmann, Carsten; Weihe, Pal

    2017-01-01

    BACKGROUND: Postnatal exposure to perfluorinated alkylate substances (PFASs) is associated with lower serum concentrations of specific antibodies against certain childhood vaccines at 7 y. OBJECTIVES: We prospectively followed a Faroese birth cohort to determine these associations at 13 y. METHOD...

  10. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO_2-HNTs nanocomposites

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Yu, Zongxue; Zhan, Yingqing; Ma, Lan; Zhang, Lei

    2016-01-01

    Highlights: • A novel TiO_2-HNTs/PVDF ultrafiltration membrane was prepared. • TiO_2 dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO_2-HNTs. • TiO_2-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO_2-HNTs) composites into the PVDF matrix. The effects of TiO_2-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO_2 was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO_2-HNTs. The pure water flux of 3%TiO_2-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO_2/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO_2-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  11. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO{sub 2}-HNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Yu, Zongxue; Zhan, Yingqing; Ma, Lan [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhang, Lei, E-mail: zgc166929@sohu.com [College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-05-15

    Highlights: • A novel TiO{sub 2}-HNTs/PVDF ultrafiltration membrane was prepared. • TiO{sub 2} dispersed well in membrane matrix by loading on the surface of HNTs. • The hydrophilicity of membrane was improved with the addition of TiO{sub 2}-HNTs. • TiO{sub 2}-HNTs/PVDF membranes showed good antifouling performance. - Abstract: Novel polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared by blending with different contents of titanium dioxide-halloysite nanotubes (TiO{sub 2}-HNTs) composites into the PVDF matrix. The effects of TiO{sub 2}-HNTs content on the membrane performances, such as hydrophilicity, rejection ratio and antifouling properties were investigated in detail. X-ray diffraction (XRD), thermo-gravimetric analyzer (TGA) and scanning electron microscope (SEM) analyses showed that TiO{sub 2} was loaded on the surface of HNTs successfully and homogeneously by sol-gel method. The morphologies and microstructure of the membranes were characterized by SEM and atomic force microscopy (AFM). The contact angle (CA) tests indicated that the hydrophilicity of membranes was significantly increased with the addition of TiO{sub 2}-HNTs. The pure water flux of 3%TiO{sub 2}-HNTs/PVDF was increased by 264.8% and 35.6%, respectively, compared with pure PVDF membrane and 3%TiO{sub 2}/PVDF membrane, although the rejection of bovine serum albumin (BSA) was slightly decreased. More importantly, TiO{sub 2}-HNTs/PVDF membrane exhibited an excellent anti-fouling performance, which was attributed to the hydrophobic contaminants being resisted by hydrophilic nanoparticles. It can be expected that this work may provide some references to solve the dispersion of nanoparticle in the membrane and improve the anti-fouling performance of membrane in the field of wastewater treatment.

  12. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  13. Hydrated electron: a destroyer of perfluorinated carboxylates?

    International Nuclear Information System (INIS)

    Huang Li; Dong Wenbo; Hou Huiqi

    2006-01-01

    As a class, perfluorinated carboxylate (PFCA) was ranked among the most prominent organohalogen contaminants in environment with respect to thermal, chemical and biological inertness. Hydrated electron (e aq - ), a highly reactive and strongly reductive species, has been reported to readily decompose perfluoroaromatic compounds via intermolecular electron transfer process in aqueous solution. Question then arose: what would happen if perfluorinated carboxylates encountered with hydrated electron? Original laboratory trial on the interaction between F(CF 2 ) n COO - (n=1, 3, 7) and hydrated electron was attempted by using laser flash photolysis technique in this research work. Abundant hydrated electron (e aq - ) could be produced by photolysis of 1.25 x 10 -4 M K 4 Fe(CN) 6 in nitrogen saturated water. In the presence of F(CF 2 ) n COO - (n=1, 3, 7), the decay of e aq - was observed to enhance dramatically, indicating e aq - was able to attack PFCAs. On addition of perfluorinated carboxylates, the loss of e aq - was mainly due to the following channels. By mixing the solution of K 4 Fe(CN) 6 with excess K 3 Fe(CN) 6 and PFCAs, e aq - turned to decayed corresponding to mixed first- and second-order kinetics. Rate constants for the reactions of e aq - with PFCAs could be then easily determined by monitoring the decay of e aq - absorption at 690 nm. Since perfluorinated carboxylates were salts, the influence of ionic strength on k 3 was examined systematically by carrying out experiments of varying ionic strength ranging from 0.009 up to 0.102 M by adding NaClO 4 . In this manner, the second order rate constants for e-aq with CF 3 COO - , C 3 F 7 COO - , C 7 F 15 COO - were derived to be (1.9±0.2) x 10 6 M -1 S -1 (μ=0), (7.1±0.2) x 10 6 M -1 S -1 (μ=0) and (1.7±0.5) x10 7 M -1 S -1 (μ=0.009 M) respectively. Apparently, the length of F(CF 2 ) n group exerted substantial influence on the rate constant. Further study on byproducts analysis by ion chromatography

  14. Effect of polyethyleneglycol on CH{sub 4} permeation through poly(amide-b-ethylene oxide)-based nanocomposite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Morteza, E-mail: asghari@kashanu.ac.ir [Separation Processes Research Group (SPRG), University of Kashan, Kashan (Iran, Islamic Republic of); Energy Research Institute, University of Kashan, Ghotb-e-Ravandi Avenue, Kashan (Iran, Islamic Republic of); Mahmudi, Amir; Zargar, Vida [Separation Processes Research Group (SPRG), University of Kashan, Kashan (Iran, Islamic Republic of); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2014-11-01

    Graphical abstract: - Highlights: • A three-phase polymer/liquid/solid (PEBA/PEG/zeolite X) membrane was fabricated. • Nanocrystalline zeolite X was used as filler to stabilize membrane polymeric matrix. • Introducing zeolite to PEBA matrix caused its total free volume to decrease. • A gradual decrease with pressure was observed in CH{sub 4} permeability for the membranes. • In all the experiments, operating pressures varied from 2 to 8 bar. - Abstract: A three-phase polymer/liquid/solid poly(amide-b-ethylene oxide) (PEBA)/polyethylene glycol (PEG)/zeolite X was fabricated and its gas permeability was investigated. CH{sub 4} permeability of neat PEBA, two-phase PEBA/NaX and three-phase PEBA/PEG/NaX were compared for different pressures within the range of 2–8 bar. The fabricated membranes were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscope (AFM). SEM images showed that the zeolite grain size was homogeneously smaller than 2 μm. They also revealed the dense structures of the membranes and no pores were observed at these magnifications. AFM surface images indicated that the membranes surface roughness increased significantly with increasing zeolite loading. CH{sub 4} permeability for single-, two- and three-phase membranes decreased from 3.13 to 2.81, from 3.96 to 2.31 and from 2.67 to 2.14 barrer, respectively.

  15. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  16. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  17. Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes

    Directory of Open Access Journals (Sweden)

    Valentina Allodi

    2016-03-01

    Full Text Available A large number of nano-sized oxides have been studied in the literature as fillers for polymeric membranes, such as Nafion®. Superacidic sulfated oxides have been proposed and characterized. Once incorporated into polymer matrices, their beneficial effect on peculiar membrane properties has been demonstrated. The alteration of physical-chemical properties of composite membranes has roots in the intermolecular interaction between the inorganic filler surface groups and the polymer chains. In the attempt to tackle this fundamental issue, here we discuss, by a multi-technique approach, the properties of a nanosized sulfated titania material as a candidate filler for Nafion membranes. The results of a systematic study carried out by synchrotron X-ray diffraction, transmission electron microscopy, thermogravimetry, Raman and infrared spectroscopies are presented and discussed to get novel insights about the structural features, molecular properties, and morphological characteristics of sulphated TiO2 nanopowders and composite Nafion membranes containing different amount of sulfated TiO2 nanoparticles (2%, 5%, 7% w/w.

  18. Obtenção de membranas microporosas a partir de manocompósitos de poliamida 6/argila nacional. Parte 1: influência da presença da argila na morfologia das membranas Obtaining microporous membranes from nylon 6/national clay nanocomposites. Part 1: influence of clay on the membranes morphology

    Directory of Open Access Journals (Sweden)

    Amanda M. D. Leite

    2009-01-01

    Full Text Available Membranas poliméricas foram produzidas a partir de nanocompósitos de poliamida 6 e argila constituída de silicatos em camadas, utilizando a técnica de imersão-precipitação. A argila foi modificada organicamente com os sais quaternários de amônio, Dodigen e Cetremide. Foram obtidos nanocompósitos de poliamida 6 com argila sem tratamento (MMT e com argila tratada (OMMT. Os nanocompósitos obtidos foram avaliados por DRX e MET, apresentando estrutura com predominância de lamelas de argila esfoliadas na matriz polimérica. As membranas produzidas pelo método de inversão de fases foram caracterizadas por DRX e MEV. A difração de raios X das membranas confirmou os resultados para os nanocompósitos anteriormente preparados. A superfície da matriz observada por MEV apresentou poros irregulares. Já para as membranas com os nanocompósitos observou-se maior quantidade e melhor distribuição dos poros, indicando que a presença da argila alterou a morfologia da membrana. As fotomicrografias das seções transversais dessas membranas mostraram uma estrutura morfológica assimétrica, constituída de uma pele, onde os poros são muito pequenos ou inexistentes, e uma camada porosa com poros de tamanho e distribuição uniformes.Polymeric membranes were produced from nylon 6 nanocomposites and a clay using the immersion-precipitation technique. The clay was organically modified by using a quaternary ammonium salt, Dodigen. Nanocomposites were obtained from nylon 6 with untreated clay (MMT and treated clay (OMMT. The nanocomposites were studied by XRD and TEM. The morphological structure consisted of an exfoliated and partially exfoliated clay layers in the polymeric matrix. The membranes were produced by phase inversion method and characterized by XRD and SEM. The X-ray diffraction of the membranes confirmed the results for the nanocomposites. The SEM image of the membrane top surface showed irregular pores. As for the membranes with the

  19. Distribution of perfluorinated compounds in blood compartments during prenatal exposure

    DEFF Research Database (Denmark)

    Nielsen, Flemming; Weihe, Pál; Grandjean, Philippe

    Perfluorinated compounds (PFCs) are a class of persistent environmental toxicants widely used in industrial and consumer products due to their unique chemical and physical properties. Knowledge on the health effects in humans is sparse and have most often been studied only for PFOS and PFOA...

  20. Distribution of perfluorinated compounds in aquatic systems in The Netherlands

    NARCIS (Netherlands)

    Kwadijk, C.J.A.F.; Korytar, P.; Koelmans, A.A.

    2010-01-01

    The distribution of 15 perfluorinated compounds (PFCs) among eel (Anguilla anguilla), sediment, and water was investigated for 21 locations in The Netherlands. Furthermore, for perfluorooctanesulfonate (PFOS), a 30 year time series was measured for three locations using historical eel samples. These

  1. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  2. Preparation of RF-(VM-SiO2n-RF/AM-Cellu Nanocomposites, and Use Thereof for the Modification of Glass and Filter Paper Surfaces: Creation of a Glass Thermoresponsive Switching Behavior and an Efficient Separation Paper Membrane

    Directory of Open Access Journals (Sweden)

    Hideo Sawada

    2017-03-01

    Full Text Available Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/alkyl-modified cellulose (AM-Cellu nanocomposites [RF-(CH2-CHSiO2n-RF/AM-Cellu; n = 2, 3; RF = CF(CF3OC3F7] were prepared by the sol-gel reactions of the corresponding oligomer [RF-(CH2-CHSi(OMe3n-RF] in the presence of AM-Cellu. The nanocomposites thus obtained were applied to the surface modification of glass to exhibit a highly oleophobic/superhydrophilic characteristic on the modified surface at 20 °C. Interestingly, a temperature dependence of contact angle values of dodecane and water was observed on the modified surface at 20~70 °C, and the dodecane contact angle values were found to decrease with increasing the temperatures from 20 to 70 °C to provide from highly oleophobic to superoleophilic characteristics on the surface. On the other hand, the increase of the water contact angle values was observed with the increase in the temperatures under similar conditions to supply superhydrophilic to superhydrophobic characteristics on the modified surface. The corresponding nanocomposites were also applied to the surface modification of the filter paper under similar conditions to afford a superoleophilic/superhydrophobic characteristic on the surface. It was demonstrated that the modified filter paper is effective for the separation membrane for W/O emulsion to isolate the transparent colorless oil.

  3. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  4. Synthesis and characterization of poly-o-anisidine Sn(IV tungstate: A new and novel ‘organic–inorganic’ nano-composite material and its electro-analytical applications as Hg(II ion-selective membrane electrode

    Directory of Open Access Journals (Sweden)

    Asif A. Khan

    2012-07-01

    Full Text Available An organic–inorganic nano-composite poly-o-anisidine Sn(IV tungstate was chemically synthesized by sol–gel mixing of the incorporation of organic polymer o-anisidine into the matrices of inorganic ppt of Sn(IV tungstate in different mixing volume ratios. This composite material has been characterized using various analytical techniques like XRD (X-ray diffraction, FTIR (Fourier transform infrared, SEM (Scanning electron microscopy, TEM (Transmission electron microscopy and simultaneous TGA (Thermogravimetric analysis studies. On the basis of distribution studies, the material was found to be highly selective for Hg(II. Using this nano-composite cation exchanger as electro-active material, a new heterogeneous precipitate based on ion-sensitive membrane electrode was developed for the determination of Hg(II ions in solutions. The membrane electrode was mechanically stable, with a quick response time, and can be operated within a wide pH range. The electrode was also found to be satisfactory in electrometric titrations.

  5. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca2+ homeostasis

    International Nuclear Information System (INIS)

    Kleszczynski, Konrad; Skladanowski, Andrzej C.

    2011-01-01

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca 2+ ] c and mitochondrial calcium [Ca 2+ ] m carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca 2+ ] m was not accompanied by equivalent loss of [Ca 2+ ] c . Indeed, moderate changes of [Ca 2+ ] c were observed after incubation with 400 μM PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.

  6. Toxicological perspectives on perfluorinated compounds in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, J.; Jones, P. [Michigan State Univ., East Lansing, MI (United States)

    2004-09-15

    Perfluorinated chemicals have been widely used in commerce for the last few decades. Until recently little was known about their environmental fate and even less was known about their potential environmental effects. Since Giesy and co-workers first demonstrated the widespread occurrence of perfluorooctane sulfonic acid (PFOS) in wildlife there has been renewed interest in determining the biological and possible ecological effects of these compounds. The assessment of possible effects of these chemicals has been hampered by a limited understanding of their mode of action and by a lack of toxicological data for wildlife species. Here we summarize recently obtained toxicological studies available for perfluorinated compounds (PFCs) in two avian species and use this information and environmental concentration data to evaluate the potential for environmental risk that these compounds pose.

  7. Biomonitoring in California firefighters: metals and perfluorinated chemicals.

    Science.gov (United States)

    Dobraca, Dina; Israel, Leslie; McNeel, Sandra; Voss, Robert; Wang, Miaomiao; Gajek, Ryszard; Park, June-Soo; Harwani, Suhash; Barley, Frank; She, Jianwen; Das, Rupali

    2015-01-01

    To assess California firefighters' blood concentrations of selected chemicals and compare with a representative US population. We report laboratory methods and analytic results for cadmium, lead, mercury, and manganese in whole blood and 12 serum perfluorinated chemicals in a sample of 101 Southern California firefighters. Firefighters' blood metal concentrations were all similar to or lower than the National Health and Nutrition Examination Survey (NHANES) values, except for six participants whose mercury concentrations (range: 9.79 to 13.42 μg/L) were close to or higher than the NHANES reporting threshold of 10 μg/L. Perfluorodecanoic acid concentrations were elevated compared with NHANES and other firefighter studies. Perfluorodecanoic acid concentrations were three times higher in this firefighter group than in NHANES adult males. Firefighters may have unidentified sources of occupational exposure to perfluorinated chemicals.

  8. Perfluorinated alkylated substances (PFAS) in the European Nordic environment

    Energy Technology Data Exchange (ETDEWEB)

    Berger, U. [Norwegian Institute of Air Research (NILU), Tromso (Norway); Jaernberg, U. [Institute of Applied Environmental Research (ITM), Stockholm (Sweden); Kallenborn, R. [Norwegian Institute of Air Research (NILU), Kjeller (Norway)

    2004-09-15

    Perfluorinated alkylated substances (PFAS) have been industrially produced for several decades and are applied as stain and water repellents for surface treatment of textiles, carpets, leather and paper products. Perfluorooctane sulfonate (PFOS), a degradation product of several PFAS, has recently gained considerable attention because of its ubiquitous distribution in the environment and its presence in human blood plasma. Though most of the production volume of PFOS-based chemicals has been voluntarily phased out by the manufacturers, similar compounds with perfluorinated chains, including perfluorinated carboxylic acids, continue to be employed for comparable applications. A first screening project on the distribution of PFAS in the environment of five Nordic countries was supported and financed by the Nordic Council of Ministers through the Chemicals Group and the Environmental Monitoring Group and national institutions. The aim of the study was to assess the levels and distribution of PFAS in the Nordic environment and to trace differences in contaminant concentrations and patterns between different countries and types of matrices.

  9. Biopolymeric nanocomposites with enhanced interphases.

    Science.gov (United States)

    Yin, Yi; Hu, Kesong; Grant, Anise M; Zhang, Yuhong; Tsukruk, Vladimir V

    2015-10-06

    Ultrathin and robust nanocomposite membranes were fabricated by incorporating graphene oxide (GO) sheets into a silk fibroin (SF) matrix by a dynamic spin-assisted layer-by-layer assembly (dSA-LbL). We observed that in contrast to traditional SA-LbL reported earlier fast solution removal during dropping of solution on constantly spinning substrates resulted in largely unfolded biomacromolecules with enhanced surface interactions and suppressed nanofibril formation. The resulting laminated nanocomposites possess outstanding mechanical properties, significantly exceeding those previously reported for conventional LbL films with similar composition. The tensile modulus reached extremely high values of 170 GPa, which have never been reported for graphene oxide-based nanocomposites, the ultimate strength was close to 300 MPa, and the toughness was above 3.4 MJ m(-3). The failure modes observed for these membranes suggested the self-reinforcing mechanism of adjacent graphene oxide sheets with strong 2 nm thick silk interphase composed mostly from individual backbones. This interphase reinforcement leads to the effective load transfer between the graphene oxide components in reinforced laminated nanocomposite materials with excellent mechanical strength that surpasses those known today for conventional flexible laminated carbon nanocomposites from graphene oxide and biopolymer components.

  10. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  11. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Cardia, R.; Malloci, G.; Bosin, A.; Serra, G.; Cappellini, G.

    2016-01-01

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  12. Exposure to perfluorinated compounds and human semen quality in Arctic and European populations

    DEFF Research Database (Denmark)

    Toft, G; Jönsson, B A G; Lindh, C H

    2012-01-01

    Perfluorinated compounds (PFCs) have been suspected to adversely affect human reproductive health. The aim of this study was to investigate the associations between PFC exposure and male semen quality.......Perfluorinated compounds (PFCs) have been suspected to adversely affect human reproductive health. The aim of this study was to investigate the associations between PFC exposure and male semen quality....

  13. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardia, R. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy); Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Bosin, A.; Serra, G. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Cappellini, G., E-mail: giancarlo.cappellini@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy)

    2016-10-20

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  14. Polymer nanocomposites for lithium battery applications

    Science.gov (United States)

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  15. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.; Ivanov, Yurii P.; Kosel, Jü rgen

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  16. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  17. Advanced Nanocomposite Membrane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increasing demands placed on extravehicular activities (EVA) for International Space Station (ISS) maintenance, there is a critical need for oxygen delivery...

  18. Progress and challenges of carbon nanotube membrane in water treatment

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Liu, Zongwen

    2016-01-01

    review of the progress of CNT membranes addressing the current epidemic—whether (i) the CNT membranes could tackle current challenges in the pressure- or thermally driven membrane processes and (ii) CNT hybrid nanocomposite as a new generation

  19. Microporous membranes from polyamide 6/national clay nanocomposites - Part 2: microstructural and permeability evaluation; Obtencao de membranas microporosas a partir de nanocompositos de polimida 6/argila nacional - Parte 2: avaliacao microestrutural e de permeabilidade das membranas obtidas

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Amanda M.D.; Araujo, Edcleide M.; Lira, Helio de L.; Paz, Rene Anisio da; Medeiros, Vanessa da Nobrega, E-mail: amandamelissa.lins@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2014-06-01

    Organic/inorganic hybrid membranes of polyamide 6 and mineral clay containing layers of silicate were prepared and compared to those of the pure polymer. Use was made of an as-received sodium clay from industry and another organophilized with ammonium quaternary salts (Dodigen and Cetremide). The salts make the clays surface hydrophobic and improve their incorporation into the polymer matrix in the molten state. Membranes were prepared with these nanocomposites using the immersion-precipitation technique with formic acid as a solvent, and precipitation in a water bath as non-solvent. The acid concentration in the solution containing the polymer and the hybrids was varied to study its influence in morphology and permeability of the membranes. An asymmetric morphology consisting of a filter skin and a porous support was observed, with pores both on the surface and in the cross section being affected by the different salts. This asymmetric morphology was also affected significantly by the acid concentration, with thicker filter skins for higher concentrations. The acid concentration affected the pores size and their distribution. The clay particles probably acted as a barrier to the flow. The permeating flux for the two acid concentrations varied as a function of the distinct morphologies. (author)

  20. Cooking decreases observed perfluorinated compound concentrations in fish.

    Science.gov (United States)

    Del Gobbo, Liana; Tittlemier, Sheryl; Diamond, Miriam; Pepper, Karen; Tague, Brett; Yeudall, Fiona; Vanderlinden, Loren

    2008-08-27

    Dietary intake is a major route of exposure to perfluorinated compounds (PFCs). Although fish and seafood contribute significantly to total dietary exposure to these compounds, there is uncertainty with respect to the effect of cooking on PFC concentrations in these foods. Eighteen fish species purchased from markets in Toronto, Mississauga, and Ottawa, Canada were analyzed for perfluorooctanesulfonamide (PFOSAs)-based fluorochemicals and perfluorinated acids (PFAs) in raw and cooked (baked, boiled, fried) samples. Of 17 analytes, perfluorooctanesulfonic acid (PFOS) was detected most frequently; concentrations ranged from 0.21 to 1.68 ng/g ww in raw and cooked samples. PFOSAs were detected only in scallops at concentrations ranging from 0.20 ng/g ww to 0.76 ng/g ww. Total concentrations of PFAs in samples were 0.21 to 9.20 ng/g ww, respectively, consistent with previous studies. All cooking methods reduced PFA concentrations. Baking appeared to be the most effective cooking method; after baking samples for 15 min at 163 C (325 degrees F), PFAs were not detected in any of the samples. The margin of exposures (MOE) between the toxicological points of reference and the dietary intake of perfluorocarboxylates (PFCAs) and PFOS in fish and seafood muscle tissue were greater than 4 orders of magnitude. This indicates that reducing consumption of fish muscle tissue is not warranted on the basis of PFC exposure concerns at the reported levels of contamination, even for high fish consuming populations.

  1. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  2. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive. Th...

  3. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  4. Fabrication and characterization of chitosan nanoparticles and collagen-loaded polyurethane nanocomposite membrane coated with heparin for atrial septal defect (ASD) closure.

    Science.gov (United States)

    Kaiser, Eva; Jaganathan, Saravana Kumar; Supriyanto, Eko; Ayyar, Manikandan

    2017-07-01

    Atrial septal defect (ASD) constitutes 30-40% of all congenital heart diseases in adults. The most common complications in the treatment of ASD are embolization of the device and thrombosis formation. In this research, an occluding patch was developed for ASD treatment using a well-known textile technology called electrospinning. For the first time, a cardiovascular occluding patch was fabricated using medical grade polyurethane (PU) loaded with bioactive agents namely chitosan nanoparticles (Cn) and collagen (Co) which is then coated with heparin (Hp). Fourier transform infrared spectrum showed characteristic vibrations of several active constituents and changes in the absorbance due to the inclusion of active ingredients in the patch. The contact angle analysis demonstrated no significant decrease in contact angle compared to the control and the composite patches. The structure of the electrospun nanocomposite (PUCnCoHp) was examined through scanning electron microscopy. A decrease in nanofiber diameter between control PU and PUCnCoHp nanocomposite was observed. Water uptake was found to be decreased for the PUCnCoHp nanocomposite against the control. The hemocompatibility properties of the PUCnCoHp ASD occluding patch was inferred through in vitro hemocompatibility tests like activated partial thromboplastin time (APTT), prothrombin time (PT) and hemolysis assay. It was found that the PT and APTT time was significantly prolonged for the fabricated PUCnCoHp ASD occluding patch compared to the control. Likewise, the hemolysis percentage was also decreased for the PUCnCoHp ASD patch against the control. In conclusion, the developed PUCnCoHp patch demonstrates potential properties to be used for ASD occlusion.

  5. Development of polymer nanocomposites with regional bentonite clay

    International Nuclear Information System (INIS)

    Araujo, Edcleide M.; Leite, Amanda M.D.; Paz, Rene A. da; Medeiros, Keila M. de; Melo, Tomas J.A.; Barbosa, Josiane D.V.; Barbosa, Renata

    2011-01-01

    nanocomposites with regional bentonite clay were prepared by melt intercalation technique. The clays were studied without modification and modified with four quaternary ammonium salts. It was evidenced by X-ray diffraction that salts were incorporated into the clay structure thus confirming its organophilization. The nanocomposites were evaluated by means of thermal mechanic and flammability tests where presented properties significantly improved their pure polymers. The process of biodegradation of obtained bio nanocomposites was accelerated by the presence of clay. The produced membranes from nanocomposites have potential in the oil-water separation. (author)

  6. Experimental hydrophobicity parameters of perfluorinated alkylated substances from reversed-phase high performance liquid chromatography

    NARCIS (Netherlands)

    de Voogt, P.; Zurano, L.; Serné, P.; Haftka, J.J.H.

    2012-01-01

    Capacity factors of perfluorinated alkylated substances were obtained from isocratic reversed-phase high-performance liquid chromatography-mass spectrometry experiments at different organic modifier strengths of the mobile phase. The resulting capacity factor v. modifier strengths plots were

  7. Preliminary assessment of developmental toxicity of Perfluorinated Phosphonic Acid in mice

    Science.gov (United States)

    Perfluorinated phosphonic acids (PFPAs) are a third member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. These emerging chemicals have recently been detected in the environment, particularl...

  8. NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs

    Directory of Open Access Journals (Sweden)

    Vincenzo Baglio

    2012-06-01

    Full Text Available Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE diffusion under variable temperature conditions. Synthetic (Laponite and natural (Swy-2 smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC. The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell.

  9. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Heilmann, Carsten; Weihe, Pal

    2017-01-01

    BACKGROUND: Postnatal exposure to perfluorinated alkylate substances (PFASs) is associated with lower serum concentrations of specific antibodies against certain childhood vaccines at 7 y. OBJECTIVES: We prospectively followed a Faroese birth cohort to determine these associations at 13 y. METHODS......: In 516 subjects (79% of eligible cohort members) who were 13 years old, serum concentrations of PFASs and of antibodies against diphtheria and tetanus were measured and were compared with data from the previous examination at 7 y. Multiple regression analyses and structural equation models were applied...... to determine the association between postnatal PFAS exposures and antibody concentrations. RESULTS: Serum concentrations of PFASs and antibodies generally declined from 7 y to 13 y. However, 68 subjects had visited the emergency room and had likely received a vaccination booster, and a total of 202 children...

  10. Distributed perfluorinated POF strain sensor using OTDR and OFDR techniques

    Science.gov (United States)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2009-10-01

    This paper presents the latest advances in distributed strain sensing using perfluorinated (PF) polymer optical fibers (POF). Compared to previously introduced PMMA POF strain sensors, PF POF have the advantage of lower loss and therefore extended measurement length of more than 500 m at increased spatial resolution of 10 cm. It is shown that PF POF can measure strain distributed up to 100 %. The characteristic backscatter signature of this fiber type provides additional evaluation possibilities. We show that, by applying a cross-correlation algorithm to the backscatter signal, the distributed length change can be measured along the fiber. We also present, to our knowledge for the first time, incoherent Optical Frequency Domain Reflectometry (OFDR) in POF to measure distributed reflections and loss along the fiber. The OFDR technique proves superior to existing OTDR techniques in measurement speed, resolution and potential instrument costs.

  11. Breastfeeding as an Exposure Pathway for Perfluorinated Alkylates

    DEFF Research Database (Denmark)

    Mogensen, Ulla B; Grandjean, Philippe; Nielsen, Flemming

    2015-01-01

    Perfluorinated alkylate substances (PFASs) are widely used and have resulted in human exposures worldwide. PFASs occur in breast milk, and the duration of breastfeeding is associated with serum-PFAS concentrations in children. To determine the time-dependent impact of this exposure pathway, we...... examined the serum concentrations of five major PFASs in a Faroese birth cohort at birth, and at ages 11, 18, and 60 months. Information about the children's breastfeeding history was obtained from the mothers. The trajectory of serum-PFAS concentrations during months with and without breastfeeding...... was examined by linear mixed models that accounted for the correlations of the PFAS measurements for each child. The models were adjusted for confounders such as body size. The duration of exclusive breastfeeding was associated with increases of most PFAS concentrations by up to 30% per month, with lower...

  12. Adiposity and Glycemic Control in Children Exposed to Perfluorinated Compounds

    DEFF Research Database (Denmark)

    Timmermann, Clara Amalie G.; Rossing, Laura I.; Grontved, Anders

    2014-01-01

    , waist circumference, leptin, adiponectin, insulin, glucose, and triglyceride concentrations were assessed in 8- to 10-year-old children in 1997 in a subset of the European Youth Heart Study, Danish component. Plasma PFC concentrations were available from 499 children. Linear regression models were......Objective: Our objective was to explore whether childhood exposure to perfluorinated and polyfluorinated compounds (PFCs), widely used stain- and grease-repellent chemicals, is associated with adiposity and markers of glycemic control. Materials and Methods: Body mass index, skinfold thickness...... perfluorooctane sulfonic acid/mL plasma was associated with 16.2% (95% confidence interval [CI], 5.2%-28.3%) higher insulin concentration, 12.0% (95% CI, 2.4%-22.4%) higher β-cell activity, 17.6% (95% CI, 5.8%-30.8%) higher insulin resistance, and 8.6% (95% CI, 1.2%-16.5%) higher triglyceride concentrations...

  13. Prepare and characterization of nanocomposite - mixed matrix membranes based on polycarbonate; Preparo e caracterizacao de membranas polimericas de matriz mista nanocomposito baseadas em policarbonato

    Energy Technology Data Exchange (ETDEWEB)

    Paranhos, Caio M; Pessan, Luiz A., E-mail: caiomp.dema@gmail.co [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais. Lab. de Permeacao e Sorcao; Gomes, Ana C. de O. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2009-07-01

    Mixed matrix membranes based on polycarbonate with different content of sepiolite were prepared by casting. The obtained membranes were characterized by wide-angle X-ray diffraction, thermal analysis, optical transparency and permeation to oxygen. The presence of sepiolite leads to the formation of a polymer-clay interface. The presence of the interface causes the increase in O{sub 2} permeation. Increasing content of sepiolite results in aggregates of sepiolite, which forms preferential channels to the O{sub 2} molecules. This fact is directly related to the strong increasing observed in O{sub 2} permeability. (author)

  14. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.

    Science.gov (United States)

    Castillo-Dalí, Gabriel; Castillo-Oyagüe, Raquel; Terriza, Antonia; Saffar, Jean-Louis; Batista-Cruzado, Antonio; Lynch, Christopher D; Sloan, Alastair J; Gutiérrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2016-04-01

    Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. The functionalised membranes showed the best efficacy for bone regeneration. The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Lung damage in mice after inhalation of nanofilm spray products: the role of perfluorination and free hydroxyl groups

    DEFF Research Database (Denmark)

    Nørgaard, Asger W; Larsen, Søren T.; Hammer, Maria

    2010-01-01

    concentrations (18.4 mg/m(3)) was observed. The alkylsilane-based product (NFP 2) had no effect at the concentrations studied. Experiments with different types of perfluorinated silanes and alkylsiloxanes showed that the toxic effects did not arise solely from the perfluorination. The number of free hydroxyl...

  16. Presence of anionic perfluorinated organic compounds in serum collected from Northern Canadian populations

    Energy Technology Data Exchange (ETDEWEB)

    Tittlemier, S.; Ryan, J.J. [Food Research Division, Health Canada, Ottawa, ON (Canada); Oostdam, J. van [Management of Toxic Substances Division, Health Canada, Ottawa, ON (Canada)

    2004-09-15

    Perfluorinated organic compounds are used in a wide variety of consumer and industrial products and applications, ranging from personal care products and cleaning solutions, to grease resistant coatings for fabric and paper and emulsifiers in the production of polymers. Perfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent and bioaccumulative. PFOS and PFOA have been detected in biota sampled from around the world2, including the Canadian Arctic. Evidence from various laboratory experiments suggest that these perfluorinated compounds can elicit negative effects, including peroxisome proliferation5 and possibly hepatocarcinogenesis. PFOA and PFOS also appear to biomagnify in marine food webs, in a similar fashion as traditional organohalogenated POPs like the recalcitrant PCB congeners. Indigenous northern Canadian populations such as the Inuit and Inuvialuit often hunt and consume marine mammals, including beluga, narwhal, and seal, as part of their traditional diet. Thus, segments of these populations are often exposed to higher levels of POPs than southern populations and other consumers of market foods. This higher exposure is reflected in plasma concentrations of traditional POPs such PCBs. There is a question of whether a similar situation occurs for PFOS, PFOA, and similar perfluorinated compounds. This preliminary survey analyzed a suite of perfluorinated sulfonates and carboxylates in 23 pooled archived samples of human plasma collected from various northern Canadian populations.

  17. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    Science.gov (United States)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton

  18. Thin Film Nanocomposite Membrane Filled with Metal-Organic Frameworks UiO-66 and MIL-125 Nanoparticles for Water Desalination

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2017-06-01

    Full Text Available Knowing that the world is facing a shortage of fresh water, desalination, in its different forms including reverse osmosis, represents a practical approach to produce potable water from a saline source. In this report, two kinds of Metal-Organic Frameworks (MOFs nanoparticles (NPs, UiO-66 (~100 nm and MIL-125 (~100 nm, were embedded separately into thin-film composite membranes in different weight ratios, 0%, 0.05%, 0.1%, 0.15%, 0.2%, and 0.3%. The membranes were synthesized by the interfacial polymerization (IP of m-phenylenediamine (MPD in aqueous solution and trimesoyl chloride (TMC in an organic phase. The as-prepared membranes were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, attenuated total reflection Fourier transform infrared (ATR FT-IR spectroscopy, and salt rejection and water flux assessments. Results showed that both UiO-66 and MIL-125 could improve the membranes’ performance and the impacts depended on the NPs loading. At the optimum NPs loadings, 0.15% for UiO-66 and 0.3% for MIL-125, the water flux increased from 62.5 L/m2 h to 74.9 and 85.0 L/m2 h, respectively. NaCl rejection was not significantly affected (UiO-66 or slightly improved (MIL-125 by embedding these NPs, always at >98.5% as tested at 2000 ppm salt concentration and 300 psi transmembrane pressure. The results from this study demonstrate that it is promising to apply MOFs NPs to enhance the TFC membrane performance for desalination.

  19. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  20. Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum

    International Nuclear Information System (INIS)

    Matsubara, Eriko; Harada, Kouji; Inoue, Kayoko; Koizumi, Akio

    2006-01-01

    PFOS and PFOA are ubiquitous contaminants in the environment. We investigated the effects of fluorochemicals on calcium currents in Paramecium caudatum using its behavioral changes. Negatively charged amphiphiles prolonged backward swimming (BWS) of Paramecium. PFOS significantly prolonged BWS, while PFOA was less potent (EC 5 : 29.8 ± 4.1 and 424.1 ± 124.0 μM, respectively). The BWS prolongation was blocked by cadmium, indicating that the cellular calcium conductance had been modified. The positively charged amphiphile FOSAPrTMA shortened BWS (EC 5 : 19.1 ± 17.3). Nonionic amphiphiles did not affect BWS. The longer-chain perfluorinated carboxylates PFNA and PFDA were more potent than PFOA (EC 5 : 98.7 ± 20.1 and 60.4 ± 10.1 μM, respectively). However, 1,8-perfluorooctanedioic acid and 1,10-perfluorodecanedioic acid did not prolong BWS. The critical micelle concentration (CMC) and BWS prolongation for negatively charged amphiphiles showed a clear correlation (r 2 = 0.8008, p < 0.001). In summary, several perfluorochemicals and PFOS and PFOA had similar effects in Paramecium, while chain length, CMC, and electric charge were major determinants of BWS duration

  1. Wet deposition of poly- and perfluorinated compounds in Northern Germany

    International Nuclear Information System (INIS)

    Dreyer, Annekatrin; Matthias, Volker; Weinberg, Ingo; Ebinghaus, Ralf

    2010-01-01

    Twenty precipitation samples were taken concurrently with air samples at a northern German monitoring site over a period of 7 months in 2007 and 2008. Thirty four poly- and perfluorinated compounds (PFC) were determined in rain water samples by solid phase extraction and HPLC-MS/MS analysis. Seventeen compounds were detected in rain water with ΣPFC concentrations ranging from 1.6 ng L -1 to 48.6 ng L -1 . Perfluorooctanoate (PFOA) and perfluorobutanate (PFBA) were the compounds that were usually observed in highest concentrations. Calculated ΣPFC deposition rates were between 2 and 91 ng m -2 d -1 . These findings indicate that particle phase PFC are deposited from the atmosphere by precipitation. A relationship between PFC wet deposition and air concentration may be established via precipitation amounts. Trajectory analysis revealed that PFC concentration and deposition estimates in precipitation can only be explained if a detailed air mass history is considered. - Information on air mass history, meteorological conditions, and distribution of PFC sources is necessary to understand and estimate PFC concentrations and wet deposition.

  2. Electrochromic nanocomposite films

    Science.gov (United States)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  3. Methods of making membrane electrode assemblies

    Science.gov (United States)

    Kim, Yu Seung; Lee, Kwan -Soo; Rockward, Tommy Q. T.

    2015-07-28

    Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150.degree. C. or less and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.

  4. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids.

    Science.gov (United States)

    Mahapatra, Cecon T; Damayanti, Nur P; Guffey, Samuel C; Serafin, Jennifer S; Irudayaraj, Joseph; Sepúlveda, Maria S

    2017-06-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO - , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds

    Science.gov (United States)

    Heilmann, Carsten; Weihe, Pal; Nielsen, Flemming; Mogensen, Ulla B.; Budtz-Jørgensen, Esben

    2017-01-01

    Background: Postnatal exposure to perfluorinated alkylate substances (PFASs) is associated with lower serum concentrations of specific antibodies against certain childhood vaccines at 7 y. Objectives: We prospectively followed a Faroese birth cohort to determine these associations at 13 y. Methods: In 516 subjects (79% of eligible cohort members) who were 13 years old, serum concentrations of PFASs and of antibodies against diphtheria and tetanus were measured and were compared with data from the previous examination at 7 y. Multiple regression analyses and structural equation models were applied to determine the association between postnatal PFAS exposures and antibody concentrations. Results: Serum concentrations of PFASs and antibodies generally declined from 7 y to 13 y. However, 68 subjects had visited the emergency room and had likely received a vaccination booster, and a total of 202 children showed higher vaccine antibody concentrations at 13 y than at 7 y. Therefore, separate analyses were conducted after exclusion of these two subgroups. Diphtheria antibody concentrations decreased at elevated PFAS concentrations at 13 y and 7 y; the associations were statistically significant for perfluorodecanoate (PFDA) at 7 y and for perfluorooctanoate (PFOA) at 13 y, both suggesting a decrease by ∼25% for each doubling of exposure. Structural equation models showed that a doubling in PFAS exposure at 7 y was associated with losses in diphtheria antibody concentrations at 13 y of 10–30% for the five PFASs. Few associations were observed for anti-tetanus concentrations. Conclusions: These results are in accord with previous findings of PFAS immunotoxicity at current exposure levels. https://doi.org/10.1289/EHP275 PMID:28749778

  6. Development of multifunctional fluoroelastomers based on nanocomposites

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto

    2015-01-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  7. Perfluorinated alkylated substances in vegetables collected in four European countries; raw and processed products

    NARCIS (Netherlands)

    Herzke, D.; Huber, S.; Bervoets, L.; D'Hollander, W.; Hajslova, J.; Pulkrabova, J.; Brambilla, G.; De Filippis, S.P.; Klenow, S.; Heinemeyer, G.; de Voogt, P.

    2013-01-01

    The human diet is recognised as one possible major exposure route to the overall perfluorinated alkylated substances (PFAS) burden of the human population, resulting directly from contamination of dietary food items, as well as migration of PFAS from food packaging or cookware. Most European

  8. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.S.; de Voogt, P.

    2014-01-01

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and

  9. Determinants of serum levels of perfluorinated alkyl acids in Danish pregnant women

    DEFF Research Database (Denmark)

    Bjerregaard-Olesen, Christian; Bach, Cathrine C; Long, Manhai

    2016-01-01

    Humans are exposed to perfluorinated alkyl acids (PFAAs) from food, drinking water, air, dust, and consumer products. PFAAs are persistent and bio-accumulative. In the present study, we aimed to establish how the serum levels of PFAAs differ according to age, pre-pregnancy body mass index (BMI...... consumption than any other PFAAs measured....

  10. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  11. Perfluorinated alkylated acids in groundwater and drinking water: Identification, origin and mobility

    NARCIS (Netherlands)

    Eschauzier, C.; Raat, K.J.; Stuyfzand, P.J.; de Voogt, P.

    2013-01-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main

  12. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility

    NARCIS (Netherlands)

    Eschauzier, C.; Raat, K.J.; Stuijfzand, P.J.; de Voogt, P.

    2013-01-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main

  13. Perfluorinated substances in human food and other sources of human exposure

    NARCIS (Netherlands)

    D'Hollander, W.; de Voogt, P.; De Coen, W.; Bervoets, L.; de Voogt, P.

    2010-01-01

    Perfluorinated compounds (PFCs) are ubiquitous environmental contaminants, which persist and may bioaccumulate through the food chain (Haukås et al. 2007; Martin et al. 2004b; Taniyasu et al. 2003). As a consequence, several PFCs have been detected in different biota worldwide. In recent years, an

  14. Exposure to perfluorinated compounds and human semen quality in arctic and European populations

    NARCIS (Netherlands)

    Toft, G.; Jönsson, B.A.G.; Lindh, C.H.; Giwercman, A.; Spano, M.; Heederik, D.J.J.; Lenters, V.C.; Vermeulen, R.C.H.; Rylander, L.; Pedersen, H.S.; Ludwicki, J.K.; Zviezdai, V.; Bonde, J.P.

    2012-01-01

    BACKGROUND Perfluorinated compounds (PFCs) have been suspected to adversely affect human reproductive health. The aim of this study was to investigate the associations between PFC exposure and male semen quality. METHODS PFCs were measured in serum from 588 partners of pregnant women from Greenland,

  15. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa)

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.; de Voogt, P.

    2012-01-01

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven

  16. [Commentary on] Serum vaccine antibody concentrations in children exposed to perfluorinated compounds

    DEFF Research Database (Denmark)

    Grandjean, P.; Andersen, Elisabeth Wreford; Budtz-Jorgenser

    2012-01-01

    The article presents insights into a study which examined the role of perfluorinated compounds (PFC) in antibody response to childhood vaccinations. The prevalence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) which were mentioned in the study was reported by the U...

  17. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of...

  18. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E

    2003-01-01

    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  19. Occurrence investigation of perfluorinated compounds in surface water from East Lake (Wuhan, China) upon rapid and selective magnetic solid-phase extraction

    Science.gov (United States)

    Zhou, Yusun; Tao, Yun; Li, Huarong; Zhou, Tingting; Jing, Tao; Zhou, Yikai; Mei, Surong

    2016-12-01

    Using a novel magnetic nanocomposite as adsorbent, a convenient and effective magnetic solid-phase extraction (MSPE) procedure was established for selective separation and concentration of nine perfluorinated compounds (PFCs) in surface water sample. Then an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system was employed for detection of PFCs. Good linearity of the developed analytical method was in the range of 0.5-100 ng L-1 with R2 > 0.9917, and the limits of detection (LODs) ranged from 0.029 to 0.099 ng L-1. At three fortified concentrations of 0.5, 5 and 50 ng L-1, the spiked recoveries of PFCs were in the range of 90.05-106.67% with RSDs < 12.62% (n = 3). The proposed analytical method was applied for determination of PFCs in surface water from East Lake (Wuhan, China). The total concentrations of nine PFCs ranged from 30.12 to 125.35 ng L-1, with perfluorooctane sulfonate and perfluoroctanoic acid as the most prevalent PFCs, and the greatest concentrations of PFCs were observed in Niuchao lakelet. The concentrations of the PFCs (C ≥ 11) were mostly less than the limits of quantification (LOQs), attributed to the possibility that the more hydrophobic long-chain PFCs are potential to accumulate in sediment and aquatic biota.

  20. Determination of an Effective Perfluorinated Compounds (PFCs) Oxidation Method

    Science.gov (United States)

    Siriwardena, D. P.; Crimi, M.; Holsen, T.; Bellona, C.

    2014-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a stable synthetic class of chemicals ubiquitously spread in environmental media (i.e. air, soil, biota, surface water and groundwater). The substances' strong polar carbon-fluorine bonds and their high thermal and chemical stability make them resistant to biological, chemical, and physical degradation. The purpose of this research is to identify the most effective oxidation method to treat perfluorinated compounds (PFCs) and their by-products that is suitable for in situ application. The laboratory oxidation study focuses on the more commonly detected and studied long-chain (C-8) PFAS; perfluorooctanoic acids (PFOA) and perfluorooctane sulfonic acid (PFOS). Existing research evaluating oxidizing treatment effectiveness on perfluoroalkyl sulfoinoic acids (PFSAs) is limited. A review of the literature and results from preliminary studies indicate that activated persulfate and catalyzed hydrogen peroxide propagation (CHP) reactions appear to be promising oxidants for PFOA. It has been demonstrated that the reactivity of superoxide in water increases in the presence of hydrogen peroxide (H2O2) and solids. Superoxide generated in CHP reactions degrades PFOA seemingly similar to superoxide-mediated destruction of the perhalogenated compounds.The goal of this study is to look at conditions that promote generation of superoxide and look at PFASs treatment effectiveness and byproduct generation. CHP reactions are conducted with varying amount of H2O2 and Fe(III) to determine the optimum conditions for PFC degradation. Results will be compared to those of another experiment using manganese dioxide as a CHP catalyst with varied H2O2 concentration to generate superoxide to degrade PFASs. Activated persulfate conditions to be compared include alkaline pH activation, heat activation, and dual oxidation (combined H2O2 and persulfate ). This presentation will focus on a comparison of oxidation effectiveness under the

  1. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, Olga S.; Stasinakis, Athanasios S., E-mail: astas@env.aegean.gr

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4–C14, C16, C18 carboxylates; C4–C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and

  2. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment

    International Nuclear Information System (INIS)

    Arvaniti, Olga S.; Stasinakis, Athanasios S.

    2015-01-01

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4–C14, C16, C18 carboxylates; C4–C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and

  3. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate.

    Science.gov (United States)

    Figueiredo, Ana R P; Figueiredo, Andrea G P R; Silva, Nuno H C S; Barros-Timmons, Ana; Almeida, Adelaide; Silvestre, Armando J D; Freire, Carmen S R

    2015-06-05

    Antimicrobial bacterial cellulose/poly(2-aminoethyl methacrylate) (BC/PAEM) nanocomposites were prepared by in situ radical polymerization of 2-aminoethyl methacrylate, using variable amounts of N,N-methylenebis(acrylamide) (MBA) as cross-linker. The obtained nanocomposites were characterized in terms of their structure, morphology, thermal stability, mechanical properties and antibacterial activity. The ensuing composite membranes were significantly more transparent than those of pure BC and showed improved thermal and mechanical properties. The antibacterial activity of the obtained nanocomposites was assessed towards a recombinant bioluminescent Escherichia coli and only the non-crosslinked nanocomposite (BC/PAEM) proved to have antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS

    NARCIS (Netherlands)

    Esperza, X.; Moyano, E.; de Boer, J.; Galceran, M.T.; van Leeuwen, S.P.J.

    2011-01-01

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases.

  5. Associations of in Utero Exposure to Perfluorinated Alkyl Acids with Human Semen Quality and Reproductive Hormones in Adult Men

    DEFF Research Database (Denmark)

    Vested, Anne; Ramlau-Hansen, Cecilia Høst; Olsen, Sjurdur Frodi

    2013-01-01

    Perfluorinated alkyl acids (PFAAs), persistent chemicals with unique water-, dirt-, and oil-repellent properties, are suspected of having endocrine-disrupting activity. The PFAA compounds perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are found globally in humans; because...

  6. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  7. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  8. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material.

    Science.gov (United States)

    Zheng, Junping; Su, Qiang; Wang, Chen; Cheng, Gang; Zhu, Ran; Shi, Jin; Yao, Kangde

    2011-04-01

    Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Poly (methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization with dodecylamine used as MMT-modifier. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structures of the nanocomposites. Cytotoxicity test, hemolysis test, acute systemic toxicity test, oral mucous membrane irritation test, guinea-pig maximization test and mouse bone-marrow micronucleus test were used to evaluate the biocompatibility of PMMA/MMT nanocomposites. The results indicated that an exfoliated nanocomposite was achieved, and the resulting nanocomposites exhibited excellent biocompatibility as denture base material and had potential application in dental materials.

  9. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  10. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers.

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-04-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  11. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  12. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection.

    Science.gov (United States)

    Mei, Lin; Lu, Zhentan; Zhang, Xinge; Li, Chaoxing; Jia, Yanxia

    2014-09-24

    Herein, a nontoxic nanocomposite is synthesized by reduction of silver nitrate in the presence of a cationic polymer displaying strong antimicrobial activity against bacterial infection. These nanocomposites with a large concentration of positive charge promote their adsorption to bacterial membranes through electrostatic interaction. Moreover, the synthesized nanocomposites with polyvalent and synergistic antimicrobial effects can effectively kill both Gram-positive and Gram-negative bacteria without the emergence of bacterial resistance. Morphological changes obtained by transmission electron microscope observation show that these nanocomposites can cause leakage and chaos of intracellular contents. Analysis of the antimicrobial mechanism confirms that the lethal action of nanocomposites against the bacteria started with disruption of the bacterial membrane, subsequent cellular internalization of the nanoparticles, and inhibition of intracellular enzymatic activity. This novel antimicrobial material with good cytocompatibility promotes healing of infected wounds in diabetic rats, and has a promising future in the treatment of other infectious diseases.

  13. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry

    International Nuclear Information System (INIS)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2010-01-01

    We present the latest advances in distributed strain measurement in perfluorinated polymer optical fibres (POFs) using backscatter techniques. Compared to previously introduced poly(methyl methacrylate) POFs, the measurement length can be extended to more than 500 m at improved spatial resolution of a few centimetres. It is shown that strain in a perfluorinated POF can be measured up to 100%. In parallel to these investigations, the incoherent optical frequency domain reflectometry (OFDR) technique is introduced to detect strained fibre sections and to measure distributed length change along the fibre with sub-millimetre resolution by applying a cross-correlation algorithm to the backscatter signal. The overall superior performance of the OFDR technique compared to the optical time domain reflectometry in terms of accuracy, dynamic range, spatial resolution and measurement speed is presented. The proposed sensor system is a promising technique for use in structural health monitoring applications where the precise detection of high strain is required

  14. Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations

    DEFF Research Database (Denmark)

    Lindh, Christian H; Rylander, Lars; Toft, Gunnar

    2012-01-01

    Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are used in large quantities. They are persistent and found in measurable levels in human serum around the world. They have been associated with developmental, hepatic, and carcinogenic ef...... in Ukraine was rather low. In the Greenlandic Inuit population, intake of seafood, tea, age and area of living were significant determinants of PFOS concentrations and explained about 22% of the variation. For the other populations no strong determinants were found....

  15. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  16. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Nikolaos, Thomaidis S.; Athanasios, Stasinakis S.

    2014-01-01

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four ...

  17. Interaction of alkylphenolic and perfluorinated compounds with sewage sludges and soils

    OpenAIRE

    Milinovic, Jelena

    2014-01-01

    [eng] In this doctoral thesis the interaction of emergent organic pollutants, such as alkylphenolic and perfluorinated compounds (APCs and PFCs, respectively) with sewage sludge and soil samples was studied. These two families of organic compounds were selected because of their ubiquitous presence and persistence in environmental matrices and to know mechanisms responsible for their interaction. With respect to the behaviour of APCs in sewage sludges, concretely octylphenol (OP), nonylphenol ...

  18. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Heilmann, Carsten; Weihe, Pal

    2017-01-01

    Perfluorinated alkylate substances (PFASs) are highly persistent and may cause immunotoxic effects. PFAS-associated attenuated antibody responses to childhood vaccines may be affected by PFAS exposures during infancy, where breastfeeding adds to PFAS exposures. Of 490 members of a Faroese birth...... the notion that the developing adaptive immune system is particularly vulnerable to immunotoxicity during infancy. This vulnerability appears to be the greatest during the first 6 months after birth, where PFAS exposures are affected by breast-feeding....

  19. Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan.

    Science.gov (United States)

    Lin, Yen-Ching; Lai, Webber Wei-Po; Tung, Hsin-hsin; Lin, Angela Yu-Chen

    2015-05-01

    In this work, we investigated the emerging pollutants in Taiwanese groundwater for the first time and correlated their presence with possible contamination sources. Fifty target pharmaceuticals and perfluorinated chemicals in groundwater were mostly present at ng L(-1) concentrations, except for 17α-ethynylestradiol, sulfamethoxazole, and acetaminophen (maximums of 1822, 1820, and 1036 ng L(-1), respectively). Perfluorinated compounds were detected with the highest frequencies in groundwater at almost all of the sample sites, especially short-chained perfluorinated carboxylates, which were easily transferred to the groundwater. The results indicate that the compounds found to have high detection frequencies and concentrations in groundwater are similar to those found in other countries around the world. Most common pharmaceuticals that contain hydrophilic groups, such as sulfonamide antibiotics and caffeine, are easily transported through surface waters to groundwater. The results also indicated that the persistent natures of emerging contaminants with high detection frequencies in surface water and groundwater, such as perfluorooctanesulfonate (risk quotient >1), caffeine, and carbamazepine, should be further studied and evaluated.

  20. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    Science.gov (United States)

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  1. Nanocomposite Membrane via Magnetite Nanoparticle Assembly

    KAUST Repository

    Xie, Yihui

    2012-01-01

    discussions and suggestions. I also want to extend my gratitude to the staff from the KAUST Core Lab for Advanced Nanofabrication, Imaging and Characterization, especially Dr. Ali Reza Behzad, Dr. Rachid Sougrat, and Dr. Long Chen, for their assistance

  2. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  3. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  4. Membrane alterations following toxic chemical insult. Research progress report No. 3 (Final), 15 July 1984-31 January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Liss, A.

    1988-03-10

    A procaryotic cell system was developed that can be used to determine the toxic action of chemicals acting at the level of the eucaryotic or procaryotic cytoplasmic membrane. Cell wall-less microbes known as mycoplasmas were used. In this current study, two perfluorinated fatty acids (CB and C10) were found to inhibit the growth of the test mycoplasmas. Two apparent activities, cytotoxicity and cytolysis, were observed. At high concentrations (>10 mM), a detergent-like action was noted. At low concentrations (<10 mM), cell death was observed without detectable cell lysis. Altering the cell membrane (the presumed target of the toxic compounds) resulted in altered levels to toxicity. Similar results were obtained when human or murine B-cells were used as the target organism. The toxic action of the perfluorinated fatty acids apparently involves some interaction with the membrane of the cells being treated.

  5. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  6. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed; Li, Bodong; Kosel, Jü rgen

    2016-01-01

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field

  7. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  8. Determination of perfluorinated sulfonate and perfluorinated acids in tissues of free-living European beaver (castor fiber L.) by d-SPE/ micro-UHPLC-MS/MS.

    Science.gov (United States)

    Surma, Magdalena; Giżejewski, Zygmunt; Zieliński, Henryk

    2015-10-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the main representatives of an rising class of persistent organic pollutants (POPs), perfluorochemicals (PFCs). In this study, determination of selected PFCs concentration in liver, brain, tail, adipose and peritoneum tissues of free-living European beaver (Castor fiber L.) was addressed. Tissue samples, collected from beavers living in Masurian Lakeland (NE Poland), were analyzed by dispersive Solid Phase Extraction (d-SPE) with micro-UHPLC-MS/MS system. In a group of ten selected pefrluorinated compounds only two perfluorinated acids (PFOA and PFNA) and one perfluorinated sulfonate (PFOS) were quantified. PFOA was detected in all analysed tissue samples in both female and male beavers in a range from 0.55 to 0.98ngg(-1) ww whereas PFOS was identified in all analyzed female beaver tissues and only in liver, subcutaneous adipose and peritoneum tissues of male beavers at the concentration level from 0.86 to 5.08ngg(-1) ww. PFNA was only identified in female beaver tissues (liver, subcutaneous adipose and peritoneum) in a range from 1.50 to 6.61ngg(-1) ww. This study demonstrated the bioaccumulation of PFCs in tissue samples collected from beavers living in area known as green lungs of Poland. The results provided in this study indicate for the increasing risk of PFCs occurrence in the environment and the level of PFCs in tissue of free-living European beavers may serve as bioindicator of environmental pollution by these compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs)

    DEFF Research Database (Denmark)

    Scheringer, Martin; Trier, Xenia; Cousins, Ian T.

    2014-01-01

    or more perfluorinated carbons, and their precursors. Because long-chain PFASs have been found to be persistent, bioaccumulative and toxic, they are being replaced by a wide range of fluorinated alternatives. We summarize key concerns about the potential impacts of fluorinated alternatives on human health...... and the environment in order to provide concise information for different stakeholders and the public. These concerns include, amongst others, the likelihood of fluorinated alternatives or their transformation products becoming ubiquitously present in the global environment; the need for more information on uses...

  10. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  11. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polycholorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1993-01-14

    I14JAN93 Annual Technical Report 15DEC91-1ý+JAN9 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Hepatic Metabolism of Perfluorinated Carboxylic Acids and G-FS...13. ABSTRACT (Maximum 200 words) This report describes our studies of the effects of perfluorooctanoic acid (PFOA) and perfluorodecanolc acid (PFDA) on...metabolism. 31 p NMR was used to examine the effects of PFDA. PFOA. and clofibrate (C LOF) in both rats and guinea pigs. A unique effect is revealed in

  12. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Stasinakis, Athanasios S.; Thomaidis , Nikolaos S.; Aloupi, Maria

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types of nanoscale zero-valent iron (nZVI). Batch experiments showed that an iron dose of 1 g•L-1 in the form of Mg-aminoclay (MgAC) coated nZVI, at an initial pH of 3.0 effectively removed 38 % to 96 % of individ...

  13. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types...... of the nZVI. A maximum removal was observed for all PFCs with high nZVI concentration, freshly synthesized nZVI, low pH and low temperature. A mass balance experiment with PFOS in a higher concentration of nZVI revealed that the removal was due to both sorption and degradation. Fluoride production...

  14. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Budtz-Joergensen, Esben

    2013-01-01

    BACKGROUND: Immune suppression may be a critical effect associated with exposure to perfluorinated compounds (PFCs), as indicated by recent data on vaccine antibody responses in children. Therefore, this information may be crucial when deciding on exposure limits. METHODS: Results obtained from...... follow-up of a Faroese birth cohort were used. Serum-PFC concentrations were measured at age 5 years, and serum antibody concentrations against tetanus and diphtheria toxoids were obtained at ages 7 years. Benchmark dose results were calculated in terms of serum concentrations for 431 children...

  15. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  16. Thermal Degradation of Nanocomposited PMMA/TiO2 Nanocomposites

    International Nuclear Information System (INIS)

    Hafizah, Nik Noor; Mamat, Mohamad Hafiz; Rusop, Mohamad; Said, Che Mohamad Som; Abidin, Mohd Hanafiah

    2013-01-01

    The polymer nanocomposite is a new choice to conventionally filled polymers. The lack of proper binding between the filler and the polymer can lead the decrease of the thermal and other properties of the nanocomposites. In this study, the nanocomposited PMMA/TiO 2 nanocomposites were prepared using sonication and solution casting method at different weight percent TiO 2 . The aims of adding TiO 2 in the PMMA is to study the effects of TiO 2 nanofiller on the thermal properties nanocomposites. FESEM results show the higher amounts of TiO 2 in PMMA increase the rough surface morphology of the samples. Further, the Raman results reveal that the TiO 2 nanofiller were successfully intercalated into the PMMA matrix. In addition, the thermal properties of nanocomposited PMMA/TiO 2 nanocomposites were increased with the addition of TiO 2 in the PMMA.

  17. Dynamic filtration and static adsorption of lead ions in aqueous solution by use of blended polysulfone membranes with nano size MCM-41 particles coated by polyaniline.

    Science.gov (United States)

    Toosi, Mohammad Reza; Emami, Mohammad Reza Sarmasti; Hajian, Sudeh

    2018-05-11

    MCM-41 mesopore was prepared by hydrothermal method and used for synthesis of polyaniline/MCM-41 nanocomposite via in situ polymerization. The nanocomposite was blended with polysulfone to prepare mixed matrix membrane in different content of nanocomposite by phase inversion method. Structural and surface properties of the samples were characterized by SEM, XRD, FTIR, AFM, TGA, BET, and zeta potential measurements. Effect of the nanocomposite content on the hydrophilicity, porosity, and permeability of the membrane was determined. Membrane performance was evaluated for removal of lead ions in dynamic filtration and static adsorption. The membranes were found as effective adsorptive filters for removal of lead ions via interactions between active sites of nanocomposite in membrane structure and lead ions during filtration. Results of batch experiments proved adsorptive mechanism of membranes for removal of lead ions with the maximum adsorption capacity of 19.6 mg/g.

  18. Conducting polyamine nanocomposites development

    International Nuclear Information System (INIS)

    Nascimento, R.C.; Maciel, T.C.G.L.; Guimaraes, M.J.O.C.; Garcia, M.E.F.

    2010-01-01

    Polymeric nanocomposites are hybrid materials formed by the combination of inorganic nanoparticles dispersed in a polymeric matrix with, at least, one dimension in the nanometer range. It was used as nanoparticles layered and tubular clay minerals, and its insertion and dispersion were conducted through the in situ polymerization technique. As the polymer matrix, it was utilized a polyamine, which, later, will be inserted in a polyacrylamide gel for the development of a compound that aggregates both main characteristics. The nanocomposites were prepared in different polymerization conditions (temperature, concentration and nanoparticle type) and characterized by XRD and FTIR. It was observed that regarding the polymerization conditions, the temperature had influence on the kind of material obtained and on the reaction speed; the type of nanoparticle affected its interaction with the polymer matrix, predominantly providing the formation of nanocomposites by the intercalation mechanism in the layered clay. (author)

  19. Association between perfluorinated compounds and time to pregnancy in a prospective cohort of Danish couples attempting to conceive

    DEFF Research Database (Denmark)

    Vestergaard, Sonja; Nielsen, Flemming; Andersson, Anne-Maria

    2012-01-01

    Perfluorinated chemicals (PFCs) have been widely used and have emerged as important food contaminants. A recent study on pregnant women suggested that PFC exposure was associated with a longer time to pregnancy (TTP). We examined the association between serum concentrations of PFCs in females...

  20. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    2018-06-01

    Full Text Available A novel Molecularly Imprinted Polymer (MIP able to bind perfluorinated compounds, combined with a surface plasmon resonance (SPR optical fiber platform, is presented. The new MIP receptor has been deposited on a D-shaped plastic optical fiber (POF covered with a photoresist buffer layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP sensor makes it possible to selectively detect the above compounds. In this work, we present the results obtained with perfluorooctanoate (PFOA compound, and they hold true when obtained with a perfluorinated alkylated substances (PFAs mixture sample. The sensor’s response is the same for PFOA, perfluorooctanesulfonate (PFOS or PFA contaminants in the C4–C11 range. We have also tested a sensor based on a non-imprinted polymer (NIP on the same SPR in a D-shaped POF platform. The limit of detection (LOD of the developed chemical sensor was 0.13 ppb. It is similar to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that it presents a better stability out of the native environment, very good reproducibility, low cost and, furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by functionalizing procedures.

  1. Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in Kinmen

    Directory of Open Access Journals (Sweden)

    Webber Wei-Po Lai

    2016-09-01

    Full Text Available Emerging contaminants have commonly been observed in environmental waters but have not been included in water quality assessments at many locations around the world. To evaluate the availability of reclaimed water in Kinmen, Taiwan, this study provides the first survey of the distribution of thirty-three pharmaceuticals and five perfluorinated chemicals in lake waters and water from local wastewater treatment plants (WWTPs. The results showed that the target emerging contaminants in Kinmen lakes were at trace ng/L concentrations. In addition, most of the target compounds were present in the Jincheng and Taihu WWTP influents at ng/L concentrations levels, of which 5 compounds (erythromycin-H2O (1340 ng/L, ibuprofen (1763 ng/L, atenolol (1634 ng/L, acetaminophen (2143 ng/L, and caffeine (3113 ng/L reached μg/L concentrations. The overall treatment efficiencies of the Jincheng and Taihu WWTPs with respect to these pharmaceuticals and perfluorinated chemicals were poor; half of the compounds were less than 50% removed. Five compounds (sulfamethoxazole, erythromycin-H2O, clarithromycin, ciprofloxacin and ofloxacin with risk quotient (RQ values > 1 in the effluent should be further investigated to understand their effects on the aquatic environment. Additional and advanced treatment units are found necessary to provide high-quality recycled water and sustainable water resources.

  2. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  3. Chitosan-based nanocomposites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-08-01

    Full Text Available , and hygiene devices. They thus represent a strong and emerging answer for improved and eco-friendly materials. This chapter reviews the recent developments in the area of chitosan-based nanocomposites, with a special emphasis on clay-containing nanocomposites...-sized mineral fillers like silica, talc, and clay are added to reduce the cost and improve chitosan’s performance in some way. However, the mechanical properties such as elongation at break and tensile strength of these composites decrease with the incorporation...

  4. Nafion titania nanotubes nanocomposite electrolytes for high-temperature direct methanol fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2012-01-01

    Full Text Available electrolytes membranes. This promotes to study the Nafion/TNTs nanocomposite membranes behaviour with the aim to improve Nafion properties such as fuel permeability and thermal and mechanical stability. Nafion, whose primary structure consists of acid... membrane properties, further investigations were carried out. In this study, the effects of TiO2 nanotubes on Nafion properties such as water uptake, thermal stability, methanol (MeOH) permeability, and ion conductivity were investigated...

  5. Smooth perfluorinated surfaces with different chemical and physical natures: their unusual dynamic dewetting behavior toward polar and nonpolar liquids.

    Science.gov (United States)

    Cheng, Dalton F; Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi

    2013-09-10

    The effects of surface chemistry and the mobility of surface-tethered functional groups of various perfluorinated surfaces on their dewetting behavior toward polar (water) and nonpolar (n-hexadecane, n-dodecane, and n-decane) liquids were investigated. In this study, three types of common smooth perfluorinated surfaces, that is, a perfluoroalkylsilane (heptadecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane, FAS17) monomeric layer, an amorphous fluoropolymer film (Teflon AF 1600), and a perfluorinated polyether (PFPE)-terminated polymer brush film (Optool DSX), were prepared and their static/dynamic dewetting characteristics were compared. Although the apparent static contact angles (CAs) of these surfaces with all probe liquids were almost identical to each other, the ease of movement of liquid drops critically depended on the physical (solidlike or liquidlike) natures of the substrate surface. CA hysteresis and substrate tilt angles (TAs) of all probe liquids on the Optool DSX surface were found to be much lower than those of Teflon AF1600 and FAS17 surfaces due to its physical polymer chain mobility at room temperature and the resulting liquidlike nature. Only 6.0° of substrate incline was required to initiate movement for a small drop (5 μL) of n-decane, which was comparable to the reported substrate TA value (5.3°) for a superoleophobic surface (θ(S) > 160°, textured perfluorinated surface). Such unusual dynamic dewetting behavior of the Optool DSX surface was also markedly enhanced due to the significant increase in the chain mobility of PFPE by moderate heating (70 °C) of the surface, with substrate TA reducing to 3.0°. CA hysteresis and substrate TAs rather than static CAs were therefore determined to be of greater consequence for the estimation of the actual dynamic dewetting behavior of alkane probe liquids on these smooth perfluorinated surfaces. Their dynamic dewettability toward alkane liquids is in the order of Optool DSX > Teflon AF1600

  6. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?

    Science.gov (United States)

    Yamazaki, Eriko; Falandysz, Jerzy; Taniyasu, Sachi; Hui, Ge; Jurkiewicz, Gabriela; Yamashita, Nobuyoshi; Yang, Yong-Liang; Lam, Paul K S

    2016-01-01

    Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain

  7. INHIBITION OF GAP JUNCTIONAL INTERCELLULAR COMMUNICATION BY PERFLUORINATED COMPOUNDS IN RAT LIVER AND DOLPHIN KIDNEY EPITHELIAL CELL LINES IN VITRO AND SPRAGUE-DAWLEY RATS IN VIVO

    Science.gov (United States)

    Abstract Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...

  8. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  9. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  10. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  11. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of perfluorinated carboxylic acids in fish fillet by micro-solid phase extraction, followed by liquid chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Lashgari, Maryam; Lee, Hian Kee

    2014-11-21

    In the current study, a simple, fast and efficient combination of protein precipitation and micro-solid phase extraction (μ-SPE) followed by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) was developed for the determination of perfluorinated carboxylic acids (PFCAs) in fish fillet. Ten PFCAs with different hydrocarbon chain lengths (C5-C14) were analysed simultaneously using this method. Protein precipitation by acetonitrile and μ-SPE by surfactant-incorporated ordered mesoporous silica were applied to the extraction and concentration of the PFCAs as well as for removal of interferences. Determination of the PFCAs was carried out by LC-MS/MS in negative electrospray ionization mode. MS/MS parameters were optimized for multiple reaction monitoring of the analytes. (13)C mass labelled PFOA as a stable-isotopic internal standard, was used for calibration. The detection limits of the method ranged from 0.97 ng/g to 2.7 ng/g, with a relative standard deviation of between 5.4 and 13.5. The recoveries were evaluated for each analyte and were ranged from 77% to 120%. The t-test at 95% confidence level showed that for all the analytes, the relative recoveries did not depend on their concentrations in the explored concentration range. The effect of the matrix on MS signals (suppression or enhancement) was also evaluated. Contamination at low levels was detected for some analytes in the fish samples. The protective role of the polypropylene membrane used in μ-SPE in the elimination of matrix effects was evaluated by parallel experiments in classical dispersive solid phase extraction. The results evidently showed that the polypropylene membrane was significantly effective in reducing matrix effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  14. Perfluorinated contaminants in fur seal pups and penguin eggs from South Shetland, Antarctica.

    Science.gov (United States)

    Schiavone, A; Corsolini, S; Kannan, K; Tao, L; Trivelpiece, W; Torres, D; Focardi, S

    2009-06-01

    Perfluorinated compounds (PFCs) have emerged as a new class of global environmental pollutants. In this study, the presence of perfluorochemicals (PFCs) in penguin eggs and Antarctic fur seals was reported for the first time. Tissue samples from Antarctic fur seal pups and penguin eggs were collected during the 2003/04 breeding season. Ten PFC contaminants were determined in seal and penguin samples. The PFC concentrations in seal liver were in the decreasing order, PFOS>PFNA>PFHpA>PFUnDA while in Adélie penguin eggs were PFHpA>PFUnDA>PFDA>PFDoDA, and in Gentoo penguin eggs were PFUnDA>PFOS>PFDoDA>PFHpA. The PFC concentrations differed significantly between seals and penguins (ppenguins (ppenguin eggs of 0.3 ng/g and 0.38 ng/g wet wt, respectively. PFCs detected in penguin eggs and seal pups suggested oviparous and viviparous transfer of PFOS to eggs and off-springs.

  15. Wear of Spur Gears Having a Dithering Motion and Lubricated with a Perfluorinated Polyether Grease

    Science.gov (United States)

    Krantz, Timothy; Oswald, Fred; Handschuh, Robert

    2007-01-01

    Gear contact surface wear is one of the important failure modes for gear systems. Dedicated experiments are required to enable precise evaluations of gear wear for a particular application. The application of interest for this study required evaluation of wear of gears lubricated with a grade 2 perfluorinated polyether grease and having a dithering (rotation reversal) motion. Experiments were conducted using spur gears made from AISI 9310 steel. Wear was measured using a profilometer at test intervals encompassing 10,000 to 80,000 cycles of dithering motion. The test load level was 1.1 GPa maximum Hertz contact stress at the pitch-line. The trend of total wear as a function of test cycles was linear, and the wear depth rate was approximately 1.2 nm maximum wear depth per gear dithering cycle. The observed wear rate was about 600 times greater than the wear rate for the same gears operated at high speed and lubricated with oil.

  16. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  17. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond......, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four PFCs using three different types of nanoscale zero-valent iron (nZVI) was investigated. Influencing...... factors such as, initial pH solution, reaction temperature and nZVI dosage were also studied. According to the results, target compounds were removed in the presence of chemically synthesized nZVI modified with Mg-aminoclay (MgAC) than under commercial iron powder and chemically synthesized uncoated n...

  18. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Heilmann, Carsten; Weihe, Pal

    2017-01-01

    Perfluorinated alkylate substances (PFASs) are highly persistent and may cause immunotoxic effects. PFAS-associated attenuated antibody responses to childhood vaccines may be affected by PFAS exposures during infancy, where breastfeeding adds to PFAS exposures. Of 490 members of a Faroese birth...... cohort, 275 and 349 participated in clinical examinations and provided blood samples at ages 18 months and 5 years. PFAS concentrations were measured at birth and at the clinical examinations. Using information on duration of breastfeeding, serum-PFAS concentration profiles during infancy were estimated......, with decreases by up to about 20% for each two-fold higher exposure, while associations for serum concentrations at ages 18 months and 5 years were weaker. Modeling of serum-PFAS concentration showed levels for age 18 months that were similar to those measured. Concentrations estimated for ages 3 and 6 months...

  19. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P.

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses...... prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post......-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after...

  20. Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells.

    Science.gov (United States)

    Teixeira, Ricardo G; Brás, Ana Rita; Côrte-Real, Leonor; Tatikonda, Rajendhraprasad; Sanches, Anabela; Robalo, M Paula; Avecilla, Fernando; Moreira, Tiago; Garcia, M Helena; Haukka, Matti; Preto, Ana; Valente, Andreia

    2018-01-01

    Three new compounds have been synthesized and completely characterized by analytical and spectroscopic techniques. The new bipyridine-perfluorinated ligand L1 and the new organometallic complex [Ru(η 5 -MeCp)(PPh 3 ) 2 Cl] (Ru1) crystalize in the centrosymmetric triclinic space group P1¯. Analysis of the phenotypic effects induced by both organometallic complexes Ru1 and [Ru(η 5 -MeCp)(PPh 3 )(L1)][CF 3 SO 3 ] (Ru2), on human colorectal cancer cells (SW480 and RKO) survival, showed that Ru2 has a potent anti-proliferative activity, 4-6 times higher than cisplatin, and induce apoptosis in these cells. Data obtained in a noncancerous cell line derived from normal colon epithelial cells (NCM460) revealed an intrinsic selectivity of Ru2 for malignant cells at low concentrations, showing the high potential of this compound as a selective anticancer agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation

    NARCIS (Netherlands)

    Ingole, Pravin G.; Baig, Muhammad Irshad; Choi, Wook; An, Xinghai; Choi, Won Kil; Lee, Hyung Keun

    2017-01-01

    To improve the water vapor/gas separation the hydroxylated TiO2(OH-TiO2) nanopartilces have been synthesized and surface of polysulfone (PSf) hollow fiber membrane (HFM) has been coated as thin film nanocomposite (TFN) membranes. To remove the water vapor from mixture gas, hollow fiber membrane has

  2. Perfluorinated carboxylates and sulfonates in open ocean waters of the Pacific and Atlantic oceans

    Energy Technology Data Exchange (ETDEWEB)

    Taniyasu, Sachi; Yamashita, Nobuyoshi; Horii, Yuichi [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kannan, K.; Sinclair, E. [Wadsworth Center, New York State Department of Health, Albany, CA (United States); Petrick, G. [Kiel Univ. (Germany). Inst. for Marine Research; Gamo, Toshitaka [Tokyo Univ. (Japan). Ocean Research Institute

    2004-09-15

    Environmentally stable perfluorinated compounds (PFCs) have appeared as a new class of global pollutants within the last four years. These compounds in general, and perfluorooctane sulfonate (PFOS) in particular, can elicit toxic effects in wildlife and humans. PFCs have unique physicochemical properties due to the highly persistent C-F bond of the non-polar moiety and exhibit a wide variety of volatility/ water solubility depending on the nature of the substituted polar moiety. Environmental kinetics of PFCs is very complex because of the unique characteristics and their wide applications in various products. It is clear that PFCs pollution is a global problem involving several international organizations such as OECD. We have reported the initial survey of open ocean pollution by PFCs in 2003. Our studies have shown that part per quadrillion (ppq) level analysis of PFCs is necessary to obtain reliable information of open ocean pollution. We have developed reliable analytical and sampling method for ultra-trace level analysis of PFCs that is applicable to global survey of open ocean pollution. Analysis of PFCs in open ocean waters is challenging because of the need for ppq level analysis and no earlier studies have reported such a sensitive method. There were two approaches to enable trace level analysis of PFCs, namely, to decrease the blank and to solve co-elution problem. We have tested low blank solid phase extraction method and improvements in the analytical procedures and instrumentation, the blank/background levels of target perfluorinated acids were reduced significantly. Field blanks containing 800 mL of HPLC-grade water taken in a polypropylene bottle were transported to sampling locations. Two hundred microliter of sodium thiosulfate solution has been added to the field blanks. Although the concentrations of target fluorochemicals in field blanks were similar to those in procedural blanks in most cases, any sample sets that were found to have notable

  3. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web

    International Nuclear Information System (INIS)

    Xu, Jian; Guo, Chang-Sheng; Zhang, Yuan; Meng, Wei

    2014-01-01

    In this study, the bioaccumulation of perfluorinated compounds from a food web in Taihu Lake in China was investigated. The organisms included egret bird species, carnivorous fish, omnivorous fish, herbivorous fish, zooplankton, phytoplankton, zoobenthos and white shrimp. Isotope analysis by δ 13 C and δ 15 N indicated that the carnivorous fish and egret were the top predators in the studied web, occupying trophic levels intermediate between 3.66 and 4.61, while plankton was at the lowest trophic level. Perfluorinated carboxylates (PFCAs) with 9–12 carbons were significantly biomagnified, with trophic magnification factors (TMFs) ranging from 2.1 to 3.7. The TMF of perfluorooctane sulfonate (PFOS) (2.9) was generally comparable to or lower than those of the PFCAs in the same food web. All hazard ratio (HR) values reported for PFOS and perfluorooctanoate (PFOA) were less than unity, suggesting that the detected levels would not cause any immediate health effects to the people in Taihu Lake region through the consumption of shrimps and fish. -- Highlights: • Biomagnification of PFCs in the food web of a eutrophic freshwater lake was studied. • Carnivorous fish and egret were the top predators while plankton was at the lowest trophic level. • PFCAs with 9–12 carbons were significantly biomagnified. • TMF of PFOS was comparable to or lower than those of the PFCAs in the same food web. • PFOS and PFOA would not cause health effects to the people via diet consumption. -- PFCs were found to be bioaccumulated and biomagnified in a food web from a eutrophic freshwater lake in subtropical area

  4. (BS-Mn) nanocomposite

    African Journals Online (AJOL)

    Bamboo supported manganese (BS-Mn) nanocomposite was prepared in a single pot system via bottom-up approach using a chemical reduction method. Langmuir surface area, BET surface area, and Single pore surface area were 349.70 m2/g, 218.90 m2/g, and 213.50 m2/g, respectively. The pore size (24.34 Ȧ); pore ...

  5. Multilayer graphene rubber nanocomposites

    Science.gov (United States)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  6. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  7. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, L.A., E-mail: laura.tamayo@usach.cl [Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Zapata, P.A. [Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vejar, N.D.; Azócar, M.I.; Gulppi, M.A. [Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Zhou, X.; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester, M13 9PL England (United Kingdom); Rabagliati, F.M. [Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); and others

    2014-07-01

    Since infection is a major cause of death in a patient whose immune responses have been compromised (immunocompromised patient), considerable attention has been focused on developing materials for the prevention of infections. This has been directed primarily at suppressing or eliminating the host's endogenous microbial burden and decreasing the acquisition of new organisms. In this study, the antibacterial properties of two nanocomposites, polyethylene modified with silver nanoparticles (PE-AgNps) or copper nanoparticles (PE-CuNps), against Listeria monocytogenes have been investigated. In order to elucidate the antibacterial mechanism, specifically whether this mechanism corresponds to bactericidal or bacteriolytic activities, we have determined the extent of release of metal ions (Ag{sup +} and Cu{sup 2+}) and, also, the morphology of the bacteria. The metal ion release from nanocomposites was followed by inductively coupled plasma spectrometry and the morphology of the bacteria was revealed through examination of ultramicrotomed sections of bacteria in a transmission electron microscope. The study of metal ion release from the nanocomposites shows that for both nanocomposites the amount of ions released varies with time, which initially displays a linear behavior until an asymptotic behavior is reached. Further, TEM images show that silver nanoparticles (AgNps) and copper nanoparticles (CuNps), which are released from the nanocomposites, can penetrate to the cell wall and the plasma membrane of bacteria. Resulting morphological changes involve separation of the cytoplasmic membrane from the cell wall, which is known to be an effect of plasmolysis. It was revealed that the antibacterial abilities of the two nanocomposites against L. monocytogenes are associated with both bactericidal and bacteriolytic effects. - Highlights: • Nanocomposites showed excellent antibacterial activity against L. monocytogenes. • The biocide abilities of nanocomposites

  8. Exploit the Bandwidth Capacities of the Perfluorinated Graded Index Polymer Optical Fiber for Multi-Services Distribution

    Directory of Open Access Journals (Sweden)

    Paul Alain Rolland

    2011-06-01

    Full Text Available The study reported here deals with the exploitation of perfluorinated graded index polymer optical fiber bandwidth to add further services in a home/office network. The fiber properties are exhibited in order to check if perfluorinated graded index plastic optical fiber (PFGI-POF is suitable to support a multiplexing transmission. According to the high bandwidth length of plastic fibers, both at 850 nm and 1,300 nm, the extension of the classical baseband existing network is proposed to achieve a dual concept, allowing the indoor coverage of wireless signals transmitted using the Radio over Fiber technology. The simultaneous transmission of a 10 GbE signal and a wireless signal is done respectively at 850 nm and 1,300 nm on a single plastic fiber using wavelength division multiplexing commercially available devices. The penalties have been evaluated both in digital (Bit Error Rate measurement and radiofrequency (Error Vector Magnitude measurement domains.

  9. PFAS in paper and board for food contact - options for risk management of poly- and perfluorinated substances

    DEFF Research Database (Denmark)

    Trier, Xenia; Taxvig, Camilla; Rosenmai, Anna Kjerstine

    Poly- and perfluorinated alkyl substances (PFAS) are used in paper and board food contact materials (FCMs) and they have been found to be highly persistent, bioaccumulative and toxic. The purpose of the Nordic workshop and of this report is to:* create an overview of the use of PFAS in FCMs...... for analysing and regulating the substances are available* discuss the possibility and structure of national regulations or Nordic recommendations for PFAS in FCMs of paper and board. Risk management to reduce the total content of organically bound fluorine in paper and board FCMs is supported. The given report...... is published in continuation of a Nordic workshop on January 28th -29th 2015 on poly- and perfluorinated substances (PFAS) in food contact materials. Representatives from EU MS countries, US FDA, Canada and China, as well as manufacturers, retailers, compliance testing laboratories and academia were present...

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  11. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    OpenAIRE

    Abdalla H. Karoyo; Lee D. Wilson

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive u...

  12. Discharge of perfluorinated compounds from rivers and their influence on the coastal seas of Hyogo prefecture, Japan

    International Nuclear Information System (INIS)

    Takemine, Shusuke; Matsumura, Chisato; Yamamoto, Katsuya; Suzuki, Motoharu; Tsurukawa, Masahiro; Imaishi, Hiromasa; Nakano, Takeshi; Kondo, Akira

    2014-01-01

    The aim of this study was to investigate 12 perfluorinated compounds (PFCs) including perfluorinated carboxylates (C4–C12) and perfluorinated alkyl sulfonates (C4, C6, and C8) in river and seawater samples to determine contamination levels in the aquatic environment of Hyogo prefecture, Japan. High levels of perfluorohexanoic acid (PFHxA; 2300–16,000 ng/L) were detected in the Samondogawa River at Tatsumi Bridge downstream of a PFC production facility; this location also had the highest mass flow rate of PFCs (3900–29,000 kg/y). Widespread contamination of coastal waters was confirmed with PFHxA as the dominant compound. Perfluorooctanoic acid was also prevalent in coastal waters. The concentration of PFHxA in coastal seawater and the distance from the mouth of the Samondogawa River were inversely related. This discharge of high concentrations of PFHxA from the Samondogawa River may have affected concentrations of PFCs in Osaka Bay. -- Highlights: • High perfluorohexanoic acid concentration was detected in the Samondogawa River. • The mass flow rate of PFCs in this river section was 3900–29,000 kg/y. • Perfluorohexanoic acid was the dominant compound at all seawater sampling sites. • Perfluorohexanoic acid from the Samondogawa River may have affected Osaka Bay. -- Discharge of perfluorohexanoic acid from the Samondogawa River may have affected Osaka Bay

  13. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica

    International Nuclear Information System (INIS)

    Llorca, Marta; Farré, Marinella; Tavano, Máximo Sebastián; Alonso, Bruno; Koremblit, Gabriel; Barceló, Damià

    2012-01-01

    In this study, the presence of 18 perfluorinated compounds was investigated in biota and environmental samples from the Antarctica and Tierra de Fuego, which were collected during a sampling campaign carried out along February and March 2010. 61 samples were analysed including fish, superficial soils, guano, algae, dung and tissues of Papua penguin by liquid chromatography coupled to tandem mass spectrometry. The concentrations of PFCs were ranging from 0.10 to 240 ng/g for most of the samples except for penguin dung, which presented levels between 95 and 603 ng/g for perfluorooctane sulfonate, and guano samples from Ushuaia, with concentration levels of 1190–2480 ng/g of perfluorohexanoic acid. PFCs acids presented, in general, the highest levels of concentration and perfluorooctanesulfonate was the most frequently found compound. The present study provides a significant amount of results, which globally supports the previous studies, related to the transport, deposition, biodegradation and bioaccumulation patterns of PFCs. - Highlights: ► 61 samples from the Antarctica and Tierra de Fuego analysed for the presence of 18 perfluorinated compounds. ► Acid compounds presented the highest levels of concentration and perfluorooctane sulfonate was the most frequently found. ► Concentrations in algae much higher than those in soils. ► Data supporting existing models for the transport, deposition, biodegradation and bioaccumulation patterns are presented. - 18 perfluorinated compounds assessed in biota and environmental samples from Tierra del Fuego and the Antarctica. Concentrations related to Compounds properties.

  14. Determination of perfluorinated compounds in fish fillet homogenates: method validation and application to fillet homogenates from the Mississippi River.

    Science.gov (United States)

    Malinsky, Michelle Duval; Jacoby, Cliffton B; Reagen, William K

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100±13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Determination of perfluorinated compounds in fish fillet homogenates: Method validation and application to fillet homogenates from the Mississippi River

    International Nuclear Information System (INIS)

    Malinsky, Michelle Duval; Jacoby, Cliffton B.; Reagen, William K.

    2011-01-01

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100 ± 13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented.

  16. Determination of perfluorinated compounds in fish fillet homogenates: Method validation and application to fillet homogenates from the Mississippi River

    Energy Technology Data Exchange (ETDEWEB)

    Malinsky, Michelle Duval, E-mail: mmalinsky@mmm.com [3M Environmental Laboratory, 3M Center, Building 0260-05-N-17, St. Paul, MN 55144-1000 (United States); Jacoby, Cliffton B.; Reagen, William K. [3M Environmental Laboratory, 3M Center, Building 0260-05-N-17, St. Paul, MN 55144-1000 (United States)

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100 {+-} 13% with a precision (%RSD) {<=}18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented.

  17. Nafion Titania Nanotubes Nanocomposite Electrolytes for High-Temperature Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nonhlanhla Precious Cele

    2012-01-01

    Full Text Available Nafion-based nanocomposite membranes containing various amounts of titania nanotubes (TNTs as an inorganic filler have been prepared using melt-mixing method and have been investigated for proton exchange membrane applications. The one-dimensional TNTs have been prepared from potassium hydroxide using hydrothermal route and conventional heating. Nafion R1100 in a protonated form was used, and TNT contents were in a range of 0.5–2.0 wt%. The acid-treated composite membranes, at lowest inorganic additive content, exhibited improved properties in terms of thermal stability and methanol (MeOH permeability. The best performing nanocomposite was the membrane containing only 0.5 wt% TNTs showing ionic conductivity value of 7.2×10-2 S·cm-1 at 26°C and 100% of relative humidity.

  18. Gas transport properties of polyacrylate/clay nanocomposites prepared via emulsion polymerization

    Czech Academy of Sciences Publication Activity Database

    Herrera-Alonso, J. M.; Sedláková, Zdeňka; Marand, E.

    2010-01-01

    Roč. 363, 1/2 (2010), s. 48-56 ISSN 0376-7388 R&D Projects: GA MŠk ME09058 Institutional research plan: CEZ:AV0Z40500505 Keywords : barrier membranes * nanocomposite s * phenomenological models Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.673, year: 2010

  19. An introduction to polymer nanocomposites

    International Nuclear Information System (INIS)

    Armstrong, Gordon

    2015-01-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites. (review)

  20. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  1. Self-biased cobalt ferrite nanocomposites for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Hannour, Abdelkrim, E-mail: abdelkrim.hannour@hotmail.com [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Neveu, Sophie; Dupuis, Vincent [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France)

    2014-03-15

    Oriented CoFe{sub 2}O{sub 4} nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe{sub 2}O{sub 4} nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results.

  2. Self-biased cobalt ferrite nanocomposites for microwave applications

    International Nuclear Information System (INIS)

    Hannour, Abdelkrim; Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches; Neveu, Sophie; Dupuis, Vincent

    2014-01-01

    Oriented CoFe 2 O 4 nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe 2 O 4 nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results

  3. Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction.

    Science.gov (United States)

    Washington, John W; Henderson, W Matthew; Ellington, J Jackson; Jenkins, Thomas M; Evans, John J

    2008-02-15

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography-tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils. For the columns and systems we tested, we achieved the greatest analytical sensitivity for PFCAs using a column with a C(18) stationary phase in a Waters LC/MS/MS. In this system we achieved an instrument detection limit for PFOA of 270 ag/microL, equating to about 14 fg of PFOA on-column. While an elementary acetonitrile/water extraction of soils recovers PFCAs effectively, natural soil organic matter also dissolved in the extracts commonly imparts significant noise that appears as broad, multi-nodal, asymmetric peaks that coelute with several PFCAs. The intensity and elution profile of this noise is highly variable among soils and it challenges detection of low concentrations of PFCAs by decreasing the signal-to-noise contrast. In an effort to decrease this background noise, we investigated several methods of pretreatment, extraction and cleanup, in a variety of combinations, that used alkaline and unbuffered water, acetonitrile, tetrabutylammonium hydrogen sulfate, methyl-tert-butyl ether, dispersed activated carbon and solid-phase extraction. For the combined objectives of complete recovery and minimization of background noise, we have chosen: (1) alkaline pretreatment; (2) extraction with acetonitrile/water; (3) evaporation to dryness; (4) reconstitution with tetrabutylammonium-hydrogen-sulfate ion-pairing solution; (5) ion-pair extraction to methyl-tert-butyl ether; (6) evaporation to dryness; (7) reconstitution with 60/40 acetonitrile/water (v/v); and (8) analysis by LC/MS/MS. Using this method, we

  4. Halogen bonding: A new retention mechanism for the solid phase extraction of perfluorinated iodoalkanes

    International Nuclear Information System (INIS)

    Yan Xiaoqing; Shen Qianjin; Zhao Xiaoran; Gao Haiyue; Pang Xue; Jin Weijun

    2012-01-01

    Highlights: ► Halogen bonding (XB) is firstly utilised in solid phase extraction. ► The perfluorinated iodine alkanes can be extracted by C-I⋯Cl − halogen bonding. ► The C-I⋯Cl − halogen bond is well characterised by spectroscopy methods. ► The analytes with strong halogen-bonding abilities can be selectively extracted. - Abstract: For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, 19 F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I⋯Cl − halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs). Specifically, the recoveries for 1,6-diiodoperfluorohexane and 1,8-diiodoperfluorooctane were higher than 80% when 100 mL of sample spiked with a 5 ng mL −1 analyte mixture was extracted. Interestingly, SAX had no adsorption for hexafluorobenzene at all, which is known to be unable to form a halogen bond with Cl − . The analytical performance of the halogen bond-based SPE-GC–MS method for the diiodo-PFIs was also examined in soil samples. The sorbent SAX enabled the selective extraction of four diiodo-PFIs successfully from soil samples. The recoveries of the diiodo-PFIs extracted from 5 g soil sample at the 100 ng g −1 spike level were in the range of 73.2–93.8% except 26.8% for 1,2-diiodoperfluoroethane. The limit of detection varied from 0.02 to 0.04 ng g −1 in soil samples. Overall, this work reveals the great application potential of halogen bonding in the field of solid phase extraction to selectively extract compounds with strong halogen-bonding abilities.

  5. Rheological characterization of nanocomposites Nylon 6/bentonite clay

    International Nuclear Information System (INIS)

    Silva, T.R.G.; Fernandes, P.C.; Oliveira, S.V.; Araujo, E.M.; Melo, T.J.A.

    2010-01-01

    Polymer nanocomposites are a class of materials that have been widely used in various applications. Among them, has been emphasizing the preparation of polymer films with barrier properties for applications in polymer membranes. In this work, nanocomposites of nylon 6/bentonite clay were obtained from a Homogenizer, in the ratios of 1, 3 and 5 wt% clay. The Brasgel PA bentonite clay was treated organically with Praepagen HY salt, to make it organophilic. By X-ray diffraction (XRD), it was showed that the efficiency of the incorporation of salt in the clay. The rheological curves showed that for the AST clay the torque did not change when compared with the pure nylon 6, while for the clay ACT, the torque increased gradually with the percentage of clay. (author)

  6. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  7. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Vijayakumar, M; Luo, Qingtao; Lloyd, Ralph; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-21

    The microstructure of perfluorinated sulfonic acid proton-exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox-flow battery (VRB). In this work, Nafion membranes with various equivalent weights ranging from 1000 to 1500 are prepared and the morphology-property-performance relationship is investigated. NMR and small-angle X-ray scattering studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium-ion permeation. Their performances are further characterized as VRB membranes. On the basis of this understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50 mA·cm -2 ) was achieved along with a stable cyclical capacity over prolonged cycling.

  8. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Luo, Qingtao; Lloyd, Ralph B.; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent L.; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-23

    The microstructure of the perfluorinated sulfonic acid proton exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox flow battery (VRB). In this work, Nafion membranes with various equivalent weights (EW) ranging from 1000 to 1500 are prepared and the structure-property-performance relationship is investigated. Nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium ion permeation. Their performances are further characterized as VRB membranes. Based on those understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion® 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50mA∙cm-2) was achieved along with a stable cyclical capacity over prolonged cycling.

  9. Dietary Predictors and Plasma Concentrations of Perfluorinated Compounds in a Coastal Population from Northern Norway

    International Nuclear Information System (INIS)

    Rylander, C.; Brustad, M.; Falk, H.; Sandanger, T.M.; Rylander, C.; Falk, H.; Sandanger, T.M.

    2010-01-01

    Dietary intake, age, gender, and body mass index were investigated as possible predictors of perfluorinated compounds in a study population from northern Norway (44 women and 16 men). In addition to donating a blood sample, the participants answered a detailed questionnaire about diet and lifestyle. Perfluorooctane sulfonate (PFOS) (29 ng/mL), perfluorooctanoate (PFOA) (3.9 ng/mL), perfluorohexane sulfonate (PFHxS) (0.5 ng/mL), perfluoro nonanoate (Pna) (0.8 ng/ml), and perfluoroheptane sulfonate (Phps) (1.1 ng/ml) were detected in more than 95% of all samples. Of the dietary items investigated, fruit and vegetables significantly reduced the concentrations of Pos and Phps, whereas fatty fish to a smaller extent significantly increased the levels of the same compounds. Men had significantly higher concentrations of Pos, Poa, PFHxS, and PFHpS than women. There were significant differences in PFOS isomer pattern between genders, with women having the largest proportion of linear PFOS. PFOS, PFHxS, and PFHpS concentrations also increased with age.

  10. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-01-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments

  11. Coupling effects in heterostructures of pentacene and perfluorinated pentacene studied by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Broch, Katharina; Heinemeyer, Ute; Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Anger, Falk [Institut fuer Angewandte Physik, Tuebingen (Germany); MATGAS 2000 AIE, Campus de la UAB, Bellaterra (Spain); Osso, Oriol [MATGAS 2000 AIE, Campus de la UAB, Bellaterra (Spain); Scholz, Reinhard [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Heterostructures of organic semiconductors gain increasing interest in the last years because of their potential applications in organic electronics. To optimize those devices the understanding of the intermolecular coupling is crucial. Therefore, we investigate the optical absorption spectra of heterostructures and possible differences to the spectra of their single components. The combination of pentacene (PEN) with perfluorinated pentacene (PFP) is promising due to their similar geometric structure which can give rise to coevaporated films with a significant level of intermixing and accordingly an efficient intermolecular coupling. Indeed, performing in-situ-measurements with differential reflectance spectroscopy and spectroscopic ellipsometry we find features in the absorption spectra of mixed films that cannot be explained by a linear combination of the single film spectra. In the energy range between 1.4 eV and 2.4 eV spectra of PFP and PEN single and coevaporated films with different mixing ratios are compared and possible theoretical scenarios for coupling effects are discussed.

  12. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae.

    Science.gov (United States)

    Latała, Adam; Nędzi, Marcin; Stepnowski, Piotr

    2009-09-01

    The presence of high-energy carbon-fluorine bonds in perfluoro compounds lends them great stability and causes them to be environmentally persistent. Relatively little is known about the acute toxicity of perfluorinated carboxylic acids (PFCAs) to ecotoxicological markers such as aquatic plants and animals. This study tested the toxicity of these compounds to the green alga Chlorella vulgaris, the diatom Skeletonema marinoi and the blue-green alga Geitlerinema amphibium, which are species representative of the algal flora of the Baltic Sea. The EC(50) values obtained range from 0.28 mM to 12.84 mM. A distinct relationship between hydrophobicity and toxicity is demonstrated. For every extra perfluoromethylene group in the alkyl chain, the toxicity increases twofold. LogEC(50) values are very well correlated linearly with both the number of carbon atoms in the perfluoroalkyl chain and the partition coefficients. The results also indicate that there are clear differences between the responses of particular taxonomic groups of algae: blue-green algae and diatoms are far more sensitive to PFCAs than green algae, probably because of differences in cell wall structure.

  13. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-04-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 microg/L).

  14. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    Science.gov (United States)

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.

  15. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates.

    Science.gov (United States)

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P; Nielsen, Flemming; Grandjean, Philippe; Budtz-Jørgensen, Esben; Heilmann, Carsten

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after adjustment for sex and age. Although the study involved a small number of subjects, these findings of a PFAS-associated reduction of the early humoral immune response to booster vaccination in healthy adults supported previous findings of PFAS immunosuppression in larger cohorts. Furthermore, the results suggested that cellular mechanisms right after antigen exposure should be investigated more closely to identify possible mechanisms of immunosuppression from PFAS.

  16. Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China

    International Nuclear Information System (INIS)

    Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi

    2010-01-01

    Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g -1 , 141-237 ng g -1 and 413-755 ng g -1 , respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (< C8) in some individual cases, PFOA and PFOS were still the major pollution compounds in most cases and they constituted 2-34% and 1-9% of the total PFAs, respectively. Meanwhile, unlike previous studies, PFOS levels were not always higher than PFOA in solids collected in Shanghai, China. Given that some short-chain PFAs such as trifluoroacetic acid are mildly phytotoxic and their higher levels in solid matrices were collected in Shanghai, China, these chemicals should be included in future environmental monitoring efforts.

  17. Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China.

    Science.gov (United States)

    Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi

    2010-01-01

    Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g(-1), 141-237 ng g(-1) and 413-755 ng g(-1), respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (PFAs, respectively. Meanwhile, unlike previous studies, PFOS levels were not always higher than PFOA in solids collected in Shanghai, China. Given that some short-chain PFAs such as trifluoroacetic acid are mildly phytotoxic and their higher levels in solid matrices were collected in Shanghai, China, these chemicals should be included in future environmental monitoring efforts.

  18. Perfluorinated and chlorinated pollutants as predictors of demographic parameters in an endangered seabird

    International Nuclear Information System (INIS)

    Bustnes, Jan Ove; Erikstad, Kjell Einar; Lorentsen, Svein-Hakon; Herzke, Dorte

    2008-01-01

    Despite global occurrence of several perfluorinated compounds (PFCs) the potential ecological effects of such substances on natural populations are not known. In endangered lesser black-backed gulls (Larus fuscus fuscus) on the Norwegian Coast, the blood concentrations of PFCs were as high as legacy organochlorines (OCs), and here we examined whether PFCs show associations similar to those of OCs to factors potentially affecting population growth, by evaluating relationships between contaminant concentrations and demographic parameters (reproductive performance and the probability of adults returning between breeding seasons). PFCs were not adversely associated with demographic parameters, while the most persistent OCs; notably PCB and p,p'-DDE, were adversely associated with early chick survival, and adult return rate. This study thus suggests that when the concentrations of PFCs and OCs are of similar magnitude in a gull population, OCs are more likely to cause adverse ecological effects. - When the concentrations of PFCs and OCs are of similar magnitude in a population of gulls, OCs seem to have a stronger propensity for causing adverse ecological effects

  19. Time trends of perfluorinated compounds from the sediment core of Tokyo Bay, Japan (1950s-2004)

    International Nuclear Information System (INIS)

    Zushi, Yasuyuki; Tamada, Masafumi; Kanai, Yutaka; Masunaga, Shigeki

    2010-01-01

    Perfluorinated compounds (PFCs) were detected in sediment core samples collected in Tokyo Bay to reveal their time trends. The core sample deposited during 1950s-2004 was divided into two- to three-year intervals and the concentrations of 24 types of PFCs were determined. Perfluorooctane sulfonate (PFOS) decreased gradually from the early 1990s and its precursor decreased rapidly in the late 1990s, whereas perfluorooctanoic acid (PFOA) increased rapidly. The observed trends were regarded as a reflection of the shift from perfluorooctyl sulfonyl fluoride (PFOSF)-based products to telomer-based products after the phaseout of PFOSF-based products in 2001. The branched isomers of perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA) were detected in the sample with its ratio of linear-isomer/branched-isomer concentrations decreasing. In this study, we revealed that the sediment core can serve as a tool for reconstructing the past pollution trend of PFCs and can provide interesting evidence concerning their environmental dynamics and time trend. - This study reports the time trends of the concentrations of 24 species of PFCs, including FTCA, FTUCA and FOSAA, in a sediment core of Tokyo Bay, Japan.

  20. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    Science.gov (United States)

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  1. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  2. Magnetoelectric polymer nanocomposite for flexible electronics

    International Nuclear Information System (INIS)

    Alnassar, M.; Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites

  3. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-03-06

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  4. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.; Alfadhel, Ahmed; Ivanov, Yurii P.; Kosel, Jü rgen

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  5. Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration

    Science.gov (United States)

    Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng

    2013-10-22

    In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.

  6. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  7. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  8. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake

    Energy Technology Data Exchange (ETDEWEB)

    Motas Guzmàn, Miguel [Área de Toxicología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Clementini, Chiara [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra [Department of Legal Medicine, School of Medicine, University of Murcia & Instituto Murciano de Investigacion Biomedica (IMIB), (IMIB-VIRGEN DE LA ARRIXACA), Murcia (Spain); Cascone, Aurora; Martellini, Tania [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy); Guerranti, Cristiana [University of Siena, Department of Physical Sciences, Earth and Environment, Via Mattioli, 4, 53100 Siena (Italy); Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, GR (Italy); Cincinelli, Alessandra, E-mail: acincinelli@unifi.it [Department of Chemistry “Ugo Schiff”, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze (Italy)

    2016-02-15

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from < LOQ (< 10 ng/L) to 397 ng/L with a mean concentration of 66 ± 68 ng/L and a median of 29 ng/L. The presence of these compounds was revealed in 50 samples out of 67 analyzed. Influence of number of pregnancies and food habits on PFCAs concentrations was also investigated. Statistically significant differences in PFCA levels were found when the women were divided into maternal age classes and into the categories primiparae and multiparae. A greater transfer of PFC during breastfeeding by primiparous was evidenced and thus a higher exposure to these contaminants for the first child. Moreover, it was possible to hypothesize that the content of PFCs is in general correlated to the eating habits of donors and, in particular, with the fish consumption. Finally, PFOA daily intakes and risk index (RI) were estimated for the first six months of life and we found that ingestion rates of PFOA did not exceed the tolerable daily intake (TDI) recommended by the European Food Safety Authority (EFSA). - Graphical abstract: Figure SI 1. Concentrations (ng/L) of PFCs recovered in 67 samples of human breast milk. - Highlights: • Perfluorinated carboxylic acids were analyzed in a set of 67 breast milk samples collected from Spanish women. • PFOA appeared as the major contributor to the total perfluorinated carboxylic acids. • PFOA concentrations were significantly higher in milk of primiparous participants. • PFOA daily intake and risk index were estimated for the firsts six month of life.

  9. Perfluorinated carboxylic acids in human breast milk from Spain and estimation of infant's daily intake

    International Nuclear Information System (INIS)

    Motas Guzmàn, Miguel; Clementini, Chiara; Pérez-Cárceles, Maria Dolores; Jiménez Rejón, Sandra; Cascone, Aurora; Martellini, Tania; Guerranti, Cristiana; Cincinelli, Alessandra

    2016-01-01

    Human milk samples were collected from 67 mothers in 2014 at a Primary Care Centre in Murcia (Spain) and analyzed for perfluorinated carboxylic acids (PFCAs). Concentrations measured for perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic acid (PFDoDA) ranged from < LOQ (< 10 ng/L) to 397 ng/L with a mean concentration of 66 ± 68 ng/L and a median of 29 ng/L. The presence of these compounds was revealed in 50 samples out of 67 analyzed. Influence of number of pregnancies and food habits on PFCAs concentrations was also investigated. Statistically significant differences in PFCA levels were found when the women were divided into maternal age classes and into the categories primiparae and multiparae. A greater transfer of PFC during breastfeeding by primiparous was evidenced and thus a higher exposure to these contaminants for the first child. Moreover, it was possible to hypothesize that the content of PFCs is in general correlated to the eating habits of donors and, in particular, with the fish consumption. Finally, PFOA daily intakes and risk index (RI) were estimated for the first six months of life and we found that ingestion rates of PFOA did not exceed the tolerable daily intake (TDI) recommended by the European Food Safety Authority (EFSA). - Graphical abstract: Figure SI 1. Concentrations (ng/L) of PFCs recovered in 67 samples of human breast milk. - Highlights: • Perfluorinated carboxylic acids were analyzed in a set of 67 breast milk samples collected from Spanish women. • PFOA appeared as the major contributor to the total perfluorinated carboxylic acids. • PFOA concentrations were significantly higher in milk of primiparous participants. • PFOA daily intake and risk index were estimated for the firsts six month of life.

  10. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  11. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  12. Polyamide 6/clay membranes: effect of precipitation bath in morphology

    International Nuclear Information System (INIS)

    Ferreira, Rodholfo da S.B.; Pereira, Caio H. do O; Leite, Amanda M.D.; Araujo, Edcleide M.; Lira, Helio L.

    2015-01-01

    Polyamide 6 membranes and their nanocomposites with 5% clay were obtained by the phase inversion method and the precipitation was made in distilled water bath and also in the mixture of solvent and distilled water. The nanocomposites were characterized by XRD and membranes by SEM. By XRD analysis, it was found that the obtained nanocomposite presents a structure probably exfoliated and / or partially exfoliated, it was also possible to observe the presence of two characteristic peaks (α and γ) of the polyamide 6 phases. In the SEM micrographs it was seen that the presence of clay promote alterations in morphology, size and distribution of pores. The presence of acid in the precipitation bath leads to a significant decrease in the filter layer, but also an increase in the quantity of pore size. (author)

  13. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  14. Progress and challenges of carbon nanotube membrane in water treatment

    KAUST Repository

    Lee, Jieun

    2016-05-25

    The potential of the carbon nanotube (CNT) membrane has been highly strengthened in water treatment during the last decade. According to works published up to now, the unique and excellent characteristics of CNT outperformed conventional polymer membranes. Such achievements of CNT membranes are greatly dependent on their fabrication methods. Further, the intrinsic properties of CNT could be a critical factor of applicability to membrane processes. This article provides an explicit and systematic review of the progress of CNT membranes addressing the current epidemic—whether (i) the CNT membranes could tackle current challenges in the pressure- or thermally driven membrane processes and (ii) CNT hybrid nanocomposite as a new generation of materials could complement current CNT-enhanced membrane. © 2016 Taylor & Francis Group, LLC.

  15. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  16. Evaluation of the permeability of microporous membranes polyamide 6 / clay bentonite for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, P.S.S.; Medeiros, K.M.; Araujo, E.M.; Lira, H.L.

    2014-01-01

    The petroleum refining industries have faced major problems in relation to the treatment of their effluents before disposal into the environment. Among the conventional technologies treatment of these effluents, the process of oil-water separation by means of membranes has been extensively used, for having enormous potentiality. Therefore, in this study, hybrid membranes of polyamide 6/ bentonite clay were produced by the technique of phase inversion and by precipitation of the solution from the nanocomposites obtained by melt intercalation. The clay was organically modified with the quaternary ammonium salt (Cetremide®). The nanocomposites were obtained from (PA6) with untreated (AST) and treated clay (ACT), which were subsequently characterized by X-ray diffraction (XRD). Already membranes were characterized by XRD, scanning electron microscopy (SEM) and flow measurements. From the XRD results, it was observed an exfoliated and/or partially exfoliated structure for the nanocomposites and for the membranes. From SEM images it was observed that the presence of AST and ACT clays in the polymeric matrix caused changes in membrane morphology and pore formation. The flow with distilled water in the membranes showed a decrease initially and then followed by stability. All membranes tested in the process of separating emulsions of oil in water, particularly those of nanocomposites obtained a significant reduction of oil concentration in the permeate, thus showing that these membranes have a great potential to be applied to the water-oil separation. (author)

  17. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  18. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes.

    Science.gov (United States)

    Eschauzier, Christian; Haftka, Joris; Stuyfzand, Pieter J; de Voogt, Pim

    2010-10-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemical properties of PFCs cause them to be persistent and some of them to be bioaccumulative and toxic in the environment. This study investigates the evolvement of PFC concentrations in Rhine water and rainwater during dune water infiltration processes over a transect in the dune area of the western part of The Netherlands. The difference between infiltrated river water and rainwater in terms of PFC composition was investigated. Furthermore, isomer profiles were investigated. The compound perfluorobutanesulfonate (PFBS) was found at the highest concentrations of all PFCs investigated, up to 37 ng/L in infiltrated river water (71 ± 13% of ΣPFCs). This is in contrast with the predominant occurrence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) reported in literature. The concentrations of PFBS found in infiltrated river Rhine water were significantly higher than those in infiltrated rainwater. For perfluorohexanesulfonate (PFHxS) the opposite was found: infiltrated rainwater contained more than infiltrated river water. The concentrations of PFOA, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFBS, PFOS, and PFHxS in infiltrated river water showed an increasing trend with decreasing age of the water. The relative contribution of the branched PFOA and PFOS isomers to total concentrations of PFOA and PFOS showed a decreasing trend with decreasing age of the water.

  19. Skipjack tuna as a bioindicator of contamination by perfluorinated compounds in the oceans.

    Science.gov (United States)

    Hart, Kimberly; Kannan, Kurunthachalam; Tao, Lin; Takahashi, Shin; Tanabe, Shinsuke

    2008-09-15

    Perfluorinated chemicals (PFCs) have emerged as global environmental contaminants. Studies have reported the widespread occurrence of PFCs in biota from marine coastal waters and in remote polar regions. However, few studies have reported the distribution of PFCs in biota from offshore waters and open oceans. In this study, concentrations of nine PFCs were determined in the livers of 60 skipjack tuna (Katsuwonus pelamis) collected from offshore waters and the open ocean along the Pacific Rim, including the Sea of Japan, the East China Sea, the Indian Ocean, and the Western North Pacific Ocean, during 1997-1999. At least one of the nine PFCs was found in every tuna sample analyzed. Overall, perfluorooctanesulfonate (PFOS) and perfluoroundecanoic acid (PFUnDA) were the predominant compounds found in livers of tuna at concentrations of ocean locations, concentrations of PFUnDA were greater than the concentrations of PFOS. The profiles and concentrations of PFCs in tuna livers suggest that the sources in East Asia are dominated by long-chain perfluorocarboxylates, especially PFUnDA. High concentrations of PFUnDA in tuna may indicate a shift in sources of PFCs in East Asia. The spatial distribution of PFOS in skipjack tuna reflected the concentrations previously reported in seawater samples from the Pacific and Indian Oceans, suggesting that tuna are good bioindicators of pollution by PFOS. Despite its predominance in ocean waters, PFOA was rarely found in tuna livers, indicative of the low bioaccumulation potential of this compound. Our study establishes baseline concentrations of PFCs in skipjack tuna from the oceans of the Asia-Pacific region, enabling future temporal trend studies of PFCs in oceans.

  20. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility.

    Science.gov (United States)

    Eschauzier, Christian; Raat, Klaasjan J; Stuyfzand, Pieter J; De Voogt, Pim

    2013-08-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main source for PFAA in surface waters and corresponding drinking water. However, even though groundwater is an important source for drinking water production, PFAA sources remain largely uncertain. In this paper, we identified different direct and indirect sources of PFAA to groundwater within the catchment area of a public supply well field (PSWF) in The Netherlands. Direct sources were landfill leachate and water draining from a nearby military base/urban area. Indirect sources were infiltrated rainwater. Maximum concentrations encountered in groundwater within the landfill leachate plume were 1.8 μg/L of non branched perfluorooctanoic acid (L-PFOA) and 1.2 μg/L of perfluorobutanoic acid (PFBA). Sum concentrations amounted to 4.4 μg/L total PFAA. The maximum concentration of ΣPFAA in the groundwater originating from the military camp was around 17 ng/L. Maximum concentrations measured in the groundwater halfway the landfill and the PWSF (15 years travel distance) were 29 and 160 ng/L for L-PFOA and PFBA, respectively. Concentrations in the groundwater pumping wells (travel distance >25 years) were much lower: 0.96 and 3.5 ng/L for L-PFOA and PFBA, respectively. The chemical signature of these pumping wells corresponded to the signature encountered in other wells sampled which were fed by water that had not been in contact with potential contaminant sources, suggesting a widespread diffuse contamination from atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Perfluorinated compounds in fish and blood of anglers at Lake Möhne, Sauerland area, Germany.

    Science.gov (United States)

    Hölzer, Jürgen; Göen, Thomas; Just, Paul; Reupert, Rolf; Rauchfuss, Knut; Kraft, Martin; Müller, Johannes; Wilhelm, Michael

    2011-10-01

    Perfluorinated compounds (PFCs) were measured in fish samples and blood plasma of anglers in a cross-sectional study at Lake Möhne, Sauerland area, Germany. Human plasma and drinking water samples were analyzed by solid phase extraction, high-performance liquid chromatography (HPLC), and tandem mass spectrometry (MS/MS). PFCs in fish fillet were measured by ion pair extraction followed by HPLC and MS/MS. PFOS concentrations in 44 fish samples of Lake Möhne ranged between 4.5 and 150 ng/g. The highest median PFOS concentrations have been observed in perches (median: 96 ng/g) and eels (77 ng/g), followed by pikes (37 ng/g), whitefish (34 ng/g), and roaches (6.1 ng/g). In contrast, in a food surveillance program only 11% of fishes at retail sale contained PFOS at detectable concentrations. One hundred five anglers (99 men, 6 women; 14-88 years old; median 50.6 years) participated in the human biomonitoring study. PFOS concentrations in blood plasma ranged from 1.1 to 650 μg/L (PFOA: 2.1-170 μg/L; PFHxS: 0.4-17 μg/L; LOD: 0.1 μg/L). A distinct dose-dependent relationship between fish consumption and internal exposure to PFOS was observed. PFOS concentrations in blood plasma of anglers consuming fish 2-3 times per month were 7 times higher compared to those without any fish consumption from Lake Möhne. The study results strongly suggest that human internal exposure to PFC is distinctly increased by consumption of fish from PFC-contaminated sites.

  2. Determination of ten perfluorinated compounds in bluegill sunfish (Lepomis macrochirus) fillets

    International Nuclear Information System (INIS)

    Delinsky, Amy D.; Strynar, Mark J.; Nakayama, Shoji F.; Varns, Jerry L.; Ye, XiBiao; McCann, Patricia J.; Lindstrom, Andrew B.

    2009-01-01

    A rigorous solid phase extraction/liquid chromatography/tandem mass spectrometry method for the measurement of 10 perfluorinated compounds (PFCs) in fish fillets is described and applied to fillets of bluegill sunfish (Lepomis macrochirus) collected from selected areas of Minnesota and North Carolina. The 4 PFC analytes routinely detected in bluegill fillets were perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (C10), perfluoroundecanoic acid (C11), and perflurododecanoic acid (C12). Measures of method accuracy and precision for these compounds showed that calculated concentrations of PFCs in spiked samples differed by less than 20% from their theoretical values and that the %RSD for repeated measurements was less than 20%. Minnesota samples were collected from areas of the Mississippi River near historical PFC sources, from the St. Croix River as a background site, and from Lake Calhoun, which has no documented PFC sources. PFOS was the most prevalent PFC found in the Minnesota samples, with median concentrations of 47.0-102 ng/g at locations along the Mississippi River, 2.08 ng/g in the St. Croix River, and 275 ng/g in Lake Calhoun. North Carolina samples were collected from two rivers with no known historical PFC sources. PFOS was the predominant analyte in fish taken from the Haw and Deep Rivers, with median concentrations of 30.3 and 62.2 ng/g, respectively. Concentrations of C10, C11, and C12 in NC samples were among the highest reported in the literature, with respective median values of 9.08, 23.9, and 6.60 ng/g in fish from the Haw River and 2.90, 9.15, and 3.46 ng/g in fish from the Deep River. These results suggest that PFC contamination in freshwater fish may not be limited to areas with known historical PFC inputs.

  3. Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age.

    Science.gov (United States)

    Chen, Mei-Huei; Ha, Eun-Hee; Liao, Hua-Fang; Jeng, Suh-Fang; Su, Yi-Ning; Wen, Ting-Wen; Lien, Guang-Wen; Chen, Chia-Yang; Hsieh, Wu-Shiun; Chen, Pau-Chung

    2013-11-01

    Epidemiologic data regarding the potential neurotoxicity of perfluorinated compounds (PFCs) are inconclusive. We investigated the associations between in utero exposure to perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) and early childhood neurodevelopment. We recruited 239 mother-infant pairs in northern Taiwan from the Taiwan Birth Panel Study, which was established in 2004. We examined the association between PFCs in cord blood and children's neurodevelopment at 2 years of age, using the Comprehensive Developmental Inventory for Infants and Toddlers. This tool contains cognitive, language, motor, social, and self-help domains; test scores were further transformed into developmental quotients according to standardized norms. All multivariate regression models were adjusted for infant sex and gestational age, maternal education, family income, cord blood cotinine levels, postnatal environmental tobacco smoke exposure, and breastfeeding. Prenatal PFOS concentrations in both untransformed and natural log (Ln)-transformed values were associated with adverse performance on the whole test and the domains related to development. A dose-response relationship was observed when PFOS levels were categorized into four groups. This association was most obvious in relation to the gross-motor subdomain. Across the PFOS interquartile range, the quotients of the gross-motor subdomain decreased by 3.7 points (95% confidence interval [CI] = -6.0 to -1.5), with an increasing odds ratio of poor performance (2.4; 95% CI = 1.3 to 4.2). In contrast, measures of association between PFOA concentrations and test scores were close to null. Prenatal exposure to PFOS, but not PFOA, may affect children's development, especially gross-motor development at 2 years of age.

  4. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon

    International Nuclear Information System (INIS)

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-01-01

    Highlights: ► The presence of EfOM significantly reduced the adsorption capacities and rates of PFCs. ► Low-molecular-weight EfOM compounds ( 30 kDa) affect the adsorption through pore blockage or restriction effect. ► Changes in surface properties of PAC caused by preloaded EfOM could affect PFCs adsorption. - Abstract: Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC–EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds ( 30 kDa) had much less effect on PFC adsorption capacity.

  5. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years.

    Science.gov (United States)

    Grandjean, Philippe; Heilmann, Carsten; Weihe, Pal; Nielsen, Flemming; Mogensen, Ulla B; Timmermann, Amalie; Budtz-Jørgensen, Esben

    2017-12-01

    Perfluorinated alkylate substances (PFASs) are highly persistent and may cause immunotoxic effects. PFAS-associated attenuated antibody responses to childhood vaccines may be affected by PFAS exposures during infancy, where breastfeeding adds to PFAS exposures. Of 490 members of a Faroese birth cohort, 275 and 349 participated in clinical examinations and provided blood samples at ages 18 months and 5 years. PFAS concentrations were measured at birth and at the clinical examinations. Using information on duration of breastfeeding, serum-PFAS concentration profiles during infancy were estimated. As outcomes, serum concentrations of antibodies against tetanus and diphtheria vaccines were determined at age 5. Data from a previous cohort born eight years earlier were available for pooled analyses. Pre-natal exposure showed inverse associations with the antibody concentrations five years later, with decreases by up to about 20% for each two-fold higher exposure, while associations for serum concentrations at ages 18 months and 5 years were weaker. Modeling of serum-PFAS concentration showed levels for age 18 months that were similar to those measured. Concentrations estimated for ages 3 and 6 months showed the strongest inverse associations with antibody concentrations at age 5 years, particularly for tetanus. Joint analyses showed statistically significant decreases in tetanus antibody concentrations by 19-29% at age 5 for each doubling of the PFAS exposure in early infancy. These findings support the notion that the developing adaptive immune system is particularly vulnerable to immunotoxicity during infancy. This vulnerability appears to be the greatest during the first 6 months after birth, where PFAS exposures are affected by breast-feeding.

  6. Perfluorinated alkyl substances (PFAS) in terrestrial environments in Greenland and Faroe Islands.

    Science.gov (United States)

    Bossi, Rossana; Dam, Maria; Rigét, Frank F

    2015-06-01

    Perfluorinated alkylated substances (PFASs) have been measured in liver samples from terrestrial organisms from Greenland and the Faeroe Islands. Samples from ptarmigan (West Greenland), reindeer (southwest-Greenland), muskox (East Greenland), and land-locked Arctic char from southwest Greenland and the Faroe Islands were analyzed. In addition, PFASs levels in land-locked brown trout from Faroese lakes are reported. Of the 17 PFASs analyzed in the samples the following compounds were detected: PFOS, PFNA, PFDA, PFUnA, PFDoA, PFTrA, and PFTeA. PFNA was the compound detected in most samples and in all species. However, the compound detected at highest concentration was dependent on species, with overall highest concentrations of PFTrA and PFUnA being detected in trout liver from Lake á Mýranar (Faroe Islands). In muskox, the PFAS occurring at highest concentrations was PFDA, which was among the PFAS detected at lowest concentrations in freshwater fish, and was only detected in one individual ptarmigan. The concentration of PFOS, PFDoA and PFTrA in Arctic char from Greenland and Faroe Islands were similar, whereas the concentration of PFNA, PFDA and PFUnA were higher in Arctic char than those from Greenland. The opposite was observed for PFTeA. The PFASs occurring at highest concentrations in trout were PFTrA and PFUnA. Arctic char from Lake á Mýranar had much lower concentrations of PFTrA and PFUnA than in trout from the lakes analyzed, but a higher concentration of PFTeA than trout from the same lake. A clear pattern with odd-carbon number homologues concentrations higher than the next lower even homologue was observed in fish samples, which is consistent with the hypothesis of transport of volatile precursors to remote regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Emissions of perfluorinated alkylated substances (PFAS) from point sources--identification of relevant branches.

    Science.gov (United States)

    Clara, M; Scheffknecht, C; Scharf, S; Weiss, S; Gans, O

    2008-01-01

    Effluents of wastewater treatment plants are relevant point sources for the emission of hazardous xenobiotic substances to the aquatic environment. One group of substances, which recently entered scientific and political discussions, is the group of the perfluorinated alkylated substances (PFAS). The most studied compounds from this group are perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), which are the most important degradation products of PFAS. These two substances are known to be persistent, bioaccumulative and toxic (PBT). In the present study, eleven PFAS were investigated in effluents of municipal wastewater treatment plants (WWTP) and in industrial wastewaters. PFOS and PFOA proved to be the dominant compounds in all sampled wastewaters. Concentrations of up to 340 ng/L of PFOS and up to 220 ng/L of PFOA were observed. Besides these two compounds, perfluorohexanoic acid (PFHxA) was also present in nearly all effluents and maximum concentrations of up to 280 ng/L were measured. Only N-ethylperfluorooctane sulphonamide (N-EtPFOSA) and its degradation/metabolisation product perfluorooctane sulphonamide (PFOSA) were either detected below the limit of quantification or were not even detected at all. Beside the effluents of the municipal WWTPs, nine industrial wastewaters from six different industrial branches were also investigated. Significantly, the highest emissions or PFOS were observed from metal industry whereas paper industry showed the highest PFOA emission. Several PFAS, especially perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA) and PFOS are predominantly emitted from industrial sources, with concentrations being a factor of 10 higher than those observed in the municipal WWTP effluents. Perfluorodecane sulphonate (PFDS), N-Et-PFOSA and PFOSA were not detected in any of the sampled industrial point sources. (c) IWA Publishing 2008.

  8. Behavioral difficulties in 7-year old children in relation to developmental exposure to perfluorinated alkyl substances.

    Science.gov (United States)

    Oulhote, Youssef; Steuerwald, Ulrike; Debes, Frodi; Weihe, Pal; Grandjean, Philippe

    2016-12-01

    Perfluorinated alkyl substances (PFAS) are suspected endocrine disruptors that are highly persistent and neurotoxic in animals. Human epidemiological studies of exposure-related deviations of children's behaviors are sparse. We assessed the associations between prenatal, 5- and 7-year PFAS exposures and behavioral problem scores in 7-year Faroese children. Concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and perfluorohexane sulfonic acid (PFHxS) were measured in maternal serum and in serum from children at ages 5 and 7years (n=539, 508, and 491, respectively). We used multivariable regressions and structural equations models to estimate the covariate-adjusted associations between serum-PFAS concentrations and behavioral difficulties, as assessed by the strengths and difficulties questionnaire (SDQ) at age 7. Serum-PFOS and PFHxS concentrations declined over time, whereas PFOA, PFNA, and PFDA tended to increase. No associations were observed between prenatal PFAS concentrations and SDQ scores. However, a two-fold increase in 5-year serum-PFOA, PFNA, and PFDA concentrations was associated with increases in total SDQ scores by 1.03 (95% CI: 0.11, 1.95), 0.72 (95% CI: 0.07, 1.38) and 0.78 points (95% CI: 0.01, 1.55), respectively. For SDQ subscales, significant associations were found in regard to hyperactivity, peer relationship, and conduct problems, as well as internalizing and externalizing problems and autism screening composite scores. Cross-sectional analyses at age 7years showed possible sex-dimorphic associations between PFAS concentrations and SDQ scores, where girls had consistently positive associations with SDQ scores whereas boys exhibited a pattern of negative or null associations. Higher serum PFAS concentrations at ages 5- and 7-years, but not prenatally, were associated with parent-reported behavioral problems at age 7. Copyright © 2016 Elsevier Ltd

  9. Association between perfluorinated compound exposure and miscarriage in Danish pregnant women.

    Directory of Open Access Journals (Sweden)

    Tina Kold Jensen

    Full Text Available Perfluorinated alkylated substances (PFAS have been extensively used in consumer products and humans are widely exposed to these persistent compounds. A recent study found no association between exposure to perfluorooctanoic acid (PFOA and perfluorooctanesulfonic acid (PFOS and miscarriage, but no studies have examined adverse effect of the more recently introduced PFASs. We therefore conducted a case-control study within a population-based, prospective cohort during 2010-2012. Newly pregnant women residing in the Municipality of Odense, Denmark were invited to enroll in the Odense Child Cohort at their first antenatal visit before pregnancy week 12. Among a total of 2,874 participating women, 88 suffered a miscarriage and 59 had stored serum samples, of which 56 occurred before gestational week 12. They were compared to a random sample (N=336 of delivering women, who had also donated serum samples before week 12. Using a case-control design, 51 of the women suffering a miscarriage were matched on parity and gestational day of serum sampling with 204 delivering women. In a multiple logistic regression with adjustment for age, BMI, parity and gestational age at serum sampling, women with the highest tertile of exposure to perfluorononanoic acid (PFNA and perfluorodecanoic acid (PFDA in pregnancy had odds ratios for miscarriage of 16.5 (95% CI 7.4-36.6-36.5 and 2.67 (1.31-5.44, respectively, as compared to the lowest tertile. In the matched data set, the OR were 37.9 (9.9-145.2 and 3.71 (1.60-8.60, respectively. The association with perfluorohexane sulfonic acid (PFHxS was in the same direction, but not statistically significant, while no association was found with PFOA and PFOS. Our findings require confirmation due to the possible public health importance, given that all pregnant women are exposed to these widely used compounds.

  10. Association between Perfluorinated Compound Exposure and Miscarriage in Danish Pregnant Women

    Science.gov (United States)

    Jensen, Tina Kold; Andersen, Louise Bjørkholt; Kyhl, Henriette Boye; Nielsen, Flemming; Christesen, Henrik Thybo; Grandjean, Philippe

    2015-01-01

    Perfluorinated alkylated substances (PFAS) have been extensively used in consumer products and humans are widely exposed to these persistent compounds. A recent study found no association between exposure to perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) and miscarriage, but no studies have examined adverse effect of the more recently introduced PFASs. We therefore conducted a case-control study within a population-based, prospective cohort during 2010-2012. Newly pregnant women residing in the Municipality of Odense, Denmark were invited to enroll in the Odense Child Cohort at their first antenatal visit before pregnancy week 12. Among a total of 2,874 participating women, 88 suffered a miscarriage and 59 had stored serum samples, of which 56 occurred before gestational week 12. They were compared to a random sample (N=336) of delivering women, who had also donated serum samples before week 12. Using a case-control design, 51 of the women suffering a miscarriage were matched on parity and gestational day of serum sampling with 204 delivering women. In a multiple logistic regression with adjustment for age, BMI, parity and gestational age at serum sampling, women with the highest tertile of exposure to perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) in pregnancy had odds ratios for miscarriage of 16.5 (95% CI 7.4-36.6-36.5) and 2.67 (1.31-5.44), respectively, as compared to the lowest tertile. In the matched data set, the OR were 37.9 (9.9-145.2) and 3.71 (1.60-8.60), respectively. The association with perfluorohexane sulfonic acid (PFHxS) was in the same direction, but not statistically significant, while no association was found with PFOA and PFOS. Our findings require confirmation due to the possible public health importance, given that all pregnant women are exposed to these widely used compounds. PMID:25848775

  11. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    Science.gov (United States)

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs

  12. Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha).

    Science.gov (United States)

    Fernández-Sanjuan, María; Faria, Melissa; Lacorte, Silvia; Barata, Carlos

    2013-04-01

    Perfluorinated chemicals (PFCs) have been used for many years in numerous industrial products and are known to accumulate in organisms. A recent survey showed that tissue levels of PFCs in aquatic organisms varied among compounds and species being undetected in freshwater zebra mussels Dreissena polymorpha. Here we studied the bioaccumulation kinetics and effects of two major PFCs, perfluorooctane sulfonic acid compound (PFOS) and perfluorooctanoic acid (PFOA), in multixenobiotic transporter activity (MXR) and filtration and oxygen consumption rates in zebra mussel exposed to a range of concentrations of a PCF mixture (1-1,000 μg/L) during 10 days. Results indicate a low potential of the studied PFCs to bioaccumulate in zebra mussel tissues. PFCs altered mussel MXR transporter activity being inhibited at day 1 but not at day 10. Bioaccumulation kinetics of PFCs were inversely related with MXR transporter activity above 9 ng/g wet weight and unrelated at tissue concentration lower than 2 ng/g wet weight suggesting that at high tissue concentrations, these type of compounds may be effluxed out by MXR transporters and as a result have a low potential to be bioaccumulated in zebra mussels. Oxygen consumption rates but not filtering rates were increased in all exposure levels and periods indicating that at environmental relevant concentrations of 1 μg/L, the studied PFCs enhanced oxidative metabolism of mussels. Overall, the results obtained in this study confirm previous findings in the field indicating that an important fraction of PFC accumulated in mussel tissues is eliminated actively by MXR transporters or other processes that are metabolically costly.

  13. In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs)

    International Nuclear Information System (INIS)

    Corsini, Emanuela; Avogadro, Anna; Galbiati, Valentina; Dell'Agli, Mario; Marinovich, Marina; Galli, Corrado L.; Germolec, Dori R.

    2011-01-01

    There is evidence from both epidemiology and laboratory studies that perfluorinated compounds may be immunotoxic, affecting both cell-mediated and humoral immunity. The overall goal of this study was to investigate the mechanisms underlying the immunotoxic effects of perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA), using in vitro assays. The release of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was evaluated in lipolysaccharide (LPS)-stimulated human peripheral blood leukocytes and in the human promyelocytic cell line THP-1, while the release of IL-4, IL-10 and IFN-γ was evaluated in phytohaemagglutinin (PHA)-stimulated peripheral blood leukocytes. PFOA and PFOS suppressed LPS-induced TNF-α production in primary human cultures and THP-1 cells, while IL-8 was suppressed only in THP-1 cells. IL-6 release was decreased only by PFOS. Both PFOA and PFOS decreased T-cell derived, PHA-induced IL-4 and IL-10 release, while IFN-γ release was affected only by PFOS. In all instances, PFOS was more potent than PFOA. Mechanistic investigations carried out in THP-1 cells demonstrated that the effect on cytokine release was pre-transcriptional, as assessed by a reduction in LPS-induced TNF-α mRNA expression. Using siRNA, a role for PPAR-α could be demonstrated for PFOA-induced immunotoxicity, while an inhibitory effect on LPS-induced I-κB degradation could explain the immunomodulatory effect of PFOS. The dissimilar role of PPAR-α in PFOA and PFOS-induced immunotoxicity was consistent with the differing effects observed on LPS-induced MMP-9 release: PFOA, as the PPAR-α agonist fenofibrate, modulated the release, while PFOS had no effect. Overall, these studies suggest that PFCs directly suppress cytokine secretion by immune cells, and that PFOA and PFOS have different mechanisms of action.

  14. Fuel cell catalysts and membrane development at the CSIR: Presentation

    CSIR Research Space (South Africa)

    Modibedi, M

    2013-07-01

    Full Text Available & Composites Encapsulation & Delivery Sensor Science & Technology Sector focused Growth and Impact Strategies Aerospace Automotive Health Energy Built Environment Micro Manufacturing High Impact Projects New materials for aerospace New materials... and alcohol oxidation • Membrane: reduced or no alcohol crossover Why Lithium ion batteries? Preparation of nano-composite membrane • The OH- form of QPSU was dissolved in DMAc and different proportion of TiO2 nano filler was added to this solution...

  15. Chitosan-gold-Lithium nanocomposites as solid polymer electrolyte.

    Science.gov (United States)

    Begum, S N Suraiya; Pandian, Ramanathaswamy; Aswal, Vinod K; Ramasamy, Radha Perumal

    2014-08-01

    Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.

  16. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent

    Science.gov (United States)

    Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André

    2018-04-01

    One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast ( Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.

  17. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  18. Synthesis and Applications of Inorganic/Organic-Polymer Nanocomposites

    Science.gov (United States)

    Goyal, Anubha

    This research work focuses on developing new synthesis routes to fabricate polymer nanocomposites tailored towards different applications. A simple, one-step method has been devised for synthesizing free-standing, flexible metal nanoparticle-polydimethylsiloxane films. This process simplifies prevalent methods to synthesize nanocomposites, in that here nanoparticles are created in situ while curing the polymer. This route circumvents the need for pre-synthesized nanoparticles, external reducing agents and stabilizers, thereby significantly reducing processing time and cost. The resulting nanocomposite also demonstrates enhancement in mechanical and antibacterial properties, with other envisaged applications in biomedical devices and catalysis. Applying the same mechanism as that used for the formation of bulk metalsiloxane nanocomposites, metal core-siloxane shell nanoparticles and siloxane nanowires were synthesized, with octadecylsilane as the precursor and in situ formed metal nanoparticles (gold, silver) as the catalyst. This method offers some unique advantages over the previously existing methods. This is a room temperature route which does not require high temperature refluxing or the use of pre-synthesized nanoparticles. Furthermore, this synthesis process gives a control over the shape of resulting nanocomposite structures (1-D wires or 0-D spherical particles). High thermal stability of polydimethylsiloxane (PDMS) makes it viable to alternatively synthesize metal nanoparticles in the polymer matrix by thermal decomposition process. This technique is generic across a range of metals (palladium, iron, nickel) and results in nanoparticles with a very narrow size distribution. Membranes with palladium nanoparticles demonstrate catalytic activity in ethylene hydrogenation reaction. Additionally, a new nanocomposite electrode has been developed for flexible and light-weight Li-ion batteries. Flexible films were prepared by the integration of the poly

  19. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    Science.gov (United States)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  20. Experimental analysis of graphene nanocomposite on Kevlar

    Science.gov (United States)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  1. Exposure to brominated flame retardants, perfluorinated compounds, phthalates and phenols in European birth cohorts: ENRIECO evaluation, first human biomonitoring results, and recommendations

    NARCIS (Netherlands)

    Casas, M.; Chevrier, C.; Hond, E.D.; Fernandez, M.F.; Pierik, F.; Philippat, C.; Slama, R.; Toft, G.; Vandentorren, S.; Wilhelm, M.; Vrijheid, M.

    2013-01-01

    There are emerging concerns about potential effects on child health and development of early-life exposure to substances such as brominated flame retardants (BFRs), perfluorinated compounds (PFCs), phthalates and phenols (including bisphenol A (BPA)); pregnancy and birth cohort studies are ideally

  2. Occurrence of selected perfluorinated alkyl acids in lunch meals served at school canteens in Italy and their relevance for children’s intake

    NARCIS (Netherlands)

    Dellatte, E.; Brambilla, G.; De Filippis, S.P.; Di Domenico, A.; Pulkrabova, J.; Eschauzier, C.; Klenow, S.; Heinemeyer, G.; de Voogt, P.

    2013-01-01

    Ready-to-eat servings may be more contaminated with perfluorinated alkyl acids (PFAAs) than the corresponding unprocessed foods due to the presence of PFAAs in and transfer from food contact materials (FCM) and cookware. Therefore, the presence of selected PFAAs in meals served weekly at lunch time

  3. Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties

    International Nuclear Information System (INIS)

    Han Hongbo; Liu Kai; Feng Shaowei; Zhou Sisi; Feng Wenfang; Nie Jin; Li Hong; Huang Xuejie; Matsumoto, Hajime; Armand, Michel; Zhou Zhibin

    2010-01-01

    Graphical abstract: New functionalized ionic liquids based on multi-methoxyethyl substituted quaternary ammonium cations and perfluorinated sulfonimide anions are introduced. -- Abstract: New functionalized ionic liquids (ILs), comprised of multi-methoxyethyl substituted quaternary ammonium cations (i.e. [N(CH 2 CH 2 OCH 3 ) 4-n (R) n ] + ; n = 1, R = CH 3 OCH 2 CH 2 ; n = 1, R = CH 3 , CH 2 CH 3 ; n = 2, R = CH 3 CH 2 ), and two representative perfluorinated sulfonimide anions (i.e. bis(fluorosulfonyl)imide (FSI - ) and bis(trifluoromethanesulfonyl)imide (TFSI - )), were prepared. Their fundamental properties, including phase transition, thermal stability, viscosity, density, specific conductivity and electrochemical window, were extensively characterized. These multi-ether functionalized ionic liquids exhibit good capability of dissolving lithium salts. Their binary electrolytes containing high concentration of the corresponding lithium salt ([Li + ] >1.6 mol kg -1 ) show Li + ion transference number (t Li + ) as high as 0.6-0.7. Their electrochemical stability allows Li deposition/stripping realized at room temperature. The desired properties of these multi-ether functionalized ionic liquids make them potential electrolytes for Li (or Li-ion) batteries.

  4. Development of Extraction Methods for the Analysis of Perfluorinated Compounds in Leather with High Performance Liquid Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Zhang, Yan; Wang, Youchao; Tang, Chuanjiang; Nie, Jingmei; Xu, Chengtao

    2018-01-01

    Perfluorinated compounds (PFCs), used to provide water, oil, grease, heat and stain repellency to a range of textile and other products, have been found to be persistent in the environment and are associated with adverse effects on humans and wildlife. This study presents the development and validation of an analytical method to determine the simultaneous presence of eleven PFCs in leather using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The perfluorinated compounds were primarily extracted from the samples by a liquid extraction procedure by ultrasonic, in which the parameters were optimized. Then the solid-phase extraction (SPE) is the most important advantages of the developed methodology. The sample volume and elution conditions were optimized by means of an experimental design. The proposed method was applied to determine the PFCs in leather, where the detection limits of the eleven compounds were 0.09-0.96 ng/L, and the recoveries of all compounds spiked at 5 ng/L concentration level were in the range of 65-96%, with a better RSD lower than 19% (n = 7).

  5. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells

    International Nuclear Information System (INIS)

    Li, Pin-Chieh; Liao, Guan–Ming; Kumar, S. Rajesh; Shih, Chao-Ming; Yang, Chun-Chen; Wang, Da-Ming; Lue, Shingjiang Jessie

    2016-01-01

    Highlights: • Preparation of chitosan nanoparticles from bulk to enhance the degree of deacetylation. • The incorporation of chitosan nanoparticles into a QPVA matrix to form a nanocomposite membrane. • The nanocomposite constructed into thin-film membranes using the solution casting method. • To improve permeability, glutaraldehyde was cross-linked with the nanocomposite membranes. • A direct methanol alkaline fuel cell was studied at different temperatures. - Abstract: In this study, we designed a method for the preparation of chitosan nanoparticles incorporated into a quaternized poly(vinyl alcohol) (QPVA) matrix for direct methanol alkaline fuel cells (DMAFCs). The structural and morphological properties of the prepared nanocomposites were studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM) and dynamic laser-light scattering (DLS). The crystallinity of the nanocomposite solid electrolytes containing 0 and 10% chitosan nanoparticles were investigated using differential scanning calorimetry (DSC). The electrochemical measurement of resulting nanocomposite membranes were analyzed according to the following parameters: methanol permeability, liquid uptakes, ionic conductivity and cell performances. The composite membranes with 10% chitosan nanoparticles in a QPVA matrix (CQPVA) show suppressed methanol permeability and higher ionic conductivity than pristine QPVA. In addition, the glutaraldehyde cross-linked nanocomposite film exhibited improvement on the methanol barrier property at 80 °C. The peak power density of the DMAFCs reached 67 mW cm −2 when fed into 1 M of methanol in 6 M of KOH.

  6. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  7. Self-sensing performance of MWCNT-low density polyethylene nanocomposites

    Science.gov (United States)

    Gupta, Tejendra K.; Kumar, S.; Khan, Amal Z.; Varadarajan, Kartik M.; Cantwell, Wesley J.

    2018-01-01

    Carbon nanotubes (CNTs) based polymer nanocomposites offer a range of remarkable properties. Here, we demonstrate self-sensing performance of low density polyethylene (LDPE)-multiwalled carbon nanotubes (MWCNTs) nanocomposites for the first time. The dispersion of the CNTs and the morphology of the nanocomposites was investigated using scanning electron microscopy, x-ray diffraction and Raman spectroscopic techniques. The thermal properties were measured using thermal gravimetric analysis and differential scanning calorimetry and were found to increase with increasing wt% of MWCNTs in LDPE matrix. An overall improvement in ultimate tensile strength, yield strength and Young’s modulus was found to be 59.6%, 48.5% and 129.3%, respectively for 5.0 wt% loading of MWCNTs. The electrical percolation threshold was observed at 1.0 wt% of MWCNTs and the highest electrical conductivity of 2.8 × 10-2 Scm-1 was observed at 5.0 wt% loading of MWCNTs. These piezo-resistive nanocomposites offer tunable self-sensing capabilities with gauge factors in the ranges of 17-52 and 42-530 in linear elastic (strain ˜3%) and inelastic regimes (strain ˜15%) respectively. Our demonstration would provide guidelines for the fabrication of low cost, self-sensing MWCNT-LDPE nanocomposites for potential use as civil water pipelines and landfill membranes.

  8. Aerogel nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.; Ayers, M.; Cao, W. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  9. Stretchable piezoelectric nanocomposite generator.

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  10. Development of multifunctional fluoroelastomers based on nanocomposites; Desenvolvimento de elastomeros fluorados multifuncionais baseados em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto

    2015-07-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  11. Infant exposure of perfluorinated compounds: levels in breast milk and commercial baby food.

    Science.gov (United States)

    Llorca, Marta; Farré, Marinella; Picó, Yolanda; Teijón, Marisa Lopez; Alvarez, Juan G; Barceló, Damià

    2010-08-01

    In this study, an analytical method to determine six perfluorinated compounds (PFCs) based on alkaline digestion and solid phase extraction (SPE) followed by liquid chromatography-quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS) was validated for the analysis of human breast milk, milk infant formulas and cereals baby food. The average recoveries of the different matrices were in general higher than 70% with a relative standard deviation (RSD) lower than 21% and method limits of detection (MLOD) ranging from 1.2 to 362 ng/L for the different compounds and matrices. The method was applied to investigate the occurrence of PFCs in 20 samples of human breast milk, and 5 samples of infant formulas and cereal baby food (3 brands of commercial milk infant formulas and 2 brands of cereals baby food). Breast milk samples were collected in 2008 from donors living in Barcelona city (Spain) on the 40 days postpartum. Perfluorooctanesulfonate (PFOS) and perfluoro-7-methyloctanoic acid (i,p-PFNA) were predominant being present in the 95% of breast milk samples. Perfluorooctanoic acid (PFOA) was quantified in 8 of the 20 breast milk samples at concentrations in the range of 21-907 ng/L. Commercial formulas and food were purchased also in 2009 from a retail store. The six PFCs were detected in all brands of milk infant formulas and cereals baby food analyzed, being perfluorodecanoic acid (PFDA), PFOS, PFOA and i,p-PFNA the compounds detected in higher concentrations (up to 1289 ng/kg). PFCs presence can be associated to possible migration from packaging and containers during production processes. Finally, based on estimated body weight and newborn intake, PFOS and PFOA daily intakes and risk indexes (RI) were estimated for the firsts 6 month of life. We found that ingestion rates of PFOS and PFOA, with exception of one breast milk sample did not exceed the tolerable daily intake (TDI) recommended by the EFSA. However, more research is needed in order to assess possible

  12. Polyfluorinated and perfluorinated chemicals in precipitation and runoff from cities across eastern and central China.

    Science.gov (United States)

    Zhao, Lijie; Zhou, Meng; Zhang, Tao; Sun, Hongwen

    2013-02-01

    Twenty-three polychlorinated and perfluorinated compounds (PFCs) were investigated in water phase and particulate matters of 19 precipitation samples (18 snow samples and 1 rain sample) from different cities across eastern and central China collected in February 2010. The PFCs in samples of 9e precipitation events during more than half a year at 1 site in Tianjin and 6 successive samples during 1 precipitation event were measured to elucidate the change of PFC in precipitation. In addition, PFCs in 3 runoffs at different kinds of sites in Tianjin were compared with those in the corresponding precipitation. The results showed that the particulate matters separated from the precipitation contained undetectable PFCs. The total PFC concentration ranged between 4.7 and 152 ng L(-1) in water phase of the precipitation samples, with perfluorooctanoic acid (PFOA) being detected at all of the sampling sites and the dominant PFC at most of the sampling sites. Some potential precursors of environmentally concerned PFCs and their degradation intermediates were measured simultaneously, among which 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), 8:2 FTUCA, and  × (3, 4, 5, 7):3 acid [F(CF(2))xCH(2)CH(2)COOH] were measured for the first time in Chinese precipitations; however, their concentrations were all lower than the limits of detection except that 6:2 FTUCA and 8:2 FTUCA could be detected in 3 and 8 precipitation samples, respectively. No clear seasonal variation in PFC concentrations in precipitation was observed during half a year; however, a relatively greater average concentration of total PFCs was observed during winter and summer compared with spring. The concentration of individual PFCs showed an obvious descending trend in the successive samples of the precipitation event. PFOA and perfluorononanoic acid in runoffs collected from different sites showed the following similar pattern-gas station > highway > university campus-whereas the other

  13. Study of the performance of three LC-MS/MS platforms for analysis of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Marta; Farre, Marinella [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain); Pico, Yolanda [Universitat de Valencia, Laboratori de Nutricio i Bromatologia, Facultat de Farmacia, Burjassot, Valencia (Spain); Barcelo, Damia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain); King Saud University, Riyadh (Saudi Arabia)

    2010-10-15

    The analytical suitabilities of three different liquid chromatography-tandem mass spectrometry (LC-MS/MS) systems, (1) triple quadrupole (QqQ), (2) conventional 3D ion trap (IT), and (3) quadrupole-linear IT (QqLIT), to determine trace levels of perfluorinated compounds (PFCs) in fish and shellfish were compared. Sample preparation was performed using alkaline extraction and solid-phase-extraction cleanup. This evaluation was focused on both quantitative (sensitivity, precision, and accuracy) and qualitative (identification capabilities) aspects. In the three instruments, the former facet was evaluated using selected reaction monitoring (SRM), which is the standard mode for quantitative LC-MS/MS analysis. Accuracy was similar in the three systems, with recoveries always over 70 %. Precision was better for the QqLIT and QqQ systems (7-15%) than for the IT system (10-17%). The QqLIT (working in SRM mode) and QqQ systems offered a linear dynamic range of at least 3 orders of magnitude, whereas that of the IT system was 2 orders of magnitude. The QqLIT system achieved at least 20-fold higher sensitivity than the QqQ system, and this was at least tenfold higher sensitivity than for the IT system. In the IT system, identification was based on sensitive full mass range acquisition and MS{sup n} fragmentation and in the QqLIT system, it was based on the use of an information-dependent-acquisition scan function, which allows the combination of an SRM or MS full scan acting as the survey scan and an enhanced product ion scan followed by MS{sup 3} as the dependent scan in the same analysis. Three instruments were applied to monitor the content in fish and shellfish (anchovies, swordfish, tuna, mussels, and oysters) obtained from Valencia and Barcelona markets (Spain). The eight target PFCs were detected at mean concentrations in the range from 10 ng kg {sup -1} (perfluoro-7-methyloctanoic acid and perfluoro-1-decanesulfonate) to 4,200 ng kg {sup -1} (perfluoropentanoic acid

  14. Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air

    Science.gov (United States)

    Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri

    2018-04-01

    C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.

  15. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems.

    Science.gov (United States)

    Post, Gloria B; Louis, Judith B; Lippincott, R Lee; Procopio, Nicholas A

    2013-01-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were previously detected (≥ 4 ng/L) in 65% and 30%, respectively, of 23 New Jersey (NJ) public drinking water systems (PWS) sampled in 2006. We now report on a 2009 study of the occurrence of PFOA, PFOS, and eight other perfluorinated compounds (PFCs) in raw water samples from 30 intakes (18 groundwater and 12 surface water) from 29 additional NJ PWS. Between 1 and 8 PFCs were detected (≥ 5 ng/L) in 21 (70%) of 30 PWS samples at total PFC concentrations of 5-174 ng/L. Although PFOA was the most commonly detected PFC (57% of samples) and was found at the highest maximum concentration (100 ng/L), some of the higher levels of other PFCs were at sites with little or no PFOA. Perfluorononanoic acid was detected more frequently (30%) and at higher concentrations (up to 96 ng/L) than in raw or finished drinking water elsewhere, and it was found at several sites as the sole or predominant PFC, a pattern not reported in other drinking water studies. PFOS, perfluoropentanoic acid, and perfluorohexanoic acid were each detected in more than 20% of samples, while perfluoroheptanoic acid, perfluorobutane sulfonic acid, and perfluorohexane sulfonic acid were detected less frequently. Perfluorobutanoic acid was found only once (6 ng/L), and perfluorodecanoic acid was not detected. Total PFCs were highest in two reservoirs near an airfield; these were also the only sites with total perfluorosulfonic acids higher than total perfluorocarboxylic acids (PFCAs). PFC levels in raw and finished water from the same source were similar at those sites where both were tested. Five wells of two additional NJ PWS known to be contaminated with PFOA were also each sampled 4-9 times in 2010-13 for nine of the same PFCs. Total PFCs (almost completely PFCAs) at one of these PWS located near an industrial source of PFCs were higher than in any other PWS tested (up to 330 ng/L). These results show that multiple PFCs are

  16. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  17. Metal oxide/polyaniline nanocomposites

    Indian Academy of Sciences (India)

    Nanocomposites of iron oxide with conducting polymer in the form of powders of varying compositions have been studied to understand the effects of particle size, cluster size and magnetic inter-particle interactions. The sizes of the nanoparticles were estimated to be ∼ 10–20 nm from the X-ray diffraction (XRD) and the ...

  18. Nanocomposites with biodegradable polycaprolactone matrix

    Czech Academy of Sciences Publication Activity Database

    Janigová, I.; Lednický, František; Jochec-Mošková, D.; Chodák, I.

    2011-01-01

    Roč. 301, č. 1 (2011), s. 1-8 ISSN 1022-1360. [Eurofillers /8./. Alessandria, 21.06.2009-25.06.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : melt mixing * nanocomposite s * organoclay Subject RIV: CD - Macromolecular Chemistry

  19. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor's high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  20. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  1. How Nano are Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Schafer, Dale W; Justice, Ryan S

    2007-01-01

    ...s (single and multi-walled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  2. Environmental contamination by perfluorinated carboxylates and sulfonates following the use of fire-fighting foam in Tomakomai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Horii, Yuichi; Hanari, Nobuyasu; Okazawa, Tsuyoshi [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kannan, K. [Wadsworth Center, New York State Department of Health, Albany, NY (United States); Petrick, G. [Kiel Univ. (Germany). Inst. for Marine Research

    2004-09-15

    On September 26, 2003, a magnitude (M) 8.3 offshore earthquake struck Hokkaido, Japan. The earthquake and ensuing tsunami injured hundreds of people and resulted in significant damage to port and coastal communities. Immediately following the earthquake, a major fire occurred at an oil storage facility of a refinery (Idematsu Kosan Company Ltd) located in the west part of Tomakomai, a Pacific coast city in southern Hokkaido. Idemitsu Kosan Company is the second largest oil refinery in Japan, with a capacity of 140,000 barrels per day (bpd) in Tomakomai. Forty five of the 105 oil storage tanks were damaged following the earthquake and resulted in release of petroleum naphtha, which ignited accidentally. The first fire was reported immediately after the earthquake on 26 September 2003 and was extinguished after 7 hours. The second fire occurred on 28 September and lasted for 44 h. More than three hundred fireman and about one hundred fire engines were brought from several prefectures by air carriers to extinguish the fire. More than 130,000 L of fire fighting foams (FFF) was delivered to extinguish these fires and at least 40,000 L was used. Detailed information regarding the type of FFF used was not available, but aqueous film forming foams (AFFF) have been used in the control of fuel-related fires. Perfluorooctane sulfonate (PFOS) and related perfluorinated acids are a component of AFFF. The issue of environmental pollution by perfluorinated compounds (PFCs) including perfluorinated carboxylates and sulfonates has received much attention in the last four years. PFCs possess unique physicochemical properties and exhibit a wide range of volatility/ water solubility depending on the functional group. Environmental dynamics of PFCs is complex due to their unique characteristics and to their release from multitude of sources with various compositions. Previous studies have reported on environmental contamination by PFCs due to accidental release of AFFF. Large amount of

  3. Screening of perfluorinated compounds in water, sediment and biota of the Llobregat River basin (NE Spain)

    Science.gov (United States)

    Campo, Julian; Perez, Francisca; Pico, Yolanda; Farre, Marinella; Barcelo, Damia; Andreu, Vicente

    2014-05-01

    PFCs present significant thermal and chemical stability being persistent in the environment, where they can bio-accumulate and adversely affect humans and wildlife (Llorca et al., 2012). Human exposure to PFCs is of concern since PFCs tend to be associated with fatty acid binding proteins in the liver or albumin proteins in blood, and have been detected in human serum, urine, saliva, seminal plasma and breast milk (Sundstrom et al., 2011). This study is aimed at the screening of 21 perfluorinated compounds (PFCs) in environmental samples by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The main objective is to identify target compounds at low levels in water, sediments and biota of the Llobregat River (2010), second longest river in Catalonia and one of Barcelona's major drinking water resources. PFCs were extracted from water samples by Solid Phase Extraction (SPE); from sediment by ultrasonication with acidified methanol followed by an off-line SPE procedure (Picó et al., 2012), and from biota (fish) with alkaline digestion, clean-up by TurboFlow™ on line technology coupled to LC-MS/MS (Llorca et al., 2012). The limits of detection (LODs) and limits of quantification (LOQs) of the method were calculated by analysis of spiked river water, sediment, and biota with minimum concentrations of each individual compound at a signal-to-noise ratio of 3 and 10, respectively. The LODs and LOQs of the method in river water ranged between 0.004 and 0.8 ng L-1 and between 0.01 and 2 ng L-1, respectively. In sediment LODs were 0.013-2.667 ng g-1 dry weight (dw) and LOQs were 0.04-8 ng g-1 dw, meanwhile in biota these were 0.006-0.7 pg μL-1 and 0.02-2.26 pg μL-1, respectively. Recoveries ranged between 65% and 102% for all target compounds. The method was applied to study the spatial distribution of these compounds in the Llobregat River basin. For this, a total of 40 samples were analysed (14 water, 14 sediments, 12 fishes). Of the 21 target

  4. Poly(vinyl alcohol Nanocomposites Reinforced with Bamboo Charcoal Nanoparticles: Mineralization Behavior and Characterization

    Directory of Open Access Journals (Sweden)

    Cheng-Ming Tang

    2015-07-01

    Full Text Available Polyvinyl alcohol (PVA demonstrates chemical stability and biocompatibility and is widely used in biomedical applications. The porous bamboo charcoal has excellent toxin absorptivity and has been used in blood purification. In this study, bamboo charcoal nanoparticles (BCNPs were acquired with nano-grinding technology. The PVA and PVA/BCNP nanocomposite membranes were prepared and characterized by the tensile test, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD. Results showed that the tensile strength and elongation of the swollen PVA membranes containing 1% BCNPs (PB1 were significantly greater than those of PVA and other PVA/BCNP composite membranes. In addition, the major absorption band of OH stretching in the IR spectra shifted from 3262 cm−1 for PVA membrane containing 1% BCNP to 3244 cm−1 for PVA membrane containing 20% BCNP. This blue shift might be attributed to the interaction between the PVA molecules and BCNPs. Moreover, the intensity of the XRD peaks in PVA was decreased with the increased BCNP content. The bioactivity of the nanocomposites was evaluated by immersion in the simulated body fluid (SBF for seven days. The mineral deposition on PB5 was significantly more than that on the other samples. The mineral was identified as hydroxyapatite (HA by XRD. These data suggest that the bioactivity of the composite hydrogel membranes was associated with the surface distribution of hydrophilic/hydrophobic components. The PVA/BCNP composite hydrogels may have potential applications in alveolar bone regeneration.

  5. Formation of Silver and Gold Dendrimer Nanocomposites

    International Nuclear Information System (INIS)

    Balogh, Lajos; Valluzzi, Regina; Laverdure, Kenneth S.; Gido, Samuel P.; Hagnauer, Gary L.; Tomalia, Donald A.

    1999-01-01

    Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0)) n- PAMAM} and {(Ag(0)) n- PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal ('I'), external ('E') and mixed ('M') type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials

  6. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  7. Epoxy polyurethane nanocomposites filled with fullerite

    International Nuclear Information System (INIS)

    Rozhnova, R.A.; Galatenko, N.A.; Lukashevich, S.A.; Shirokov, O.D.; Levenets', Je.G.

    2015-01-01

    New nanocomposite materials based on epoxy polyurethane (EPU) containing nanoscale fullerite in its composition are produced. The influence of small impurities of fullerite on physical and mechanical properties of the nanocomposites is established. The effect of a nanofiller and its concentration on the structure and properties of the composite and the ability to biodegradation in vitro is studied. The developed nanocomposites exhibit the biodegradability, and the presence of nanofillers in the EPU facilitates the course of the process

  8. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  9. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  10. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  11. Use of agroindustrial waste in the preparation of nanocomposites based on bacterial cellulose and hydroxyapatite

    International Nuclear Information System (INIS)

    Duarte, Eden B.; Chagas, Bruna S. das; Feitosa, Judith P.A.; Andrade, Fabia K.; Borges, Maria F.; Muniz, Celli R.; Souza Filho, Men de Sa M.; Rosa, Morsyleide F.; Brigida, Ana I.; Morais, Joao P.S.

    2015-01-01

    Environmental issues have supported the interest in renewable sources and agroindustrial residues became a significant resource for the production of new materials. The present work presents the use of agroindustrial residues to obtain bacterial cellulose (BC) for further elaboration of nanocomposites with hydroxyapatite (HA). The production of BC membranes occurred in Hestrin & Schramm medium, cashew juice and sisal liquid waste cultivated under static conditions. After the incubation period, the BC membranes were purified and nanocomposites prepared by successive immersion of the purified membranes in solutions of Calcium Chloride (CaCl_2), and Sodium Phosphate (Na_2HPO_4), followed by drying and subsequent characterization. The materials obtained were characterized by Thermogravimetric Analysis (TGA) and X-ray Diffraction (XRD). Additionally, in vitro tests were performed for nanocomposites. The results showed the production of cellulose from the three substrates studied, without the need for further supplementation or pH change. In all characterizations, structure and typical behavior of bacterial cellulose were found. The composites showed bioactivity and the adsorption capacity of proteins, which lead to potential biocompatibility of these materials. (author)

  12. Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France)

    International Nuclear Information System (INIS)

    Labadie, Pierre; Chevreuil, Marc

    2011-01-01

    This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C 4 -C 10 sulfonates and C 5 -C 14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L -1 in water and 8.4 ± 0.5 ng g -1 in sediment. They were in the range 43.1-4997.2 ng g -1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log K d ) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between -1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids. - Research highlights: → PFC tissue distribution in European chub followed the order plasma > liver > gills > gonads > muscle. → K d and BAF correlated with PFC alkyl chain length. → BSAF negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids. → BSAF did not correlate with alkyl chain length of sulfonates. - Sediment-water, biota-water and biota-sediment partitioning coefficients were determined for perfluorinated acids and sulfonates and were generally correlated with alkyl chain length.

  13. The Association of Prenatal Exposure to Perfluorinated Chemicals with Glucocorticoid and Androgenic Hormones in Cord Blood Samples: The Hokkaido Study.

    Science.gov (United States)

    Goudarzi, Houman; Araki, Atsuko; Itoh, Sachiko; Sasaki, Seiko; Miyashita, Chihiro; Mitsui, Takahiko; Nakazawa, Hiroyuki; Nonomura, Katsuya; Kishi, Reiko

    2017-01-01

    Perfluorinated chemicals (PFCs) disrupt cholesterol homeostasis. All steroid hormones are derived from cholesterol, and steroid hormones such as glucocorticoids and androgenic hormones mediate several vital physiologic functions. However, the in utero effects of PFCs exposure on the homeostasis of these steroid hormones are not well understood in humans. We examined the relationship between prenatal exposure to perfluorooctane sulfonate (PFOS)/perfluorooctanoate (PFOA) and cord blood levels of glucocorticoid and androgenic hormones. We conducted a hospital-based birth cohort study between July 2002 and October 2005 in Sapporo, Japan (n = 514). In total, 185 mother-infant pairs were included in the present study. Prenatal PFOS and PFOA levels in maternal serum samples were measured using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Cord blood levels of glucocorticoid (cortisol and cortisone) and androgenic hormones [dehydroepiandrosterone (DHEA) and androstenedione] were also measured in the same way. We found a dose-response relationship of prenatal PFOS, but not PFOA, exposure with glucocorticoid levels after adjusting for potential confounders. Cortisol and cortisone concentrations were -23.98-ng/mL (95% CI: -0.47.12, -11.99; p for trend = 0.006) and -63.21-ng/mL (95% CI: -132.56, -26.72; p for trend blood. Citation: Goudarzi H, Araki A, Itoh S, Sasaki S, Miyashita C, Mitsui T, Nakazawa H, Nonomura K, Kishi R. 2017. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: the Hokkaido Study. Environ Health Perspect 125:111-118; http://dx.doi.org/10.1289/EHP142.

  14. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes

    KAUST Repository

    Thompson, Joshua A.

    2012-08-01

    The effect of typical membrane processing conditions on the structure, interfacial morphology, and gas separation performance of MOF/polymer nanocomposite membranes is investigated. In particular, the ZIF-8/Matrimid® nanocomposite membrane system is examined, and it is shown that ultrasonication - a commonly employed particle dispersion method - induces significant changes in the shape, size distribution, and structure of ZIF-8 particles suspended in an organic solvent during membrane processing. Dynamic light scattering and electron microscopy reveal that ZIF-8 nanoparticles undergo substantial Ostwald ripening when subjected to high intensity ultrasonication as often required in the formation of MOF/polymer nanocomposite membranes. Other characterization techniques reveal that the ripened particles exhibit lower pore volumes and lower surface areas compared to the as-made material. ZIF-8/Matrimid® composite membranes fabricated using two sonication methods show significant differences in microstructure. Permeation measurements show significant enhancement in permeability of CO 2 and increased CO 2/CH 4 selectivity in membranes fabricated with high-intensity sonication. In contrast, composite membranes prepared with low-intensity sonication are found to be defective. A careful evaluation of MOF membrane processing conditions, as well as knowledge of the properties of the MOF material after these membrane processing steps, are necessary to develop reliable processing-structure-property relations for MOF-containing membranes. © 2012 Elsevier Inc. All rights reserved.

  15. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  16. Development of Novel Nanocomposite Membrane for Energy Conversion Cells

    International Nuclear Information System (INIS)

    Elkalashy, S.I.A.

    2012-01-01

    Solid polymer electrolyte (SPE) is synthesized using solution casting technique. The SPE uses poly (vinyle alcohol) PVA as a host matrix, solid acid NaHSO 4 , ethylene carbonate (EC) as plasticizer and (Si) as filler. The XRD illustrated the addition of EC reduces the degree of crystallinity of NaHSO 4 where the addition of Si resulted in the formation of new structure (SiOS). In addition, Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show that changes morphology of solid polymer electrolyte. The obtained bulk conductivity illustrates an improvement with EC concentration to characteristic concentration 9.9 wt. %EC, In addition it increases with temperature obeying Arrhenius law. This can be attributed to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. A solid state magnesium battery is fabricated and characterized. A cell with the configuration Mg/ ((PVA: 0.5 NaHSO 4 )/ 9.9 wt. % EC) /MnO 2 gives a real capacity 249 mAh/g and has an internal resistance ≅165 Ω and cell with the configuration Mg/ ((PVA: 0.5 NaHSO 4 ): 9.9 wt. % EC/ 3.75 9 wt. % Si) /FeS 2 gives a real capacity 112 mAh/g and has an internal resistance ≅160 Ω The electrodes degradation after discharge was characterized by XRD analysis.

  17. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Directory of Open Access Journals (Sweden)

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  18. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids

    Directory of Open Access Journals (Sweden)

    Tarek M. Madkour

    2016-06-01

    Full Text Available Multi-walled carbon nanotube (MWCNT and graphene nanoplatelet reinforced thermoplastic poly(lactic acid (PLA biodegradable nanocomposites were designed and prepared using solution casting techniques. The prepared biodegradable polymers are expected to provide an environmentally friendly alternative to petroleum-based polymers. Both nanocomposite systems exhibited better thermal stability and improved mechanical performance over the unreinforced polymer exhibiting excellent strength and degradability. The addition of graphene nanofiller in varied amounts was aimed to enhance the thermal and mechanical properties of the nanocomposites even further and incorporate the outstanding characteristics of graphene nanoplatelets into the nanocomposites. The polymeric nanocomposites showed also superior advantages for oil drilling relevances, automotive lubricating purposes, membrane technology and food packaging. Scanning electron microscopy images indicated a homogeneous dispersion of the nanofiller within the polymeric matrix at low filler loadings and a cluster formation at higher loadings that could be responsible for the polymeric matrix movement restrictions. The enthalpy of mixing (the polymer and the nanofiller measured could explain the cause of the repulsive interactions between the nanoparticles and the polymeric chains, which created an additional excluded volume that the polymeric segments were restricted to occupy, thus forcing the conformational characteristics of the polymeric chains to deviate away from those of the bulk chains. The prepared polymeric nano composites (poly lactic acid carbon nano tube and poly lactic acid graphene nanoplatelets were utilized in the formulation of oil-base mud as a viscosifier. The rheological, filtration properties and electrical stability of the oil based mud formulation with the new polymeric nanocomposite were studied and the result compared to the oil-based mud formulation with commercial viscosifier.

  19. Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yuwei; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Li, Xi; Yang, Aijun; Wu, Yi; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, Xi’an, Shaanxi Province 710049 (China); Han, Guohui; Lu, Yanhui [Pinggao Group Co. Ltd., Pingdingshan, Henan Province 467001 (China)

    2016-08-15

    Due to the high global warming potential (GWP) and increasing environmental concerns, efforts on searching the alternative gases to SF{sub 6}, which is predominantly used as insulating and interrupting medium in high-voltage equipment, have become a hot topic in recent decades. Overcoming the drawbacks of the existing candidate gases, C5- perfluorinated ketone (C5 PFK) was reported as a promising gas with remarkable insulation capacity and the low GWP of approximately 1. Experimental measurements of the dielectric strength of this novel gas and its mixtures have been carried out, but the chemical decomposition pathways and products of C5 PFK during breakdown are still unknown, which are the essential factors in evaluating the electric strength of this gas in high-voltage equipment. Therefore, this paper is devoted to exploring all the possible decomposition pathways and species of C5 PFK by density functional theory (DFT). The structural optimizations, vibrational frequency calculations and energy calculations of the species involved in a considered pathway were carried out with DFT-(U)B3LYP/6-311G(d,p) method. Detailed potential energy surface was then investigated thoroughly by the same method. Lastly, six decomposition pathways of C5 PFK decomposition involving fission reactions and the reactions with a transition states were obtained. Important intermediate products were also determined. Among all the pathways studied, the favorable decomposition reactions of C5 PFK were found, involving C-C bond ruptures producing Ia and Ib in pathway I, followed by subsequent C-C bond ruptures and internal F atom transfers in the decomposition of Ia and Ib presented in pathways II + III and IV + V, respectively. Possible routes were pointed out in pathway III and lead to the decomposition of IIa, which is the main intermediate product found in pathway II of Ia decomposition. We also investigated the decomposition of Ib, which can undergo unimolecular reactions to give the

  20. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  1. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites.

    Science.gov (United States)

    Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra

    2018-03-01

    Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei, E-mail: hanqiujiang@163.com

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based on quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.

  3. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  4. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  5. Targeted delivery of polyoxometalate nanocomposites.

    Science.gov (United States)

    Geisberger, Georg; Paulus, Susann; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R

    2011-10-04

    Polyoxometalate/carboxymethyl chitosan nanocomposites with an average diameter of 130 nm are synthesized and labeled with fluorescein isothiocyanate (FITC) for a combined drug-carrier and cellular-monitoring approach. [Eu(β(2) -SiW(11) O(39) )(2) ](13-) /CMC nanospheres as a representative example do not display cytotoxicity for POM concentrations up to 2 mg mL(-1) . Cellular uptake of fluoresecently labelled {EuSiW(11) O(39) }/FITC-CMC nanoparticles is monitored with confocal laser scanning microscopy. Nanoparticle uptake occurs after incubation times of around 1 h and no cyctotoxic effects are observed upon prolonged treatment. The preferential location of the POM/CMC nanocomposites in the perinuclear region is furthermore verified with transmission electron microscopy investigations on unlabeled nanoparticles. Therefore, this approach is a promising dual strategy for the safe cellular transfer and monitoring of bioactive POMs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-02-11

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized by fabricating an array of polydimethylsiloxane (PDMS) - iron nanowire nanocomposite cilia on a planar coil array. Each coil element consists of 14 turns and occupies an area of 600 μm x 600μm. The cilia are arranged in a 12x5 array and each cilium is 250 μm wide and 2 mm long. The magnetic characteristics of the fabricated cilia indicate that the nanowires are well aligned inside of the nanocomposite, increasing the efficiency of energy harvesting. The energy harvester occupies an area of 66.96 mm2 and produces an output r.m.s voltage of 206.47μV, when excited by a 40 Hz vibration of 1 mm amplitude.

  7. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  8. Bitumen nanocomposites with improved performance

    KAUST Repository

    Kosma, Vasiliki

    2017-11-29

    Bitumen-clay nanocomposite binders with styrene-butadienestyrene triblock copolymer, SBS, and combinations of SBS and crumb rubber (CR) with different CR/SBS ratios have been synthesized and characterized. In addition to the binder, samples containing the binder and concrete sand (with a weight ratio 1:9) were prepared. The modified binders were studied in terms of filler dispersion, storage stability, mechanical performance and water susceptibility. We demonstrate that the samples containing nanoclays consistently outperform those based only on the polymer additives. We also find that nanocomposite samples based on a combination of SBS and CR are best, since in addition to other improvements they show excellent storage stability. Our work shows that substituting CR with SBS as a bitumen additive and combining it with inexpensive nanoclays leads to new materials with enhanced performance and improved stability for practical asphalt applications.

  9. Electrospun Borneol-PVP Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2012-01-01

    Full Text Available The present work investigates the validity of electrospun borneol-polyvinylpyrrolidone (PVP nanocomposites in enhancing drug dissolution rates and improving drug physical stability. Based on hydrogen bonding interactions and via an electrospinning process, borneol and PVP can form stable nanofiber-based composites. FESEM observations demonstrate that composite nanofibers with uniform structure could be generated with a high content of borneol up to 33.3% (w/w. Borneol is well distributed in the PVP matrix molecularly to form the amorphous composites, as verified by DSC and XRD results. The composites can both enhance the dissolution profiles of borneol and increase its physical stability against sublimation for long-time storage by immobilization of borneol molecules with PVP. The incorporation of borneol in the PVP matrix weakens the tensile properties of nanofibers, and the mechanism is discussed. Electrospun nanocomposites can be alternative candidates for developing novel nano-drug delivery systems with high performance.

  10. Radiolytic Synthesis of Magnetic Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Grdanovska, Slavica; Tissot, Chanel; Barkatt, Aaron; Al-Sheikhly, Mohamad [Nuclear Engineering Program – Department of Materials Science and Engineering, University of Maryland, College Park, MD (United States)

    2011-07-01

    Magnetic nanocomposites, in which magnetic nanoparticles are encapsulated in polymeric matrices, have important applications in medicine, electronics and mechanical devices. However, the development of processes leading to magnetic nanocomposites with desirable, predictable and reproducible properties has turned out to be a difficult challenge. To date, most studies have concentrated on a magnetic oxide, primarily magnetite (Fe{sub 3}O{sub 4}), as the encapsulated phase. However, the synthesis of batches of magnetite with homogeneous properties at reasonably low temperature is a delicate operation. Indeed, commercial lots of magnetite powder, despite having bulk Fe{sub 3}O{sub 4} stoichiometry, turn out to have large variations in structure and in magnetic properties. The difficulties in controlling the product are greatly magnified when the particle size is in the nanometer range.

  11. The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2015-01-01

    In this work, a non-equilibrium formulation of a compression dependent water uptake model has been implemented in a two-dimensional, two-phase, multi-component and non-isothermal high pressure PEM electrolysis model. The non-equilibrium formulation of the water uptake model was chosen in order...... to account for interfacial transport kinetics between each fluid phase and the perfluorinated sulfonic acid membrane. Besides modeling water uptake, the devised membrane model accounts for water transport through diffusion and electro-osmotic drag in the electrolyte phase, and hydraulic permeation...... in the liquid phase. Charge transport and electrochemistry are likewise included. The obtained model is validated against experimental measurements. In order to investigate the effect of membrane compression, a parametric study is carried. Results underline that the predicted water uptake and cell voltage...

  12. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemzadeh, L. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Marrony, M. [European Institute for Energy Research, Emmy-Noether-Strasse 11, D-76131 Karlsruhe (Germany); Barrera, R. [Edison, Via Giorgio La Pira, 2, I-10028 Trofarello (Italy); Kreuer, K.D.; Maier, J. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Mueller, K. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2009-01-15

    The degradation of two different types of perfluorinated polymer membranes, Nafion and Hyflon Ion, has been examined by solid-state {sup 19}F and {sup 13}C NMR spectroscopy. This spectroscopic technique is demonstrated to be a valuable tool for the study of the membrane structure and its alterations after in situ degradation in a fuel cell. The structural changes in different parts of the polymers are clearly distinguished, which provides unique insight into details of the degradation processes. The experimental NMR spectra prove that degradation mostly takes place within the polymer side chains, as reflected by the intensity losses of NMR signals associated with SO{sub 3}H, CF{sub 3}, OCF{sub 2} and CF groups. The integral degree of degradation is found to decrease with increasing membrane thickness while for a given thickness, Hyflon Ion appears to degrade less than Nafion. (author)

  13. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  14. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    polymerize in-situ around the fillers or even graft to them [71], thus it overcomes the problem of dramatically increased viscosity of the polymer...filler dispersion, increased polymer viscosity during processing and filler damage due to thermal degradation or strong shear forces [3, 82]. At...123, 124]. Figure 1.12 (a) SEM image of the fracture surface of GO/PVA nanocomposite film [85]. (b) TEM image of a clay reinforced Nylon-6

  15. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  16. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  17. Reaction of N-acetylneuraminic acid derivatives with perfluorinated anhydrides: a short access to N-perfluoracylated glycals with antiviral properties.

    Science.gov (United States)

    Rota, Paola; Allevi, Pietro; Mattina, Roberto; Anastasia, Mario

    2010-08-21

    An efficient short protocol for the preparation of N-perfluoroacylated glycals of neuraminic acid, by simple short treatment of differently protected N-acetylneuraminic acid with perfluorinated anhydrides in acetonitrile at 135 degrees C, is reported, together with a rationalitazion of the reaction that allows the alternative formation of N-perfluoroacylated 1,7-lactones to be previewed under the same reaction conditions.

  18. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  19. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  20. Nanocrystal-polymer nanocomposite electrochromic device

    Science.gov (United States)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  1. High-frequency magnetoimpedance in nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, Alexey [Moscow State Institute of Radioengineering, Electronics and Automation (Technical University), Moscow 117454 (Russian Federation)]. E-mail: alexey_yurasov@mail.ru; Granovsky, Alexander [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Tarapov, Sergey [Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, Kharkov 61085 (Ukraine); Clerc, Jean-Pierre [Ecole Polytechnique Universitaire de Marseille, Technopole de Chateau-Gombert, Marseille 13453 (France)

    2006-05-15

    The transmission of millimeter-range electromagnetic waves (30-50 GHz) through a magnetic nanocomposite thin film exhibiting tunnel magnetoresistance (TMR) is calculated. The relative change of transmission coefficient in an applied magnetic field due to the magnetorefractive effect is approximately linear with TMR and strongly depends on nanocomposite resistivity and film thickness. The obtained results are in a good agreement with experiment.

  2. High-frequency magnetoimpedance in nanocomposites

    International Nuclear Information System (INIS)

    Yurasov, Alexey; Granovsky, Alexander; Tarapov, Sergey; Clerc, Jean-Pierre

    2006-01-01

    The transmission of millimeter-range electromagnetic waves (30-50 GHz) through a magnetic nanocomposite thin film exhibiting tunnel magnetoresistance (TMR) is calculated. The relative change of transmission coefficient in an applied magnetic field due to the magnetorefractive effect is approximately linear with TMR and strongly depends on nanocomposite resistivity and film thickness. The obtained results are in a good agreement with experiment

  3. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  4. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Science.gov (United States)

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  5. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    NICOLAAS

    Physical and chemical characterization of the mesoporous nanocomposites from ... On the other hand, nanocomposites from sol-gel synthetic method had larger surface areas, were more defective ... This highlights the great potential of typical nanomaterials in ... various options available, especially for a developing world.

  6. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  7. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  8. Parylene nanocomposites using modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Luzuriaga, A. Ruiz de; Grande, H.; Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H.; Mecerreyes, D.; Cabanero, German

    2010-01-01

    Parylene/Fe 3 O 4 nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe 3 O 4 nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe 3 O 4 nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  9. Advances in rubber/halloysite nanotubes nanocomposites.

    Science.gov (United States)

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  10. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  11. Nanocomposite organomineral hybrid materials. Part 2

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-04-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  12. Nanocomposite organomineral hybrid materials. Part I

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-02-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  13. Nanocomposite organomineral hybrid materials. Part 3

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-06-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  14. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  15. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  16. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  17. Gas barrier properties of nanocomposites based on in situ polymerized poly(n-butyl methacrylate) in the presence of surface modified montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Herrera-Alonso, J. M.; Sedláková, Zdeňka; Marand, E.

    2010-01-01

    Roč. 349, 1-2 (2010), s. 251-257 ISSN 0376-7388 R&D Projects: GA AV ČR KAN100500651; GA MŠk ME09058 Institutional research plan: CEZ:AV0Z40500505 Keywords : barrier membranes * nanocomposites * montmorillonite Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.673, year: 2010

  18. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Choi, So-Won; Kim, Tae-Ho; Cha, Sang-Ho

    2017-07-10

    Vanadium redox flow batteries (VRFBs) have received considerable attention as large-scale electrochemical energy storage systems. In particular, VRFBs offer a higher power and energy density than other RFBs and mitigate undesirable performance fading, such as inevitable ion crossover, because of the unique advantage that only the vanadium ion is employed as the active species in the two electrolytes. The key constituent of VRFBs is a separator to conduct protons and prevent cross-mixing of the positive and negative electrolytes. For this purpose, ion exchange membranes like sulfonated polymer membranes can be used. Although this type of membrane does not have ion exchange groups, it can achieve an ion exchange capacity by the formation of pores. This review highlights the patents on the preparation of non-fluorinated membranes (sulfonated aromatic polymer membranes and porous membranes) as alternatives to high-cost perfluorinated polymers and their VRFB performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Temporal trends of polychlorinated biphenyls, polybrominated diphenyl ethers, and perfluorinated compounds in Chinese sturgeon (Acipenser sinensis) eggs (1984-2008).

    Science.gov (United States)

    Jianxian, Sun; Hui, Peng; Jianying, Hu

    2015-02-03

    Because investigation on the temporal trends of persistent halogenated compounds (PHCs) is necessary to predict their future impacts on the environment and human health and evaluate the effectiveness of regulations on their production and usage, it is of concern to investigate annual temporal trends of PHCs in biota samples. This study examined the temporal trends of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluorinated compounds (PFCs) in Chinese sturgeon (Acipenser sinensis) eggs over a period of 25 years (1984-2008), and 62 PCBs (19.2-1030 ng/g dw for total PCBs), 16 PBDEs (4.7-572 ng/g dw for total PBDEs), and 14 PFCs (26-46 ng/g dw for total PFCs) were detected. Although a decreasing temporal trend was observed for total PCBs with annual reduction rate of 3.4% (ρ = 0.005), a clear break point was observed around 1991, indicating their continuing emission in the 1980s in China. All major PBDEs showed increasing temporal trends, with annual change rates at 3.5-10.2% over the 25 years, but a sharp decreasing trend was observed after 2006, indicating a rapid response to the banning of PBDE usage in China in 2004. The greatest annual rate of increase was observed for BDE-28 (10.2%) followed by BDE-100 (7.7%), which would be due to metabolism input from higher brominated PBDEs. Significantly increasing temporal trends were observed for all PFCs, and the annual rates of increase were 7.9% and 5.9% for total perfluorinated carboxylic acids and perfluorooctanesulfonate (PFOS), respectively. A peak concentration for PFOS was observed in 1989, which may be related to the import history of PFCs in China. The present study is the first report of systematic temporal trends of PHCs in biota samples from China and shows that regulatory policy is needed to reduce their potential health and ecological risk in China considering the increasing temporal trends of PBDEs and PFCs.

  20. Structural modification in the formation of starch – silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com [Department of Applied Science and Technology, A.C.Tech. Campus, Anna University, Chennai – 600 025 (India); Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2016-05-23

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  1. Structural modification in the formation of starch – silver nanocomposites

    International Nuclear Information System (INIS)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal; Aswal, V. K.

    2016-01-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO_3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO_3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO_3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  2. Structural modification in the formation of starch - silver nanocomposites

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  3. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  4. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.; Wang, Yue; Okemgbo, Kaetochi C.; Osuji, Chinedum O.; Giannelis, Emmanuel P.; Elimelech, Menachem

    2011-01-01

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  5. Antifouling Ultrafiltration Membranes via Post-Fabrication Grafting of Biocidal Nanomaterials

    KAUST Repository

    Mauter, Meagan S.

    2011-08-24

    Figure Presented: Ultrafiltration (UF) membranes perform critical pre-treatment functions in advanced water treatment processes. In operational systems, however, biofouling decreases membrane performance and increases the frequency and cost of chemical cleaning. The present work demonstrates a novel technique for covalently or ionically tethering antimicrobial nanoparticles to the surface of UF membranes. Silver nanoparticles (AgNPs) encapsulated in positively charged polyethyleneimine (PEI) were reacted with an oxygen plasma modified polysulfone UF membrane with and without 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide hydrochloride (EDC) present. The nucleophilic primary amines of the PEI react with the electrophilic carboxyl groups on the UF membrane surface to form electrostatic and covalent bonds. The irreversible modification process imparts significant antimicrobial activity to the membrane surface. Post-synthesis functionalization methods, such as the one presented here, maximize the density of nanomaterials at the membrane surface and may provide a more efficient route for fabricating diverse array of reactive nanocomposite membranes. © 2011 American Chemical Society.

  6. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  7. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  9. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  10. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  11. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.

  12. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    Science.gov (United States)

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  13. Selenium speciation in urine by ion-pairing chromatography with perfluorinated carboxylic acids and ICP-MS detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Bendahl, L.; Sidenius, U.

    2002-01-01

    Five aqueous standards, selenomethionine (SeMet), methylselenomethionine (MeSeMet), methylselenocysteine (MeSeCys), selenogammaaminobutyric acid (SeGaba) and the trimethylselenonium ion (TMSe), were separated in ion-pairing chromatographic systems based on perfluorinated carboxylic acids in metha...... were major compounds in urine samples-even after massive consumption of selenium-containing supplements. The selenium species in the urine samples showed a limited stability, as they changed during storage at +4 degreesC as well as -18 degreesC...... of between 2.3 and 5.1 pg. Urine samples from different individuals before and during supplementation with selenomethionine were analysed. Several species were separated in the different urine samples. A major component eluting at the beginning of the chromatogram was predominant in many samples, especially...... after selenium consumption. This species was not identified and solid phase extraction experiments suggested that it was neutral. When different urine samples were spiked with the available standards, co-elution of species with TMSe, MeSeMet or SeMet was observed in some samples. None of these species...

  14. Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food.

    Science.gov (United States)

    Jogsten, Ingrid Ericson; Perelló, Gemma; Llebaria, Xavier; Bigas, Esther; Martí-Cid, Roser; Kärrman, Anna; Domingo, José L

    2009-07-01

    In this study, the role that some food processing and packaging might play as a source of perfluorinated compounds (PFCs) through the diet was assessed. The levels of PFCs were determined in composite samples of veal steak (raw, grilled, and fried), pork loin (raw, grilled, and fried), chicken breast (raw, grilled, and fried), black pudding (uncooked), liver lamb (raw), marinated salmon (home-made and packaged), lettuce (fresh and packaged), pate of pork liver, foie gras of duck, frankfurt, sausages, chicken nuggets (fried), and common salt. Among the 11 PFCs analyzed, only PFHxS, PFOS, PFHxA, and PFOA were detected in at least one composite sample, while the levels of the remaining PFCs (PFBuS, PFHpA, PFNA, PFDA, PFUnDA, and PFDoDA) were under their respective detection limits. PFOS was the compound most frequently detected, being found in 8 of the 20 food items analyzed, while PFHxA was detected in samples of raw veal, chicken nuggets, frankfurt, sausages, and packaged lettuce. According to the results of the present study, it is not sufficiently clear if cooking with non-stick cookware, or packaging some foods, could contribute to a higher human exposure to PFCs.

  15. CFA-13 - a bifunctional perfluorinated metal-organic framework featuring active Cu(i) and Cu(ii) sites.

    Science.gov (United States)

    Fritzsche, J; Denysenko, D; Grzywa, M; Volkmer, D

    2017-11-07

    The synthesis and crystal structure of the mixed-valent perfluorinated metal-organic framework (Me 2 NH 2 )[CFA-13] (Coordination Framework Augsburg University-13), (Me 2 NH 2 )[CuCu(tfpc) 4 ] (H 2 -tfpc = 3,5-bis(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) is described. The copper-containing MOF crystallizes in the monoclinic crystal system within the space group P2 1 /n (no. 14) and the unit cell parameters are as follows: a = 22.3887(19), b = 13.6888(8), c = 21.1804(13) Å, β = 90.495(3)°, V = 6491.0(8) Å 3 . (Me 2 NH 2 )[CFA-13] features a porous 3-D structure constructed from two types of secondary building units (SBUs). Besides novel trinuclear [Cu(pz) 4 ] - coordination units, the network also exhibits Cu(ii) paddle-wheel SBUs. (Me 2 NH 2 )[CFA-13] is fully characterized by single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence, gas sorption measurements and pulse chemisorption experiments. M[CFA-13] (M = K + , Cs + ) frameworks were prepared by postsynthetic exchange of interchannel dimethylammonium cations. Moreover, it was shown that CO molecules can be selectively bound at Cu(i) sites of [Cu(pz) 4 ] - units, whereas Cu(ii) paddle-wheel units bind selectively NH 3 molecules.

  16. Brominated flame retardants and perfluorinated chemicals, two groups of persistent contaminants in Belgian human blood and milk

    Energy Technology Data Exchange (ETDEWEB)

    Roosens, Laurence [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); D' Hollander, Wendy; Bervoets, Lieven [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Reynders, Hans; Van Campenhout, Karen [Environment and Health Unit, Department of Environment, Nature and Energy, Flemish Government - Koning Albert II-laan 20, Bus 8, 1000 Brussels (Belgium); Cornelis, Christa; Van Den Heuvel, Rosette; Koppen, Gudrun [Unit Environmental Risk and Health, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Covaci, Adrian, E-mail: adrian.covaci@ua.ac.b [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2010-08-15

    We assessed the exposure of the Flemish population to brominated flame retardants (BFRs) and perfluorinated compounds (PFCs) by analysis of pooled cord blood, adolescent and adult serum, and human milk. Levels of polybrominated diphenyl ethers (PBDEs) in blood (range 1.6-6.5 ng/g lipid weight, lw) and milk (range 2.0-6.4 ng/g lw) agreed with European data. Hexabromocyclododecane ranged between <2.1-5.7 ng/g lw in milk. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) dominated in blood and ranged between 1 and 171 ng/mL and <0.9-9.5 ng/mL, respectively. Total PFC levels in milk ranged between <0.5-29 ng/mL. A significant increase in PBDE concentrations was detected from newborns (median 2.1) to the adolescents and adults (medians 3.8 and 4.6 ng/g lw, respectively). An identical trend was observed for PFOS, but not for PFOA. We estimated that newborn exposure to BFRs and PFCs occurs predominantly post-natally, whereas placental transfer has a minor impact on the body burden. - The exposure to BFRs and PFCs of general Flemish population has been assessed throughout several age groups.

  17. Occurrence of perfluorinated alkyl substances in sediment from estuarine and coastal areas of the East China Sea.

    Science.gov (United States)

    Yan, Hong; Zhang, Chaojie; Zhou, Qi; Yang, Shouye

    2015-02-01

    Perfluorinated alkyl substances (PFAS) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The occurrence and spatial variation of PFAS were investigated through collection of riverine and marine sediments from estuarine and coastal areas of the East China Sea. Among them, perfluorooctanesulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) were the three predominant PFAS with the highest detection frequencies in the sediment. PFOS up to 32.4 ng g(-1) dw and ∑PFAS up to 34.8 ng g(-1) dw were detected. Compared to other studies, high levels of PFOS were found in sediments from the East China Sea. PFHpA was also detected at higher frequency and concentration than those of other studies, which suggests point sources in this area. Concentrations of PFAS in riverine sediments were much higher than in marine sediments. Analysis of spatial variations presented overall decreasing trends of PFAS from inshore to offshore areas.

  18. First-flush loads of perfluorinated compounds in stormwater runoff from Hayabuchi River basin, Japan served by separated sewerage system.

    Science.gov (United States)

    Zushi, Yasuyuki; Masunaga, Shigeki

    2009-08-01

    Worldwide environmental pollution by perfluorinated compounds (PFCs) has been reported. PFCs have also been reported to have nonpoint sources (NPSs). A fixed-point hourly monitoring in the river was conducted during a storm event using an automatic sampler to estimate the impact of the first-flush of PFCs from NPS in this study. Perfluorocarboxylates (PFCAs) and perfluoroalkyl sulfonates (PFASs) with different chain lengths were monitored. The concentrations of short- to medium-chain-length PFCAs such as PFHpA, PFOA and PFNA, and PFASs such as PFBS, PFPeS, PFHxS, PFHpS and PFOS showed no marked increase with the storm-runoff event. However, in contrast to this, concentrations of long-chain-length PFCAs such as PFDA and PFUnA increased markedly. The concentrations of PFDA and PFUnA increased 3.4 (1.5-5.0 ng L(-1))- and 2.0 (3.3-6.7 ng L(-1))-fold, respectively. This study demonstrates that large loads of long-chain-length PFCAs are discharged to the Hayabuchi River during the first-flush after the rain event.

  19. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture

    KAUST Repository

    Zhao, Yunfeng

    2013-01-01

    We designed and synthesized a perfluorinated covalent triazine-based framework (FCTF-1) for selective CO2 capture. The incorporation of fluorine (F) groups played multiple roles in improving the framework\\'s CO 2 adsorption and separation capabilities. Thermodynamically, the strongly polar C-F bonds promoted CO2 adsorption via electrostatic interactions, especially at low pressures. FCTF-1\\'s CO2 uptake was 1.76 mmol g-1 at 273 K and 0.1 bar through equilibrium adsorption, exceeding the CO2 adsorption capacity of any reported porous organic polymers to date. In addition, incorporating F groups produced a significant amount of ultra-micropores (<0.5 nm), which offered not only high gas adsorption potential but also kinetic selectivity for CO2-N 2 separation. In mixed-gas breakthrough experiments, FCTF-1 exhibited an exceptional CO2-N2 selectivity of 77 under kinetic flow conditions, much higher than the selectivity (31) predicted from single-gas equilibrium adsorption data. Moreover, FCTF-1 proved to be tolerant to water and its CO2 capture performance remained excellent when there was moisture in the gas mixture, due to the hydrophobic nature of the C-F bonds. In addition, the moderate adsorbate-adsorbent interaction allowed it to be fully regenerated by pressure swing adsorption processes. These attributes make FCTF-1 a promising sorbent for CO2 capture from flue gas. © 2013 The Royal Society of Chemistry.

  20. Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Krivobokov, Ivan M.; Gribov, Evgeniy N.; Okunev, Alexey G.

    2011-01-01

    The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech, and compared to Nafion membranes. The sHC membranes exhibit lower proton conductivity (25-40 mS cm -1 vs. ∼95-40 mS cm -1 for Nafion) as well as lower methanol permeability (1.8-3.9 x 10 -7 cm 2 s -1 vs. 2.4-3.4 x 10 -6 cm 2 s -1 for Nafion). Water uptake was similar for all membranes (18-25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion to 17 wt% for PFSA. The power density of Nafion in DMFCs at room temperature decreases with membrane thickness from 26 mW cm -2 for Nafion 117 to 12.5 mW cm -2 for Nafion 112. The maximum power density of the Fumatech membranes ranges from 4 to 13 mW cm -1 . Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.

  1. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  2. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  3. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    Science.gov (United States)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  4. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  5. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to...

  6. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  8. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  9. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  10. Graphene oxide nanocomposites and their electrorheology

    International Nuclear Information System (INIS)

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-01-01

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed

  11. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    Physical and chemical characterization of the mesoporous nanocomposites from the two synthetic methods were investigated using Raman spectroscopy, thermogravimetric analysis, Fourier transformation infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission ...

  12. Titanium Nanocomposite: Lightweight Multifunction Structural Material

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to research and develop lightweight metal matrix nanocomposites (MMnC) using a Titanium (Ti) metal matrix. Ti MMnC will crosscut the advancement of both...

  13. Electrical conduction of a XLPE nanocomposite

    Science.gov (United States)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  14. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  15. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  16. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... insights for the use of technologies for polymer nanocomposites for commercial application, and features chapters from the most experienced researches in the field"-- "The purpose of this edited book...

  17. Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration

    DEFF Research Database (Denmark)

    Chakraborti, M.; Jackson, J.K.; Plackett, David

    2011-01-01

    It has been proposed that localized and controlled delivery of alendronate and tetracycline to periodontal pocket fluids via guided tissue regeneration (GTR) membranes may be a valuable adjunctive treatment for advanced periodontitis. The objectives of this work were to develop a co...... evidence of intercalation in the LDH clay particles. The dual drug loaded nanocomposite films were biocompatible with osteoblasts and after 5 week incubations, significant increase in alkaline phosphatase activity and bone nodule formation were observed....

  18. Conducting polymer nanocomposite-based supercapacitors

    OpenAIRE

    Liew, Soon Yee; Walsh, Darren A.; Chen, George Z.

    2016-01-01

    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summa...

  19. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  20. Fluorocarbon-bonded magnetic mesoporous microspheres for the analysis of perfluorinated compounds in human serum by high-performance liquid chromatography coupled to tandem mass spectrometry

    International Nuclear Information System (INIS)

    Liu, Xiaodan; Yu, Yingjia; Li, Yan; Zhang, Haiying; Ling, Jin; Sun, Xueni; Feng, Jianan; Duan, Gengli

    2014-01-01

    Highlights: • New SPE method was developed for analysis of PFCs in human serum. • Fluorocarbon-bonded magnetic mesoporous microspheres were used as SPE absorbents. • PFCs in serum were directly extracted without any other pretreatment procedure. • The PFCs-adsorbed microspheres were simply and rapidly isolated by using a magnet. - Abstract: We report herein an extraction method for the analysis of perfluorinated compounds in human serum based on magnetic core–mesoporous shell microspheres with decyl-perfluorinated interior pore-walls (Fe 3 O 4 @mSiO 2 -F 17 ). Thanks to the unique properties of the Fe 3 O 4 @mSiO 2 -F 17 microspheres, macromolecules like proteins could be easily excluded from the mesoporous channels due to size exclusion effect, and perfluorinated compounds (PFCs) in protein-rich biosamples such as serum could thus be directly extracted with the fluorocarbon modified on the channel wall without any other pretreatment procedure. The PFCs adsorbed Fe 3 O 4 @mSiO 2 -F 17 microspheres could then be simply and rapidly isolated by using a magnet, followed by being identified and quantified by LC–MS/MS (high-performance liquid chromatography coupled to tandem mass spectrometry). Five perfluorinatedcarboxylic acids (C6, C8–C11) and perfluorooctane sulfonate (PFOS) were selected as model analytes. In order to achieve the best extraction efficiency, some important factors including the amount of Fe 3 O 4 @mSiO 2 -F 17 microspheres added, adsorption time, type of elution solvent, eluting solvent volume and elution time were investigated. The ranges of the LOD were 0.02–0.05 ng mL −1 for the six PFCs. The recovery of the optimized method varies from 83.13% to 92.42% for human serum samples

  1. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, R.S., E-mail: prosserr@uoguelph.ca [School of Environmental Sciences, University of Guelph, Guelph, Ontario (Canada); Mahon, K. [Aquatic Toxicology Unit, Ontario Ministry of the Environment and Climate Change, Toronto, Ontario (Canada); Sibley, P.K. [School of Environmental Sciences, University of Guelph, Guelph, Ontario (Canada); Poirier, D.; Watson-Leung, T. [Aquatic Toxicology Unit, Ontario Ministry of the Environment and Climate Change, Toronto, Ontario (Canada)

    2016-02-01

    Polychlorinated biphenyls (PCBs) and perfluorinated carboxylates and sulfonates (PFASs) are persistent pollutants in sediment that can potentially bioaccumulate in aquatic organisms. The current study investigates variation in the accumulation of PCBs and PFASs in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from contaminated field-collected sediment using 28-day tests. BSAF{sup lipid} (lipid-normalized biota-sediment accumulation factor) values for total concentration of PCBs were greater in Hexagenia spp. relative to L. variegatus and P. promelas. The distribution of congeners contributing to the total concentration of PCBs in tissue varied among the three species. Trichlorobiphenyl congeners composed the greatest proportion of the total concentration of PCBs in L. variegatus while tetra- and pentabiphenyl congeners dominated in Hexagenia spp. and P. promelas. Perfluorooctane sulfonate (PFOS) was present in all three species at concentrations greater than all other PFASs analyzed. Hexagenia spp. also produced the greatest BSAF{sup lipid} and BSAF{sup ww} (non-lipid-normalized biota-sediment accumulation factor) values for PFOS relative to the other two species. However, this was not the case for all PFASs. The trend of BSAF values and number of carbon atoms in the perfluoroalkyl chain of perfluorinated carboxylates varied among the three species but was similar for perfluorinated sulfonates. Differences in the dominant pathways of exposure (e.g., water, sediment ingestion) likely explain a large proportion of the variation in accumulation observed across the three species. - Highlights: • BSAF values for total PCBs and PFOS greatest in Hexagenia spp. • BSAF values for other PFASs not consistently greatest in Hexagenia spp. • Trends in BSAF values for PFASs varied as a function of carbon chain length among species. • Differences in exposure pathways likely explain variation in accumulation across species.

  2. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  3. Synthesis of polyanthranilic acid–Au nanocomposites by emulsion ...

    Indian Academy of Sciences (India)

    Administrator

    PANA–Au nanocomposites are characterized by SEM, equipped with EDS, TGA, FT–IR, XRD and electrochemical techniques. XRD of ... Polyanthranilic acid; nanocomposite; in situ polymerization; emulsion polymerization; nano- particles. 1.

  4. Handbook of polymer nanocomposites processing, performance and application

    CERN Document Server

    Mohanty, Amar; Misra, Manjusri; Kar, Kamal K; Pandey, Jitendra; Rana, Sravendra; Takagi, Hitoshi; Nakagaito, Antonio; Kim, Hyun-Joong

    Volume A forms one volume of a Handbook about Polymer Nanocomposites. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields.

  5. Characterization of PAN/ATO nanocomposites prepared by solution ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Materials and Chemical Engineering, Zhongyuan University of Technology, ... The storage modulus of the nanocomposites increased with increasing content of ATO, ... Thermal stability of the nanocomposites was found remarka-.

  6. Plasma deposition of nanocomposite thin films : process concept and realisation

    NARCIS (Netherlands)

    Alcott, G.R.

    2004-01-01

    Recent developments in materials technology, fuelled by the growing hype surrounding nanotechnology, have given rise to a new breed of materials known as nanocomposites. Nanocomposite materials (a subgroup of hybrid materials) are formed from standard polymers impregnated with nanometre sized

  7. Unique morphology of dispersed clay particles in a polymer nanocomposite

    CSIR Research Space (South Africa)

    Malwela, T

    2011-02-01

    Full Text Available This communication reports a unique morphology of dispersed clay particles in a polymer nanocomposite. A nanocomposite of poly[butylene succinate)-co-adipate] (PBSA) with 3 wt% of organically modified montmorillonite was prepared by melt...

  8. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  9. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  10. Nanocomposites: The End of Compromise

    Science.gov (United States)

    van Damme, H.

    Increase the Young's modulus of a glassy resin by a factor of ten without making it heavier, for a new ski design, for example? Triple the rupture strength of an elastomer? Improve the thermal behaviour of an object made from a thermoplastic polymer by 100 degrees, to make a car dashboard, for example, or a part for the engine? Double the fire resistance time for the sheath around an electricity cable? Reduce the oxygen permeability of a film by a factor of ten, to make long conservation food packaging? All these things have been made possible by incorporating a few percent of inorganic nanoparticles in a polymer matrix. Figures 14.1 and 14.2 illustrate two such nanocomposites: the first was obtained by incorporating lamellar clay particles, and the second by incorporating fibrous nanoparticles, in fact, carbon nanotubes.

  11. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  12. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  13. Shape-morphing nanocomposite origami.

    Science.gov (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A

    2014-05-20

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  14. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  15. Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell

    International Nuclear Information System (INIS)

    Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa

    2011-01-01

    In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.

  16. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  17. Influence of electrostatic interactions on the morphology and properties of blends containing perfluorinated ionomers

    Science.gov (United States)

    Taylor, Eric Paul

    2002-01-01

    The first goal of this research project was to investigate the influence of the electrostatic interactions within the ion-containing domains of Nafion RTM perfluorosulfonate ionomer (PFSI) on the morphology and resultant properties of blend systems with poly(propylene imine) dendrimers of a variety of generational sizes and poly(vinylidene fluoride) (PVDF). Perfluorosulfonate ionomers (PFSIs) are a commercially successful class of semi-crystalline, ion-containing polymers whose most extensive application is in use as a polymer electrolytic membrane in fuel cell applications. NafionRTM was blended and high temperature solution processed with poly(propylene imine) dendrimer as the minor component in order to increase the efficiency of direct methanol fuel cells by decreasing methanol crossover without significant loss of protonic conductivity. The preferential insertion of the dendrimer into the ionic cluster due to proton transfer reactions and the creation of ammonium-sulfonate ion pairs served to alter the transport properties through the ionic network of the membrane. In the second major system investigated, blends of poly(vinylidene fluoride) (PVDF) with NafionRTM, a perfluorosulfonate ionomer, have been prepared and examined in terms of the crystallization kinetics and crystal morphology of the PVDF component in the blend. DSC analysis showed faster rates of bulk crystallization when PVDF was crystallized in the presence of Na+-form NafionRTM suggesting a high degree of phaseseparation in this blend system and an increase in the nucleation density. NafionRTM neutralized with alkylammonium-form counterions display an increase in blend compatibility with PVDF with an increase in the alkylammonium counterion size. As the alkylammonium counterion size increases, the strength of the electrostatic network within the ionic domains of Nafion RTM decrease resulting in a reduction in the driving force for ionic aggregation. Thus, a decrease is observed in the crystal

  18. Development and modification of glass membranes for aggressive gas separations

    Energy Technology Data Exchange (ETDEWEB)

    Lindbraaten, Arne

    2004-07-01

    important s factor as the perm-selectivities. To evaluate this, both short- and long-term aggressive gas exposures are performed using a special designed durability chamber. From the combination of the perm-selectivities and the durability tests, the following conclusions may be drawn (evaluated at 30 Deg C and 1 bar): Firstly, the pure glasses have a relatively poor stability (for chlorine gas) and the perm-selectivity is too low (for both separations in question). Secondly, the C8 and C12 modified glass membranes have a relatively satisfactory perm-selectivity for chlorine separation, but the durability in chlorine is poor. Thirdly, the long-chained C 18 modified glass membrane has a relatively satisfactory perm-selectivity but a fair to low chlorine stability. If the C 18 membrane is applied in the hydrogen chlorine separation the perm-selectivity is a bit low, but the stability is sufficient. However, this membrane is the best choice for a low temperature HC1 selective membrane. Finally, to improve the chlorine stability, a perfluorinated version of a C 10 modification is tried out. This membrane has excellent chlorine stability, and the perm-selectivity is fair. This membrane is the best choice for a chlorine selective membrane. The stability of the fibres is comparable to that found for the pure glass tubes. However, the permeabilities in the glass fibres are several orders of magnitude lower than for the glass tubes. The pore size in the fibre is so narrow that separation occurs according to a molecular sieving mechanism. The mounting of the fibres into a lab-sized module is tricky and the permeabilities are at the border of detection, so the results obtained here should only serve as trends. (Author)

  19. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans.

    Science.gov (United States)

    Wang, Xiaofei; Liu, Liangpo; Zhang, Weibing; Zhang, Jie; Du, Xiaoyan; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2017-10-01

    Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Specific profiles of perfluorinated compounds in surface and drinking waters and accumulation in mussels, fish, and dolphins from southeastern Brazil.

    Science.gov (United States)

    Quinete, Natalia; Wu, Qian; Zhang, Tao; Yun, Se Hun; Moreira, Isabel; Kannan, Kurunthachalam

    2009-10-01

    Despite the concern over widespread distribution of perfluorinated compounds (PFCs) even in sparsely populated regions of the world, few studies have reported their occurrence in South America. In this study, PFCs were measured in Rio de Janeiro State in southeast Brazil: in drinking water from various districts in the State, in river water and tucuxi dolphins from the Paraiba do Sul River, several species of fish from the State, and mussels from Guanabara Bay. Liver, kidney, and muscle from fishes were analyzed to enable an understanding of the tissue distribution of PFCs. PFOS, PFOA, and PFHxS were detected in all drinking water samples in concentration ranges of 0.58-6.70, 0.35-2.82, and 0.15-1.00 ng L(-1), respectively. The profiles of PFCs in drinking water from Brazil (with PFOS concentrations comparable to or higher than those of PFOA) were different from the profiles that have been reported for other countries. In fish, concentrations of PFOS were, in general, higher in liver than in muscle. Concentrations of PFOA in livers of fish were similar to or lower than fish muscle tissue concentrations. PFOS and PFOA were found in brown mussels from Guanabara Bay. Bioconcentration factors (BCFs) of PFOA calculated for mussels were higher than the BCFs calculated for fishes. Elevated concentrations of PFUnDA (mean: 109+/-17.4 ng g(-1) wet weight) were found in mussels from certain locations within Guanabara Bay. Although PFCs were detected in all types of samples analyzed, the concentrations were generally lower than the concentrations reported for Japan and the USA.