WorldWideScience

Sample records for perfectly wetting liquid

  1. Wetting of cholesteric liquid crystals.

    Science.gov (United States)

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  2. Perfectly Wetting Mixtures of Surfactants from Renewable Resources: The Interaction and Synergistic Effects on Adsorption and Micellization.

    Science.gov (United States)

    Szumała, Patrycja; Mówińska, Alicja

    This paper presents a study of the surface properties of mixtures of surfactants originating from renewable sources, i.e., alkylpolyglucoside (APG), ethoxylated fatty alcohol (AE), and sodium soap (Na soap). The main objective was to optimize the surfactant ratio which produces the highest wetting properties during the analysis of the solution of the individual surfactants, two- and three-component mixtures, and at different pH values. The results showed the existence of a synergistic effect in lowering the interfacial tension, critical micelle concentration and the formation of mixed micelles in selected solutions. We found that best wetting properties were measured for the binary AE:APG mixtures. It has been demonstrated that slightly lower contact angles values were observed on Teflon and glass surfaces for the AE:APG:soap mixtures but the results were obtained for higher concentration of the components. In addition, all studied solutions have very good surface properties in acidic, basic and neural media. However, the AE:soap (molar ratio of 1:2), AE:APG (2:1) and AE:APG:soap (1:1:1) compositions improved their wetting power at pH 7 on the aluminium and glass surfaces, as compared to solutions at other pH values tested (selected Θ values close to zero-perfectly wetting liquids). All described effects detected would allow less surfactant to be used to achieve the maximum capacity of washing, wetting or solubilizing while minimizing costs and demonstrating environmental care.

  3. The roles of wetting liquid in the transfer process of single layer graphene onto arbitrary substrates.

    Science.gov (United States)

    Kim, Ju Hun; Yi, Junghwa; Jin, Hyeong Ki; Kim, Un Jeong; Park, Wanjun

    2013-11-01

    Wet transfer is crucial for most device structures of the proposed applications employing single layer graphene in order to take advantage of the unique physical, chemical, bio-chemical and electrical properties of the graphene. However, transfer methodologies that can be used to obtain continuous film without voids, wrinkles and cracks are limited although film perfectness critically depends on the relative surface tension of wetting liquids on the substrate. We report the importance of wetting liquid in the transfer process with a systematic study on the parameters governing film integrity in single layer graphene grown via chemical vapor deposition. Two different suspension liquids (in terms of polar character) are tested for adequacy of transfer onto SiO2 and hexamethyldisiloxane (HMDS). We found that the relative surface tension of the wetting liquid on the surfaces of the substrate is related to transfer quality. In addition, dimethyl sulfoxide (DMSO) is introduced as a good suspension liquid to HMDS, a mechanically flexible substrate.

  4. Quark-Gluon Soup -- The Perfectly Liquid Phase of QCD

    Science.gov (United States)

    Heinz, Ulrich

    2015-03-01

    At temperatures above about 150 MeV and energy densities exceeding 500 MeV/fm3, quarks and gluons exist in the form of a plasma of free color charges that is about 1000 times hotter and a billion times denser than any other plasma ever created in the laboratory. This quark-gluon plasma (QGP) turns out to be strongly coupled, flowing like a liquid. About 35 years ago, the nuclear physics community started a program of relativistic heavy-ion collisions with the goal of producing and studying QGP under controlled laboratory conditions. This article recounts the story of its successful creation in collider experiments at Brookhaven National Laboratory and CERN and the subsequent discovery of its almost perfectly liquid nature, and reports on the recent quantitatively precise determination of its thermodynamic and transport properties.

  5. Wetted foam liquid fuel ICF target experiments

    International Nuclear Information System (INIS)

    Olson, R E; Leeper, R J; Yi, S A; Kline, J L; Zylstra, A B; Peterson, R R; Shah, R; Braun, T; Biener, J; Kozioziemski, B J; Sater, J D; Biener, M M; Hamza, A V; Nikroo, A; Hopkins, L Berzak; Ho, D; LePape, S; Meezan, N B

    2016-01-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR∼15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation. (paper)

  6. Thickness of residual wetting film in liquid-liquid displacement

    Science.gov (United States)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis

    2011-08-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of ˜20% the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  7. A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migaou, Amani; Guiltat, Mathilde; Payen, Kevin; Landa, Georges; Hémeryck, Anne, E-mail: anne.hemeryck@laas.fr [LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse (France); Sarpi, Brice; Daineche, Rachid; Vizzini, Sébastien [Aix Marseille University, IM2NP, Fac Sci St. Jérôme, F-13397 Marseille (France)

    2016-05-21

    First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

  8. Wetting in a Colloidal Liquid-Gas System

    Science.gov (United States)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  9. Wetting in a colloidal liquid-gas system

    OpenAIRE

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  10. Reactive wetting by liquid sodium on thin Au platin

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Hamada, Hirotsugu

    2014-01-01

    For practical use of an under-sodium viewer, the behavior of sodium wetting is investigated by modeling the reactive and non-reactive wetting of metallic-plated steels by liquid sodium to simulate sodium wetting. The non-reactive wetting simulation results showed good agreement with Tanner's law, in which the time dependencies of the droplet radius and contact angle are expressed as R N ∝ t 1/10 and θ∝ t -3/10 , respectively; therefore, the model was considered suitable for the simulation. To simulate reactive wetting, the model of fluid flow induced by the interfacial reaction was incorporated into the simulation of non-reactive wetting. The reactive wetting simulation results, such as the behavior of the precursor liquid film and central droplet, showed good agreement with sodium wetting experiments using thin Au plating at 250°C. An important result of the reactive wetting simulation is that the gradient of the reaction energy at the interface appeared on the new interface around the triple line, and that fluid flow was induced. This interfacial reactivity during sodium wetting of thin Au plating was enhanced by the reaction of sodium and nickel oxide through pinholes in the plating. (author)

  11. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  12. Static and dynamic wetting behaviour of ionic liquids.

    Science.gov (United States)

    Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta

    2015-08-01

    Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Wetting in a colloidal liquid-gas system

    NARCIS (Netherlands)

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of

  14. VUJE experience with cementation of liquid and wet radioactive waste

    International Nuclear Information System (INIS)

    Kravarik, Kamil; Holicka, Zuzana; Pekar, Anton; Zatkulak, Milan

    2011-01-01

    Liquid and wet LLW generated during operation as well as decommissioning of NPPs is treated with different methods and fixed in a suitable fixation matrix so that a final product meets required criteria for its disposal in a final repository. Cementation is an important process used for fixation of liquid and wet radioactive waste such as concentrate, spent resins and sludge. Active cement grout is also used for fixation of low level solid radioactive waste loaded in final packing containers. VUJE Inc. has been engaged in research of cementation for long. The laboratory for analyzing radioactive waste properties, prescription of cementation formulation and estimation of final cement product properties has been established. Experimental, semi-production cementation plant has been built to optimize operation parameters of cementation. VUJE experience with cementation of liquid and wet LLW is described in the presented paper. VUJE has assisted in commissioning of Jaslovske Bohunice Treatment Centre. Cement formulations for treatment of concentrate, spent resins and sludge have been developed. Research studies on the stability of a final concrete packaging container for disposal in repository have been performed. Gained experience has been further utilized for design and manufacture of several cementation plants for treatment of various liquid and wet LLW. Their main technological and technical parameters as well as characterization of treated waste are described in the paper. Applications include the Mochovce Final Treatment Centre, Movable Cementation Facility utilizing in-drum mixing for treatment of sludge, Cementation Facility for treatment of tritiated water in Latvia and Cementation Facility for fixation of liquid and solid institutional radioactive waste in Bulgaria, which utilizes lost stirrer mixer. (author)

  15. Perfect additivity of microinterface arrays for liquid-liquid measurements: Application to cadmium ions quantification

    International Nuclear Information System (INIS)

    Mastouri, A.; Peulon, S.; Farcage, D.; Bellakhal, N.; Chaussé, A.

    2014-01-01

    Graphical abstract: - Highlights: • Confirmation of the perfect additivity of micropores independently of the geometry of arrays. • Study of assisted transfer of cadmium ions by 8-HQ at water/1,2-DCE. • Validation by cyclic and square wave voltammetry measurements for high and low concentrations. • Quantification of Cd(II) ions until 11 ppb in very simple conditions. • Highlighting of the very interesting use of arrays in a classical liquid-liquid microinterface device. - Abstract: For the first time, experimental measurements confirm the real additivity of the currents with micropore arrays, independently of the geometry (square, circular or in crosswise), from one single micropore until 256 micropores, in the case of the assisted transfer of cadmium ions by 8-hydroxyquinolinol (8-HQ). This result was obtained for measurements made by cyclic voltammetry at high concentration of cadmium ions (10 −4 M). At lower concentrations (until 10 −6 M), measurements performed by square wave voltammetry confirm also this additivity until 64 micropores. A calibration curve performed with a 64 micropores array allows us, in very simple conditions, the quantification of cadmium ions until 11 ppb (100 nM), which is lower than to the imposed limit for this specie in various fields, and in industrial effluents, in particular. The gain of sensitivity is close to 170 compared to measurements performed with one single micropore, illustrating the real interest of these arrays

  16. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grinthal, A; Aizenberg, J

    2014-01-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions able to operate in harsh, changing environments not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials as long-term stable interfaces yet in their fully liquid state may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  17. Quark-gluon soup — The perfectly liquid phase of QCD

    Science.gov (United States)

    Heinz, Ulrich

    2015-01-01

    At temperatures above about 150 MeV and energy densities exceeding 500 MeV/fm3, quarks and gluons exist in the form of a plasma of free color charges that is about 1000 times hotter and a billion times denser than any other plasma ever created in the laboratory. This quark-gluon plasma (QGP) turns out to be strongly coupled, flowing like a liquid. About 35 years ago, the nuclear physics community started a program of relativistic heavy-ion collisions with the goal of producing and studying QGP under controlled laboratory conditions. This article recounts the story of its successful creation in collider experiments at Brookhaven National Laboratory and CERN and the subsequent discovery of its almost perfectly liquid nature, and reports on the recent quantitatively precise determination of its thermodynamic and transport properties.

  18. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12hot spot and the low adiabat cold fuel during the stagnation process and can allow for a fundamentally different (and potentially more robust) process of hot spot formation. This new experimental platform is currently being used in a series of experiments to discover a range of CR's at which DT layered implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  19. Tetra point wetting at the free surface of liquid Ga-Bi

    International Nuclear Information System (INIS)

    Huber, P.; Shpyrko, O.G.; Pershan, P.S.; Ocko, B.M.; Di Masi, E.; Deutsch, M.

    2002-01-01

    A continuous surface wetting transition, pinned to a solid-liquid-liquid-vapor tetra coexistence point, is studied by x-ray reflectivity in liquid Ga-Bi binary alloys. The short-range surface potential is determined from the measured temperature evolution of the wetting film. The thermal fluctuations are shown to be insufficient to induce a noticeable breakdown of mean-field behavior, expected in short-range-interacting systems due to their d u =3 upper critical dimensionality

  20. Thickness of Residual Wetting Film in Liquid-Liquid Displacement in Capillary Channels

    Science.gov (United States)

    Beresnev, I. A.; Gaul, W.; Vigil, D.

    2010-12-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a non-wetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of this wetting film? Understanding this question may determine the ultimate oil recovery. A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. We develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of about 20 % the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  1. The chronic toxicity of mineral oil-wet and synthetic liquid-wet cuttings on an estuarine fish, Fundulus grandis

    International Nuclear Information System (INIS)

    Jones, F.V.; Rushing, J.H.; Churan, M.A.

    1991-01-01

    One of the major factors concerning oil-wet cuttings discharges in the long-term effect on the aquatic environment. This paper investigates the survival and growth of the mud minnow, Fundulus grandis, when exposed to different concentrations of mineral oil-wet and synthetic liquid-wet cuttings in flow-through bioassay chambers. The test fluids were a low aromatic mineral oil-based mud (MOBM) and a synthetic liquid-based mud (SBM). Each test fluid was added to a container of dried water-based cuttings which contained minimum hydrocarbons. The fluid and cuttings were mixed to obtain the desired test concentrations. The study tested three concentrations (1%, 5%, and 8.4% by dry weight) of each fluid on the cuttings. Growth rates during the 3-day period were modest with fish in 1% MOBM losing weight. The highest percent growth rates were obtained with fish cultured in 5% SBM and the controls. However, overall growth was not significantly different between treatments. Mean growth did show a significant difference between controls and 5% SBM, and other treatments. The cuttings of the 5% and 8.4% concentrations of both treatments looked like paste. These pastes may have slowed the movement of organics off of the cuttings beds and affected biodegradability and growth rates. Cuttings in the controls and 1% concentrations stayed suspended in the water column longer when disturbed and looked more like loose gravel. Uptake of the MOBM occurred in the internal organs and tissue of fish. No such uptake was observed in the fish tissue with the SBM; a very low level of synthetic liquid was detected in one gut sample only. This may be the major reason for the variations noted in growth rates. Fish mortality during the study was related to the buildup of anaerobic conditions and insufficient aeration. Fish survival for the entire study was 94%

  2. Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.

    Science.gov (United States)

    Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin

    2018-06-06

    Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

  3. Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime

    International Nuclear Information System (INIS)

    Scheel, M; Seemann, R; Brinkmann, M; Herminghaus, S; Di Michiel, M; Sheppard, A

    2008-01-01

    Dry sand turns into a stiff and moldable material as soon as it is mixed with some liquid. This is a direct consequence of the internal liquid-air interfaces spanning between the grains which causes capillary cohesion by virtue of the surface tension of the liquid. As a model for wet granulates we investigated random packings of submillimeter spherical beads mixed with water. Measurements of the tensile strength and the fluidization threshold demonstrate that the mechanical stiffness is rather insensitive to the liquid content over a wide range. Only for a high liquid content, when more than half of the available pore space is filled with liquid, does the capillary cohesion weaken. In order to understand the interplay between the mechanical properties and the liquid content, we investigated the liquid distribution in random packings of glass spheres by means of x-ray microtomography. The three-dimensional images reveal that the liquid forms a network of capillary bridges fused at local triangular bead configurations. The spontaneous organization of the liquid into these ramified structures, which exhibit a large liquid-air interface, is responsible for the constancy of the cohesive forces in a wide range of liquid contents beyond the onset of capillary bridge coalescence.

  4. Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study

    International Nuclear Information System (INIS)

    Gao Yu-Feng; Yang Yang; Sun De-Yan

    2011-01-01

    Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained. Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions. (condensed matter: structure, mechanical and thermal properties)

  5. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  6. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter. © 2013 American Chemical Society.

  7. Effect of annealing conditions on the molecular properties and wetting of viscoelastic bitumen substrates by liquids

    Directory of Open Access Journals (Sweden)

    Salomé dos Santos

    2017-01-01

    Full Text Available Typically, in the production of asphalt concrete, bitumen and mineral aggregates are heated and mixed at temperatures above 100 °C. After the mixing process bitumen ideally coats the mineral aggregates and remains in the form of thin films. Because bitumen is highly temperature sensitive, the study of its properties in terms of chemistry, microstructure and rheology as a function of different annealing conditions is very relevant. The resultant molecular properties have a direct correlation to bitumen macroscopic response to liquids such as water, which is of extreme relevance to the understanding of the detrimental effect of water on asphalt pavements. The wetting characteristics play a crucial role on the extension of detachment of bitumen from the mineral aggregates when asphalt is exposed to wet conditions. Therefore, in this work, the effect of the annealing temperature and cooling history on the chemistry, microstructure and wetting of bitumen films was studied. Crystalline microstructures were identified in bulk and on the surface of the bitumen films. Larger crystals presenting higher crystallinity degree were identified when the annealed bitumen films were cooled slowly. Moreover, higher annealing temperatures increased the oxidation level. The change of the rheological properties due to the alterations of the annealing conditions produced changes in the wetting characteristics. For instance, the advancing motion of a liquid drop on the viscoelastic bitumen substrate presented an intermittent behaviour due to the deformation of bitumen at the liquid-bitumen-air contact line. Consequently, changes in the contact angles were also observed. Keywords: Bitumen, Crystallization, Oxidation, Advancing contact angle, Wetting

  8. The wetting of planar solid surfaces by symmetric binary mixtures near bulk gas-liquid coexistence

    International Nuclear Information System (INIS)

    Woywod, Dirk; Schoen, Martin

    2004-01-01

    We investigate the wetting of planar, nonselective solid substrates by symmetric binary mixtures where the attraction strength between like molecules of components A and B is the same, that is ε AA ε BB AB vertical bar ≤ vertical bar ε AA vertical bar, that is by varying the attraction between a pair of unlike molecules. By means of mean-field lattice density functional calculations we observe a rich wetting behaviour as a result of the interplay between ε AB and the attraction of fluid molecules by the solid substrate ε W . In accord with previous studies we observe complete wetting only above the critical end point if the bulk mixture exhibits a moderate to weak tendency to liquid-liquid phase separation even for relatively strong fluid-substrate attraction. However, in this case layering transitions may arise below the temperature of the critical end point. For strongly phase separating mixtures complete wetting is observed for all temperatures T ≥0 along the line of discontinuous phase transitions in the bulk

  9. Investigation of bubble flow regimes in nucleate boiling of highly-wetting liquids

    International Nuclear Information System (INIS)

    Tong, W.; Bar-Cohen, A.; Simon, T.W.

    1991-01-01

    This paper describes an investigation of the bubble flow regimes in nucleate boiling of FC-72, a highly-wetting liquid. Theoretically analysis of vapor bubble generation and departure from the heated surface reveals that the heat fluxes required for the merging of consecutive bubbles, for highly-wetting liquids, lie in the upper range of the nucleate boiling heat flux. A visual and photographic study of nucleate boiling from sputtered platinum surfaces has supported the theoretical results and shown that the isolated bubble behavior extends to at least 50-80% of the critical heat flux, considerably higher than observed by others with water. Lateral coalescence of adjacent bubbles has been found to be a more likely cause of the termination of the isolated bubble regime. These findings suggest that thermal transport models which are based on isolated bubble behavior may be applicable to nearly the entire range of nucleate boiling of electronic cooling fluids

  10. Wetting behaviour and reactivity between liquid Gd and ZrO2 substrate

    Directory of Open Access Journals (Sweden)

    Turalska P.

    2017-01-01

    Full Text Available The wetting behavior and reactivity between molten pure Gd and polycrystalline 3YSZ substrate (ZrO2 stabilized with 3 wt% of Y2O3were experimentally determined by a sessile drop method using a classical contact heating coupled with drop pushing procedure. The test was performed under an inert flowing gas atmosphere (Ar at two temperatures of 1362°C and 1412°C. Immediately after melting (Tm=1341°C, liquid Gd did not wet the substrate forming a contact angle of θ=141°. The non-wetting to wetting transition (θ < 90° took place after about 110 seconds of interaction and was accompanied by a sudden decrease in the contact angle value to 67°. Further heating of the couple to 1412 °C did not affect wetting (θ=67°±1°. The solidified Gd/3YSZ couple was studied by means of optical microscopy and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy. Structural investigations revealed that the wettability in the Gd/3YSZ system is of a reactive nature associated with the formation of a continuous layer of a wettable reaction product Gd2Zr2O7.

  11. Surface properties and wetting behavior of liquid Ag-Sb-Sn alloys

    Directory of Open Access Journals (Sweden)

    Sklyarchuk V.

    2012-01-01

    Full Text Available Surface tension and density measurements of liquid Ag-Sb-Sn alloys were carried out over a wide temperature range by using the sessile drop method. The surface tension experimental data were analyzed by the Butler thermodynamic model in the regular solution approximation. The wetting characteristics of these alloys on Cu and Ni substrates have been also determined. The new experimental results were compared with the calculated values as well as with data available in the literature.

  12. Controlling Fluences of Reactive Species Produced by Multipulse DBDs onto Wet Tissue: Frequency and Liquid Thickness

    Science.gov (United States)

    Tian, Wei; Kushner, Mark J.

    2015-09-01

    Tissue covered by a thin liquid layer treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluences of radicals and ions onto the tissue. These fluences are controlled in part by frequency and liquid thickness. In this paper, we report on results from a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 stationary or random streamers at different repetition rates and liquid thicknesses followed by 10 s to 2 min of afterglow. At 100 Hz, NOaq and OHaq are mixed by randomly striking streamers, although they have different rates of solvation. NOaq is nearly completely consumed by reactions with OHaq at the liquid surface. Only H2O2aq, produced through OHaq mutual reactions, survives to reach the tissue. After 100 pulses, the liquid becomes ozone-rich, in which the nitrous ion, NO2-aq, is converted to the nitric ion, NO3-aq. Reducing the pulse frequency to 10 Hz results in significant fluence of NOaq to the tissue as NOaq can escape during the interpulse period from the liquid surface where OHaq is formed. For the same reason, NO2-aq can also reach deeper into the liquid at lower frequency. Frequency and thickness of the liquid are methods to control the plasma produced aqueous species to the underlying tissue. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724).

  13. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  14. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-Resolution RBS/ERDA.

    Czech Academy of Sciences Publication Activity Database

    Nakajima, K.; Zolboo, E.; Ohashi, T.; Lísal, Martin; Kimura, K.

    2016-01-01

    Roč. 32, č. 10 (2016), s. 1089-1094 ISSN 0910-6340 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : surface structure * ionic liquid * hydrogen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.228, year: 2016

  15. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface.

    Science.gov (United States)

    Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P

    2018-03-14

    Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.

  16. Semitechnical studies of uranium recovery from wet process phosphoric acid by liquid-liquid-extraction method

    International Nuclear Information System (INIS)

    Poczynajlo, A.; Wlodarski, R.; Giers, M.

    1987-01-01

    A semitechnical installation for uranium recovery from wet process phosphoric acid has been built. The installation is based on technological process comprising 2 extraction cycles, the first with a mixture of mono- and dinonylphenylphosphoric acids (NPPA) and the second with a synergic mixture of di-/2-ethylhexyl/-phosphoric acid (D2EHPA) and trioctylphosphine oxide (TOPO). The installation was set going and the studies on the concentration distributions of uranium and other components of phosphoric acid have been performed for all technological circuits. 23 refs., 15 figs., 3 tabs. (author)

  17. Wetting layer and void fraction nonuniformity in a liquid-metal MHD generator

    International Nuclear Information System (INIS)

    Branover, H.; Yakhot, A.

    1981-01-01

    The quetion of the effect of a liquid layer on the walls of an MHD channel in the case of uniform void fraction distribution in the flow core was first considered several years ago. More recently an analytic solution for high Hartmann numbers was obtained, which led to the conclusion that this layer does not have a significant effect on the efficiency of large generators. This paper postulates an analytic model which makes it possible to estimate the effect of a void fraction nonuniformity, in the presence of the wetting layer on the walls, on the generator performance. 3 refs

  18. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand

    Science.gov (United States)

    Govindarajan, Dhivakar; Deshpande, Abhijit P.; Raghunathan, Ravikrishna

    2018-02-01

    Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5 mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.

  19. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    International Nuclear Information System (INIS)

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  20. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    Directory of Open Access Journals (Sweden)

    Aoythip Chunglok

    2016-01-01

    Full Text Available We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the surface has been proven to effectively repel even highly adhesive liquid. Practically, this high-level hierarchical structure can be achieved through fractal-like structures of silica aggregates induced by siloxane oligomer interparticle bridges. The induced aggregation and surface functionalization of the silica particles can be performed simultaneously within a single reaction step, by utilizing trifunctional fluoroalkylsilane precursors that largely form a disordered fluoroalkylsiloxane grafting layer under the presence of sufficient native moisture preadsorbed at the silica surface. Spray-coating deposition of a particle surface layer on a precoated primer layer ensures facile processability and scalability of the fabrication method. The resulting low-surface-energy multiscale roughness exhibits outstanding liquid repellent properties, generating equivalent lotus effect for highly viscous and adhesive natural latex concentrate, with apparent contact angles greater than 160°, and very small roll-off angles of less than 3°.

  1. Liquid-liquid extraction for purification of wet process phosphoric acid

    International Nuclear Information System (INIS)

    Lotfollahi, Mohammad Nader; Bakshi, Mahdi

    2006-01-01

    The Wet Process Phosphoric Acid (WPA) is used to produce fertilizers and alimentary supplies for cattle. In each of these applications, the impurities contained in acid must be in standard range. In this paper purification of WPA by solvent extraction is performed and the effect of the mass ratio of solvent to feed on extraction efficiency is studied. The working solvents are Methyl Iso Butyl Ketone (MIBK), Iso Amyl Alcohol (IAA) and the mixture of them. The results show that the IAA is better than other solvents in extraction of WPA. This solvent can extract 82.2% of acid after two extraction stages but MIBK can extract only 73.5% of acid after three extraction stages. For all of these solvents, the Pb and Cd concentrations go down to trace. The experimental results show that the maximum separation of Mg with MIBK is 87.5% which occurs at the mass ratio of solvent to feed eual to 4. In the case of IAA solvent the percent is 91.7% and the ratio is 8

  2. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  3. DEM Study of Wet Cohesive Particles in the Presence of Liquid Bridges in a Gas Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Yurong He

    2014-01-01

    Full Text Available A modified discrete element method (DEM was constructed by compositing an additional liquid-bridge module into the traditional soft-sphere interaction model. Simulations of particles with and without liquid bridges are conducted in a bubbling fluidized bed. The geometry of the simulated bed is the same as the one in Müller’s experiment (Müller et al., 2008. A comparison between the dry and the wet particular systems is carried out on the bubble behavior, the bed fluctuation, and the mixing process. The bubble in the dry system possesses a regular round shape and falling of scattered particles exists while the bubble boundary of the wet particles becomes rough with branches of agglomerates stretching into it. The mixing of the dry system is quicker than that of the wet system. Several interparticle liquid contents are applied in this work to find their influence on the kinetic characteristic of the wet particle flow. With an increase of liquid content, the mixing process costs more time to be completed. Symmetrical profiles of the velocity and granular temperature are found for two low liquid contents (0.001% and 0.01%, while it is antisymmetrical for the highest liquid content (0.1%.

  4. A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles.

    Science.gov (United States)

    Yang, Junyi; Roell, David; Echavarria, Martin; Velankar, Sachin S

    2017-11-22

    We examine the effect of composition on the morphology of a ternary mixture comprising two molten polymeric liquid phases (polyisobutylene and polyethylene oxide) and micron-scale spherical silica particles. The silica particles were treated with silanes to make them partially wetted by both polymers. Particle loadings up to 30 vol% are examined while varying the fluid phase ratios across a wide range. Numerous effects of particle addition are catalogued, stabilization of Pickering emulsions and of interfacially-jammed co-continuous microstructures, meniscus-bridging of particles, particle-induced coalescence of the dispersed phase, and significant shifts in the phase inversion composition. Many of the effects are asymmetric, for example particle-induced coalescence is more severe and drop sizes are larger when polyisobutylene is the continuous phase, and particles promote phase continuity of the polyethylene oxide. These asymmetries are likely attributable to a slight preferential wettability of the particles towards the polyethylene oxide. A state map is constructed which classifies the various microstructures within a triangular composition diagram. Comparisons are made between this diagram vs. a previous one constructed for the case when particles are fully-wetted by polyethylene oxide.

  5. Microsphere Wetting, Meniscus Structure, and Capillary Interactions on a Curved Liquid Interface

    Science.gov (United States)

    Kim, Paul; Dinsmore, Anthony; Hoagland, David; Russell, Thomas

    A small spherical microparticle on a cylindrically curved liquid interface locally induces a quadrupolar interface deformation to maintain a constant contact angle about its wetted periphery. Measured by optical profilometry, this deformation was compared to a recent theoretical expression, and good agreement was noted for contact line shape, particle vertical position, and deformation vs. (distance, angle, particle size, interfacial curvature). Interface quadrupoles lead to particle capillary interactions in analogy to 2D electrostatic quadrupoles, and as one consequence, spheres on a cylindrical interface assemble tetragonally, i.e., into a square lattice. This assembly was monitored in the optical microscope, with particles interacting as predicted, into a square lattice aligned with the underlying cylindrical axis. These particles and assemblies were driven to the middle of the curved interface by capillary interaction with pinned liquid contact lines on each side of the liquid cylindrical section used in the experiments. These phenomena can inform the directed interfacial assembly of micro-sized spherical objects, with potential application in fabrication of functional devices and materials, encapsulation, and emulsification.

  6. Evolution of nonconformal Landau-Levich-Bretherton films of partially wetting liquids

    Science.gov (United States)

    Kreutzer, Michiel T.; Shah, Maulik S.; Parthiban, Pravien; Khan, Saif A.

    2018-01-01

    We experimentally and theoretically describe the dynamics of evolution and eventual rupture of Landau-Levich-Bretherton films of partially wetting liquids in microchannels in terms of nonplanar interface curvatures and disjoining pressure. While both the early-stage dynamics of film evolution and near-collapse dynamics of rupture are understood, we match these regimes and find theoretically that the dimensionless rupture time, Tr, scales with κ-10 /7. Here, κ is the dimensionless curvature given by the ratio of the Laplace-pressure discontinuity that initiates film thinning to the initial strength of the disjoining pressure that drives the rupture. We experimentally verify the rupture times and highlight the crucial consequences of early film rupture in digital microfluidic contexts: pressure drop in segmented flow and isolation of droplets from the walls.

  7. Boiling hysteresis of impinging circular submerged jets with highly wetting liquids

    International Nuclear Information System (INIS)

    Zhou, D.W.; Ma, C.F.; Yu, J.

    2004-01-01

    An experimental study was carried out to characterize the boiling hysteresis of impinging circular submerged jets with highly wetting liquids. The effects of noncondensable gases and surface aging on boiling curves were considered. The present study focused on the effects of jet parameters (jet exit velocity, radial distance from the stagnation point and nozzle diameter) and fluid subcooling on incipient boiling superheat and superheat excursion, as well as the physical mechanism of boiling hysteresis. Results show that the incipient boiling superheat decreases only with fluid subcooling regardless of jet parameters, and that the superheat excursion increases with nozzle diameter and radial distance from the stagnation point and decreasing jet exit velocity and fluid subcooling. Boiling hysteresis occurs due to deactivation of vapor embryos within larger cavities. Three anomalous phenomena at boiling inception are recorded and discussed in terms of irregular activation of vapor embryos

  8. The extraction of uranium from wet process phosphoric acid using a liquid surfactant membrane system

    International Nuclear Information System (INIS)

    Dickens, N.; Davies, G.A.

    1984-01-01

    A liquid membrane extraction process is examined for the extraction of uranium from wet process phosphoric acid. Uranium is present in the acid in concentrations up to 100 ppm which in principle makes it ideal for treatment with a membrane process. The membrane system studied is based on extraction using DEHPA-TOPO reagents which are contained within the organic phase of a water in oil emulsion. Formulations of the emulsion membrane system have been studied, the limitations of acid temperature, P 2 O 5 concentration and solid dispersed impurities in the acid have been studied in laboratory batch experiments and in a continuous pilot plant unit capable of treating 5l of concentrated acid per minute. Data from the pilot plant work has been used to develop a flowsheet for a commercial unit based on this process. (author)

  9. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  10. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    International Nuclear Information System (INIS)

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z.; Slezak, M.

    2006-01-01

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m 3 /year of concentrates and 40 m 3 /year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a roller

  11. Investigation of wetting property between liquid lead lithium alloy and several structural materials for Chinese DEMO reactor

    Science.gov (United States)

    Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli

    2017-10-01

    The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.

  12. Observation of interactions between hydrophilic ionic liquid and water on wet agar gels by FE-SEM and its mechanism

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Highlights: ► The mechanism of SEM observation of agar gel using ionic liquid was investigated. ► Weak hydrogen bond between ionic liquid and water exist even under vacuum condition. ► Ionic liquid binding ability with water is useful for observing wet material using FE-SEM. ► We could optimize the water concentrations of sample of IL and wet material mixtures. ► SEM observation of fine morphology of agar gel in optimum water content. - Abstract: In the present study, an attempt is made to understand the mechanism of field emission electron microscopy (FE-SEM) observation of wet agar gel using a typical hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF 4 ]. The IL interaction with water molecules within agar gel during sample preparation condition for FE-SEM observation was investigated using Raman spectroscopy. Results showed that water molecules within agar gel form weak hydrogen bond such as BF 4 − ⋯HOH⋯BF 4 − by interaction with BF 4 − of IL, and, it remained stable even under vacuum condition at 60 °C, 24 h. This interaction was found to be helpful for IL displacement of the water molecules within agar gel. From this study, it was found that the exact morphology of gel materials in FE-SEM condition can be observed by optimization of water concentrations of IL and gel mixtures. Thus, using IL, agar gel or any other material under wet condition can be observed without drying in FE-SEM chamber, and, present result gives an insight to the mechanism of FE-SEM observation of agar gel using IL without any conducting coating.

  13. Picture perfect

    DEFF Research Database (Denmark)

    Pless, Mette; Sørensen, Niels Ulrik

    ’Picture perfect’ – when perfection becomes the new normal This paper draws on perspectives from three different studies. One study, which focuses on youth life and lack of well-being (Sørensen et al 2011), one study on youth life on the margins of society (Katznelson et al 2015) and one study...

  14. Experimental studies of applicability of the wet air oxidation for purification liquid radioactive waste

    International Nuclear Information System (INIS)

    Sergienko, V. I.; Dobrzansky, V. G.

    2005-01-01

    The scheme of handling with liquid radioactive waste (LRW) accepted to exploitation at atomic electric station (AWS) is often connected with evaporating technologies. In this case vat residues of evaporating systems with activity 10 5 -10 6 Bq/1 and containing to 200-300 g/1 of salts are delivered up to LRW storages for lasting keeping. This schema does not correlate to the modern safety standards of handling with LRW, therefore at present numerous works are being carried on including those using technology of accumulated vat residues processing. Some successful experiments on sorption purification of high-salt LRW from cesium radionuclides giving the principal contribution into the total activity of a certain LRW are known. Unfortunately, attempts of sorption purification of the vat residues from other long-lived radionuclides (mainly from 60 Co-radionuclide) were unsuccessful up to the present time. It is found with the fact that the vat residues contain a considerable amount of complexing agent producing stable complexes with transition metal radionuclides including those of 60 Co. Extreme oxidation of the vat residues for decomposition of radioactive organic complexes is one of the solutions of this problem. The works related to oxidation of LRW including the AES vat residues with ozone, hydrogen peroxide as well as photo catalytic and electrochemical oxidation are known, however, possibilities of wet air oxidation (WAO) for LRW processing are not studied till the present time. Condition for decomposition of cobalt complex compounds and necessary excess of oxidizing agent may be easily attained with WAO usage. The necessary experiments were carried out at the experimental plant with the great interface surface (oxygen-solutions) equal to 400m -1 and 3 mm probe bed thickness. The heating time of the reactor to the working temperature 250 .deg. C did not exceed 50 seconds. 20... 50-fold oxidizer excess was achieved by the initial oxygen pressure into the reactor

  15. Wetting behavior of liquid Fe-C-Ti alloys on sapphire

    International Nuclear Information System (INIS)

    Gelbstein, M.; Froumin, N.; Frage, N.

    2008-01-01

    Wetting behavior in the (Fe-C-Ti)/sapphire system was studied at 1823 K. The wetting angle between sapphire and Fe-C alloys is higher than 90 deg. (93 deg. and 105 deg. for the alloys with 1.4 and 3.6 at.% C, respectively). The presence of Ti improves the wetting of the iron-carbon alloys, especially for the alloys with carbon content of 3.6 at.%. The addition of 5 at.% Ti to Fe-3.6 at.% C provides a contact angle of about 30 deg., while the same addition to Fe-1.4 at.% C decreases the wetting angle to 70 deg. only. It was established that the wetting in the systems is controlled by the formation of a titanium oxicarbide layer at the interface, which composition and thickness depend on C and Ti contents in the melt. The experimental observations are well accounted for by a thermodynamic analysis of the Fe-Ti-Al-O-C system

  16. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy; Thoroddsen, Sigurdur T

    2013-01-01

    network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films

  17. How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles

    Science.gov (United States)

    Rame, Enrique

    2001-01-01

    A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.

  18. Mean shear resistance at steady-state for wet glass beads impact of liquid content and particle size

    Science.gov (United States)

    Louati, Haithem; Oulahna, Driss; de Ryck, Alain

    2017-06-01

    The flow behaviour of a granular media is due to their weight, frictional contact forces between them, and external forces exerted by the walls. If their size is lower than 50 microns, the Van-der-Waals forces between them may also influence their flowability. When adding some wetting liquid, we introduce attractive forces between the particles, whose order of magnitude may overcome the particle weight and V-d-W interactions. This leads to a cohesive behaviour. The shear stress to start the flow is greater than in the dry case but the steady-state flow is also perturbed by the presence of liquid bridges. This later phenomenon has been recently quantitatively studied for 70-110 μm glass beads with a non-volatile liquid, with experimental results for different normal stresses (up to 12 kPa) and liquid content (up to 20 % in volume). These results have been compared to a heuristic model, based on the model for capillary bridges and the simplest hypothesis for the granular bed texture depending on the stresses applied. We extend this study with new results concerning smaller glass beads 12-40 μm in diameter and larger liquid fraction for 70-110 μm glass beads using experimental and theoretical approaches.

  19. Nanoscale liquid interfaces wetting, patterning and force microscopy at the molecular scale

    CERN Document Server

    Ondarçuhu, Thierry

    2013-01-01

    This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid environment. The book proposes is a timely review of these various aspects. It is co-authored by 25 among the most prominent scientists in the field.

  20. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system.

    Science.gov (United States)

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement-of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  1. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system

    Science.gov (United States)

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement—of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  2. Viscoelastic and poroelastic effects in the wetting dynamics of soft gels by liquids

    Science.gov (United States)

    Limat, Laurent; Dervaux, Julien; Roche, Matthieu; Zhao, Menghua; Narita, Tetsuharu; Lequeux, Francois

    2017-11-01

    We have developed experiments and modeling of elastowetting dynamics on soft gels. First, wetting is very sensitive to the thickness of the gel, when deposited on a rigid basis. We reconsidered Long et al. approach, and extended it to finite depth. This yields a new scaling law, at low thickness, for dynamic contact angle, in very good agreement with experiment but not consistent with recent approachs assuming Neuman triangle to hold even in the dynamics. In a second step, we examined solvent migration in the bulk of the gel, and showed that poroelasticity is an essential ingredient to understand old unsolved issues (hysteresis on elastomers by Extrand and Kumagai), as well as recent puzzling measurements (long life footprints left by drops). Our calculations lead to ridges at the contact lines evolving logarithmically with time, with a very strong infuence on wetting properties of soft materials, and with possible applications to biophysics.

  3. Particle-assisted wetting

    International Nuclear Information System (INIS)

    Xu Hui; Yan Feng; Tierno, Pietro; Marczewski, Dawid; Goedel, Werner A

    2005-01-01

    Wetting of a solid surface by a liquid is dramatically impeded if either the solid or the liquid is decorated by particles. Here it is shown that in the case of contact between two liquids the opposite effect may occur; mixtures of a hydrophobic liquid and suitable particles form wetting layers on a water surface though the liquid alone is non-wetting. In these wetting layers, the particles adsorb to, and partially penetrate through, the liquid/air and/or the liquid/water interface. This formation of wetting layers can be explained by the reduction in total interfacial energy due to the replacement of part of the fluid/fluid interfaces by the particles. It is most prominent if the contact angles at the fluid/fluid/particle contact lines are close to 90 0

  4. Role of substrate commensurability on non-reactive wetting kinetics of liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, M. [Centre for Research in Molecular Modelling, University of Mons-Hainaut, Parc Initialis, Av. Copernic, 1, 7000 Mons (Belgium); Saiz, E.; Tomsia, A.P. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); De Coninck, J., E-mail: joel.deconinck@umons.ac.be [Centre for Research in Molecular Modelling, University of Mons-Hainaut, Parc Initialis, Av. Copernic, 1, 7000 Mons (Belgium)

    2010-04-15

    The dynamics of spreading of liquid metal atoms via molecular dynamics is considered vs. the commensurability of the solid surface with respect to the size of the liquid atoms. The solid surfaces are modeled as rigid (1 0 0) oriented Ni and, for two series of simulations, the lattice spacing of the substrate is varied from the regular equilibrium spacing to a commensurate situation with Au or Ag drops spreading spontaneously on top. The diffusion is calculated in the layered region of the liquid in contact with the two different solid surfaces and then compared. Then, the dynamic evolution of the contact angle is fitted to Molecular Kinetic Theory and compared with the two substrate geometries. It is observed that the friction parameter scales as the inverse of the diffusion in the interfacial region. The change in ordering induced by the commensurate substrate is characterized by examining the density profiles across the solid/liquid interface and fitting the curve by an exponential decay with a characteristic correlation distance 1/{kappa}. It is shown that the commensurability/non-commensurability of the solid surface with respect to the liquid atoms changes the ordering, which plays a significant role in the dynamics, a feature not properly taken into account in the present formulation of Molecular Kinetic Theory.

  5. Role of substrate commensurability on non-reactive wetting kinetics of liquid metals

    International Nuclear Information System (INIS)

    Benhassine, M.; Saiz, E.; Tomsia, A.P.; De Coninck, J.

    2010-01-01

    The dynamics of spreading of liquid metal atoms via molecular dynamics is considered vs. the commensurability of the solid surface with respect to the size of the liquid atoms. The solid surfaces are modeled as rigid (1 0 0) oriented Ni and, for two series of simulations, the lattice spacing of the substrate is varied from the regular equilibrium spacing to a commensurate situation with Au or Ag drops spreading spontaneously on top. The diffusion is calculated in the layered region of the liquid in contact with the two different solid surfaces and then compared. Then, the dynamic evolution of the contact angle is fitted to Molecular Kinetic Theory and compared with the two substrate geometries. It is observed that the friction parameter scales as the inverse of the diffusion in the interfacial region. The change in ordering induced by the commensurate substrate is characterized by examining the density profiles across the solid/liquid interface and fitting the curve by an exponential decay with a characteristic correlation distance 1/κ. It is shown that the commensurability/non-commensurability of the solid surface with respect to the liquid atoms changes the ordering, which plays a significant role in the dynamics, a feature not properly taken into account in the present formulation of Molecular Kinetic Theory.

  6. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    Science.gov (United States)

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m 3 day, generating about 252NL CH 4 /kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m 3 day, generating about 320NL CH 4 /kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  8. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindrical nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.

  9. Destabilization and dry-spot nucleation in thin liquid films on partially wetting substrates using a low-pressure air-jet

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2011-01-01

    The rupture of a thin liquid film on a partially wetting substrate can be initiated by external forces. In this manuscript we present experiments and numerical simulations of the effects of a laminar axisymmetric air-jet impinging on triethylene glycol films. We numerically calculate stagnation

  10. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    CERN Document Server

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  11. Experimental observation of the layering and wetting of multilayer liquid helium-4 films on graphite

    International Nuclear Information System (INIS)

    Kumar, S.

    1987-01-01

    The multilayer adsorption of liquid 4 He on graphite was studied by using third sound, a substrate-induced surface wave in a superfluid film, to probe the 4 He film-vapor interface. The third-sound velocity decreases with increasing film thickness and can be used to monitor the film growth. Graphite, forms of which have large areas of atomic uniformity, is an ideal substrate for the study of film growth and layering. An annular resonator made out of graphite fibers was used for the experiments. Such a resonator avoids problems such as capillary condensation present in earlier resonance experiments with graphite foam and vapor sound interference present in time-of-flight experiments with highly oriented pyrolitic graphite (HOPG). Measurements of film growth were made between temperatures of 0.35 and 1.25 K. The third-sound resonance frequency, which is proportional to the third-sound velocity, was used to follow the film growth. Simultaneous measurements of the third-sound velocity on glass provide an independent measure of the film thickness. Results obtained show continuous film growth up to at least 25 to 30 layers on graphite. Oscillations of the third-sound velocity for low film coverages shown evidence of layering of the film

  12. Direct uranium extraction from dihydrate and hemi-dihydrate wet process phosphoric acids by liquid emulsion membrane

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; El Sayed, M.S.

    2003-01-01

    A new liquid emulsion membrane (LEM) process for uranium extraction from either dihydrate 28-30% P 2 O 5 (DH) or hemi-dihydrate 42-45% P 2 O 5 (HDH) wet process phosphoric acid is proposed. In this process, the organic component of the LEM is composed of a synergistic mixture of 0.1M di-2-ethyl hexyl phosphoric acid (DEHPA) and 0.025M trioctyl phosphine oxide (TOPO) with 4% Span 80. The internal or the strip acid phase is composed of 0.5M citric acid. The prepared LEM was proved to be stable in 42-45% P 2 O 5 acid concentration range and can, therefore, be applied to the phosphoric acid produced by the hemi-dihydrate process. After breakdown of the loaded emulsion, the uranyl citrate in the internal strip phase is separated by adding methanol followed by its calcination to the orange oxide. Most of the reagents used are recycled. The proposed process is characterized by simplicity, practically closed operation cycle in addition to lower capital and operating costs. (author)

  13. Effect of Direct Current on Solid-Liquid Interfacial Tension and Wetting Behavior of Ga–In–Sn Alloy Melt on Cu Substrate

    Directory of Open Access Journals (Sweden)

    Limin Zhang

    2018-01-01

    Full Text Available The effect of direct current (DC on the wetting behavior of Cu substrate by liquid Ga–25In–13Sn alloy at room temperature is investigated using a sessile drop method. It is found that there is a critical value for current intensity, below which the decrease of contact angle with increasing current intensity is approximately linear and above which contact angle tends to a stable value from drop shape. Current polarity is a negligible factor in the observed trend. Additionally, the observed change in contact angles is translated into the corresponding change in solid-liquid interfacial tension using the equation of state for liquid interfacial tensions. The solid-liquid interfacial tension decreases under DC. DC-induced promotion of solute diffusion coefficient is likely to play an important role in determining the wettability and solid-liquid interfacial tension under DC.

  14. Formation of radial aligned and uniform nematic liquid crystal droplets via drop-on-demand inkjet printing into a partially-wet polymer layer

    Science.gov (United States)

    Parry, Ellis; Kim, Dong-Jin; Castrejón-Pita, Alfonso A.; Elston, Steve J.; Morris, Stephen M.

    2018-06-01

    This paper investigates the drop-on-demand inkjet printing of a nematic liquid crystal (LC) onto a variety of substrates. Achieving both a well-defined droplet boundary and uniformity of the LC director in printed droplets can be challenging when traditional alignment surfaces are employed. Despite the increasing popularity of inkjet printing LCs, the mechanisms that are involved during the deposition process such as drop impact, wetting and spreading have received very little attention, in the way of experiments, as viable routes for promoting alignment of the resultant LC droplets. In this work, radial alignment of the director and uniformity of the droplet boundary are achieved in combination via the use of a partially-wet polymer substrate, which makes use of the forces and flow generated during droplet impact and subsequent wetting process. Our findings could have important consequences for future LC inkjet applications, including the development of smart inks, printable sensors and lasers.

  15. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    Science.gov (United States)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  16. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2017-01-01

    condition on the liquid slug formation is discussed including pipe diameter, inclination angle, gas superficial velocity and liquid holdup. The results show that the pipe is blocked by the liquid slug at the moment of slug formed. The pipe pressure suddenly increases, and then decreases gradually...... in the process of liquid slug formation and motion. The pipe pressure drop and liquid holdup decrease along with the increasing inclination angle of ascending pipe. On the contrary, they rise with the increase of the inclination angle of descending pipe. Higher gas superficial velocity and liquid holdup result...

  17. Development of a New Type of Alkali-Free Liquid Accelerator for Wet Shotcrete in Coal Mine and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2015-01-01

    Full Text Available In order to address issues such as large rebound rate, high dust concentration, and low compressive strength of shotcrete when adding liquid accelerator during wet spraying, the factors influencing the efficiency of liquid accelerator were experimentally analyzed. The single-admixture, combination, and orthogonal tests were conducted on the five fundamental raw materials required to develop the new liquid accelerator. The WT-1 type liquid accelerator, which had better adaptability to different kinds of cement, was developed with the mass concentration ratio of 55% aluminum sulfate octadecahydrate, 4% sodium fluoride, 2.5% triethanolamine, 0.5% polyacrylamide, 5% bentonite, and 33% water. Experimental investigation showed that the initial setting time of the reference cement with 6% mass content of this liquid accelerator was 2 minutes and 15 seconds, and the final setting time was 7 minutes and 5 seconds. The compressive strength after 1 day of curing was 13.6 MPa and the strength ratio after 28 days of curing was 94.8%, which met the first grade product requirements of the China National Standard. Compared with the conventional type liquid accelerator, the proposed type WT-1 accelerator is capable of effectively reducing the rebound rate and dust concentration while significantly increasing the compressive strength of the shotcrete.

  18. Quantum perfect correlations

    International Nuclear Information System (INIS)

    Ozawa, Masanao

    2006-01-01

    The notion of perfect correlations between arbitrary observables, or more generally arbitrary POVMs, is introduced in the standard formulation of quantum mechanics, and characterized by several well-established statistical conditions. The transitivity of perfect correlations is proved to generally hold, and applied to a simple articulation for the failure of Hardy's nonlocality proof for maximally entangled states. The notion of perfect correlations between observables and POVMs is used for defining the notion of a precise measurement of a given observable in a given state. A longstanding misconception on the correlation made by the measuring interaction is resolved in the light of the new theory of quantum perfect correlations

  19. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    . The effects of initial surface temperature, water subcooling (in the range 15–80 °C) and jet velocity (in the range 0.15–1.60 m/s) on the quench process were investigated. The quench and the re-wetting temperature (the temperature at which the liquid establishes wet contact with the solid) were found to greatly depend on water subcooling. One of the main findings in this study is the existence of a critical water subcooling range within which any small change in water subcooling has a considerable effect on both the quench and the re-wetting temperatures. Empirical correlations have been developed and provided good fit of the experimental data and agreed well with correlations developed by other researchers for curved surfaces. The quench temperature was found to decrease by increasing surface curvature and solid thermal conductivity. However, the re-wetting temperature is a weak function of both variables. Effect of spatial location on the surface of the tube was also studied. The stagnation point showed higher quench and re-wetting temperatures compared to other locations on the tube surface.

  20. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    dynamics and the broader field of fluid dynamics [7-9]. Such an active field requires an occasional collective examination of current research to highlight both recent successes and remaining challenges. Herein, we have collected a range of articles to illustrate the broad nature of research associated with understanding dynamics of moving condensed matter three phase contact lines. Despite the breadth of topics examined, certain unifying themes emerge. The role of the substrate surface is critical in determining kinetics of wetting; this is evidenced by the attention given to this in articles herein. McHale et al investigate the role of surface topography on wetting kinetics and how its effect can be incorporated in existing theories describing contact line dynamics. Moosavi et al examine surface topography effects via a mesoscopic hydrodynamics approach. The capillary driven motion of fluid through structures on a surface bears tremendous importance for microfluidics studies and the emerging field of nanofluidics. Blow et al examine this phenomena for liquid imbibition into a geometric array of structures on a solid surface, while Shen et al analyze the effects of surface temperature during boiling and non-boiling conditionson droplet impingement dynamics. Finally, Pesika et al discover a wonderful world of smart surfaces, like gecko adhesion pads. A number of papers utilize computational modeling to explore phenomena underlying wetting dynamics and to consider relevant mechanisms in terms of existing theory for contact line dynamics. Winter et al utilize Monte Carlo simulation techniques and thermodynamic integration methods to test classical theory describing heterogeneous nucleation at a wall near a wetting transition. Qian et al briefly review the Onsager principle of minimum energy dissipation underlying many descriptions of dissipative systems; they then provide a variational approach description of hydrodynamics of moving contact lines and demonstrate the validity

  1. PERFECT DEMAND ILLUSION

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Sulimov

    2015-01-01

    Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The definition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the definition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».

  2. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.

    Science.gov (United States)

    Crassous, Jérôme; Ciccotti, Matteo; Charlaix, Elisabeth

    2011-04-05

    We extend to the case of perfect wetting the exact calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a pendular ring connecting two dry surfaces. We derive an approximate analytical expression for the capillary force between two highly curved surfaces covered by a wetting liquid film. The domain of validity of this expression is assessed and extended by a custom-made numerical simulation based on the full exact mathematical description. In the case of attractive liquid-solid van der Waals interactions, the capillary force increases monotonically with decreasing vapor pressure up to several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.

  3. PREFACE: Wetting: introductory note

    Science.gov (United States)

    Herminghaus, S.

    2005-03-01

    liquids bead off so perfectly from their leaves. This list, which is of course far from complete, serves to illustrate the wide scope of open questions. At that time, research groups in Germany concerned with wetting phenomena gathered and finally applied for a priority programme on wetting and structure formation at interfaces, which obtained funding from the German Science Foundation [27]. This special issue is dedicated to the research carried out within this programme. It spans the period starting from spring 1998 until summer 2004, and is presented as a combination of review over that period and original presentation of the state-of-the-art at its end. Although only a very limited number of problems could be tackled within the programme, a few significant achievements could be attained. Some of these shall be highlighted: It could be shown that triple point wetting is a direct consequence of topographic substrate imperfection. By taking the bending energy of a solid slab on a rough substrate into account, accordance between theory [28] and experiment [29] was finally achieved. By applying scanning force microscopy to three phase contact lines, it could be shown that the `real' contact line tension is indeed much smaller than `observed' on macroscopic scale [39], and comes close to what is theoretically expected. In the field of structure formation by dewetting, unprecedented agreement between experiment [31], theory [32], and particularly careful simulations [33] was achieved. The underlying mechanisms could be clearly distinguished by means of Minkowski functionals. It could be shown both theoretically [34,35] and experimentally [36,37] that chemically patterned substrates give rise not only to a large variety of liquid morphologies, but that the latter can be manipulated and controlled in a precise manner. It was demonstrated that spherical (colloidal) beads may not only be used like surfactants as in Pickering emulsions, but that the resulting interface

  4. Everybody's Different Nobody's Perfect

    Science.gov (United States)

    ... traten ni qué edad tengan — eso se llama “DISCAPACIDAD.” Some kids have a disability because their muscles ... have one? ¿Conoces a alguien que tenga una discapacidad? ¿Tienes una tú? Everybody’s different, nobody’s perfect. So ...

  5. California's Perfect Storm

    Science.gov (United States)

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  6. The Perfect Text.

    Science.gov (United States)

    Russo, Ruth

    1998-01-01

    A chemistry teacher describes the elements of the ideal chemistry textbook. The perfect text is focused and helps students draw a coherent whole out of the myriad fragments of information and interpretation. The text would show chemistry as the central science necessary for understanding other sciences and would also root chemistry firmly in the…

  7. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media.

    Science.gov (United States)

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2016-07-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N 2 /BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm -1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm -1 ) and the N 2 /BET solid surface area (28±2 cm -1 ). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm -1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm -1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm -1 and 152±8 cm -1 , respectively), but much smaller than the N 2 /BET solid surface area (1387±92 cm -1 and 55224 cm -1 , respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard

  8. Wet gas sampling

    Energy Technology Data Exchange (ETDEWEB)

    Welker, T.F.

    1997-07-01

    The quality of gas has changed drastically in the past few years. Most gas is wet with hydrocarbons, water, and heavier contaminants that tend to condense if not handled properly. If a gas stream is contaminated with condensables, the sampling of that stream must be done in a manner that will ensure all of the components in the stream are introduced into the sample container as the composite. The sampling and handling of wet gas is extremely difficult under ideal conditions. There are no ideal conditions in the real world. The problems related to offshore operations and other wet gas systems, as well as the transportation of the sample, are additional problems that must be overcome if the analysis is to mean anything to the producer and gatherer. The sampling of wet gas systems is decidedly more difficult than sampling conventional dry gas systems. Wet gas systems were generally going to result in the measurement of one heating value at the inlet of the pipe and a drastic reduction in the heating value of the gas at the outlet end of the system. This is caused by the fallout or accumulation of the heavier products that, at the inlet, may be in the vapor state in the pipeline; hence, the high gravity and high BTU. But, in fact, because of pressure and temperature variances, these liquids condense and form a liquid that is actually running down the pipe as a stream or is accumulated in drips to be blown from the system. (author)

  9. [Wet work].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata

    2010-01-01

    Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.

  10. Building the perfect PC

    CERN Document Server

    Thompson, Robert Bruce

    2006-01-01

    This popular Build-It-Yourself (BIY) PC book covers everything you want to know about building your own system: Planning and picking out the right components, step-by-step instructions for assembling your perfect PC, and an insightful discussion of why you'd want to do it in the first place. Most big brand computers from HP, Dell and others use lower-quality components so they can meet their aggressive pricing targets. But component manufacturers also make high-quality parts that you can either purchase directly, or obtain through distributors and resellers. Consumers and corporations

  11. Perfect imaging without negative refraction

    OpenAIRE

    Leonhardt, Ulf

    2009-01-01

    Perfect imaging has been believed to rely on negative refraction, but here we show that an ordinary positively-refracting optical medium may form perfect images as well. In particular, we establish a mathematical proof that Maxwell's fish eye in two-dimensional integrated optics makes a perfect instrument with a resolution not limited by the wavelength of light. We also show how to modify the fish eye such that perfect imaging devices can be made in practice. Our method of perfect focusing ma...

  12. Perfect imaging without negative refraction

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: ulf@st-andrews.ac.uk

    2009-09-15

    Perfect imaging has been believed to rely on negative refraction, but here we show that an ordinary positively refracting optical medium may form perfect images as well. In particular, we establish a mathematical proof that Maxwell's fish eye in two-dimensional (2D) integrated optics makes a perfect instrument with a resolution not limited by the wavelength of light. We also show how to modify the fish eye such that perfect imaging devices can be made in practice. Our method of perfect focusing may also find applications outside of optics, in acoustics, fluid mechanics or quantum physics, wherever waves obey the 2D Helmholtz equation.

  13. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  14. Effect of wetting on nucleation and growth of D2 in confinement

    Science.gov (United States)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Shin, S. J.; Kozioziemski, B. J.; Chernov, A. A.

    2018-04-01

    We have performed a computational study to determine how the wetting of liquid deuterium to the walls of the material influences nucleation. We present the development of a pair-wise interatomic potential that includes zero-point motion of molecular deuterium. Deuterium is used in this study because of its importance to inertial confinement fusion and the potential to generate a superfluid state if the solidification can be suppressed. Our simulations show that wetting dominates undercooling compared to the pore geometries. We observe a transition from heterogeneous nucleation at the confining wall to homogeneous nucleation at the bulk of the liquid (and intermediate cases) as the interaction with the confining wall changes from perfect wetting to non-wetting. When nucleation is heterogeneous, the temperature needed for solidification changes by 4 K with decreasing deuterium-wall interaction, but it remains independent (and equal to the one from bulk samples) when homogeneous nucleation dominates. We find that growth and quality of the resulting microstructure also depends on the magnitude of liquid deuterium-wall interaction strength.

  15. Perfect and imperfect states

    Directory of Open Access Journals (Sweden)

    Nikitović Aleksandar

    2013-01-01

    Full Text Available Early Greek ethics embodied in Cretan and Spartan mores, served as a model for Plato`s political theory. Plato theorized the contents of early Greek ethics, aspiring to justify and revitalize the fundamental principles of a traditional view of the world. However, according to Plato`s new insight, deed is further from the truth than a thought i.e. theory. The dorian model had to renounce its position to the perfect prototype of a righteous state, which is a result of the inner logic of philosophical theorizing in early Greek ethics. Prototype and model of philosophical reflection, in comparison to philosophical theory, becomes minor and deficient. Philosophical theorizing of early Greek ethics philosophically formatted Greek heritage, initiating substantial changes to the content of traditional ethics. Replacement of the myth with ontology, as a new foundation of politics, transformed early Greek ethics in various relevant ways. [Projekat Ministarstva nauke Republike Srbije, br. 179049

  16. Perfect pitch reconsidered.

    Science.gov (United States)

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  17. Metamaterials for perfect absorption

    CERN Document Server

    Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won

    2016-01-01

    This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...

  18. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    This article concerns a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual stratihtforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...... their branching and conditional independence structure, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. Examples of applications and empirical results are presented....

  19. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2005-01-01

    Our objective is to construct a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual straightforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...... their branching and conditional independence structures, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. A tail-lightness condition turns out to be of importance...... for the applicability of the perfect simulation algorithm. Examples of applications and empirical results are presented....

  20. Wet cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hole, B. [IMC Technical Services (United Kingdom)

    1999-08-01

    Continuous miners create dust and methane problems in underground coal mining. Control has usually been achieved using ventilation techniques as experiments with water based suppression have led to flooding and electrical problems. Recent experience in the US has led to renewed interest in wet head systems. This paper describes tests of the Hydraphase system by IMC Technologies. Ventilation around the cutting zone, quenching of hot ignition sources, dust suppression, the surface trial gallery tests, the performance of the cutting bed, and flow of air and methane around the cutting head are reviewed. 1 ref., 2 figs., 2 photos.

  1. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  2. Electrowetting of liquid marbles

    International Nuclear Information System (INIS)

    Newton, M I; Herbertson, D L; Elliott, S J; Shirtcliffe, N J; McHale, G

    2007-01-01

    Electrowetting of water drops on structured superhydrophobic surfaces are known to cause an irreversible change from a slippy (Cassie-Baxter) to a sticky (Wenzel) regime. An alternative approach to using a water drop on a superhydrophobic surface to obtain a non-wetting system is to use a liquid marble on a smooth solid substrate. A liquid marble is a droplet coated in hydrophobic grains, which therefore carries its own solid surface structure as a conformal coating. Such droplets can be considered as perfect non-wetting systems having contact angles to smooth solid substrates of close to 180 0 . In this work we report the electrowetting of liquid marbles made of water coated with hydrophobic lycopodium grains and show that the electrowetting is completely reversible. Marbles are shown to return to their initial contact angle for both ac and dc electrowetting and without requiring a threshold voltage to be exceeded. Furthermore, we provide a proof-of-principle demonstration that controlled motion of marbles on a finger electrode structure is possible

  3. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2018-01-01

    The Volume of Fluid method and Re-Normalisation Group (RNG) k-ε turbulence model were employed to predict the gas-liquid two-phase flow in a terrain-inclined pipeline with deposited liquids. The simulation was carried out in a 22.5 m terrain-inclined pipeline with a 150 mm internal diameter...... on the liquid level under the suction force which caused by the negative pressure around the elbow, and then it touched to the top of the pipe. When the liquid blocked the pipe, the pressure drop between the upstream and downstream of the elbow increased with the increase of the gas velocity. At larger gas...

  4. Perfect secure domination in graphs

    Directory of Open Access Journals (Sweden)

    S.V. Divya Rashmi

    2017-07-01

    Full Text Available Let $G=(V,E$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus  S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect  secure domination number of $G$ and is denoted by $gamma_{ps}(G.$ In this paper we initiate a study of this parameter and present several basic results.

  5. On the perfect hexagonal packing of rods

    International Nuclear Information System (INIS)

    Starostin, E L

    2006-01-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids

  6. Perfect sequences over the real quaternions

    OpenAIRE

    Kuznetsov, Oleg

    2017-01-01

    In this Thesis, perfect sequences over the real quaternions are first considered. Definitions for the right and left periodic autocorrelation functions are given, and right and left perfect sequences introduced. It is shown that the right (left) perfection of any sequence implies the left (right) perfection, so concepts of right and left perfect sequences over the real quaternions are equivalent. Unitary transformations of the quaternion space ℍ are then considered. Using the equivalence of t...

  7. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  8. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1994-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  9. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Bonn, Daniel

    2016-01-01

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid 'marbles' with molecularly thin graphene.

  10. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra

    2016-11-28

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid \\'marbles\\' with molecularly thin graphene.

  11. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  12. Perfect Liberty or Natural Liberty?

    DEFF Research Database (Denmark)

    Jacobsen, Stefan Gaarsmand

    2012-01-01

    The article investigates the concept of natural order as it is used by François Quesnay and Adam Smith in their respective economic writings. While Smith used the concept only after having visited Quesnay and the Physiocrats in France in the 1760s, in The Wealth of Nations he sought to negotiate...... the meaning of what was “natural” about economic life. The Physiocrats believed it possible to identify a model or a perfect regime of natural order – an order that they in fact thought to exist and function in China due to a rigorous system of economic laws. Smith sided with contemporary critics...... of this metaphysical vision of economic perfection (and of Chinese governance), but he suggested that the economic mechanisms of the physiocratic theories would remain intact even with a minimum of control by state laws. However, Smith’s balancing act on these questions remained disputed even by his Scottish...

  13. Looking beyond the perfect lens

    International Nuclear Information System (INIS)

    Wee, W H; Pendry, J B

    2010-01-01

    The holy grail of imaging is the ability to see through anything. From the conservation of energy, we can easily see that to see through a lossy material would require lenses with gain. The aim of this paper therefore is to propose a simple scheme by which we can construct a general perfect lens, with gain-one that can restore both the phases and amplitudes of near and far fields.

  14. Mechanical tuning of the evaporation rate of liquid on crossed fibers.

    Science.gov (United States)

    Boulogne, François; Sauret, Alban; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-03-17

    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column, and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate significantly depends upon the liquid morphology and that the drying of the liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology toward the column state, and therefore, enhances the drying rate of a volatile liquid deposited on it.

  15. Development of a wet gas flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Andreussi, P.; Ciandri, P.; Faluomi, V. [TRA Sistemi, Pisa (Italy)

    2000-07-01

    A new multiphase flowmeter, particularly suited for wet gas metering, has been developed. The meter working principle is the isokinetic sampling of the gas-liquid mixture, followed by separation and individual metering of the gas and the liquid phase. The liquid flowrate is derived from the value of the sampled liquid flowrate. The gas flowrate is measured with a multiphase nozzle. Preliminary tests have shown that both the gas and the liquid flowrates can be determined with an error less than 5%. The meter can be autocalibrated and allows the water-cut to be measured with any prescribed precision. (author)

  16. Critical phenomena at perfect and non-perfect surfaces

    International Nuclear Information System (INIS)

    Pleimling, M

    2004-01-01

    In the past, perfect surfaces have been shown to yield local critical behaviour that differs from bulk critical behaviour. On the other hand, surface defects, whether they are of natural origin or created artificially, are known to modify local quantities. It is therefore important to clarify whether these defects are relevant or irrelevant for the surface critical behaviour. The purpose of this review is two-fold. In the first part we summarize some of the important results on surface criticality at perfect surfaces. Special attention is thereby paid to new developments such as for example the study of the surface critical behaviour in systems with competing interactions or of surface critical dynamics. In the second part the effect of surface defects (presence of edges, steps, quenched randomness, lines of adatoms, regular geometric patterns) on local critical behaviour in semi-infinite systems and in thin films is discussed in detail. Whereas most of the defects commonly encountered are shown to be irrelevant, some notable exceptions are highlighted. It is shown furthermore that under certain circumstances non-universal local critical behaviour may be observed at surfaces. (topical review)

  17. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  18. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Daanen, H.A.M.; Kappers, A.M.L.

    2011-01-01

    The sensation of wetness is well-known but barely investigated. There are no specific wetness receptors in the skin, but the sensation is mediated by temperature and pressure perception. In our study, we have measured discrimination thresholds for the haptic perception of wetness of three di erent

  19. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Dolfine Kosters, N.; Daanen, h.a.m.; Kappers, A.M.L.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the me-chanics of wetness perception. This paper describes an experiment with six conditions regarding haptic dis-crimination of the wetness of fabrics. Three materials were used: cotton wool,

  20. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, Astrid M.L.; Daanen, H.A.M.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the mechanics of wetness perception. This paper describes an experiment with six conditions regarding haptic discrimination of the wetness of fabrics. Three materials were used: cotton wool,

  1. Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining

    International Nuclear Information System (INIS)

    Pal, Prem; Sato, Kazuo

    2009-01-01

    Complex three-dimensional structures for microelectromechanical systems (MEMS) are fabricated in Si{1 0 0} wafers using wet bulk micromachining. The structures are divided into two categories: fixed and freestanding. The fabrication processes for both types utilize single wafers with sequentially deposited nitride and oxide layers, local oxidation of silicon (LOCOS) and two steps of wet anisotropic etching. The fixed structures contain perfectly sharp edges. Thermally deposited oxide is used as the material for the freestanding structures. Wet etching is performed in tetramethyl ammonium hydroxide (TMAH) with and without Triton X-100 (C 14 H 22 O(C 2 H 4 O) n , n = 9–10). For the fixed structures, both etching steps are performed either in 25 wt% TMAH + Triton or pure TMAH or both, depending upon the type of the structures. In the case of freestanding systems, TMAH + Triton is utilized first, followed by pure TMAH. The fabrication methods enable densely arrayed structures, allowing the manufacture of corrugated diaphragms, compact size liquid (or gas) flow delivery systems, newly shaped mold for soft MEMS structures (e.g. PDMS (polydimethylsiloxane)) and other applications. The present research is an approach to fabricate advanced MEMS structures, extending the range of 3D structures fabricated by silicon anisotropic etching

  2. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  3. Generating perfect fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  4. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  5. Breast milk is conditionally perfect.

    Science.gov (United States)

    Erick, Miriam

    2018-02-01

    Breast milk is the universal preferred nutrition for the newborn human infant. New mother have been encouraged to exclusively breastfeed by health care professionals and consumer-advocacy forums for years, citing "breast milk is the perfect food". The benefits are numerous and include psychological, convenience, economical, ecological and nutritionally superior. Human milk is a composite of nutritional choices of the mother, commencing in the pre-conceptual era. Events influencing the eventual nutritional profile of breast milk for the neonate start with pre-conceptual dietary habits through pregnancy and finally to postpartum. Food choices do affect the nutritional profile of human breast milk. It is not known who coined the phrase "breast milk is the perfect food" but it is widely prevalent in the literature. While breast milk is highly nutritive, containing important immunological and growth factors, scientific investigation reveals a few short-falls. Overall, human breast milk has been found to be low in certain nutrients in developed countries: vitamin D, iodine, iron, and vitamin K. Additional nutrient deficiencies have been documented in resource-poor countries: vitamin A, vitamin B 12, zinc, and vitamin B 1/thiamin. Given these findings, isn't it more accurate to describe breast milk as "conditionally perfect"? Correcting the impression that breast milk is an inherently, automatically comprehensive enriched product would encourage women who plan to breastfeed an opportunity to concentrate on dietary improvement to optimizes nutrient benefits ultimately to the neonate. The more immediate result would improve pre-conceptual nutritional status. Here, we explore the nutritional status of groups of young women; some of whom will become pregnant and eventually produce breast milk. We will review the available literature profiling vitamin, mineral, protein and caloric content of breast milk. We highlight pre-existing situations needing correction to optimize

  6. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2008-01-01

    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  7. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2000-01-01

    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  8. Avoided critical behavior in dynamically forced wetting.

    Science.gov (United States)

    Snoeijer, Jacco H; Delon, Giles; Fermigier, Marc; Andreotti, Bruno

    2006-05-05

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.

  9. Wet Gas Airfoil Analyses

    OpenAIRE

    Larsen, Tarjei Thorrud

    2011-01-01

    Subsea wet gas compression renders new possibilities for cost savings and enhanced gas recovery on existing gas wells. Technology like this opens to make traditional offshore processing plants redundant. With new technology, follows new challenges. Multiphase flows is regarded as a complex field of study, and increased knowledge on the fundamental mechanisms regarding wet gas flow is of paramount importance to the efficiency and stability of the wet gas compressor. The scope of this work was ...

  10. Wetting transitions: First order or second order

    International Nuclear Information System (INIS)

    Teletzke, G.F.; Scriven, L.E.; Davis, H.T.

    1982-01-01

    A generalization of Sullivan's recently proposed theory of the equilibrium contact angle, the angle at which a fluid interface meets a solid surface, is investigated. The generalized theory admits either a first-order or second-order transition from a nonzero contact angle to perfect wetting as a critical point is approached, in contrast to Sullivan's original theory, which predicts only a second-order transition. The predictions of this computationally convenient theory are in qualitative agreement with a more rigorous theory to be presented in a future publication

  11. Obsession with perfection: Body dysmorphia.

    Science.gov (United States)

    Vashi, Neelam A

    The deeply rooted fascination with beauty penetrates society worldwide. The indulgence to look and feel beautiful pervades all ages, genders, and nationalities, with research conferring a remarkable tendency to agree on measures of attractiveness among these disparate groups. Research has found that beautiful people do, in fact, receive more desirable outcomes in life and job satisfaction, family formation, and overall happiness. Humans have a tendency to respond to attractive persons more favorably, driving many patients to our clinics. Although some dissatisfaction with one's appearance is common and normal, excessive concern with certain facial or body attributes can be sign of an underlying disorder. Body dysmorphic disorder (BDD) is a disorder of self-perception. It is the obsession with perfection. Defined as the impairing preoccupation with a nonexistent or minimal flaw in appearance, BDD affects 0.7-2.4% of the general population and a much larger percentage of those attempting to receive aesthetic treatments. Clinicians should be aware of this disorder and remain vigilant because such patients will not be satisfied with corrective procedures. Although not involving cosmetic intervention, the treatment of BDD does involve psychiatric referral and psychopharmacologic therapy, with patients receiving these having a much better prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  13. Model determination and validation for reactive wetting processes

    Energy Technology Data Exchange (ETDEWEB)

    Yost, F.G.; O`Toole, E.J.; Sackinger, P.A. [Sandia National Labs., Albuquerque, NM (United States); Swiler, T.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

    1998-01-01

    It is shown that dissolutive wetting initially yields a metastable equilibrium. A compact model for the kinetics of approach to this metastable state is described. The technique for constructing these kinetics stems from the early work of Onsager and begins with a relationship for the entropy production. From this, a coupled set of nonlinear, ordinary differential equations can be written directly. The equations are solved numerically for the wetted area and compared with experimental data. The model captures many of the subtle complexities of dissolutive wetting such as multiple metastable states. Sessile drop experiments involving a variety of Bi-Sn alloys on solid Bi substrates were performed. Substrates prepared from small and large-grained polycrystals and single crystals were used to measure equilibrium and metastable contact angles and estimate the surface tension and equilibrium contact angle of the solid-liquid interface. The substrates were also used to investigate the coupling of the dissolution and wetting processes and to investigate the effect of substrate grain size on wetting. It was determined that the equilibrium wetting geometry is independent of linear scale and that grain size has little influence on wetting or dissolution in the Bi-Sn system. To investigate the atomic behavior of liquids at interfaces during wetting, the authors simulated wetting in the Ag-Cu system using molecular dynamics with atomic potentials and observed both atomic dynamics and structural correlations of the liquid-solid interface. The authors found that spreading is prompted by interactions between the liquid and the substrate surface that cause the liquid layer in contact with the substrate to take on some of the symmetry of the substrate surface and result in the formation of a liquid monolayer that extends beyond the major part of the liquid droplet.

  14. Wetting morphologies on randomly oriented fibers.

    Science.gov (United States)

    Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.

  15. Looking for the Perfect Mentor.

    Science.gov (United States)

    Sá, Ana Pinheiro; Teixeira-Pinto, Cristina; Veríssimo, Rafaela; Vilas-Boas, Andreia; Firmino-Machado, João

    2015-01-01

    The authors established the profile of the Internal Medicine clinical teachers in Portugal aiming to define a future interventional strategy plan as adequate as possible to the target group and to the problems identified by the residents. Observational, transversal, analytic study. An online anonymous questionnaire was defined, evaluating the demographic characteristics of the clinical teachers, their path in Internal Medicine and their involvement in the residents learning process. We collected 213 valid questionnaires, making for an estimated response rate of 28.4%. Median global satisfaction with the clinical teacher was 4.52 (± 1.33 points) and the classification of the relationship between resident and clinical teacher was 4.86 ± 1.04 points. The perfect clinical teacher is defined by high standards of dedication and responsibility (4.9 ± 1.37 points), practical (4.8 ± 1.12 points) and theoretical skills (4.8 ± 1.07 points). The multiple linear regression model allowed to determine predictors of the residentâs satisfaction with their clinical teacher, justifying 82,5% of the variation of satisfaction with the clinical teacher (R2 = 0.83; R2 a = 0.82). Postgraduate medical education consists of an interaction between several areas of knowledge and intervening variables in the learning process having the clinical teacher in the central role. Overall, the pedagogical abilities were the most valued by the Internal Medicine residents regarding their clinical teacher, as determinants of a quality residentship. This study demonstrates the critical relevance of the clinical teacher in the satisfaction of residents with their residentship. The established multiple linear regression model highlights the impact of the clinical and pedagogical relantionship with the clinical teacher in a relevant increase in the satisfaction with the latter.

  16. A new characterization of trivially perfect graphs

    Directory of Open Access Journals (Sweden)

    Christian Rubio Montiel

    2015-03-01

    Full Text Available A graph $G$ is \\emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number $\\alpha(G$ equals the number of (maximal cliques $m(G$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

  17. Characterization of two-qubit perfect entanglers

    International Nuclear Information System (INIS)

    Rezakhani, A.T.

    2004-01-01

    Here we consider perfect entanglers from another perspective. It is shown that there are some special perfect entanglers which can maximally entangle a full product basis. We explicitly construct a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as controlled-NOT (CNOT) and double-CNOT, but not √(SWAP). In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value (2/9) are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate

  18. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  19. On 4-critical t-perfect graphs

    OpenAIRE

    Benchetrit, Yohann

    2016-01-01

    It is an open question whether the chromatic number of $t$-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical $t$-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism $\\Pi$ (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this paper, we show a new example of a 4-critical $t$-perfect graph: the complement of the line gra...

  20. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  1. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  2. Exposure to wet work in working Australians.

    Science.gov (United States)

    Keegel, Tessa G; Nixon, Rosemary L; LaMontagne, Anthony D

    2012-02-01

    The Australian National Hazard Exposure Worker Surveillance (NHEWS) Survey 2008 was a cross-sectional survey undertaken by Safe Work Australia to inform the development of exposure prevention initiatives for occupational disease. This is a descriptive study of workplace exposures. To assess the occupational and demographic characteristics of workers reporting exposure to wet work. Computer-assisted telephone interviews were conducted with 4500 workers. Two wet work exposure outcomes (frequent washing of hands and duration of time spent at work with the hands immersed in liquids) were analysed. The response rate for the study was 42.3%. For hand-washing, 9.8% [95% confidence interval (CI) 8.9-10.7] reported washing their hands more than 20 times per day. For immersion of hands in liquids, 4.5% (95% CI 3.9-5.1) reported immersion for more than 2 hr per day. Females were more likely to report exposure to frequent hand-washing than males [odds ratio (OR) 1.97, 95% CI 1.49-2.61]. Workers in the lowest occupational skill level jobs were more likely to report increased exposure to hands immersed in liquids than those in the highest (OR 6.41, 95% CI 3.78-10.88). Workers reporting skin exposure to chemicals were more likely to report exposure to hand-washing (OR 3.68, 95% CI 2.91-4.66) and immersion of the hands in liquids (OR 4.09, 95% CI 2.92-5.74). Specific groups of workers reported high levels of exposure to wet work. There were differences between the profiles of workers reporting frequent hand-washing and workers reporting increased duration of exposure to hands immersed in liquids. We also found a high correlation between wet work and chemical exposure. © 2011 John Wiley & Sons A/S.

  3. Interaction between liquid droplets and heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Vasiliev, N I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Guguchkin, V V [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation)

    1993-06-01

    In this paper, experimental methods and investigation results of interaction between droplets of different liquids and a heated surface are presented. Wetted area, contact time period and transition boundary from wetted to non-wetted interaction regimes are experimentally evaluated. A simple connection of the wetted area value and contact time period with the heat removal efficiency is shown. (orig.)

  4. Creating the perfect indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Kilbridge, K.

    2002-08-01

    The virtues of radiant heating over convection heating systems is extolled, by outlining the salient features of the various forms of radiant heating systems. Among those described are thermal storage systems, radiant ceiling panels, suspended ceiling systems, commercial and industrial systems, and floor warming systems. There are two types of thermal storage systems; one is similar in appearance to a convection system that is installed in each room at the wall. The other is installed in soil or sand under the concrete slab building foundation. Both systems take advantage of reduced electrical rates applicable to power drawn during off-peak hours. Radiant ceiling panels are comprised of gypsum panels that fit between the ceiling joists above a finished ceiling. Regardless of the particular model, these systems are completely concealed; there are no radiators or registers to interfere with furniture placement or decorating. They eliminate cold and hot spots, maintaining a temperature variation between ceiling and floor at less than one degree C. Suspended ceiling panels sit in the suspended ceiling grid work and are connected using industry-standard electrical box and connectors. They are particularly suitable for office buildings, basements, etc. Commercial and industrial systems are used to provide higher output, to spot-heat areas, or perimeter of buildings where the heat loss load is high. Panels come in various sizes and can be connected to an energy management system, allowing complete management of the environment levels for every office on every floor. Floor warming systems are most frequently used in kitchens, bathrooms, entrance ways and foyers. The central energy source is hydronic, which heats up the liquid heat transfer agent. The pipes or tubing fixed to the plywood flooring are embedded in a thin layer of concrete to radiate upwards through the marble, ceramic tile or stone outer flooring.

  5. Examination of the anisotropy of the wetting behaviour of liquid Al-Cu alloys on single crystalline oriented Al{sub 2}O{sub 3}-substrates; Untersuchung der Anisotropie im Benetzungsverhalten fluessiger Al-Cu Legierungen auf einkristallinen orientierten Al{sub 2}O{sub 3}-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Julianna

    2011-02-04

    The wetting behaviour of liquid Al-Cu alloys and pure metals on oriented single crystalline Al{sub 2}O{sub 3}-substrates was examined, utilising the sessile drop technique. Measurements were performed at moderate temperatures of 1100 C, where the alloys are liquid. Different Al{sub 2}O{sub 3}-surfaces were studied, which are terminated by the crystallographic planes (0001), (11 anti 20), and (1 anti 102), also called C-, A-, and R-surfaces. After deposition, pure Cu-droplets show an exponential increase of the wetting angle to a value of about 115 for all investigated Al{sub 2}O{sub 3}-surfaces. The timescale of this increase is of the order of 100 s. The effect of surface- and interfacial energies on the wetting angle is discussed considering Young's equation. The most probable reason for its time-dependence seems to be an increase of the interfacial energy due to deoxidation of the droplet. Therefore it is reasonable to regard the isotropic contact angle value as the intrinsic one of the Cu/Al{sub 2}O{sub 3} system. In contrast, the wetting angle of pure Al metal with the different Al{sub 2}O{sub 3}-substrates shows a qualitatively different behaviour. In this system, it rises from about 90 to 115 roughly for C-substrates, twice as fast as in the Cu case but to a comparable value. On the other substrates a wetting angle of about 90 establishes immediately, and no pronounced time dependence is obvious. In order to study changes in the wetting behaviour of Al-Cu-alloys, which is isotropic for Cu and anisotropic for Al-rich alloys, contact angles of Al{sub 50}Cu{sub 50}, Al{sub 30}Cu{sub 70} und Al{sub 17}Cu{sub 83} on Al{sub 2}O{sub 3} were determined. For each alloy composition the wetting angle is about 120 after 300 s. The initial values on distinct surfaces hardly differ and become non-wetting with increasing Cu-content. Hence, anisotropy decreases. To determine the work of adhesion of the solid-liquid interface, the temperature- and composition

  6. Wet storage integrity update

    International Nuclear Information System (INIS)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables

  7. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  8. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy; Sprittles, James E.; Zhu, Y.; Li, Erqiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2013-01-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage

  9. WASTECOST-Wet - developed for Electric Power Research Institute

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    WASTECOST-Wet specifically addresses liquid processing systems and their impact on solid waste volumes. The WASTECOST-Wet code models the entire liquid processing activity from media descriptions and volume throughput to solid waste volume generated, processing efficiency and disposal costs. WASTECOST gives a detailed economic and performance view of liquid waste processing activities. The code provides users a standardized methodology for calculating and comparing costs and system performance characteristics. Detailed reports are provided showing major costs centers. Performance and cost factors include gallons processed per cubic foot of waste generated, cost per cubic foot of waste generated and cost per gallon processed

  10. Performance test of wet type decontamination device

    International Nuclear Information System (INIS)

    Lee, E. P.; Kim, E. G.; Min, D. K.; Jun, Y. B.; Lee, H. K.; Seu, H. S.; Kwon, H. M.; Hong, K.P.

    2003-01-01

    The intervention area located at rear hot cell can be contaminated by hot cell maintenance work. For effective decontamination of the intervention floor a wet type decontamination device was developed. The device was assembled with a brush rotating part, a washing liquid supplying part, an intake part for recovering contaminated liquid and a device moving cart part. The device was made of stainless steel for easy decontamination and corrosion resistance. The function test carried out at intervention area of the PIE facility showed good performance

  11. Study of polycaprolactone wet electrospinning process

    Directory of Open Access Journals (Sweden)

    E. Kostakova

    2014-08-01

    Full Text Available Wet electrospinning is a useful method for 3-dimensional structure control of nanofibrous materials. This innovative technology uses a liquid collector instead of the metal one commonly used for standard electrospinning. The article compares the internal structural features of polycaprolactone (PCL nanofibrous materials prepared by both technologies. We analyze the influence of different water/ethanol compositions used as a liquid collector on the morphology of the resultant polycaprolactone nanofibrous materials. Scanning electron micro-photographs have revealed a bimodal structure in the wet electrospun materials composed of micro and nanofibers uniformly distributed across the sample bulk. We have shown that the full-faced, twofold fiber distribution is due to the solvent composition and is induced and enhanced by increasing the ethanol weight ratio. Moreover, the comparison of fibrous layers morphology obtained by wet and dry spinning have revealed that beads that frequently appeared in dry spun materials are created by Plateau-Rayleigh instability of the fraction of thicker fibers. Theoretical conditions for spontaneous and complete immersion of cylindrical fibers into a liquid collector are also derived here.

  12. Wetting of real surfaces

    CERN Document Server

    Bormashenko, Edward Yu

    2013-01-01

    The problem of wetting and drop dynamics on various surfaces is very interesting from both the scientificas well as thepractical viewpoint, and subject of intense research.The results are scattered across papers in journals, sothis workwill meet the need for a unifying, comprehensive work.

  13. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reactio...

  14. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  15. Optimal simulation of a perfect entangler

    International Nuclear Information System (INIS)

    Yu Nengkun; Duan Runyao; Ying Mingsheng

    2010-01-01

    A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.

  16. Perfect 800 Advanced Strategies for Top Students

    CERN Document Server

    Celenti, Dan

    2010-01-01

    Getting into the nation's most competitive universities requires more than a good SAT score, it requires a perfect score. Perfect 800: SAT Math gives advanced students the tools needed to master the SAT math test. Covering areas including arithmetic concepts; algebra; geometry; and additional topics such as probability and weighted average, the book offers exposure to a wide range of degrees of difficulty in a holistic approach that allows students to experience the "real thing," including the impact of time constraints on their performance. By emphasizing critical thinking and analytic skills

  17. A Hypergraph Dictatorship Test with Perfect Completeness

    Science.gov (United States)

    Chen, Victor

    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based {operatorname{PCP}} construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1). Their test makes q ≥ 3 queries, has amortized query complexity 1+Oleft(log q/qright), but has an inherent loss of perfect completeness. In this paper we give an (adaptive) hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+Oleft(log q/qright).

  18. Perfect and Periphrastic Passive Constructions in Danish

    DEFF Research Database (Denmark)

    Bjerre, Tavs; Bjerre, Anne

    2007-01-01

    This paper gives an account of the event and argument structure of past participles and the linking between argument structure and valence structure. It further accounts for how participles form perfect and passiv constructions with auxiliaries. We assume that the same participle form is used...... in both types of construction. Our claim is that the valence structure of a past participle is predictable from its semantic type, and that the valence structure predicts with which auciliary a past participle combines in perfect constructions and whether the past participle may occur in passiv...

  19. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  20. Optimization of Perfect Absorbers with Multilayer Structures

    Science.gov (United States)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  1. Electromagnetic Detection of a Perfect Invisibility Cloak

    International Nuclear Information System (INIS)

    Zhang Baile; Wu, Bae-Ian

    2009-01-01

    A perfect invisibility cloak is commonly believed to be undetectable from electromagnetic (EM) detection because it is equivalent to a curved but empty EM space created from coordinate transformation. Based on the intrinsic asymmetry of coordinate transformation applied to motions of photons and charges, we propose a method to detect this curved EM space by shooting a fast-moving charged particle through it. A broadband radiation generated in this process makes a cloak visible. Our method is the only known EM mechanism so far to detect an ideal perfect cloak (curved EM space) within its working band.

  2. Lattice-Like Total Perfect Codes

    Directory of Open Access Journals (Sweden)

    Araujo Carlos

    2014-02-01

    Full Text Available A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.

  3. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy

    2017-06-05

    Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.

  4. Analysis of catalyst wetting efficiency influence on performances of industrial TBR for hydro desulfurization and hydro de aromatization reactions

    Directory of Open Access Journals (Sweden)

    Mijatović Ivana M.

    2015-01-01

    Full Text Available Many industrial scale trickle bed reactors (TBR operate at lower liquid superficial velocities (<0.5 cm/s at which the catalyst particle are not completely wetted. This phenomenon of incomplete wetting has therefore received significant attention and numerous studies have addressed the influence of wetting on the overall rate, conversion/selectivity behavior, and heat effects in TBR. The incomplete wetting conditions correspond to stagnant liquid pockets due to lower liquid superficial velocity which could cause significant influence on reactor performances. In this paper, several models for wetting efficiency in TBR on industrial level are examined and influence on reaction rate and reactor performance is discussed.

  5. Mechanical Energy Changes in Perfectly Inelastic Collisions

    Science.gov (United States)

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  6. The Present Perfect in World Englishes

    Science.gov (United States)

    Yao, Xinyue; Collins, Peter

    2012-01-01

    This paper reports on a comprehensive corpus-based study of regional and stylistic variation in the distribution of the English present perfect. The data represents ten English varieties of both the Inner Circle and Outer Circle, covering four major text types: conversation, news reportage, academic and fictional writing. The results are discussed…

  7. Le Perfectionnement en Phonetique (Perfecting Phonetics)

    Science.gov (United States)

    Laroche-Bouvy, Danielle

    1975-01-01

    This article describes the programs of the Institut d'Etudes Linguistiques et Phonetiques, located in Paris. The program focuses on perfecting the students' phonetic production of French. Both curriculum and teaching methods are described, as well as a course in phonetics for future teachers of French. (Text is in French.) (CLK)

  8. Maple Explorations, Perfect Numbers, and Mersenne Primes

    Science.gov (United States)

    Ghusayni, B.

    2005-01-01

    Some examples from different areas of mathematics are explored to give a working knowledge of the computer algebra system Maple. Perfect numbers and Mersenne primes, which have fascinated people for a very long time and continue to do so, are studied using Maple and some questions are posed that still await answers.

  9. Perfectly Secure Oblivious RAM without Random Oracles

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Meldgaard, Sigurd Torkel; Nielsen, Jesper Buus

    2011-01-01

    We present an algorithm for implementing a secure oblivious RAM where the access pattern is perfectly hidden in the information theoretic sense, without assuming that the CPU has access to a random oracle. In addition we prove a lower bound on the amount of randomness needed for implementing...

  10. Reshaping the perfect electrical conductor cylinder arbitrarily

    International Nuclear Information System (INIS)

    Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting

    2008-01-01

    A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.

  11. What is anthropological about The Perfect Human?

    DEFF Research Database (Denmark)

    Thomsen, Line Hassall

    2015-01-01

    Jørgen Leth has classified The Perfect Human as an anthropological film. But is the film anthropological at all? This article explores Leth’s connections with anthropology and finds that he is more inspired by anthropological framing than he is by anthropological research methods....

  12. Nanoscale View of Dewetting and Coating on Partially Wetted Solids.

    Science.gov (United States)

    Deng, Yajun; Chen, Lei; Liu, Qiao; Yu, Jiapeng; Wang, Hao

    2016-05-19

    There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.

  13. Wetting Behavior in Colloid-Polymer Mixtures at Different Substrates.

    Science.gov (United States)

    Wijting, Willem K; Besseling, Nicolaas A M; Cohen Stuart, Martien A

    2003-09-25

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting. The interaction with the substrate was manipulated by modifying the substrate with a polymer. In that case, a transition from partial to complete drying is observed upon approach to the critical point.

  14. Solving the Controversy on the Wetting Transparency of Graphene.

    Science.gov (United States)

    Kim, Donggyu; Pugno, Nicola M; Buehler, Markus J; Ryu, Seunghwa

    2015-10-26

    Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and elucidate the origin of the partial wetting transparency. We show that the liquid bulk modulus is crucial to accurately calculate the van der Waals interactions between the liquid and the surface, and that various wetting states on rough surfaces must be considered to understand a wide range of contact angle measurements that cannot be fitted with a theory considering the flat surface. In addition, we reveal that the wetting characteristic of the substrate almost vanishes when covered by any coating as thick as graphene double layers. Our findings reveal a more complete picture of the wetting transparency of graphene as well as other atomically thin coatings, and can be applied to study various surface engineering problems requiring wettability-tuning.

  15. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  16. Characterization of the liquid Li-solid Mo (1 1 0) interface from classical molecular dynamics for plasma-facing applications

    Science.gov (United States)

    Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2017-11-01

    An understanding of the wetting properties and a characterization of the interface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. In this work, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force field is parameterized to describe the interactions between Li and Mo. The new force field reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (1 1 0) surface. This force field is then used to study the wetting of liquid Li on the (1 1 0) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we find that liquid Li tends to completely wet the perfect Mo (1 1 0) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (1 1 0) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin-film simulations, it is observed that the first layer of Li on the Mo (1 1 0) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. These findings are consistent with temperature-programmed desorption experiments.

  17. Nonminimal coupling of perfect fluids to curvature

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge

    2008-01-01

    In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f 2 (R)]L m , where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L m =p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L m do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.

  18. Thermodynamical stability for a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)

    2017-12-15

    According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)

  19. Physicotechnical potentialities of perfecting roentgenographic research

    International Nuclear Information System (INIS)

    Chikirdin, Eh.G.; Mishkinis, B.Ya.

    1991-01-01

    Physicotechnical potentialities of perfecting image quality in X-ray examinations are enumerated. Realization of these potentialities demands interrelated decision of two problems: substantiation of optimizing conditions of survey (postures of a patient, geometry of investigation, image converters, electric regimes), creation of adequate hardware and software components. It is shown that introduction of X-ray feeding device with microprocessor control permits to upgrade the quality of X-ray images and to reduce radiation loads of a patient

  20. Perfect Fluid Theory and its Extensions

    OpenAIRE

    Jackiw, R.; Nair, V. P.; Pi, S. -Y.; Polychronakos, A. P.

    2004-01-01

    We review the canonical theory for perfect fluids, in Eulerian and Lagrangian formulations. The theory is related to a description of extended structures in higher dimensions. Internal symmetry and supersymmetry degrees of freedom are incorporated. Additional miscellaneous subjects that are covered include physical topics concerning quantization, as well as mathematical issues of volume preserving diffeomorphisms and representations of Chern-Simons terms (= vortex or magnetic helicity).

  1. Perfect fluid cosmology with geodesic world lines

    International Nuclear Information System (INIS)

    Raychaudhuri, A.K.; Maity, S.R.

    1978-01-01

    It is shown that for a perfect fluid with an equation of state p = p (rho), if the world lines are geodesics, then they are hypersurface orthogonal and the scalars p, rho, sigma 2 , and theta 2 are all constants over these hypersurfaces, irrespective of any spatial-homogeneity assumption. However, an examination of some simple cases does not reveal any spatially nonhomogeneous solution with these properties

  2. Comment on 'Perfect imaging without negative refraction'

    Science.gov (United States)

    Blaikie, R. J.

    2010-05-01

    The prediction of 'perfect' imaging without negative refraction for Maxwell's fish-eye lens (Leonhardt U 2009 New J. Phys. 11 093040) is a consequence of imposing an active localized 'drain' at the image point rather than being a general property of the lens. This work then becomes analogous to other work using time-reversal symmetry and/or structured antennae to achieve super-resolution, which can be applied to many types of imaging system beyond the fish-eye lens.

  3. Comment on 'Perfect imaging without negative refraction'

    International Nuclear Information System (INIS)

    Blaikie, R J

    2010-01-01

    The prediction of 'perfect' imaging without negative refraction for Maxwell's fish-eye lens (Leonhardt U 2009 New J. Phys. 11 093040) is a consequence of imposing an active localized 'drain' at the image point rather than being a general property of the lens. This work then becomes analogous to other work using time-reversal symmetry and/or structured antennae to achieve super-resolution, which can be applied to many types of imaging system beyond the fish-eye lens.

  4. Inequivalent quantizations and fundamentally perfect spaces

    International Nuclear Information System (INIS)

    Imbo, T.D.; Sudarshan, E.C.G.

    1987-06-01

    We investigate the problem of inequivalent quantizations of a physical system with multiply connected configuration space X. For scalar quantum theory on X we show that state vectors must be single-valued if and only if the first homology group H 1 (X) is trivial, or equivalently the fundamental group π 1 (X) is perfect. The θ-structure of quantum gauge and gravitational theories is discussed in light of this result

  5. Another Class of Perfect Nonlinear Polynomial Functions

    Directory of Open Access Journals (Sweden)

    Menglong Su

    2013-01-01

    Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.

  6. Wetting of the diamond surface

    International Nuclear Information System (INIS)

    Hansen, J.O.

    1987-01-01

    The surface conditions which lead to a wide variation in the wettability of diamond surfaces have been investigated using macroscopic surfaces to allow for the crystal anisotropy. A wetting balance method of calculating adhesion tension and hence contact angle has been used for diamonds having major faces near the [111] and [110] lattice planes. Three classes of behaviour have been identified. Surface analyses by Rutherford Backscattering of helium ions, X-ray Photoelectron Spectroscopy and Low Energy Electron Diffraction (LEED) have been used to define the role of the oxygen coverage of the surface in the transition I → O → H. Ferric ion has a hydrophilizing effect on the diamond surface, thought to be the consequence of attachment to the hydroxyl groups at the surface by a ligand mechanism. Other transition metal ions did not show this effect. The phenomenon of hydration of the surface, i.e. progressively more hydrophilic behaviour on prolonged exposure to liquid water, has been quantified. Imbibition or water penetration at microcracks are thought unlikely, and a water cluster build-up at hydrophilic sites is thought to be the best explanation. Dynamic studies indicate little dependence of the advancing contact angle on velocity for velocities up to 10 -4 m/s, and slight dependence of the receding contact angle. Hence advancing angles by this technique are similar to equilibrated contact angles found by optical techniques, but the receding angles are lower than found by other non-dynamic measurements

  7. Wet flue gas desulphurization and new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kiil, S.; Dam-Johansen, K.; Michelsen, M.L.

    1998-04-01

    This thesis describes experimental and theoretical investigations of wet flue gas desulphurization (FGD). A review of the current knowledge of the various rate determining steps in wet FDG plants is presented. The mechanism underlying the rate of dissolution of finely grained limestone particles was examined in a laboratory batch apparatus using acid titration. Three Danish limestones of different origin were tested. A transient, mass transport controlled, mathematical model was developed to describe the dissolution process. Model predictions were found to be qualitatively in good agreement with experimental data. Empirical correlations for the dimensionless mass transfer coefficients in a pilot plant (falling-film column) were determined. The presence of inert particles in the liquid phase was found to decrease the rate of gas phase mass transport with up to 15%, though the effect could not be correlated. A detailed model for a wet FGD pilot plant, based on the falling film principle, was developed. All important rate determining steps, absorption of SO{sub 2}, oxidation of HSO{sub 3}{sup -}, dissolution of limestone, and crystallisation of gypsum were included. Model predictions were compared to experimental data such as gas phase concentration profiles of SO{sub 2}, slurry pH-profiles, solids contents of slurry, liquid phase concentrations, and residual limestone in the gypsum. The possibility of co-firing straw and coal was investigated in a full-scale power plant. No effects on the overall performance of the wet FGD plant were observed, though laboratory experiments with fine dust and fly ash from the full-scale experiments showed a decrease in limestone reactivity. (EG) EFP-95. 45 refs.; Also ph.d. thesis of Soeren Kiil

  8. Wetting-dewetting films: the role of structural forces.

    Science.gov (United States)

    Nikolov, Alex; Wasan, Darsh

    2014-04-01

    The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies. © 2013.

  9. A note on perfect scalar fields

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  10. Capillary Flow of Liquid Metals in Brazing

    Science.gov (United States)

    Dehsara, Mohammad

    Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the

  11. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  12. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-11-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  13. The Effect of Wetting on The Course of The Drum Granulation

    Directory of Open Access Journals (Sweden)

    Błaszczyk Michał

    2017-06-01

    Full Text Available This paper presents the results of experimental drum granulation of silica flour with the use of wetting liquids with different values of surface tension. Additionally, different liquid jet breakup and different residual moisture of the bed were applied in the tests. The process was conducted periodically in two stages: wetting and proper granulation, during which no liquid was supplied to the bed. The condition of the granulated material after the period of wetting (particle size distribution and moisture of separate fractions and a change in the particle size distribution during the further conduct of the process (granulation kinetics were determined.

  14. Wetting of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, E.; Bonn, D.; Meunier, J.; Shahidzadeh, N. [Ecole Normale Superieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231, Cedex 05 Paris (France); Broseta, D.; Ragil, K. [Institut Francais du Petrole, 1-4 avenue de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Dobbs, H.; Indekeu, J.O. [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    2002-04-01

    The wetting behavior of oil on water (or brine) has important consequences for the transport properties of oil in water-containing porous reservoirs, and consequently for oil recovery. The equilibrium wetting behavior of model oils composed of pure alkanes or alkane mixtures on brine is reviewed in this paper. Intermediate between the partial wetting state, in which oil lenses coexist on water with a thin film of adsorbed alkane molecules, and the complete wetting state, in which a macroscopically thick oil layer covers the water, these systems display a third, novel wetting state, in which oil lenses coexist with a mesoscopic (a few-nanometers-thick) oil film. The nature and location of the transitions between these wetting regimes depend on oil and brine compositions, temperature and pressure.

  15. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2006-01-01

    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter ome......:=eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for the pressure and for all its derivatives with respect to omega (the so-called generalized susceptibilities)....

  16. Black hole formation in perfect fluid collapse

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S

    2004-01-01

    We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship hypothesis, which is as yet a major unsolved problem in black hole physics

  17. Explaining evolution via constrained persistent perfect phylogeny

    Science.gov (United States)

    2014-01-01

    Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to

  18. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  19. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  20. Wetting morphologies and their transitions in grooved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, Ralf; Bommer, Stefan; Herrmann, Carsten; Michler, Dominik [Experimental Physics, Saarland University, D-66123 Saarbruecken (Germany); Brinkmann, Martin; Herminghaus, Stephan; Khare, Krishnacharya; Kostourou, Konstantina; Gurevich, Evgeny [Max Planck Institute for Dynamics and Self-Organization, D-37073 Goettingen (Germany); Law, Bruce M; McBride, Sean, E-mail: r.seemann@physik.uni-saarland.de [Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2011-05-11

    When exposed to a partially wetting liquid, many natural and artificial surfaces equipped with complex topographies display a rich variety of liquid interfacial morphologies. In the present article, we focus on a few simple paradigmatic surface topographies and elaborate on the statics and dynamics of the resulting wetting morphologies. It is demonstrated that the spectrum of wetting morphologies increases with increasing complexity of the groove structure. On elastically deformable substrates, additional structures in the liquid morphologies can be observed, which are caused by deformations of the groove geometry in the presence of capillary forces. The emergence of certain liquid morphologies in grooves can be actively controlled by changes in wettability and geometry. For electrically conducting solid substrates, the apparent contact angle can be varied by electrowetting. This allows, depending on groove geometry, a reversible or irreversible transport of liquid along surface grooves. In the case of irreversible liquid transport in triangular grooves, the dynamics of the emerging instability is sensitive to the apparent hydrodynamic slip at the substrate. On elastic substrates, the geometry can be varied in a straightforward manner by stretching or relaxing the sample. The imbibition velocity in deformable grooves is significantly reduced compared to solid grooves, which is a result of the microscopic deformation of the elastic groove material close to the three phase contact line.

  1. Dynamics of wetting explored with inkjet printing

    Directory of Open Access Journals (Sweden)

    Völkel Simeon

    2017-01-01

    Full Text Available An inkjet printer head, which is capable of depositing liquid droplets with a resolution of 22 picoliters and high repeatability, is employed to investigate the wetting dynamics of drops printed on a horizontal plane as well as on a granular monolayer. For a sessile drop on a horizontal plane, we characterize the contact angle hysteresis, drop volume and contact line dynamics from side view images. We show that the evaporation rate scales with the dimension of the contact line instead of the surface area of the drop. We demonstrate that the system evolves into a closed cycle upon repeating the depositing-evaporating process, owing to the high repeatability of the printing facility. Finally, we extend the investigation to a granular monolayer in order to explore the interplay between liquid deposition and granular particles.

  2. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1993-01-01

    Experimental results exploring gravity-driven wetting from instability in a pre-wetted, rough-walled analog fractures such as those at Yucca Mountain are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  3. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1992-01-01

    Experimental results exploring gravity-driven wetting front instability in a pre-wetted, rough-walled analog fracture are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  4. Microscopic aspects of wetting using classical density functional theory

    Science.gov (United States)

    Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.

    2018-07-01

    Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.

  5. Coupling between drainage and coarsening in wet foam

    Indian Academy of Sciences (India)

    Abstract. Drainage and coarsening are two coupled phenomena during the evolution of wet foam. We show the variation in the growth rate of bubble size, along the height in a column of Gillette shaving foam, by microscope imaging. Simultaneously, the drainage of liquid at the same heights has been investigated by ...

  6. Teach Battery Technology with Class-Built Wet Cells

    Science.gov (United States)

    Roman, Harry T.

    2011-01-01

    With some simple metal samples and common household liquids, teachers can build wet cell batteries and use them to teach students about batteries and how they work. In this article, the author offers information that is derived from some simple experiments he conducted in his basement workshop and can easily be applied in the classroom or lab. He…

  7. Wetting behavior in colloid-polymer mixtures at different substrates

    NARCIS (Netherlands)

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a

  8. Dynamics of wetting on smooth and rough surfaces.

    NARCIS (Netherlands)

    Cazabat, A.M.; Cohen Stuart, M.A.

    1987-01-01

    The rate of spreading of non-volatile liquids on smooth and on rough surfaces was investigated. The radius of the wetted spot was found to agree with recently proposed scaling laws (t 1/10 for capillarity driven andt 1/8 for gravity driven spreading) when the surface was smooth. However, the

  9. Apnea of prematurity--perfect storm.

    Science.gov (United States)

    Di Fiore, Juliann M; Martin, Richard J; Gauda, Estelle B

    2013-11-01

    With increased survival of preterm infants as young as 23 weeks gestation, maintaining adequate respiration and corresponding oxygenation represents a clinical challenge in this unique patient cohort. Respiratory instability characterized by apnea and periodic breathing occurs in premature infants because of immature development of the respiratory network. While short respiratory pauses and apnea may be of minimal consequence if oxygenation is maintained, they can be problematic if accompanied by chronic intermittent hypoxemia. Underdevelopment of the lung and the resultant lung injury that occurs in this population concurrent with respiratory instability creates the perfect storm leading to frequent episodes of profound and recurrent hypoxemia. Chronic intermittent hypoxemia contributes to the immediate and long term co-morbidities that occur in this population. In this review we discuss the pathophysiology leading to the perfect storm, diagnostic assessment of breathing instability in this unique population and therapeutic interventions that aim to stabilize breathing without contributing to tissue injury. Copyright © 2013. Published by Elsevier B.V.

  10. Wet Mars, Dry Mars

    Science.gov (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  11. Wetting on structured substrates

    International Nuclear Information System (INIS)

    Dietrich, S; Popescu, M N; Rauscher, M

    2005-01-01

    Chemically patterned surfaces are of significant interest in the context of microfluidic applications, and miniaturization of such devices aims at generating structures on the nano-scale. Whereas on the micron scale purely macroscopic descriptions of liquid flow are valid, on the nanometre scale long-ranged inter-molecular interactions, thermal fluctuations such as capillary waves, and finally the molecular structure of the liquid become important. We discuss the most important conceptual differences between flow on chemically patterned substrates on the micron scale and on the nanometre scale, and formulate four design issues for nanofluidics related to channel width, channel separation, and channel bending radius. As a specific example of nano-scale transport we present a microscopic model for the dynamics of spreading of monolayers on homogeneous substrates. Kinetic Monte Carlo simulations of this model on a homogeneous substrate reveal a complex spatio-temporal structure of the extracted monolayer, which includes the emergence of interfaces and of scaling properties of density profiles. These features are discussed and rationalized within the corresponding continuum limit derived from the microscopic dynamics. The corresponding spreading behaviour on a patterned substrate is briefly addressed

  12. Electromagnetic Detection of a Perfect Carpet Cloak

    Science.gov (United States)

    Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile

    2015-05-01

    It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics.

  13. A perfect launch viewed across Banana Creek

    Science.gov (United States)

    2000-01-01

    Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  14. The surveyors' quest for perfect alignment

    CERN Document Server

    2003-01-01

    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  15. Wetting on micro-structured surfaces: modelling and optimization

    DEFF Research Database (Denmark)

    Cavalli, Andrea

    -patterns, and suggests that there is a balance between optimal wetting properties and mechanical robustness of the microposts. We subsequently analyse liquid spreading on surfaces patterned with slanted microposts. Such a geometry induces unidirectional liquid spreading, as observed in several recent experiments. Our...... liquid spreading and spontaneous drop removal on superhydrophobic surfaces. We do this by applying different numerical techniques, suited for the specific topic. We first consider superhydrophobicity, a condition of extreme water repellency associated with very large static contact angles and low roll......The present thesis deals with the wetting of micro-structured surfaces by various fluids, and its goal is to elucidate different aspects of this complex interaction. In this work we address some of the most relevant topics in this field such as superhydrophobicity, oleophobicity, unidirectional...

  16. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  17. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Fatemeh Musavi

    2010-12-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  18. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Mohammadkazem Shaker

    2011-01-01

    Full Text Available   The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  19. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Shaker, M.K

    2011-01-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  20. WET SOLIDS FLOW ENHANCEMENT; SEMIANNUAL

    International Nuclear Information System (INIS)

    Hugo S Caram; Natalie Foster

    1998-01-01

    The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and may require accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained

  1. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees; Penetration intergranulaire fragilisante du cuivre par le bismuth liquide: identification de la cinetique et du mecanisme de type diffusionnel entre 300 et 600 deg

    Energy Technology Data Exchange (ETDEWEB)

    Laporte, V

    2005-02-15

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees <100>). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  2. Adaptive mechanical-wetting lens actuated by ferrofluids

    Science.gov (United States)

    Cheng, Hui-Chuan; Xu, Su; Liu, Yifan; Levi, Shoshana; Wu, Shin-Tson

    2011-04-01

    We report an adaptive mechanical-wetting lens actuated by ferrofluids. The ferrofluids works like a piston to pump liquids in and out from the lens chamber, which in turn reshapes the lens curvature and changes the focal length. Both positive and negative lenses are demonstrated experimentally. The ferrofluid-actuated mechanical-wetting lens exhibits some attractive features, such as high resolution, fast response time, low power consumption, simple structure and electronic control, weak gravity effect, and low cost. Its potential applications in medical imaging, surveillance, and commercial electronics are foreseeable.

  3. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  4. Accelerated Drying of Wet Boots

    National Research Council Canada - National Science Library

    Dyck, Walter

    2002-01-01

    .... One such material is sodium polyacrylate. Because recent field trials with Canadian Forces soldiers have reconfirmed that donning wet combat boots is very uncomfortable, a study was done to assess the efficacy of using sodium polyacrylate...

  5. Wet gas compression. Experimental investigation of the aerodynamics within a centrifugal compressor exposed to wet gas

    Energy Technology Data Exchange (ETDEWEB)

    Gruener, Trond Gammelsaeter

    2012-07-01

    The demand for more efficient oil and gas production requires improved technology to increase production rates and enhance profitable operation. The centrifugal compressor is the key elements in the compression system. Preliminary studies of wet gas compressor concepts have demonstrated the benefits of wet gas boosting. An open-loop test facility was designed for single-stage wet gas compressor testing. Experimental investigators have been performed to reveal the impact of liquid on the aerodynamics of centrifugal compressor. The investigation consisted of two test campaigns with different impeller/diffuser configurations. Atmospheric air and water were used as experimental fluids. The two configurations showed a different pressure ratio characteristics when liquid as present. The results from test campaign A demonstrated a pronounced pressure ratio decrease at high flow and a minor pressure ration increase pressure ratio with reducing gas mass fraction (GMF). The deviation in pressure ratio characteristic for the two test campaigns was attributed to the volute operating characteristic. Both impeller/diffuser configurations demonstrated a reduction in maximum volume flow with decreasing GMF. The impeller pressure ratio was related to the diffuser and/or the volute performance). Air and water are preferable experimental fluids for safety reasons and because a less extensive facility design is required. An evaluation of the air/water tests versus hydrocarbon tests was performed in order to reveal whether the results were representative. Air/water tests at atmospheric conditions reproduced the general performance trend of hydrocarbon wet gas compressor tests with an analogous impeller at high pressures. Aerodynamic instability limits the operating range because of feasible severe damage of the compressor and adverse influence on the performance. It is essential to establish the surge margin at different operating conditions. A delayed instability inception was

  6. Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection

    Directory of Open Access Journals (Sweden)

    A.V. Kolot

    2016-04-01

    Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.

  7. Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection

    Directory of Open Access Journals (Sweden)

    Kolot A.V.

    2016-02-01

    Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.

  8. Wet-Bulb-Globe Temperature Data Report

    Science.gov (United States)

    2015-03-01

    Hour Min Pressure Dry Nat Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT...Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F...Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F deg F deg

  9. The swimming of a perfect deforming helix

    Science.gov (United States)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  10. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1996-08-01

    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  11. Memory and Perfection in Ferroelastic Inclusion Compounds

    International Nuclear Information System (INIS)

    Hollingsworth, M.; Peterson, M.; Rush, J.; Brown, M.; Abel, M.; Black, A.; Dudley, M.; Raghothamachar, B.; Werner-Zwanziger, U.

    2005-01-01

    In a series of ferroelastic urea inclusion compounds (UICs), in which domain reorientation occurs upon application of an external anisotropic force, introduction of a relaxive impurity that disrupts a specific hydrogen-bonding network transforms a plastic (irreversible) domain-switching process into one that exhibits a striking memory effect and 'rubber-like behavior', a form of pseudoelasticity. As expected for a highly cooperative process, the ferroelastic response to the impurity concentration exhibits a critical threshold. Through synchrotron white-beam X-ray topography (SWBXT) of crystals under stress, videomicroscopy of spontaneous repair during crystal growth, acoustomechanical relaxation of daughter domains, kinetic measurements of spontaneous domain reversion, and solid-state 2 H NMR of labeled guests, this work shows how relaxive impurities lower the barrier to domain switching and how differences in perfection between mother and daughter domains provide the driving force for the memory effects. Although the interfacial effects implicated here are different from the volume effects that operate in certain shape memory materials, the twinning and defect phenomena responsible for the rubber-like behavior and memory effects should be generally applicable to domain switching in ferroelastic and ferroelectric crystals and to other solid-state processes

  12. Natural death and the work of perfection.

    Science.gov (United States)

    Young, Alexey

    1998-08-01

    The historic or traditional Christian view of pain (suffering) and death, especially as preserved by the Christians East (i.e., the Orthodox), is radically opposed to the modern secular obsession with avoidance of pain. Everything about this life has its goal or aim in a mystical reality, the Kingdom of Heaven, for which earthly life is a preparation. While neither illness nor health are seen as ends in themselves, both are viewed as proceeding from the will of God for our benefit and have no ultimate meaning or purpose outside of eternal life. Death may be a relief or an ending of suffering, but in itself it is not "good" but evil. Because they are the embodiment of lived theology, saints' lives can be a sure guide to understanding how to die as a traditional Christian. To illustrate this, I have chosen some examples from the lives of relatively recent saints. I myself am from the Russian Orthodox spiritual tradition, so all but one of my examples come from pre-Revolutionary Russia. The question is not so much whether or not a traditional Christian can countenance physician-assisted suicide, but rather, what is the meaning or purpose of pain and suffering in general. Is it part of the "work of perfection" required of those who wish to enter the Kingdom of Heaven and therefore not to be completely denied?

  13. Two-Dimensional Wetting Transition Modeling with the Potts Model

    Science.gov (United States)

    Lopes, Daisiane M.; Mombach, José C. M.

    2017-12-01

    A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.

  14. Wetting of metals and glasses on Mo

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  15. Development of a perfect prognosis probabilistic model for ...

    Indian Academy of Sciences (India)

    A prediction model based on the perfect prognosis method was developed to predict the probability of lightning and probable time of its occurrence over the south-east Indian region. In the perfect prognosis method, statistical relationships are established using past observed data. For real time applications, the predictors ...

  16. A cross-linguistic discourse analysis of the perfect

    NARCIS (Netherlands)

    Swart, Henriëtte de

    2007-01-01

    Since Reichenbach (1947), the Present Perfect has been discussed in relation to the Simple Past. The Reichenbachian characterization E-R,S has led to the view that the English Present Perfect, with its restrictions on modification by time adverbials and its resistance to narrative structure is the

  17. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  18. Electrostatic cloaking of surface structure for dynamic wetting

    Science.gov (United States)

    Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav

    2017-11-01

    Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.

  19. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  20. Capillary contact angle in a completely wet groove.

    Science.gov (United States)

    Parry, A O; Malijevský, A; Rascón, C

    2014-10-03

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  1. Numerical analysis of wet separation of particles by density differences

    Science.gov (United States)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  2. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Carrington, O.F.; Pyrih, R.Z.; Rickard, R.S.

    1981-01-01

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit

  3. Process for recovering uranium from wet process phosphoric acid (III)

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, R.S.; Carrington, O.F.

    1983-01-01

    Uranium is conventionally recovered from wet-process phosphoric acid by two liquid ion exchange steps using a mixture of mono- and disubstituted phenyl esters of orthophosphoric acid (OPPA). Efficiency of the process drops as the mono-OPPA is lost preferentially to the aqueous phase. This invention provides a process for the removal of the uranium process organics (OPPA and organic solvents) from the raffinate of the first liquid ion exchange step and their return to the circuit. The process organics are removed by a combination flotation and absorption step, which results in the recovery of the organics on beads of a hydrophobic styrene polymer

  4. Wet Snow Mapping in Southern Ontario with Sentinel-1A Observations

    Science.gov (United States)

    Chen, H.; Kelly, R. E. J.

    2017-12-01

    Wet snow is defined as snow with liquid water present in an ice-water mix. It is can be an indicator for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in snowmelt duration having implications for operational hydrological and ecological applications. Spaceborne microwave remote sensing has been used to observe seasonal snow under all-weather conditions. Active microwave observations of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow surfaces and synthetic aperture radar (SAR) is now openly available to identify and map the wet snow areas globally at relatively fine spatial resolutions ( 100m). In this study, a semi-automated workflow is developed from the change detection method of Nagler et al. (2016) using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. Weather station data and visible-infrared satellite observations are used to refine the wet snow area estimates. Wet snow information from National Operational Hydrologic Remote Sensing Center (NOHRSC) is used to compare with the S1A estimates. A time series of wet snow maps shows the variations in backscatter from wet snow on a pixel basis. Different land cover types in Southern Ontario are assessed with respect to their impacts on wet snow estimates. While forests and complex land surfaces can impact the ability to map wet snow, the approach taken is robust and illustrates the strong sensitivity of the approach to wet snow backscattering characteristics. The results indicate the feasibility of the change detection method on non-mountainous large areas and address the usefulness of Sentinel-1A data for wet snow mapping.

  5. Does Surface Roughness Amplify Wetting?

    Czech Academy of Sciences Publication Activity Database

    Malijevský, Alexandr

    2014-01-01

    Roč. 141, č. 18 (2014), s. 184703 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S Institutional support: RVO:67985858 Keywords : density functional theory * wetting * roughness Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  6. Scheme for achieving coherent perfect absorption by anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-02-22

    We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.

  7. Two-perfect fluid interpretation of an energy tensor

    International Nuclear Information System (INIS)

    Ferrando, J.J.; Morales, J.A.; Portilla, M.

    1990-01-01

    There are many topics in General Relativity where matter is represented by a mixture of two fluids. In fact, some astrophysical and cosmological situations need to be described by an energy tensor made up of the sum of two or more perfect fluids rather than that with only one. The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained

  8. Liquid Marbles

    KAUST Repository

    Khalil, Kareem

    2012-12-01

    Granulation, the process of formation of granules from a combination of base powders and binder liquids, has been a subject of research for almost 50 years, studied extensively for its vast applications, primarily to the pharmaceutical industry sector. The principal aim of granulation is to form granules comprised of the active pharmaceutical ingredients (API’s), which have more desirable handling and flowability properties than raw powders. It is also essential to ensure an even distribution of active ingredients within a tablet with the goal of achieving time‐controlled release of drugs. Due to the product‐specific nature of the industry, however, data is largely empirical [1]. For example, the raw powders used can vary in size by two orders of magnitude with narrow or broad size distributions. The physical properties of the binder liquids can also vary significantly depending on the powder properties and required granule size. Some significant progress has been made to better our understanding of the overall granulation process [1] and it is widely accepted that the initial nucleation / wetting stage, when the binder liquid first wets the powders, is key to the whole process. As such, many experimental studies have been conducted in attempt to elucidate the physics of this first stage [1], with two main mechanisms being observed – classified by Ivenson [1] as the “Traditional description” and the “Modern Approach”. See Figure 1 for a graphical definition of these two mechanisms. Recent studies have focused on the latter approach [1] and a new, exciting development in this field is the Liquid Marble. This interesting formation occurs when a liquid droplet interacts with a hydrophobic (or superhydrophobic) powder. The droplet can become encased in the powder, which essentially provides a protective “shell” or “jacket” for the liquid inside [2]. The liquid inside is then isolated from contact with other solids or liquids and has some

  9. The Ideology of the Perfect Dictionary: How Efficient Can a ...

    African Journals Online (AJOL)

    friendly material which will improve both their fluency in and understanding of the target language, and embed acquired lexis in their long-term memory. Lexicographers, in their search for perfection and in compliance with users' wishes, are ...

  10. Perfect 3-colorings of the cubic graphs of order 10

    Directory of Open Access Journals (Sweden)

    Mehdi Alaeiyan

    2017-10-01

    Full Text Available Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, A_2, ..., A_m such that, for all $ i,j \\in \\lbrace 1, ... , m \\rbrace $, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j. The matrix $A=(a_{ij}_{i,j\\in \\lbrace 1,... ,m\\rbrace }$, is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts of the cubic graphs of order 10. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 10.

  11. Perfect imaging with positive refraction in three dimensions

    International Nuclear Information System (INIS)

    Leonhardt, Ulf; Philbin, Thomas G.

    2010-01-01

    Maxwell's fish eye has been known to be a perfect lens within the validity range of ray optics since 1854. Solving Maxwell's equations, we show that the fish-eye lens in three dimensions has unlimited resolution for electromagnetic waves.

  12. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.; Vanteru, Mahendra Reddy; Ruan, S.; Doan, N. A K; Roberts, William L.; Swaminathan, N.

    2016-01-01

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used

  13. Scheme for achieving coherent perfect absorption by anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2017-01-01

    in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a

  14. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    Science.gov (United States)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  15. Perfect 2-colorings of the generalized Petersen graph

    Indian Academy of Sciences (India)

    There are no perfect 2-colorings of GP(n, 2) with the matrix A3. Proof. Suppose, contrary to our claim, there is a perfect 2-coloring of GP(n, 2) with the matrix A3. By Lemma 3.4, there are 2 vertices ai and bi, for some 0 ≤ i ≤ n−1, such that they are the same color. By symmetry, without loss of generality, we can assume T (a0) ...

  16. Discrete element simulation studies of angles of repose and shear flow of wet, flexible fibers.

    Science.gov (United States)

    Guo, Y; Wassgren, C; Ketterhagen, W; Hancock, B; Curtis, J

    2018-04-18

    A discrete element method (DEM) model is developed to simulate the dynamics of wet, flexible fibers. The angles of repose of dry and wet fibers are simulated, and the simulation results are in good agreement with experimental results, validating the wet, flexible fiber model. To study wet fiber flow behavior, the model is used to simulate shear flows of wet fibers in a periodic domain under Lees-Edwards boundary conditions. Significant agglomeration is observed in dilute shear flows of wet fibers. The size of the largest agglomerate in the flow is found to depend on a Bond number, which is proportional to liquid surface tension and inversely proportional to the square of the shear strain rate. This Bond number reflects the relative importance of the liquid-bridge force to the particle's inertial force, with a larger Bond number leading to a larger agglomerate. As the fiber aspect ratio (AR) increases, the size of the largest agglomerate increases, while the coordination number in the largest agglomerate initially decreases and then increases when the AR is greater than four. A larger agglomerate with a larger coordination number is more likely to form for more flexible fibers with a smaller bond elastic modulus due to better connectivity between the more flexible fibers. Liquid viscous force resists pulling of liquid bridges and separation of contacting fibers, and therefore it facilitates larger agglomerate formation. The effect of liquid viscous force is more significant at larger shear strain rates. The solid-phase shear stress is increased due to the presence of liquid bridges in moderately dense flows. As the solid volume fraction increases, the effect of fiber-fiber friction coefficient increases sharply. When the solid volume fraction approaches the maximum packing density, the fiber-fiber friction coefficient can be a more dominant factor than the liquid bridge force in determining the solid-phase shear stress.

  17. Circuital model for the spherical geodesic waveguide perfect drain

    Science.gov (United States)

    González, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C.

    2012-08-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000.

  18. Circuital model for the spherical geodesic waveguide perfect drain

    International Nuclear Information System (INIS)

    González, Juan C; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C

    2012-01-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000. (paper)

  19. Investigation into the surface of implanted monocrystalline silicon with the aid of wetting angle

    International Nuclear Information System (INIS)

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1986-01-01

    The dependence of silicon wetting margical angle on its irradiation dose by ions of electrically active and neutral materials is studied. It has been found that the system of immiscible liquids - ether and water can be successfully used for studying the silicon ion implantation effect on its water wetting. Changing of implanted silicon wetting is bound up with the increase of the defects presence level of surface layers. The specimens annealing reestablishes silicon wetting up to parameters characteristic of non irradiated specimens. The most effective annealing region is within the 550-700 deg C range. The implanted silicon wetting by melts at increased temperatures can be employed for studying kinetics and defect annealing mechanism

  20. Phoenix's Wet Chemistry Laboratory Units

    Science.gov (United States)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Formative Assessment Probes: Wet Jeans

    Science.gov (United States)

    Keeley, Page

    2015-01-01

    Picture a wet towel or a puddle of water on a hot, sunny day. An hour later, the towel is dry and the puddle no longer exists. What happened to the water? Where did it go? These are questions that reveal myriad interesting student ideas about evaporation and the water cycle--ideas that provide teachers with a treasure trove of data they can use to…

  2. Wetting and interface phenomena in the B4C/(Cu-B-Si) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2005-01-01

    The addition of Si to a Cu-B liquid alloy improves wetting of the boron carbide substrate and allows maintaining a flat metal/ceramic interface. Improved wetting is associated with a shift of the boron content in the near surface layer of the substrate towards a higher B/C ratio. The experimental results are consistent with the thermodynamic analysis of the Cu-B-C-Si system

  3. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  4. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  5. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  6. Adult Bed-Wetting: A Concern?

    Science.gov (United States)

    Adult bed-wetting: A concern? My 24-year-old husband has started to wet the bed at ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  7. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  8. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g) and...

  9. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  10. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Gré gory F.; Bonn, Daniel

    2018-01-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  11. Wetting of water on graphene nanopowders of different thicknesses

    Science.gov (United States)

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Grégory F.; Bonn, Daniel

    2018-04-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. "Liquid marble" tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated "wetting transparency" of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  12. Wet gas flow modeling for a vertically mounted Venturi meter

    International Nuclear Information System (INIS)

    Xu, Lijun; Zhou, Wanlu; Li, Xiaomin

    2012-01-01

    Venturi meters are playing an increasingly important role in wet gas metering in natural gas and oil industries. Due to the effect of liquid in a wet gas, the differential pressure over the converging section of a Venturi meter is higher than that when a pure gas flows through with the same flow rate. This phenomenon is referred to as over-reading. Thus, a correction for the over-reading is required. Most of the existing wet gas models are more suitable for higher pressure (>2 MPa) than lower pressure ( 0.5) than lower quality (<0.5) in recent years. However, conditions of lower pressure and lower quality also widely exist in the gas and oil industries. By comparing the performances of eight existing wet gas models in low-pressure range of 0.26–0.86 MPa and low-quality range of 0.07–0.36 with a vertically mounted Venturi meter of diameter ratio 0.45, de Leeuw's model was proven to perform best. Derived from de Leeuw's model, a modified model with better performance for the low-pressure and low-quality ranges was obtained. Experimental data showed that the root mean square of the relative errors of the over-reading was 2.30%. (paper)

  13. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra

    2018-04-12

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  14. Process for winning uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    A process is described for winning uranium from wet process phosphoric acid by means of liquid-liquid extraction with organic phosphoric acid esters. The process is optimised by keeping the sulphate percentage in the phosphoric acid below 2% by weight, and preferably below 0.6% by weight, as compared to P 2 O 5 in the phosphoric acid. This is achieved by adding an excess of Ba and/or Ca carbonate or sulfide solution and filtering off the formed calcium and/or barium sulphate precipitates. Solid KClO 3 is then added to the filtrate to oxidise U 4+ to U 6+ . The normal extraction procedure using organic phosphoric esters as extraction liquid, can then be applied. (Th.P.)

  15. Cohesion-Induced Stabilization in Stick-Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2018-03-01

    We use three-dimensional discrete element calculations to study stick-slip dynamics in a weakly wet granular layer designed to simulate fault gouge. The granular gouge is constituted by 8,000 spherical particles with a polydisperse size distribution. At very low liquid content, liquids impose cohesive and viscous forces on particles. Our simulations show that by increasing the liquid content, friction increases and granular layer shows higher recurrence time between slip events. We also observe that slip events exhibit larger friction drop and layer compaction in wet system compared to dry. We demonstrate that a small volume of liquid induces cohesive forces between wet particles that are responsible for an increase in coordination number leading to a more stable arrangement of particles. This stabilization is evidenced with 2 orders of magnitude lower particle kinetic energy in wet system during stick phase. Similar to previous experimental studies, we observe enhanced frictional strength for wet granular layers. In experiments, the physicochemical processes are believed to be the main reason for such behavior; we show, however, that at low confining stresses, the hydromechanical effects of induced cohesion are sufficient for observed behavior. Our simulations illuminate the role of particle interactions and demonstrate the conditions under which induced cohesion plays a significant role in fault zone processes, including slip initiation, weakening, and failure.

  16. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  17. Forbidden Structures for Planar Perfect Consecutively Colourable Graphs

    Directory of Open Access Journals (Sweden)

    Borowiecka-Olszewska Marta

    2017-05-01

    Full Text Available A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced subgraphs are consecutively colourable, too. We call elements of this class perfect consecutively colourable to emphasise the conceptual similarity to perfect graphs. Obviously, the class of perfect consecutively colourable graphs is induced hereditary, so it can be characterized by the family of induced forbidden graphs. In this work we give a necessary and sufficient conditions that must be satisfied by the generalized Sevastjanov rosette to be an induced forbid- den graph for the class of perfect consecutively colourable graphs. Along the way, we show the exact values of the deficiency of all generalized Sevastjanov rosettes, which improves the earlier known estimating result. It should be mentioned that the deficiency of a graph measures its closeness to the class of consecutively colourable graphs. We motivate the investigation of graphs considered here by showing their connection to the class of planar perfect consecutively colourable graphs.

  18. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  19. A big picture prospective for wet waste processing management

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1996-01-01

    This paper provides an overview of general observations made relative to the technical and economical considerations being evaluated by many commercial nuclear power plants involving their decision making process for implementation of several new wet waste management technologies. The waste management processes reviewed include the use of, Reverse Osmosis, Non-Precoat Filters, Resin Stripping ampersand Recycling, Evaporation ampersand Calcination (RVR trademark, ROVER trademark ampersand Thermax trademark), Compression Dewatering (PressPak trademark), Incineration (Resin Express trademark), Survey ampersand Free Release (Green Is Clean) and Quantum Catalytic Extraction Processing (QCEP trademark). These waste management processes are reviewed relative to their general advantages and disadvantages associated with the processing of various wet waste streams including: reactor make-up water, floor drain sludges and other liquid waste streams such as boric acid concentrates and steam generator cleaning solutions. A summary of the conclusions generally being derived by most utilities associated with the use of these waste management processes is also provided

  20. Immobilization of wet solid wastes at nuclear power plants

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1977-01-01

    Wet solid wastes are classified into four basic types: spent resins, filter sludges, evaporator concentrates, and miscellaneous liquids. Although the immobilization of wet solid wastes is primarily concerned with the incorporation of the waste with a solidification agent, there are a number of other discrete operations or subsystems involved in the treatment of these wastes that may affect the immobilized waste product. The immobilization process may be broken down into five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging, and waste package handling. The properties of the waste forms that are ultimately shipped from the reactor site are primarily influenced by the methods utilized during the waste collection, waste pretreatment and mixing/packaging operations. The mixing/packaging (solidification) operation is perhaps the most important stage of the immobilization process. The basic solidification agent types are: absorbants, hydraulic cement, urea-formaldehyde, bitumen, and other polymer systems

  1. Liquidity preference as rational behaviour under uncertainty

    OpenAIRE

    Mierzejewski, Fernando

    2006-01-01

    An important concern of macroeconomic analysis is how interest rates affect the cash balance demanded at a certain level of nominal income. In fact, the interest-rate- elasticity of the liquidity demand determines the effectiveness of monetary policy, which is useless under absolute liquidity preference, i.e. when the money demand is perfectly elastic. An actuarial approach is developed in this paper for dealing with random income. Assuming investors face liquidity constraints, a level of sur...

  2. A Wet Chemistry Laboratory Cell

    Science.gov (United States)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. WET SOLIDS FLOW ENHANCEMENT; SEMIANNUAL

    International Nuclear Information System (INIS)

    Hugo S. Caram; Natalie Foster

    1997-01-01

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids

  4. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  5. Perfect transfer of arbitrary states in quantum spin networks

    International Nuclear Information System (INIS)

    Christandl, Matthias; Kay, Alastair; Datta, Nilanjana; Dorlas, Tony C.; Ekert, Artur; Landahl, Andrew J.

    2005-01-01

    We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log 3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)

  6. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    Science.gov (United States)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  7. Whole genome association mapping by incompatibilities and local perfect phylogenies

    DEFF Research Database (Denmark)

    Mailund, Thomas; Besenbacher, Søren; Schierup, Mikkel Heide

    2006-01-01

    around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should...... a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region...... provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny...

  8. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  9. Changes in Wetting Hysteresis During Bioremediation: Changes in fluid flow behavior monitored with low-frequency seismic attenuation

    Science.gov (United States)

    Wempe, W.; Spetzler, H.; Kittleson, C.; Pursley, J.

    2003-12-01

    We observed significant reduction in wetting hysteresis with time while a diesel-contaminated quartz crystal was dipped in and out of an oil-reducing bacteria solution. This wetting hysteresis is significantly greater than the wetting hysteresis when the diesel-contaminated quartz crystal is dipped in and out of (1) water, (2) diesel and (3) the bacterial food solution that does not contain bacteria. The reduction in wetting hysteresis of the bacteria solution on the quartz surface results from a reduction in the advancing contact angle formed at the air-liquid-quartz contact with time; the receding contact angle remains the same with time. Our results suggest that the bacteria solution moves across the quartz surface with less resistance after bioremediation has begun. These results imply that bioremediation may influence fluid flow behavior with time. For many fluid-solid systems there is a difference between the contact angle while a contact line advances and recedes across a solid surface; this difference is known as wetting hysteresis. Changes in wetting hysteresis can occur from changes in surface tension or the surface topography. Low contact angle values indicate that the liquid spreads or wets well, while high values indicate poor wetting or non-wetting. Contact angles are estimated in the lab by measuring the weight of the meniscus formed at the air-liquid-quartz interface and by knowing the fluid surface tension. In the lab, we have been able to use low-frequency seismic attenuation data to detect changes in the wetting characteristics of glass plates and of Berea sandstone. The accepted seismic attenuation mechanism is related to the loss of seismic energy due to the hysteresis of meniscus movement (wetting hysteresis) when a pore containing two fluids is stressed at very low frequencies (bioremediation progress using seismic attenuation data. We are measuring low-frequency seismic attenuation in the lab while flowing bacteria solution through Berea

  10. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  11. Perfect lensing with phase-conjugating surfaces: toward practical realization

    International Nuclear Information System (INIS)

    Maslovski, Stanislav; Tretyakov, Sergei

    2012-01-01

    It is theoretically known that a pair of phase-conjugating surfaces can function as a perfect lens, focusing propagating waves and enhancing evanescent waves. However, the known experimental approaches based on thin sheets of nonlinear materials cannot fully realize the required phase conjugation boundary condition. In this paper, we show that the ideal phase-conjugating surface is, in principle, physically realizable and investigate the necessary properties of nonlinear and nonreciprocal particles which can be used to build a perfect lens system. The physical principle of the lens operation is discussed in detail and directions of possible experimental realizations are outlined. (paper)

  12. Hydrogen can be used as a perfect fuel

    International Nuclear Information System (INIS)

    Aydin, E.

    2005-01-01

    At present, hydrogen is one of the new and clean energy production sources. Hydrogen is the perfect partner for electricity, and together they create an integrated energy system based on distributed power generation and use. Hydrogen and electricity are interchangeable using a fuel cell (to convert hydrogen to electricity) or an electrolyzer (for converting electricity to hydrogen). A regenerative fuel cell works either way, converting hydrogen to electricity and vice versa. Hydrogen and electricity are both energy carriers because, unlike naturally occurring hydrocarbon fuels, they must both be produced using a primary energy source. In this study, it will be discussed whether hydrogen is perfect fuel or not

  13. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghulinyan, M., E-mail: ghulinyan@fbk.eu [Centre for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo (Italy); Bernard, M.; Bartali, R. [Centre for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo (Italy); Deptartment of Physics, University of Trento, I-38123 Povo (Italy); Pucker, G. [Centre for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo (Italy)

    2015-12-30

    Highlights: • Photoresist adhesion induces the formation of complex etch profiles in dielectrics. • Hydrofluoric acid etching of silica glass and silicon nitride materials was studied. • The phenomenon has been modeled in analogy with sonic boom propagation. • The material etch rate and resist adhesion/erosion define the final profile. - Abstract: In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  14. Measurement and analysis of the re-wetting front velocity during quench cooling of hot horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Two phase flow & re-wetting front velocity were studied for quench of hot tubes. • The velocity decreased as temperature difference between tube and coolant decreased. • Increasing surface curvature was found to decrease the re-wetting front velocity. • Increasing tube thermal conductivity decreased the velocity. • Correlations were developed to predict the front velocity. - Abstract: When a liquid is put into contact with a hot dry surface, there exists a maximum temperature called the re-wetting temperature below which the liquid is in actual contact with the surface. Re-wetting occurs after destabilization of a vapor film that exists between the hot surface and the liquid. If re-wetting is established at a location on the hot surface, a wet patch appears at that location and starts to spread to cover and cool the entire surface. The outer edge of the wet patch is called the re-wetting front and can proceed only if the surface ahead of it cools down to the re-wetting temperature. Study of re-wetting heat transfer is very important in nuclear reactor safety for limiting the extent of core damage during the early stages of severe accidents after loss of coolant accidents LOCA and is essential for predicting the rate at which the coolant cools an overheated core. One of the important parameters in re-wetting cooling is the velocity at which the re-wetting front moves on the surface. In this study, experimental tests were carried out to investigate the re-wetting front velocity on hot horizontal cylindrical tubes being cooled by a vertical rectangular water multi-jet system. Effects of initial surface temperature in the range 400–740 °C, water subcooling in the range 15–80 °C and jet velocity in the range 0.17–1.43 m/s on the re-wetting front velocity were investigated. The two-phase flow behavior was observed by using a high-speed camera. The re-wetting front velocity was found to increase by increasing water subcooling, decreasing

  15. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    Science.gov (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  16. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan

    2014-01-01

    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review of the ...... of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius.......Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...

  17. Uranium recovery from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    McCullough, J.F.; Phillips, J.F. Jr.; Tate, L.R.

    1979-01-01

    A method of recovering uranium from wet-process phosphoric acid is claimed where the acid is treated with a mixture of an ammonium salt or ammonia, a reducing agent, and then a miscible solvent. Solids are separated from the phosphoric acid liquid phase. The solid consists of a mixture of metal phosphates and uranium. It is washed free of adhering phosphoric acid with fresh miscible solvent. The solid is dried and dissolved in acid whereupon uranium is recovered from the solution. Miscible solvent and water are distilled away from the phosphoric acid. The distillate is rectified and water discarded. All miscible solvent is recovered for recycle. 5 claims

  18. Scaling of wet granular flows in a rotating drum

    Directory of Open Access Journals (Sweden)

    Jarray Ahmed

    2017-01-01

    Full Text Available In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.

  19. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  20. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    Science.gov (United States)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  1. Gauge freedom in perfect fluid spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1983-01-01

    The class of reference systems compatible with the symmetry of a spatially homogeneous perfect fluid spacetime is discussed together with the associated class of symmetry adapted comoving ADM frames (or computational frames). The fluid equations of motion are related to the four functions on the space of fluid flow lines discovered by Taub and which characterize an isentropic flow. (Auth.)

  2. Perfect Worlds : Utopian Fiction in China and the West

    NARCIS (Netherlands)

    Fokkema, Douwe

    2011-01-01

    Perfect Worlds biedt een uitgebreide historische analyse van utopische verhalen in de Chinese en Euro-Amerikaanse traditie. Aan bod komen onder meer de kritiek van Thomas More op Plato, de Europese oriëntalistische speurtocht naar utopieën in China en Chinese schrijvers die hun confucianistische

  3. Perfect Worlds : Utopian Fiction in China and the West

    NARCIS (Netherlands)

    Fokkema, Douwe

    2011-01-01

    Perfect Worlds biedt een uitgebreide historische analyse van utopische verhalen in de Chinese en Euro-Amerikaanse traditie. Verschillende hoofdstukken gaan onder meer in op de kritiek van Thomas More op Plato, de Europese oriëntalistische speurtocht naar utopieën in China, Dostoevsky’s reactie op

  4. Hyper-Achievement, Perfection, and College Student Resilience

    Science.gov (United States)

    Eells, Gregory T.

    2017-01-01

    Over the past decade, there has been considerable attention given to college students' experience of pressure to pursue perfection through hyper-achievement and the psychological and emotional toll this process takes on them. The popular press has highlighted this phenomenon and raised specific questions about some of the related consequences like…

  5. Cognitive Learning Styles: Can You Engineer a "Perfect" Match?

    Science.gov (United States)

    Khuzzan, Sharifah Mazlina Syed; Goulding, Jack Steven

    2016-01-01

    Education and training is widely acknowledged as being one of the key factors for leveraging organisational success. However, it is equally acknowledged that skills development and the acquisition of learning through managed cognitive approaches has yet to provide a "perfect" match. Whilst it is argued that an ideal learning scenario…

  6. The Perfect Storm--Genetic Engineering, Science, and Ethics

    Science.gov (United States)

    Rollin, Bernard E.

    2014-01-01

    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific…

  7. The Perfect Storm—Genetic Engineering, Science, and Ethics

    Science.gov (United States)

    Rollin, Bernard E.

    2014-02-01

    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific Ideology; vested interests dominating ethical discussion. How this can be remedied is discussed.

  8. Overemphasis on Perfectly Competitive Markets in Microeconomics Principles Textbooks

    Science.gov (United States)

    Hill, Roderick; Myatt, Anthony

    2007-01-01

    Microeconomic principles courses focus on perfectly competitive markets far more than other market structures. The authors examine five possible reasons for this but find none of them sufficiently compelling. They conclude that textbook authors should place more emphasis on how economists select appropriate models and test models' predictions…

  9. Helicity and other conservation laws in perfect fluid motion

    Science.gov (United States)

    Serre, Denis

    2018-03-01

    In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.

  10. A short note on nearly perfect maps of locales | Razafindrakoto ...

    African Journals Online (AJOL)

    We characterise compact locales in terms of nearly perfect maps. We show in particular that these maps are the natural pointfree version of Bourbaki's proper maps - when defined via any ultrafillter - and that they extend Herrlich's notion of nearly closed sublocales [10]. Mathematics Subject Classication (2010): 06A15, ...

  11. Indefinite and Continuative Interpretations of the English Present Perfect

    Directory of Open Access Journals (Sweden)

    Katarina Dea Žetko

    2005-06-01

    Full Text Available The objective of our paper is to demonstrate that the English present perfect is not by inherent meaning either indefinite or continuative. Notions like indefinite and continuative are contextdependent interpretations of whole constructions and their broader context. However, continuative interpretation can also be triggered by certain adverbials, negative constructions and verbs in the progressive form. But, even these factors do not always guarantee continuative interpretations. Construction, continuative meaning can be cancelled by the context in a broader sense, this fact being a proof that this meaning is merely an implicature. We will demonstrate how different factors interact and trigger either indefinite or continuative interpretations which are not inherent in the present perfect itself. Our paper will attempt to provide sufficient evidence that there is no indefinite/continuative distinction in the English present perfect, the inherent meaning or function of the present perfect is merely to locate the situation somewhere within a period that starts before the time of utterance and leads up to it.

  12. Robust Secure Authentication and Data Storage with Perfect Secrecy

    Directory of Open Access Journals (Sweden)

    Sebastian Baur

    2018-04-01

    Full Text Available We consider an authentication process that makes use of biometric data or the output of a physical unclonable function (PUF, respectively, from an information theoretical point of view. We analyse different definitions of achievability for the authentication model. For the secrecy of the key generated for authentication, these definitions differ in their requirements. In the first work on PUF based authentication, weak secrecy has been used and the corresponding capacity regions have been characterized. The disadvantages of weak secrecy are well known. The ultimate performance criteria for the key are perfect secrecy together with uniform distribution of the key. We derive the corresponding capacity region. We show that, for perfect secrecy and uniform distribution of the key, we can achieve the same rates as for weak secrecy together with a weaker requirement on the distribution of the key. In the classical works on PUF based authentication, it is assumed that the source statistics are known perfectly. This requirement is rarely met in applications. That is why the model is generalized to a compound model, taking into account source uncertainty. We also derive the capacity region for the compound model requiring perfect secrecy. Additionally, we consider results for secure storage using a biometric or PUF source that follow directly from the results for authentication. We also generalize known results for this problem by weakening the assumption concerning the distribution of the data that shall be stored. This allows us to combine source compression and secure storage.

  13. The periphrastic perfect of Old Persian revisited (slides) [Dataset

    NARCIS (Netherlands)

    Bavant, M.J.J.

    2011-01-01

    The voice of the periphrastic perfect of Old Persian has long been a controversial issue. This document is a slide set to present the matter. It illustrates the contents of an article on the same theme: "Retour sur le parfait périphrastique du vieux perse".

  14. Unity and Duality in Barack Obama's "A More Perfect Union"

    Science.gov (United States)

    Terrill, Robert E.

    2009-01-01

    Faced with a racialized political crisis that threatened to derail his campaign to become the first African American president of the United States, Barack Obama delivered a speech on race titled "A More Perfect Union." He begins by portraying himself as an embodiment of double consciousness, but then invites his audience to share his…

  15. A linear construction of perfect secret sharing schemes

    NARCIS (Netherlands)

    Dijk, van M.; Santis, De A.

    1995-01-01

    In this paper, we generalize the vector space construction due to Brickell [5]. This generalization, introduced by Bertilsson [1], leads to perfect secret sharing schemes with rational information rates in which the secret can be computed efficiently by each qualified group. A one to one

  16. Tie-breaking in games of perfect information

    DEFF Research Database (Denmark)

    Tranæs, Torben

    1998-01-01

    The paper suggests that ties in an extensive form game have strategic implications if they represent credible threats or promises. We consider a subset of subgame-perfect Nash equilibria obtained by breaking ties according to their strategic implications, and show that the subset is nonempty for ...

  17. Perfect 2-colorings of the generalized Petersen graph

    Indian Academy of Sciences (India)

    It is obvious that GP(n, k) is a 3-regular connected graph. DEFINITION 2.2 ... vertex of color i, the number of its neighbors of color j is equal to aij . ... By the given conditions, we can see that a parameter matrix of a perfect 2-coloring of. GP(n, k) ...

  18. An improved perfectly matched layer for the eigenmode expansion technique

    DEFF Research Database (Denmark)

    Gregersen, Niels; Mørk, Jesper

    2008-01-01

    be suppressed by introducing a perfectly matched layer (PML) using e.g. complex coordinate stretching of the cylinder radius. However, the traditional PML suffers from an artificial field divergence limiting its usefulness. We show that the choice of a constant cylinder radius leads to mode profiles...

  19. An improved perfectly matched layer in the eigenmode expansion technique

    DEFF Research Database (Denmark)

    Gregersen, Niels; Mørk, Jesper

    2008-01-01

    When employing the eigenmode expansion technique (EET), parasitic reflections at the boundary of the computational domain can be suppressed by introducing a perfectly matched layer (PML). However, the traditional PML, suffers from an artificial field divergence limiting its usefulness. We propose...

  20. Perfect Power Prototype for Illinois Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. Of Technology, Chicago, IL (United States)

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  1. Generalized magneto-thermoviscoelasticity in a perfectly conducting ...

    Indian Academy of Sciences (India)

    on the theory of generalized thermoelastic diffusion with one relaxation time. ... cavity is taken to be traction free and subjected to both heating and external constant ... problems on wave propagation in a linear viscoelas- ... Let us consider a perfect electric conductor medium ... The energy equation in the context of general-.

  2. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  4. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Ioannis [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hall, Christopher [Centre for Materials Science and Engineering and School of Engineering and Electronics, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JL (United Kingdom); Wilson, Moira A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hoff, William D [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Carter, Margaret A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom)

    2003-12-21

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 {mu}m. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.

  5. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    International Nuclear Information System (INIS)

    Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A; Hoff, William D; Carter, Margaret A

    2003-01-01

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 μm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials

  6. Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation

    Directory of Open Access Journals (Sweden)

    Krawczyk Janusz

    2017-12-01

    Full Text Available The high efficiency of industrial wet scrubbers is the result of a simultaneous formation of dust particle collectors. Collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of a circulating unit. The efficiency of dust collection process also depends on the ability of dust particles to be absorbed by collectors. The study provides an experimental analysis of the effect of the increasing concentration of a dust collection liquid in the conditions of full liquid recirculation on the efficiency of dust collection process in the examined types of collectors.

  7. Op zoek naar de perfecte match in vrijwilligersland

    Directory of Open Access Journals (Sweden)

    Els van Gilst

    2015-06-01

    -to-face contact with a prospective volunteer. Specific attention to motives in interview protocols is important. The use of tests or even the development of alternative tests should also be (reconsidered. In the case of online brokerage, it is much harder to establish an accurate picture of motives. Online testing could offer a solution. However, interpretation possibilities are limited because test results cannot be supplemented with other information. This favours (for the time being face-to-face contact during online Matching.In addition, the phase model of volunteer brokerage provides volunteer centres with a framework to describe their brokerage activities. This can be useful when training (new employees and providing transparency for customers and funders.Op zoek naar de perfecte match in vrijwilligerslandDe vraag naar vrijwilligers neemt de laatste jaren sterk toe in Nederland. Dit heeft te maken met een strengere wet- en regelgeving, veranderende inzet van vrijwilligers en hervormingen in de zorg (Bekkers & Boezeman, 2009; Devilee, 2005; MOVISIE, 2014; Rutte & Samsom, 2012. Steunpunten vrijwilligerswerk kunnen als bemiddelaars bijdragen aan de regulering van de vraag naar vrijwilligers. De mate van succes van vrijwilligersbemiddeling is echter nog relatief beperkt. Uit literatuuronderzoek (Van Gilst et al., 2011 is bekend welke factoren bijdragen aan het succes van vrijwilligersbemiddeling. Dit artikel beschrijft de bemiddelingspraktijk van steunpunten vrijwilligerswerk en geeft aan wanneer en hoe de gevonden succesfactoren kunnen worden ingezet in deze bemiddelingspraktijk om het resultaat te verbeteren. De praktijkgegevens zijn afkomstig van een veldonderzoek onder steunpunten, vrijwilligers en organisaties die met vrijwilligers werken.

  8. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  9. Examining Methods to Reduce Wall-Wetting under HCCI conditions

    Energy Technology Data Exchange (ETDEWEB)

    Van Erp, D.D.T.M.

    2009-01-15

    HCCI engines (Homogeneous Charge Compression Ignition) are very promising in the reduction of soot and NOx, but several problems must be tackled. Collision of the liquid fuel spray against the cylinder wall (Wall-wetting) is a major problem. Low gas temperatures and low gas densities (typical 600 - 800 K and 5 - 7.4 kg/m{sup 3}) at the moment of the fuel injection slow down the evaporation process of the liquid fuel in the spray and causes wall-wetting. This report investigates different promising measures that can reduce the penetration of the liquid fuel core, in order to prevent wall-wetting. From literature it turns out that the measures, listed below, are the most promising for liquid core length (LL) reduction without changing the design of the injector or the engine design: Increasing the fuel temperature, Changing the fuel pressure, Decrease of injector hole diameter, Multiple injections (first very short injections are examined). Each of the measures will be investigated by a liquid length prediction model (Siebers) and in an experimental setup, the EHPC (Eindhoven High Pressure Cell). A high pressure vessel with optical access makes it possible to visualize the liquid core and the vapor phase of the fuel spray by Mie and Schlieren, respectively. Changes to the setup are made to heat up the fuel up to 120C. Furthermore, changes to the fuel spray visualization techniques have been made. Where in previous experiments the Mie and Schlieren techniques were carried out separately from each other, in this work both visualization techniques are combined to save measurement time and to deal with the same experimental conditions. The combined recording of Mie and Schlieren works well for high gas temperatures and densities. But the combined technique fails for low gas temperatures and densities (below 700K and 7.4 kg/m3), due to the poor contrast between the liquid core and the vapor phase. In further examination of liquid length reducing measures, only the Mie

  10. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid......Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  11. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increas...

  12. A new method suitable for calculating accurately wetting temperature over a wide range of conditions: Based on the adaptation of continuation algorithm to classical DFT

    Science.gov (United States)

    Zhou, Shiqi

    2017-11-01

    A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.

  13. Patterning of polymers: precise channel stamping by optimizing wetting properties

    International Nuclear Information System (INIS)

    Seemann, Ralf; Kramer, Edward J; Lange, Frederick F

    2004-01-01

    Channel stamping is a soft lithography technique that can be used to fabricate small structures of polymeric materials. This technique is cheap and easy but a considerable drawback is the fact that reproduction of the patterns of the stamp is often imprecise due to the wetting properties of liquid and stamp. In this paper, we report on experiments that reveal the parameters governing the behaviour of liquids in grooves and on edges. Optimizing these parameters leads to better-quality channel-stamped structures and enables the design of sophisticated structured polymeric materials, allowing channels as small as about 100 nm to be fabricated. Moreover, we show that it is even possible to build up a freestanding three-dimensional structure by stamping line patterns on top of each other

  14. Two-Phase Phenomena In Wet Flue Gas Desulfurization Process

    International Nuclear Information System (INIS)

    Minzer, U.; Moses, E.J.; Toren, M.; Blumenfeld, Y.

    1998-01-01

    In order to reduce sulfur oxides discharge, Israel Electric Corporation (IEC) is building a wet Flue Gas Desulfurization (FGD) facility at Rutenberg B power station. The primary objective of IEC is to minimize the occurrence of stack liquid discharge and avoid the discharge of large droplets, in order to prevent acid rain around the stack. Liquid discharge from the stack is the integrated outcome of two-phase processes, which are discussed in this work. In order to estimate droplets discharge the present investigation employs analytical models, empirical tests, and numerical calculations of two-phase phenomena. The two-phase phenomena are coupled and therefore cannot be investigated separately. The present work concerns the application of Computational Fluid Dynamic (CFD) as an engineering complementary tool in the IEC investigation

  15. Designer-Wet Micromodels for Studying Potential Changes in Wettability during Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Armstrong, R. T.; Wildenschild, D.

    2010-12-01

    the growth media and/or at the oil/water/solid interfaces. Conversely, an oil-wet surface would not become water-wet. These experiments demonstrated that a microbe’s ability to change wettability, as measured by contact angle, is dependent upon the initial wettability state. To study the dependence of wettability changes on initial wettability designer-wet micromodels were prepared by freezing a liquid within a fraction of a micromodel pore space followed by treatment with octodecylthrichlorosilane (OTS). Locations within the micromodel where the liquid was frozen remained water-wet and water-wet to oil-wet surface ratios were produced in ratios: 1:5, 5:5, and 5:1. The method for creating designer-wet micromodels and preliminary results on wettability change using JF-2 within the micromodel system will be presented.

  16. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    Science.gov (United States)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  17. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  18. Molecular dynamics simulation of wetting behaviors of Li on W surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuegui [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Hu, Wangyu, E-mail: wyuhu@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-04-15

    A modified analytic embedded atom potential has been developed for the Li-W system. The potential has been fitted to physical quantities derived from density functional theory calculations. It is shown that the new potential is capable of reproducing the solubility of solid solution for Li-W systems. The wetting behaviors between solid tungsten and liquid Li are examined by using molecular dynamics simulations. The MD simulation results for the Li droplet wetting on the W surface illustrated that our MAEAM potential model has a good forecasting ability for the contact angle of liquid Li on W the cleaning surface above the wetting temperature. And the results of Li film dewetting from the W surfaces are consistent with relative experimental results. It is believed that the potential can be used to investigate the surfaces wettability of liquid Li on W substrate. We also simulated the lithium droplet on grooved surface. It is shown that the grooving W surfaces can obviously improve the wetting of liquid Li on W surfaces.

  19. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures

    Science.gov (United States)

    Panter, J. R.; Kusumaatmaja, H.

    2017-03-01

    The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for square posts and reentrant structures in three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantify how capillary condensation and vapour cavitation affect wetting state stabilities. At high contact angles, cavitation is enhanced about wide, closely-spaced square posts, leading to the existence of suspended states without an associated collapsed state. At low contact angles, narrow reentrant pillars suppress condensation and enable the suspension of even highly wetting liquids. Secondly, two distinct collapse mechanisms are observed for 3D reentrant geometries, base contact and pillar contact, which are operative at different pillar heights. As well as morphological differences in the interface of the penetrating liquid, each mechanism is affected differently by changes in the contact angle with the solid. Finally, for highly-wetting liquids, condensates are shown to critically modify the transition pathways in both the base contact and pillar contact modes.

  20. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  1. A wet-chemical approach to perovskite and fluorite-type nanoceramics: synthesis and processing

    NARCIS (Netherlands)

    Veldhuis, Sjoerd

    2015-01-01

    In thesis the low-temperature, wet-chemical approach to various functional inorganic oxide materials is described. The main focus of this research is to control the material’s synthesis from liquid precursor to metal oxide powder or thin film; while understanding its formation mechanism. In

  2. Variability of extreme wet events over Malawi

    Directory of Open Access Journals (Sweden)

    Libanda Brigadier

    2017-01-01

    Full Text Available Adverse effects of extreme wet events are well documented by several studies around the world. These effects are exacerbated in developing countries like Malawi that have insufficient risk reduction strategies and capacity to cope with extreme wet weather. Ardent monitoring of the variability of extreme wet events over Malawi is therefore imperative. The use of the Expert Team on Climate Change Detection and Indices (ETCCDI has been recommended by many studies as an effective way of quantifying extreme wet events. In this study, ETCCDI indices were used to examine the number of heavy, very heavy, and extremely heavy rainfall days; daily and five-day maximum rainfall; very wet and extremely wet days; annual wet days and simple daily intensity. The Standard Normal Homogeneity Test (SNHT was employed at 5% significance level before any statistical test was done. Trend analysis was done using the nonparametric Mann-Kendall statistical test. All stations were found to be homogeneous apart from Mimosa. Trend results show high temporal and spatial variability with the only significant results being: increase in daily maximum rainfall (Rx1day over Karonga and Bvumbwe, increase in five-day maximum rainfall (Rx5day over Bvumbwe. Mzimba and Chileka recorded a significant decrease in very wet days (R95p while a significant increase was observed over Thyolo. Chileka was the only station which observed a significant trend (decrease in extremely wet rainfall (R99p. Mzimba was the only station that reported a significant trend (decrease in annual wet-day rainfall total (PRCPTOT and Thyolo was the only station that reported a significant trend (increase in simple daily intensity (SDII. Furthermore, the findings of this study revealed that, during wet years, Malawi is characterised by an anomalous convergence of strong south-easterly and north-easterly winds. This convergence is the main rain bringing mechanism to Malawi.

  3. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  4. Water wizards : reshaping wet nature and society

    NARCIS (Netherlands)

    Vleuten, van der E.B.A.; Disco, C.

    2004-01-01

    The article investigates how humans ‘networked’ wet nature and how this affected the shaping of Dutch society. First, it takes a grand view of Dutch history and describes how wet network building intertwined with the shaping of the Dutch landscape, its economy and its polity. Second, it investigates

  5. 7 CFR 29.2316 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.2316 Section 29.2316 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2316 Wet (W...

  6. 7 CFR 29.2570 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.2570 Section 29.2570 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2570 Wet (W). Any sound tobacco containing...

  7. 7 CFR 29.3567 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.3567 Section 29.3567 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3567 Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in...

  8. 7 CFR 29.1083 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.1083 Section 29.1083 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1083 Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in...

  9. 7 CFR 29.3077 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.3077 Section 29.3077 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in an unsafe or...

  10. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  11. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    Science.gov (United States)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of

  12. Perfect quantum multiple-unicast network coding protocol

    Science.gov (United States)

    Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan

    2018-01-01

    In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

  13. On a ''conformal'' perfect fluid in the classical vacuum

    International Nuclear Information System (INIS)

    Culetu, H.

    1993-02-01

    A possible existence of a conformal perfect fluid in the classical vacuum is investigated in this letter. It is shown, contrary to Madsen's opinion, that the scalar field stress tensor acquires a perfect fluid form even with a nonminimal coupling (ξ = 1/6) in the Einstein Lagrangian, provided the geometry is the Lorentzian analogue of the Euclidean Hawking wormhole. In addition, our T μν equals (up to a constant factor) the vacuum expectation value of the Fulling stress tensor for a massless scalar field and Visser's one concerning transversible wormholes. On the other side of the light cone, there is a coordinate system (the dimensionally reduced Witten bubble) where the stress tensor becomes diagonal. (author). 13 refs

  14. Perfect commuting-operator strategies for linear system games

    Science.gov (United States)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  15. Novel beam bunching methods by perfect crystals and electromagnetic means

    International Nuclear Information System (INIS)

    Rauch, H.

    1985-01-01

    The use of perfect crystals for installing new neutron small-angle scattering cameras provides advantages for measurements in the small Q-range and for real-time experiments. A neutron resonator is proposed which is based on the combination of perfect crystal back-reflections in Zeman energy splitting. The neutron magnetic resonance system in combination with gated crystals can act as a pumping unit for neutrons and as a new pulse-shaping unit. It is shown how travelling magnetic waves can act as powerful neutron bunching units. The achievable velocity changes are around 5 m/s and, therefore, by a factor of 100 larger than in the case of neutron magnetic resonance systems. The advantage of expanding potentials for focusing neutrons from a source with a long pulse duration becomes obvious. Real gain factors higher than 10 are expected for properly designed systems. (author)

  16. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  17. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  18. A quantitative comparison of corrective and perfective maintenance

    Science.gov (United States)

    Henry, Joel; Cain, James

    1994-01-01

    This paper presents a quantitative comparison of corrective and perfective software maintenance activities. The comparison utilizes basic data collected throughout the maintenance process. The data collected are extensive and allow the impact of both types of maintenance to be quantitatively evaluated and compared. Basic statistical techniques test relationships between and among process and product data. The results show interesting similarities and important differences in both process and product characteristics.

  19. The perfect family: decision making in biparental care.

    Science.gov (United States)

    Akçay, Erol; Roughgarden, Joan

    2009-10-13

    Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions

  20. Quality strategies implemented within the tourism agency Perfect Tour

    Directory of Open Access Journals (Sweden)

    Madar, A.

    2012-01-01

    Full Text Available The paper presents the quality strategies adopted by the tourism agency Perfect Tour. The most important advantages of the Romanian agency in comparison with its competitors are: the focus on high quality services, cooperation with other international agencies, entering new fields like medical tourism and sole representative of Disneyland Paris. The strategies adopted explain the good financial results even in the period of crisis.

  1. A psychogenic dystonia perfect responsive to antidepressant treatment.

    OpenAIRE

    Volkan Solmaz; Durdane Aksoy; Betul Cevik; Semiha Gulsum Kurt; Elmas Pekdas; Sema inanir

    2014-01-01

    After ruling out of organic causes, movement disorders are named as psychogenic movement disorders, it can mimic perfectly Organic movement disorders, but with a good history, clinical observations and detailed examination is very helpful in the diagnosis of this disease. In here we will present a 15 years old male patient, he was complaining of urinary incontinence at night, emerging dystonic posture especially in crowded environments, eating, and during activities that require attention, fo...

  2. Perfect independent sets with respect to infinitely many relations

    Czech Academy of Sciences Publication Activity Database

    Doležal, Martin; Kubiś, Wieslaw

    2016-01-01

    Roč. 55, č. 7 (2016), s. 847-856 ISSN 0933-5846 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : perfect clique * free subgroup * open relation Subject RIV: BA - General Mathematics Impact factor: 0.394, year: 2016 http://link.springer.com/article/10.1007%2Fs00153-016-0498-3

  3. Comment on ``Perfect imaging with positive refraction in three dimensions''

    Science.gov (United States)

    Merlin, R.

    2010-11-01

    Leonhardt and Philbin [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.011804 81, 011804(R) (2010)] have recently constructed a mathematical proof that the Maxwell's fish-eye lens provides perfect imaging of electromagnetic waves without negative refraction. In this comment, we argue that the unlimited resolution is an artifact of having introduced an unphysical drain at the position of the geometrical image. The correct solution gives focusing consistent with the standard diffraction limit.

  4. Comment on ''Perfect imaging with positive refraction in three dimensions''

    International Nuclear Information System (INIS)

    Merlin, R.

    2010-01-01

    Leonhardt and Philbin [Phys. Rev. A 81, 011804(R) (2010)] have recently constructed a mathematical proof that the Maxwell's fish-eye lens provides perfect imaging of electromagnetic waves without negative refraction. In this comment, we argue that the unlimited resolution is an artifact of having introduced an unphysical drain at the position of the geometrical image. The correct solution gives focusing consistent with the standard diffraction limit.

  5. Hamiltonian formalism for perfect fluids in general relativity

    International Nuclear Information System (INIS)

    Demaret, J.; Moncrief, V.

    1980-01-01

    Schutz's Hamiltonian theory of a relativistic perfect fluid, based on the velocity-potential version of classical perfect fluid hydrodynamics as formulated by Seliger and Whitham, is used to derive, in the framework of the Arnowitt, Deser, and Misner (ADM) method, a general partially reduced Hamiltonian for relativistic systems filled with a perfect fluid. The time coordinate is chosen, as in Lund's treatment of collapsing balls of dust, as minus the only velocity potential different from zero in the case of an irrotational and isentropic fluid. A ''semi-Dirac'' method can be applied to quantize astrophysical and cosmological models in the framework of this partially reduced formalism. If one chooses Taub's adapted comoving coordinate system, it is possible to derive a fully reduced ADM Hamiltonian, which is equal to minus the total baryon number of the fluid, generalizing a result previously obtained by Moncrief in the more particular framework of Taub's variational principle, valid for self-gravitating barotropic relativistic perfect fluids. An unconstrained Hamiltonian density is then explicitly derived for a fluid obeying the equation of state p=(gamma-1)rho (1 < or = γ < or = 2), which can adequately describe the phases of very high density attained in a catastrophic collapse or during the early stages of the Universe. This Hamiltonian density, shown to be equivalent to Moncrief's in the particular case of an isentropic fluid, can be simplified for fluid-filled class-A diagonal Bianchi-type cosmological models and appears as a suitable starting point for the study of the canonical quantization of these models

  6. Overlapped illusion optics: a perfect lens brings a brighter feature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yadong; Gao Lei; Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Du Shengwang, E-mail: kenyon@ust.hk [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2011-02-15

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  7. Overlapped illusion optics: a perfect lens brings a brighter feature

    International Nuclear Information System (INIS)

    Xu Yadong; Gao Lei; Chen Huanyang; Du Shengwang

    2011-01-01

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  8. The perfect family: decision making in biparental care.

    Directory of Open Access Journals (Sweden)

    Erol Akçay

    Full Text Available Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory.We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family, and one where they do not communicate, and act independently (the almost perfect family.The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make

  9. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  10. A not-so-short description of the PERFECT platform

    International Nuclear Information System (INIS)

    Bugat, S.; Zeghadi, A.; Adjanor, G.

    2010-01-01

    This article describes the building of the so-called 'PERFECT platform', which main issue was to allow the development of the PERFECT end-products dedicated to the prediction of the degradation of material properties due to irradiation. First, the general principles used to build the platform are detailed. Such principles guided the choices of preferential development language, architecture, and operating system. The architecture of the platform is then described. It allows an easy development of the end-products, and a 'black-box' integration of the codes developed during the project. Each end-product can be seen as a sequence of modules, each module representing a physical phenomenon in time and space. The platform is very flexible, so that different methodologies can be tested and compared inside an end-product. The second part is devoted to the description of a classical PERFECT study, defined thanks to the graphical user interface developed in the project. Focus is made in particular on how a selection of modules is done, how the input data can be entered, and how the study execution is fully controlled by the user. A final description of the post-processing facilities on the results is exposed.

  11. Wetting and interface interactions in the B4C/Al-Me (Me=Cu, Sn) systems

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wettability of B 4 C in contact with non-carbide and non-boride forming liquid metals (such as Cu or Sn) has been the subject of several studies. These metals do not wet boron carbide unless a reactive element is added to the melt. The present study is concerned with the addition of Al which completes the series of reactive elements added to the non-wetting metals. While Si represents the elements that form stable carbides and Ti represents the elements that form stable borides, Al belongs to the group of elements that form ternary borocarbides. The wetting experiments in the B 4 C/(Me-Al, Me=Cu, Sn) systems have shown that a ternary product, namely Al 8 B 4 C 7 was formed at the interface and that wetting is governed by the thermodynamic properties of the binary liquid system

  12. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    International Nuclear Information System (INIS)

    Kim, Hyungdae; Park, Youngjae; Buongiorno, Jacopo

    2013-01-01

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT sub = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF

  13. Technical Efficiency of Wet Season Melon Farming

    Directory of Open Access Journals (Sweden)

    Ananti Yekti

    2017-03-01

    Full Text Available Melon is one of high-value horticulture commodity which is cultivated widely in Kulon Progo regency. The nature of agricultural products is heavily dependent on the season, so it causes the prices of agricultural products always fluctuated every time. In wet season the price of agricultural products tends to be more expensive. Melon cultivation in wet season provide an opportunity to earn higher profits than in the dry season. The price of agricultural products tends to be more expensive in wet season, thus melon cultivation in wet season prospectively generate high profits. In order to achieve high profitability, melon farming has to be done efficiently. Objective of this study was to 1 determined the factors that influence melon production in wet season 2 measured technical efficiency of melon farming and 3 identified the factors that influanced technical efficiency. Data collected during April – June 2014. Location determined by multistage cluster sampling. 45 samples of farmers who cultivated melon during wet season obtained based on quota sampling technique. Technical efficiency was measured using Cobb-Douglas Stochastic Frontier. The result reveals that 1 land use, quantity of seed, K fertilizer contributed significantly increasing melon production, while N fertilizer decreased melon production significantly 2 technical efficiency indeces ranged from 0.40 to 0.99, with a mean of  0.77; 3 farmer’s experience gave significant influence to technical efficiency of melon farming in wet season.

  14. Order of wetting transitions in electrolyte solutions.

    Science.gov (United States)

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  15. The effect of the density mismatch of liquids on scaling down steerable liquid lenses

    NARCIS (Netherlands)

    Farcy, G.; Deladi, S.; Suijver, J.F.

    2007-01-01

    This report describes the results of the investigations on the effect of the gravity on downscaling the liquid lens. The configuration of the lens was chosen so that it enables steering of the interface between the two immiscible liquids in a flat position by electro wetting, which is important for

  16. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    KAUST Repository

    Langley, Kenneth

    2017-01-23

    A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary-viscous balance. The spreading velocity of the wetting spots is independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.

  17. Moving contact lines in partial wetting: bridging the gap across the scales

    Science.gov (United States)

    Pahlavan, Amir; Cueto-Felgueroso, Luis; McKinley, Gareth; Juanes, Ruben

    2017-11-01

    The spreading and dewetting of liquid films on solid substrates is a common phenomenon in nature and industry from a snail secreting a mucosal film to printing and coating processes. A quantitative description of these phenomena, however, requires a detailed understanding of the flow physics at the nanoscale as the intermolecular interactions become important close to the contact line. Classical hydrodynamic theory describes wetting as an interplay between viscous and interfacial forces, neglecting the intermolecular interactions, leading to a paradox known as the moving contact line singularity. By contrast, molecular kinetic theory describes wetting as an activated process, neglecting the bulk hydrodynamics in the spreading viscous fluid film altogether. Here, we show that our recently developed model for thin liquid films in partial wetting, which properly incorporates the role of van der Waals interactions in a thin spreading fluid layer into a height-dependent surface tension, bridges the gap between these two approaches and leads to a unified framework for the description of wetting phenomena. We further use our model to investigate the instability and dewetting of nanometric liquid films, and show that it brings theoretical predictions closer to experimental observations.

  18. Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose.

    Science.gov (United States)

    Yakes, Betsy Jean; Bergana, Marti M; Scholl, Peter F; Mossoba, Magdi M; Karunathilaka, Sanjeewa R; Ackerman, Luke K; Holton, Jason D; Gao, Boyan; Moore, Jeffrey C

    2017-07-19

    During the development of rapid screening methods to detect economic adulteration, spray-dried milk powders prepared by dissolving melamine in liquid milk exhibited an unexpected loss of characteristic melamine features in the near-infrared (NIR) and Raman spectra. To further characterize this "wet-blending" phenomenon, spray-dried melamine and lactose samples were produced as a simplified model and investigated by NIR spectroscopy, Raman spectroscopy, proton nuclear magnetic resonance ( 1 H NMR), and direct analysis in real time Fourier transform mass spectrometry (DART-FTMS). In contrast to dry-blended samples, characteristic melamine bands in NIR and Raman spectra disappeared or shifted in wet-blended lactose-melamine samples. Subtle shifts in melamine 1 H NMR spectra between wet- and dry-blended samples indicated differences in melamine hydrogen-bonding status. Qualitative DART-FTMS analysis of powders detected a greater relative abundance of lactose-melamine condensation product ions in the wet-blended samples, which supported a hypothesis that wet-blending facilitates early Maillard reactions in spray-dried samples. Collectively, these data indicated that the formation of weak, H bonded complexes and labile, early Maillard reaction products between lactose and melamine contribute to spectral differences observed between wet- and dry-blended milk powder samples. These results have implications for future evaluations of adulterated powders and emphasize the important role of sample preparation methods on adulterant detection.

  19. Tribology experiment. [journal bearings and liquid lubricants

    Science.gov (United States)

    Wall, W. A.

    1981-01-01

    A two-dimensional concept for Spacelab rack 7 was developed to study the interaction of liquid lubricants and surfaces under static and dynamic conditions in a low-gravity environment fluid wetting and spreading experiments of a journal bearing experiments, and means to accurately measure and record the low-gravity environment during experimentation are planned. The wetting and spreading process of selected commercial lubricants on representative surface are to the observes in a near-zero gravity environment.

  20. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  1. 7 CFR 51.897 - Wet.

    Science.gov (United States)

    2010-01-01

    ... the grapes are wet from moisture from crushed, leaking, or decayed berries or from rain. Grapes which are moist from dew or other moisture condensation such as that resulting from removing grapes from a...

  2. Medications to Treat Bed-Wetting

    Science.gov (United States)

    ... suggest that depression plays a role in the cause of bed-wetting. This type of drug is thought to work one of several ways: by changing the child's sleep and wakening pattern by affecting the time ...

  3. A WET TALE: TOXICITY OF COMPLEX EFFLUENTS

    Science.gov (United States)

    This course covers standards, regulations, policy, guidance and technical aspects of implementing the whole effluent toxicity program. The curriculum incorporates rationale and information on WET test requirements from USEPA documents, such as the Technical Support Document for W...

  4. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  5. Why Wet Kaolin can be used as a Crustal Analog and its Application to Fault Evolution at Restraining Bends

    Science.gov (United States)

    Cooke, M. L.; van der Elst, N.; Schottenfeld, M. T.

    2010-12-01

    To simulate geologic deformation on observable time and length scales within the lab, a subset of analog modelers have used wet kaolin. Unlike the more often used sand, wet kaolin beautifully exhibits detailed fault structures. Furthermore, faults within the kaolin are more readily reactivated than those in sand. The low plasticity of kaolin (compared to other clays) gives it low shear strength. Consequently, the clay is a suitable analog material if we assume that the wet kaolin deforms by coulomb frictional failure. Koalin generally deforms as a Bingham solid and exhibits more complex deformation than the perfectly plastic behavior assumed with Coulomb failure. We performed fall cone and rheometric tests on wet kaolin to refine our quantitative understanding of its rheology. We use North American wet kaolin with density 1.65-1.7 g/cm3 and water content of 37.5-38.5%. The fall cone tests reveal that the undrained shear strength (100-160 Pa) is greater than previously measured with a viscometer. The rheometer tests show that the wet koalin exhibits many of the same properties of crustal materials including: 1) elastic behavior at low strains, 2) stress relaxation at near-failure strains, 3) creep under static load, 4) yield strength sensitive to strain rate and 5) rate and state dependent failure. Armed with quantitative values for this complex deformation, we can better scale the length and strain rate of the wet koalin experiments to specific crustal settings. Experiments of deformation around restraining bends show features very similar to those found in natural examples. The detailed fault structures produced in the wet kaolin can be analyzed to understand the evolution of active faulting at restraining bends.

  6. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.

    1995-01-01

    . As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...... term reduces the thickness by the amount proportional to r0-1/3...

  7. 10 CFR 609.16 - Perfection of liens and preservation of collateral.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Perfection of liens and preservation of collateral. 609.16... THAT EMPLOY INNOVATIVE TECHNOLOGIES § 609.16 Perfection of liens and preservation of collateral. (a... to perfect and maintain liens, as applicable, on assets which are pledged as collateral for the...

  8. An Infinite Family of Circulant Graphs with Perfect State Transfer in Discrete Quantum Walks

    OpenAIRE

    Zhan, Hanmeng

    2017-01-01

    We study perfect state transfer in a discrete quantum walk. In particular, we show that there are infinitely many $4$-regular circulant graphs that admit perfect state transfer between antipodal vertices. To the best of our knowledge, previously there was no infinite family of $k$-regular graphs with perfect state transfer, for any $k\\ge 3$.

  9. Approximating perfection a mathematician's journey into the world of mechanics

    CERN Document Server

    Lebedev, Leonid P

    2004-01-01

    This is a book for those who enjoy thinking about how and why Nature can be described using mathematical tools. Approximating Perfection considers the background behind mechanics as well as the mathematical ideas that play key roles in mechanical applications. Concentrating on the models of applied mechanics, the book engages the reader in the types of nuts-and-bolts considerations that are normally avoided in formal engineering courses: how and why models remain imperfect, and the factors that motivated their development. The opening chapter reviews and reconsiders the basics of c

  10. Extinction in finite perfect crystals: Case of a sphere

    International Nuclear Information System (INIS)

    Al Haddad, M.; Becker, P.

    1990-01-01

    The extinction factor in finite perfect crystals is calculated from pure dynamical theory. In particular, a detailed solution is proposed for a sphere, in which case the extinction factor depends on the Bragg angle θ and the parameter (R/Λ), where R is the radius of the crystal and Λ the extinction length. An approximate solution based on the Laue geometry is proposed and corrections to take care of the complex boundary conditions are presented. An expression easily usable in refinement programs is proposed that fits the exact value to better than 1%. (orig.)

  11. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  12. Using a quantum dot system to realize perfect state transfer

    International Nuclear Information System (INIS)

    Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang

    2011-01-01

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)

  13. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  14. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  15. Analysis of the Perfect Table Fuzzy Rainbow Tradeoff

    Directory of Open Access Journals (Sweden)

    Byoung-Il Kim

    2014-01-01

    Full Text Available Cryptanalytic time memory tradeoff algorithms are tools for inverting one-way functions, and they are used in practice to recover passwords that restrict access to digital documents. This work provides an accurate complexity analysis of the perfect table fuzzy rainbow tradeoff algorithm. Based on the analysis results, we show that the lesser known fuzzy rainbow tradeoff performs better than the original rainbow tradeoff, which is widely believed to be the best tradeoff algorithm. The fuzzy rainbow tradeoff can attain higher online efficiency than the rainbow tradeoff and do so at a lower precomputation cost.

  16. Assessing Measures of Order Flow Toxicity via Perfect Trade Classification

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg

    . The VPIN metric involves decomposing volume into active buys and sells. We use the best-bid-offer (BBO) files from the CME Group to construct (near) perfect trade classification measures for the E-mini S&P 500 futures contract. We investigate the accuracy of the ELO Bulk Volume Classification (BVC) scheme...... systematic classification errors that are correlated with trading volume and return volatility. When controlling for trading intensity and volatility, the BVC-VPIN measure has no incremental predictive power for future volatility. We conclude that VPIN is not suitable for measuring order flow imbalances....

  17. Artificial hairy surfaces with a nearly perfect hydrophobic response.

    Science.gov (United States)

    Hsu, Shu-Hau; Sigmund, Wolfgang M

    2010-02-02

    A nearly perfect hydrophobic interface by dint of mimicking hairs of arthropods was achieved for the first time. These Gamma-shape artificial hairs were made via a membrane casting technique on polypropylene substrates. This extreme hydrophobicity merely arises from microstructure modification, and no further chemical treatments are needed. The ultralow adhesion to water droplets was evaluated through video assessment, and it is believed to be attributed to the mechanical response of the artificial hairs. The principle of this fabrication technique is accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces.

  18. The Hamiltonian structure of general relativistic perfect fluids

    International Nuclear Information System (INIS)

    Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.

    1985-01-01

    We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)

  19. Manipulating the loss in electromagnetic cloaks for perfect wave absorption.

    Science.gov (United States)

    Argyropoulos, Christos; Kallos, Efthymios; Zhao, Yan; Hao, Yang

    2009-05-11

    We examine several ways to manipulate the loss in electro-magnetic cloaks, based on transformation electromagnetics. It is found that, by utilizing inherent electric and magnetic losses of metamaterials, perfect wave absorption can be achieved based on several popular designs of electromagnetic cloaks. A practical implementation of the absorber, consisting of ten discrete layers of metamaterials, is proposed. The new devices demonstrate super-absorptivity over a moderate wideband range, suitable for both microwave and optical applications. It is corroborated that the device is functional with a subwavelength thickness and, hence, advantageous compared to the conventional absorbers.

  20. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  1. Allergenic Ingredients in Personal Hygiene Wet Wipes.

    Science.gov (United States)

    Aschenbeck, Kelly A; Warshaw, Erin M

    Wet wipes are a significant allergen source for anogenital allergic contact dermatitis. The aim of the study was to calculate the frequency of potentially allergenic ingredients in personal hygiene wet wipes. Ingredient lists from brand name and generic personal hygiene wet wipes from 4 large retailers were compiled. In the 54 personal hygiene wet wipes evaluated, a total of 132 ingredients were identified (average of 11.9 ingredients per wipe). The most common ingredients were Aloe barbadensis (77.8%), citric acid (77.8%), fragrance (72.2%), sorbic acid derivatives (63.0%), tocopherol derivatives (63.0%), glycerin (59.3%), phenoxyethanol (55.6%), disodium cocoamphodiacetate (53.7%), disodium ethylenediaminetetraacetic acid (EDTA) (42.6%), propylene glycol (42.6%), iodopropynyl butylcarbamate (40.7%), chamomile extracts (38.9%), sodium benzoate (35.2%), bronopol (22.2%), sodium citrate (22.2%), lanolin derivatives (20.4%), parabens (20.4%), polyethylene glycol derivatives (18.5%), disodium phosphate (16.7%), dimethylol dimethyl hydantoin (DMDM) (14.8%), and cocamidopropyl propylene glycol (PG)-dimonium chloride phosphate (11.1%). Of note, methylisothiazolinone (5.6%) was uncommon; methylchloroisothiazolinone was not identified in the personal hygiene wet wipes examined. There are many potential allergens in personal hygiene wet wipes, especially fragrance and preservatives.

  2. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    Science.gov (United States)

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  4. Studies on the wetting properties of plate surfaces used in pulsed extraction columns

    International Nuclear Information System (INIS)

    Tai Derong; Yang Xin; Wang Xinchang

    1991-01-01

    Many factors influence the hydrodynamic characteristics of pulsed column. Of all the factors the surface effect at liquid-liquid interfaces and liquid-solid boundaries may be the most influential factor to the state of droplets. In order to get some understanding of the behaviour of droplets in a pulsed column, the time history of wetting properties of plates under different conditions in 30% TBP (Kerosene) -HNO 3 -UO 2 (NO 3 ) 2 -H 2 O systems was studied. The results show that the hydrophilic wetting behaviour of the plates changes into the hydrophobic and neutral conditions, respectively after they have been exposed to air and put in the 'open system' within about 50 days after contacting with process solutions. For the case where the access of air is prohibited at the upper organic phase boundary by a well fitting cover, or supersonic pulse cleaning is used to the cartridge, the behaviour of the metal surface stays in the original good hydrophilic wetting condition constant with time. The uranium charged liquid systems can conserve hydrophilic behaviour better than the non-charged systems under identical conditions. It is also found that the interfacial tension is unvaried with time for saturated process systems, hence it has no effects on the variation of wettability

  5. Coordinate transformations make perfect invisibility cloaks with arbitrary shape

    International Nuclear Information System (INIS)

    Yan Wei; Yan Min; Ruan Zhichao; Qiu Min

    2008-01-01

    By investigating wave properties at cloak boundaries, invisibility cloaks with arbitrary shape constructed by general coordinate transformations are confirmed to be perfectly invisible to the external incident wave. The differences between line transformed cloaks and point transformed cloaks are discussed. The fields in the cloak medium are found analytically to be related to the fields in the original space via coordinate transformation functions. At the exterior boundary of the cloak, it is shown that no reflection is excited even though the permittivity and permeability do not always have a perfectly matched layer form, whereas at the inner boundary, no reflection is excited either, and in particular no field can penetrate into the cloaked region. However, for the inner boundary of any line transformed cloak, the permittivity and permeability in a specific tangential direction are always required to be infinitely large. Furthermore, the field discontinuity at the inner boundary always exists; the surface current is induced to make this discontinuity self-consistent. A point transformed cloak does not experience such problems. The tangential fields at the inner boundary are all zero, implying that no field discontinuity exists

  6. Spherically symmetric Einstein-aether perfect fluid models

    Energy Technology Data Exchange (ETDEWEB)

    Coley, Alan A.; Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Sandin, Patrik, E-mail: aac@mathstat.dal.ca, E-mail: genly.leon@ucv.cl, E-mail: patrik.sandin@aei.mpg.de, E-mail: lattaj@mathstat.dal.ca [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-12-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.

  7. A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2017-10-01

    In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.

  8. A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [UNESP, Campus de Guaratingueta, DFQ, Guaratingueta, SP (Brazil); Barone, F.A. [IFQ, Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2017-10-15

    In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v{sup μ} coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v{sup μ}. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v{sup μ} exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror. (orig.)

  9. Dynamic wetting and spreading and the role of topography

    International Nuclear Information System (INIS)

    McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J

    2009-01-01

    The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v e , to the dynamic and equilibrium contact angles θ and θ e through v e ∝θ(θ 2 -θ e 2 ). When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is

  10. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  11. Adsorption effect in non-reaction wetting: In-Ti on CaF2

    International Nuclear Information System (INIS)

    Glickman, E.; Fuks, D.; Frage, N.; Barzilai, S.; Froumin, N.

    2012-01-01

    The experiments show that the alloying liquid In with only (0.1-0.5) at% Ti dramatically reduces the equilibrium contact angle Θ ∞ formed by In on the surface of CaF 2 . The aim of this paper is to clarify whether this practically important and conceptually challenging effect can be explained solely by Ti adsorption at the F-terminated solid-liquid interface without resorting to any other Ti-induced effect. The combination of ab initio calculations and regular solution approximation was proposed for finding the binding energy, ΔE Ti of Ti adatom with the interface ''CaF 2 /liquid solutions In-Ti.'' With thus obtained ΔE Ti =1.16 eV, we calculated from the Shishkovsky isotherm the reduction in the solid-liquid interface energy, Δγ SL induced by Ti adsorption from liquid In with various Ti concentration, C. It was found that Δγ SL (C) dependence demonstrated close inverse correspondence with Θ ∞ (C) and that the theory fitted very well all available experimental data on the concentration and temperature dependence of Δγ SL . It was concluded that the Ti adsorption effect is large enough to account for the observed wetting improvement. The proposed multiscale modeling approach to the role of adsorption in wetting can be applied also to other nonreactive systems ''liquid metal-ceramics'' where the substrate determines the surface density of the adsorption sites for the active element. (orig.)

  12. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  13. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam

    Science.gov (United States)

    Furuta, Yujiro; Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Liquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet. Here we show that the dry-wet transition is closely related to rearrangement of the gas bubbles, by simultaneously analysing the shape change of the bubbles and that of the entire foam in two dimensional foam. In addition, we also find a new state in quite low liquid fraction, which is named “superdry foam”. Whereas the shape change of the bubbles strongly depends on the change of the liquid fraction in the superdry foam, the shape of the bubbles does not change with changing the liquid fraction in the dry foam. Our results elucidate the relationship between the transitions and the macroscopic mechanical properties. PMID:27874060

  14. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  15. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  16. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  17. Study of Transitions between Wetting States on Microcavity Arrays by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    In this article, we present a simple and fast optical method based on transmission microscopy to study the stochastic wetting transitions on micro- and nanostructured polymer surfaces immersed in water. We analyze the influence of immersion time and the liquid pressure on the degree of water......-Laplace equation for the water menisci in the cavities and the diffusion of dissolved gas molecules in the water. In addition, the wetting transitions had a stochastic nature, which resulted from the short diffusion distance for dissolved gas molecules in the water between neighboring cavities. Furthermore, we...... compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the difference in the water repellency of the two materials to a difference in the wetting of their nanostructures. Our experimental observations thus indicate that both the diffusion...

  18. Predictive modeling of reactive wetting and metal joining.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.

    2013-09-01

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  19. Wet scrubber technology for tritium confinement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N., E-mail: alexander.perevezentsev@iter.org [ITER Organization, CS 90 046, 13067 St Paul lez Durance Cedex (France); Andreev, B.M.; Rozenkevich, M.B.; Pak, Yu.S.; Ovcharov, A.V.; Marunich, S.A. [Mendeleev University of Chemical Technology, 125047 Miusskaya Sq. 9, Moscow (Russian Federation)

    2010-12-15

    Operation of the ITER machine with tritium plasma requires tritium confinement systems to protect workers and the environment. Tritium confinement at ITER is based on multistage approach. The final stage provides tritium confinement in building sectors and consists of building's walls as physical barriers and control of sub-atmospheric pressure in those volumes as a dynamic barrier. The dynamic part of the confinement function shall be provided by safety important components that are available all the time when required. Detritiation of air prior to its release to the environment is based on catalytic conversion of tritium containing gaseous species to water vapour followed by their isotopic exchange with liquid water in scrubber column of packed bed type. Wet scrubber technology has been selected because of its advantages over conventional air detritiation technique based on gas drying by water adsorption. The most important design target of system availability was very difficult to meet with conventional water adsorption driers. This paper presents results of experimental trial for validation of wet scrubber technology application in the ITER tritium confinement system and process evaluation using developed simulation computer code.

  20. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  1. Uranium problem in production of wet phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gorecka, H; Gorecki, H [Politechnika Wroclawska (Poland)

    1980-01-01

    The balance of the uranium in the wet dihydrate method was presented. This balance shows that a large quantity of the uranium compounds shift from mineral phosphate rock to liquid phase of decomposition pulp (about 70-85% U) and the rest moves to phosphogypsum (about 15-25% U). The contents of uranium in phosphate rock imported for our country and in products and by-products of the fertilizer industry, were determined. Concentration of uranium in the phosphogypsum is dependent on the type of mineral rock and the process of phosphogypsum crystallization. Analysis of the uranium contents in phosphogypsum samples and results of the sedimentation analysis indicated influence of the specific surface of phosphogypsum crystals on the uranium concentration. Investigation of the sets of samples obtained in the industrial plant proved that phosphogypsum cake washed counter-currently on the filter contained from 10 to 20 ..mu..g U/g. The radioactivity of these samples fluctuated from 35 to 60 pCi/g. Using solution sulphuric acid of concentration in range 2-4% by weight H/sub 2/SO/sub 4/ to washing and repulpation of the phosphogypsum enables to reduce its radioactivity to level below 25 pCi/g. This processing makes possible to utilize this waste material in the building industry. Extraction of uranium from the wet phosphoric acid using kerosen solution of the reaction product between octanol -1 and phosphorus pentaoxide showed possibility to recover over 80% of uranium contained in phosphate rock.

  2. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  3. Energy and heat balance in wet DCT

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)

    2012-11-01

    Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)

  4. Planar shock focusing through perfect gas lens: First experimental demonstration

    International Nuclear Information System (INIS)

    Biamino, Laurent; Mariani, Christian; Jourdan, Georges; Houas, Lazhar; Vandenboomgaerde, Marc; Souffland, Denis

    2014-01-01

    When a shock wave crosses an interface between two materials, this interface becomes unstable and the Richtmyer-Meshkov instability develops. Such instability has been extensively studied in the planar case, and numerous results were presented during the previous workshops. But the Richtmyer-Meshkov (Richtmyer, 1960, 'Taylor Instability in Shock Acceleration of Compressible Fluids,' Commun. Pure Appl. Math., 13(2), pp. 297-319; Meshkov, 1969, 'Interface of Two Gases Accelerated by a Shock Wave,' Fluid Dyn., 4(5), pp. 101-104) instability also occurs in a spherical case where the convergence effects must be taken into account. As far as we know, no conventional (straight section) shock tube facility has been used to experimentally study the Richtmyer-Meshkov instability in spherical geometry. The idea originally proposed by Dimotakis and Samtaney (2006, 'Planar Shock Cylindrical Focusing by a Perfect-Gas Lens,' Phys. Fluid., 18(3), pp. 031705-031708) and later generalized by Vandenboomgaerde and Aymard (2011, 'Analytical Theory for Planar Shock Focusing Through Perfect Gas Lens and Shock Tube Experiment Designs,' Phys. Fluid., 23(1), pp. 016101-016113) was to retain the flexibility of a conventional shock tube to convert a planar shock wave into a cylindrical one through a perfect gas lens. This can be done when a planar shock wave passes through a shaped interface between two gases. By coupling the shape with the impedance mismatch at the interface, it is possible to generate a circular transmitted shock wave. In order to experimentally check the feasibility of this approach, we have implemented the gas lens technique on a conventional shock tube with the help of a convergent test section, an elliptic stereo lithographed grid, and a nitrocellulose membrane. First experimental sequences of Schlieren images have been obtained for an incident shock wave Mach number equal to 1.15 and an air/SF_6-shaped interface. Experimental results indicate that the shock that moves

  5. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  6. No-signaling, perfect bipartite dichotomic correlations and local randomness

    International Nuclear Information System (INIS)

    Seevinck, M. P.

    2011-01-01

    The no-signaling constraint on bi-partite correlations is reviewed. It is shown that in order to obtain non-trivial Bell-type inequalities that discern no-signaling correlations from more general ones, one must go beyond considering expectation values of products of observables only. A new set of nontrivial no-signaling inequalities is derived which have a remarkably close resemblance to the CHSH inequality, yet are fundamentally different. A set of inequalities by Roy and Singh and Avis et al., which is claimed to be useful for discerning no-signaling correlations, is shown to be trivially satisfied by any correlation whatsoever. Finally, using the set of newly derived no-signaling inequalities a result with potential cryptographic consequences is proven: if different parties use identical devices, then, once they have perfect correlations at spacelike separation between dichotomic observables, they know that because of no-signaling the local marginals cannot but be completely random.

  7. Perfect synchronization in networks of phase-frustrated oscillators

    Science.gov (United States)

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  8. Cosmological coevolution of Yang-Mills fields and perfect fluids

    International Nuclear Information System (INIS)

    Barrow, John D.; Jin, Yoshida; Maeda, Kei-ichi

    2005-01-01

    We study the coevolution of Yang-Mills fields and perfect fluids in Bianchi type I universes. We investigate numerically the evolution of the universe and the Yang-Mills fields during the radiation and dust eras of a universe that is almost isotropic. The Yang-Mills field undergoes small amplitude chaotic oscillations, as do the three expansion scale factors which are also displayed by the expansion scale factors of the universe. The results of the numerical simulations are interpreted analytically and compared with past studies of the cosmological evolution of magnetic fields in radiation and dust universes. We find that, whereas magnetic universes are strongly constrained by the microwave background anisotropy, Yang-Mills universes are principally constrained by primordial nucleosynthesis but the bound is comparatively weak with Ω YM rad

  9. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  10. Perfectly matched layer for the time domain finite element method

    International Nuclear Information System (INIS)

    Rylander, Thomas; Jin Jianming

    2004-01-01

    A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS

  11. Gravitational perfect fluid collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-08-15

    The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)

  12. Mathematical theories of classical particle channeling in perfect crystals

    International Nuclear Information System (INIS)

    Dumas, H. Scott

    2005-01-01

    We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling

  13. Expanding perfect fluid generalizations of the C metric

    International Nuclear Information System (INIS)

    Wylleman, Lode; Beke, David

    2010-01-01

    Petrov type D gravitational fields, generated by a perfect fluid with spatially homogeneous energy density and with flow lines which form a nonshearing and nonrotating timelike congruence, are reexamined. It turns out that the anisotropic such spacetimes, which comprise the vacuum C metric as a limit case, can have nonzero expansion, contrary to the conclusion in the original investigation by Barnes [A. Barnes, Gen. Relativ. Gravit. 4, 105 (1973).]. Apart from the static members, this class consists of cosmological models with precisely one symmetry. The general line element is constructed and some important properties are discussed. It is also shown that purely electric Petrov type D vacuum spacetimes admit shear-free normal timelike congruences everywhere, even in the nonstatic regions. This result incited to deduce intrinsic, easily testable criteria regarding shear-free normality and staticity of Petrov type D spacetimes in general, which are added in an appendix.

  14. On perfect fluids and black holes in static equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, Alberto; Mars, Marc; Simon, Walter [Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)

    2007-05-15

    Proofs of spherical symmetry of static black holes and of spherical symmetry of static perfect fluids normally require, a priori, 'black holes only' or 'fluid only'. In a recent paper Shiromizu, Yamada and Yoshino admit a priori (and exclude) coexistence of fluids and holes. This work assumes connectedness of the fluid region and the same assumptions on the equation of state as earlier papers on the 'fluid only' case, and requires in addition an upper bound for the fluid mass in terms of the black holes masses. We discuss this paper. As a new result we show that there cannot exist static fluid shells (i.e. fluid regions of the topology of an annulus) even if one a priori admits, inside and outside the shell, any arrangement of black holes or additional matter which satisfies the energy condition.

  15. On perfect fluids and black holes in static equilibrium

    International Nuclear Information System (INIS)

    Carrasco, Alberto; Mars, Marc; Simon, Walter

    2007-01-01

    Proofs of spherical symmetry of static black holes and of spherical symmetry of static perfect fluids normally require, a priori, 'black holes only' or 'fluid only'. In a recent paper Shiromizu, Yamada and Yoshino admit a priori (and exclude) coexistence of fluids and holes. This work assumes connectedness of the fluid region and the same assumptions on the equation of state as earlier papers on the 'fluid only' case, and requires in addition an upper bound for the fluid mass in terms of the black holes masses. We discuss this paper. As a new result we show that there cannot exist static fluid shells (i.e. fluid regions of the topology of an annulus) even if one a priori admits, inside and outside the shell, any arrangement of black holes or additional matter which satisfies the energy condition

  16. Efficient and stable perfectly matched layer for CEM

    KAUST Repository

    Duru, Kenneth

    2014-02-01

    An efficient unsplit perfectly matched layer for numerical simulation of electromagnetic waves in unbounded domains is derived via a complex change of variables. In order to surround a Cartesian grid with the PML, the time-dependent PML requires only one (scalar) auxiliary variable in two space dimensions and six (scalar) auxiliary variables in three space dimensions. It is therefore cheap and straightforward to implement. We use Fourier and energy methods to prove the stability of the PML. We extend the stability result to a semi-discrete PML approximated by central finite differences of arbitrary order of accuracy and to a fully discrete problem for the \\'Leap-Frog\\' schemes. This makes precise the usefulness of the derived PML model for longtime simulations. Numerical experiments are presented, illustrating the accuracy and stability of the PML. © 2013 IMACS.

  17. Perfect fluid models in noncomoving observational spherical coordinates

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2004-01-01

    We use null spherical (observational) coordinates to describe a class of inhomogeneous cosmological models. The proposed cosmological construction is based on the observer past null cone. A known difficulty in using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to explore models in a noncomoving frame of reference. In this frame, we find that the velocity field has shear, acceleration, and expansion rate in general. We show that a comoving frame is not compatible with expanding perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the models in a noncomoving frame. We use the dust models in a noncomoving frame to outline a fitting procedure

  18. Wetting Resistance of Commercial Membrane Distillation Membranes in Waste Streams Containing Surfactants and Oil

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-01-01

    Full Text Available Water management is becoming increasingly challenging and several technologies, including membrane distillation (MD are emerging. This technology is less affected by salinity compared to reverse osmosis and is able to treat brines up to saturation. The focus of MD research recently shifted from seawater desalination to industrial applications out of the scope of reverse osmosis. In many of these applications, surfactants or oil traces are present in the feed stream, lowering the surface tension and increasing the risk for membrane wetting. In this study, the technological boundaries of MD in the presence of surfactants are investigated using surface tension, contact angle and liquid entry pressure measurements together with lab-scale MD experiments to predict the wetting resistance of different membranes. Synthetic NaCl solutions mixed with sodium dodecyl sulfate (SDS were used as feed solution. The limiting surfactant concentration was found to be dependent on the surface chemistry of the membrane, and increased with increasing hydrophobicity and oleophobicity. Additionally, a hexadecane/SDS emulsion was prepared with a composition simulating produced water, a waste stream in the oil and gas sector. When hexadecane is present in the emulsion, oleophobic membranes are able to resist wetting, whereas polytetrafluoretheen (PTFE is gradually wetted by the feed liquid.

  19. Wetting of heterogeneous substrates. A classical density-functional-theory approach

    Science.gov (United States)

    Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2017-11-01

    Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.

  20. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  1. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  2. Wideband perfect coherent absorber based on white-light cavity

    Science.gov (United States)

    Kotlicki, Omer; Scheuer, Jacob

    2015-03-01

    Coherent Perfect Absorbers (CPAs) are optical cavities which can be described as time-reversed lasers where light waves that enter the cavity, coherently interfere and react with the intra-cavity losses to yield perfect absorption. In contrast to lasers, which benefit from high coherency and narrow spectral linewidths, for absorbers these properties are often undesirable as absorption at a single frequency is highly susceptible to spectral noise and inappropriate for most practical applications. Recently, a new class of cavities, characterized by a spectrally wide resonance has been proposed. Such resonators, often referred to as White Light Cavities (WLCs), include an intra-cavity superluminal phase element, designed to provide a phase response with a slope that is opposite in sign and equal in magnitude to that of light propagation through the empty cavity. Consequently, the resonance phase condition in WLCs is satisfied over a band of frequencies providing a spectrally wide resonance. WLCs have drawn much attention due to their attractiveness for various applications such as ultra-sensitive sensors and optical buffering components. Nevertheless, WLCs exhibit inherent losses that are often undesirable. Here we introduce a simple wideband CPA device that is based on the WLC concept along with a complete analytical analysis. We present analytical and FDTD simulations of a practical, highly compact (12µm), Silicon based WLC-CPA that exhibits a flat and wide absorption profile (40nm) and demonstrate its usefulness as an optical pulse terminator (>35db isolation) and an all optical modulator that span the entire C-Band and exhibit high immunity to spectral noise.

  3. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Science.gov (United States)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.

    2015-09-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  4. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Z.; Pugliese, D.; Schee, J.; Kucakova, H. [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2015-09-15

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Horava quantum gravity, characterized by a dimensionless parameter ωM{sup 2}, combining the gravitational mass parameter M of the spacetime with the Horava parameter ω, reflecting the role of the quantum corrections. In dependence on the value of ωM{sup 2}, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an @gantigravity@h sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l = const. In the K-S naked singularity spacetimes with ωM{sup 2} > 0.2811, doubled tori with the same l = const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ωM{sup 2} < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics. (orig.)

  5. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  6. SPREADING OF A FLUID JET ON THE CORRUGATED SURFACE OF THE STRUCTURED PACKING OF WET SCRUBBERS

    Directory of Open Access Journals (Sweden)

    Gorodilov A.A.

    2014-08-01

    Full Text Available The new packing for wet scrubbers for cooling exhaust gases of furnaces is presented. Spreading features of the fluid jet on the corrugated surface of the proposed packing have been studied. Flow rate of the liquid flowing through slits to the opposite side of the packing element was determined. Several regimes of a fluid flow on the surface of the proposed structured packing were determined. An optimal range of rational flow rates for more intense cooling of exhaust gases is proposed. It was discovered that the range of optimum flow rates may be extended if the surface of the packing element is pre-wetted. The way of increasing the rate of effective interfacial surface area for gas-liquid contact per unit volume of the packing of the scrubber is presented.

  7. Erosion of a wet/dry granular interface

    Science.gov (United States)

    Jop, Pierre; Lefebvre, Gautier

    2013-04-01

    To model the dynamic of landslides, the evolution of the interface between the erodible ground and the flowing material is still studied experimentally or numerically (ie. Mangeney et al. 2010, Iverson 2012). In some cases, the basal material is more cohesive than the flowing one. Such situation arises for example due to cementation or humidity. What are the exchange rates between these phases? What is the coupling between the evolution of the interface and the flow? We studied the erosion phenomenon and performed laboratory experiments to focus on the interaction between a cohesive unsaturated granular material and a dry granular flow. Both materials were spherical grains, the cohesion being induced by adding a given mass of liquid to the grains. Two configurations were explored: a circular aggregate submitted to a dry flow in a rotating drum, and a granular flow eroding a wet granular pile. First, we focused on the influence of the cohesion, controlled by the liquid properties, such as the surface tension and the viscosity. Then the flow characteristics were modified by varying the grain size and density. These results allowed us to present a model for the erosion mechanisms, based on the flow and fluid properties. The main results are the need to take into account the whole probability distribution the stress applied on the wet grains and that both the surface tension and the viscosity are important since they play a different roles. The latter is mainly responsible of the time scale of the dynamic of a wet grain, while the former acts as a threshold on the force distribution. In the second configuration, we could also control the inclination of the slope. This system supported the previous model and moreover revealed an interface instability, leading the formation of steep steps, which is a reminiscence of the cyclic-steps observed during river-channel incision (Parker and Izumi 2000). We will present the dynamics of such granular steps. [1] Mangeney, A., O

  8. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  9. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  10. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    Science.gov (United States)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic

  11. Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study

    Science.gov (United States)

    Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan

    2017-10-01

    Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.

  12. How does the composition of quasi-stoichiometric titanium diboride affect its wetting by molten Cu and Au?

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Barth, P.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2007-01-01

    The poor wetting in non-oxide ceramic/metal (M = Au or Cu) systems is usually attributed to the lack of chemical interaction at the solid/liquid interface. In contrast, sessile drop experiments on two non-stoichiometric titanium diboride substrates (TiB 1.9 and TiB 1.95 ) displayed a surprisingly good wetting. The experimental results are well accounted for by the thermodynamic analysis of the Me-Ti-B systems. According to this analysis, some limited boride dissolution and altering of the substrate composition takes place at the TiB x /Me interface. These changes are more substantial, the stronger the departure from stoichiometry of the initial substrate composition. Minor composition changes are sufficient for improving wetting. Based on the results of the thermodynamic analysis and the wetting experiments, a novel method for the fabrication of Cu infiltrated composites is put forward

  13. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    Science.gov (United States)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  14. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

  15. On the gasification of wet biomass in supercritical water : over de vergassing van natte biomassa in superkritiek water

    NARCIS (Netherlands)

    Withag, J.A.M.

    2013-01-01

    Supercritical water gasification (SCWG) is a challenging thermo-chemical conversion route for wet biomass and waste streams into hydrogen and/or methane. At temperatures and pressures above the critical point the physical properties of water differ strongly from liquid water or steam. Because of the

  16. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Teaney, Derek

    2009-01-01

    Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity η to entropy density s in units of ℎ/k B is bounded by a constant. Here, ℎ is Planck's constant and k B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that η/s ≥ ℎ/(4πk B ). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of η/s that are smaller than ℎ/k B . These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.

  17. Critical Casimir forces and anomalous wetting

    Indian Academy of Sciences (India)

    (3) With Dirichlet boundary conditions, the critical temperature in the film is sig- ... studies: new experiments should identify the origin of the L-dependence, and ... and complete wetting should occur as T approaches Tt. The above argument is ...

  18. Wetted surface area of recreational boats

    NARCIS (Netherlands)

    Bakker J; van Vlaardingen PLA; ICH; VSP

    2018-01-01

    The wetted surface area of recreational craft is often treated with special paint that prevents growth of algae and other organisms. The active substances in this paint (antifouling) are also emitted into the water. The extent of this emission is among others determined by the treated surface area.

  19. Microwave moisture sensing of wet bales

    Science.gov (United States)

    Sensing of moisture in very wet lint bales is unique due to the fact that moisture distribution is typically non-uniform and can in some instances be highly localized. This issue is even further complicated by the use of a sensor that reads only a portion of the bale and/or with a sensor that provid...

  20. Wet steam turbines for CANDU-Reactors

    International Nuclear Information System (INIS)

    Westmacott, C.H.L.

    1977-01-01

    The technical characteristics of 4 wet steam turbine aggregates used in the Pickering nuclear power station are reported on along with operational experience. So far, the general experience was positive. Furthermore, plans are mentioned to use this type of turbines in other CANDU reactors. (UA) [de

  1. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  2. The fastest drop climbing on a wet conical fibre

    KAUST Repository

    Li, Erqiang; Thoroddsen, Sigurdur T

    2013-01-01

    We use high-speed video imaging to study the capillary-driven motion of a micro-droplet along the outside of a pre-wetted conical fiber. The cones are fabricated on a glass-puller with tip diameters as small as 1 μm, an order of magnitude smaller than in previous studies. The liquid is fed through the hollow fiber accumulating at the fiber tip to form droplets. The droplets are initially attached to the opening as they grow in size before detaching and traveling up the cone. This detachment can produce a transient oscillation of high frequency. The spatial variation of the capillary pressure drives the droplets towards the wider side of the cone. Various liquids were used to change the surface tension by a factor of 3.5 and viscosity by a factor of 1500. Within each droplet size and viscous-dissipation regime, the data for climbing speeds collapse on a single curve. Droplets traveling with and against gravity allow us to pinpoint the absolute strength of the driving capillary pressure and viscous stresses and thereby determine the prefactors in the dimensionless relationships. The motions are consistent with earlier results obtained from much larger cones. Translation velocities up to 270 mm/s were observed and overall the velocities follow capillary-viscous scaling, whereas the speed of the fastest droplets is limited by inertia following their emergence at the cone tip.

  3. The fastest drop climbing on a wet conical fibre

    KAUST Repository

    Li, Erqiang

    2013-05-21

    We use high-speed video imaging to study the capillary-driven motion of a micro-droplet along the outside of a pre-wetted conical fiber. The cones are fabricated on a glass-puller with tip diameters as small as 1 μm, an order of magnitude smaller than in previous studies. The liquid is fed through the hollow fiber accumulating at the fiber tip to form droplets. The droplets are initially attached to the opening as they grow in size before detaching and traveling up the cone. This detachment can produce a transient oscillation of high frequency. The spatial variation of the capillary pressure drives the droplets towards the wider side of the cone. Various liquids were used to change the surface tension by a factor of 3.5 and viscosity by a factor of 1500. Within each droplet size and viscous-dissipation regime, the data for climbing speeds collapse on a single curve. Droplets traveling with and against gravity allow us to pinpoint the absolute strength of the driving capillary pressure and viscous stresses and thereby determine the prefactors in the dimensionless relationships. The motions are consistent with earlier results obtained from much larger cones. Translation velocities up to 270 mm/s were observed and overall the velocities follow capillary-viscous scaling, whereas the speed of the fastest droplets is limited by inertia following their emergence at the cone tip.

  4. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy

    2013-05-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage times once the drop has reached its maximum spread on the surface. During the initial spreading stage, we compare our experimental data to a previously developed model which incorporates imbibition into the spreading dynamics and observe reasonable agreement. We find that the maximum spread is a strong function of the moisture content in the powder bed and that the total time from impact to complete drainage is always shorter than that for dry powder. Our results indicate that there is an optimum moisture content (or saturation) which leads to the fastest penetration. We use simple scaling arguments which also identify an optimum moisture content for fastest penetration, which agrees very well with the experimental result. © 2013 Elsevier B.V.

  5. Optimization of preparation of skilled wrestlers by perfection of method of the special preparation

    Directory of Open Access Journals (Sweden)

    Ogar' G.O.

    2009-12-01

    Full Text Available The author method of the special physical preparation of skilled fighters is presented. A method carries stage-by-stage character. On the first stage effectively to conduct the accented power training. On the second stage - to perfect explosive force. Tasks of the third stage are perfection of speed force and lactate component of energy supply. On the fourth stage the special is perfected speed-power endurance. The fifth stage coincides with beginning of competition period of macrocycle.

  6. Creating the Perfect Umbilicus: A Systematic Review of Recent Literature.

    Science.gov (United States)

    Joseph, Walter J; Sinno, Sammy; Brownstone, Nicholas D; Mirrer, Joshua; Thanik, Vishal D

    2016-06-01

    The aim of this study was to perform an updated systematic review of the literature over the last 10 years, analyzing and comparing the many published techniques with the hope of providing plastic surgeons with a new standard in creating the perfect umbilicus in the setting of both abdominoplasty and abdominally based free-flap breast reconstruction. An initial search using the PubMed online database with the keyword "umbilicoplasty" was performed. These results were filtered to only include articles published within the last 10 years. The remaining articles were thoroughly reviewed by the authors and only those pertaining to techniques for umbilicoplasty in the setting of abdominoplasty and abdominally based free flap were included. Of the 10 unique techniques yielded by our search, 9/10 (90 %) initially incised the native umbilicus with a round, oval, or vertical ellipse pattern. Of the 9 techniques that initially perform a round incision, 4 of them (44.4 %) later modify the round umbilicus with either an inferior or superior excision to create either a "U"- or "inverted U"-shaped umbilicus. In terms of the shape of the incision made in the abdominal flap for umbilical reinsertion, the most common were either a round incision or an inverted "V" or "U," both of which accounted for 4/10 (40 %) and 3/10 (30 %), respectively. Almost all of the studies (8/10; 80 %) describe "defatting" or trimming of the subcutaneous adipose tissue around the incision to create a periumbilical concavity following inset of the umbilicus. 4/10 (40 %) of the techniques describe suturing the dermis of the umbilical skin to rectus fascia. Furthermore, 3/10 (30 %) advise that stalk plication is a necessary step to their technique. 7/9 techniques (77.8 %) preferred nondissolvable sutures for skin closure, with nylon being the most common suture material used. Only 2/9 (22.2 %) used dissolvable sutures. Although future studies are necessary, it is our hope that this systematic

  7. Search for a perfect generator of random numbers

    International Nuclear Information System (INIS)

    Musyck, E.

    1977-01-01

    Theoretical tests have been carried out by COVEYOU and MAC PHERSON to verify the applications of the LEHMER algorithm. In a similar way, a theoretical method is proposed to evaluate in a rigorous way the random character of numbers generated by a shift register. This theory introduces the concept of ''degree of randomness'' of the elements, taken in a definite order, of a shift register. It permits making the judicious choice of the elements of the shift register which will produce the bits of the random numbers. On the other hand, a calculation method is developed in order to verify the primitive character of any shift register of high complexity. A new test, called ''slice test'', of empirical and theoretical use is also described; it constitutes a significant contribution to the understanding of certain properties of pseudo-random sequences. As a practical example, a random number generator structure formed with 32 bits, built out of a shift register with 61 elements and 60 modulo-2 adder circuits was made. The author is convinced that this generator can be considered to be practically perfect for all empirical applications of random numbers, particularly for the solution of Monte-Carlo problems. (author)

  8. Measuring Individual Differences in the Perfect Automation Schema.

    Science.gov (United States)

    Merritt, Stephanie M; Unnerstall, Jennifer L; Lee, Deborah; Huber, Kelli

    2015-08-01

    A self-report measure of the perfect automation schema (PAS) is developed and tested. Researchers have hypothesized that the extent to which users possess a PAS is associated with greater decreases in trust after users encounter automation errors. However, no measure of the PAS currently exists. We developed a self-report measure assessing two proposed PAS factors: high expectations and all-or-none thinking about automation performance. In two studies, participants responded to our PAS measure, interacted with imperfect automated aids, and reported trust. Each of the two PAS measure factors demonstrated fit to the hypothesized factor structure and convergent and discriminant validity when compared with propensity to trust machines and trust in a specific aid. However, the high expectations and all-or-none thinking scales showed low intercorrelations and differential relationships with outcomes, suggesting that they might best be considered two separate constructs rather than two subfactors of the PAS. All-or-none thinking had significant associations with decreases in trust following aid errors, whereas high expectations did not. Results therefore suggest that the all-or-none thinking scale may best represent the PAS construct. Our PAS measure (specifically, the all-or-none thinking scale) significantly predicted the severe trust decreases thought to be associated with high PAS. Further, it demonstrated acceptable psychometric properties across two samples. This measure may be used in future work to assess levels of PAS in users of automated systems in either research or applied settings. © 2015, Human Factors and Ergonomics Society.

  9. Kantowski-Sachs Einstein-æther perfect fluid models

    Energy Technology Data Exchange (ETDEWEB)

    Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad de Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Paliathanasis, Andronikos, E-mail: lattaj@mathstat.dal.ca, E-mail: genly.leon@pucv.cl, E-mail: anpaliat@phys.uoa.gr [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile)

    2016-11-01

    We investigate Kantowski-Sachs models in Einstein-æ ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A.A. Coley, G. Leon, P. Sandin and J. Latta ( JCAP 12 (2015) 010), are then re-obtained as particular cases. Additionally, we select other values for the non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. In particular, we find solutions with infinite shear, zero curvature, and infinite matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. Finally, the physical interpretation of the new critical points is discussed.

  10. Zero electrical resistance of perfect conductor and diamagnet

    International Nuclear Information System (INIS)

    Palaspagar, R.S.

    2012-01-01

    Intense research has taken place to discover new superconductors, to understand the physics that underlies the properties of superconductors, and to develop new applications for these materials. The fascinating phenomenon of superconductivity and its potential applications have attracted the attention of scientists, engineers and businessmen. In this paper we will discuss about the brief history of superconductors. And we will discuss also phenomenons of superconductors and the two different types of superconductor that exist today. We can say that superconductor exhibits infinite conductivity. A bulk specimen of metal in the superconducting state exhibits perfect diamagnetism, with the magnetic induction B=0 named as Meissner effect. It would have been very difficult to have arrived at the theory of superconductivity by purely deductive reasoning from the basic equations of quantum mechanics. A successful quantum theory of superconductivity has provided the basic for subsequent work and the importance of the phase of the superconducting wave function. If we could make a material that was superconducting at room temperature then our computers would work faster because they would allow electric currents to flow more easily. That would mean electric appliances in our homes and offices would waste much less power. We could also make 'Maglev' (magnetic levitation) trains that would float on rails using linear motors and get us around with a fraction of the power used by current locomotives. (author)

  11. Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2015-07-01

    Full Text Available Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin resonant absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper, we explore possibilities to realize a thin absorbing layer that produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a thin resonant absorber, invisible in reflection in a very wide frequency range, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cell, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create nonreflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultracompact wave filters and selective multifrequency sensors.

  12. Perfect zircon for rock dating no fairy tale

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The scheme used to date rocks is based on the radioactive decay of uranium. Minute traces of uranium locked inside the zircon crystals have been decaying over aeons, producing lead. Scientists know that the decay occurs at a fixed rate and how quickly it happens. By measuring the relative amounts of uranium and lead encased in the crystals, scientists can determine how old the rock is. But sometimes lead is lost from zircon crystals via processes such as weathering (if the rocks were exposed on the surface) or deformation and metamorphism (if the rocks had crystallised deep in the earth and been subjected to high temperatures and pressure). Hence the special nature of the Temora rocks- a 417 million years old zirconium-containing rock which have been partially exposed in recent times in a remote paddock in NSW, Australia. SHRIMP dating was used for initial tests on the Temora rocks. Then, in December last year, the sample was sent to the world-recognised authority, Canada's Royal Ontario Museum, for independent analysis and dating via chemical decomposition. The museum confirmed the near perfect quality of the zircon and its age

  13. THE PERFECT ONLINE COURSE: Best Practices for Designing and Teaching

    Directory of Open Access Journals (Sweden)

    Reviewed by Cengiz Hakan AYDIN

    2010-07-01

    Full Text Available The growth of online learning all over the world arise new challenges. One of the major challenges is the issue of quality. What should an online course look like? What kinds of instructional strategies should be provided? To what extent various kinds of interactions must be required? What are the effective learning activities? For what functions should different technologies be used? How can learning be assessed? And similar and more questions have yet no standardized answers although they have been around since early implementations of online learning. Each provider uses different standards developed by either themselves or some institutions or some researchers. Sloan-C: Pillars of Quality, Robley and Wince’s Rubric for Quality Interactions, Concord Model, Schrum’s Qualities of Successful Students, Quality Matters, and E-excellence: Quality Manual for E-learning in Higher Education are among many of these standards.The book, entitled as The Perfect Online Course: Best Practices for Designing and Teaching is also trying to establish a list of standards about how to design and implement an effective online course.The main goal of the book is to create a framework of quality educational guidelines that can be used to offer “perfect” online course.

  14. Perfect imaging of a point charge in the quasistatic regime

    Science.gov (United States)

    Bergman, David J.

    2014-01-01

    An exact calculation of the local electric potential field ψ (r) in the quasistatic limit is described for the case of a point electric charge q in a two-constituent composite medium. In the case of an ɛ2, ɛ1, ɛ2 three-parallel-slab microstructure, where q is in the top ɛ2 layer and both ɛ2 layers are infinitely thick while the ɛ1 layer has a finite thickness L1, a perfect imaging of the point charge is expected if ɛ1=-ɛ2 is real [J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000), 10.1103/PhysRevLett.85.3966; R. J. Blaikie and D. O. S. Melville, J. Opt. A 7, S176 (2005), 10.1088/1464-4258/7/2/023; U. Leonhardt, New J. Phys. 11, 093040 (2009), 10.1088/1367-2630/11/9/093040]. Among our results we find that an infinite resolution image of the point charge q is only achievable if the actual charge is situated at a distance that is between L1/2 and L1 away from the ɛ1 layer.

  15. Exact EGB models for spherical static perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hansraj, Sudan; Chilambwe, Brian; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2015-06-15

    We obtain a new exact solution to the field equations for a 5-dimensional spherically symmetric static distribution in the Einstein-Gauss-Bonnet modified theory of gravity. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissibility. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound-speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dimensional perfect fluids in the standard Einstein theory is obtained. Plots of the dynamical quantities for the Gauss-Bonnet and the Einstein case reveal that the pressure is unaffected, while the energy density increases under the influence of the Gauss-Bonnet term. (orig.)

  16. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    Science.gov (United States)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  17. Shear-free perfect fluids with zero magnetic Weyl tensor

    International Nuclear Information System (INIS)

    Collins, C.B.

    1984-01-01

    Rotating, shear-free general-relativistic perfect fluids are investigated. It is first shown that, if the fluid pressure, p, and energy density, μ, are related by a barotropic equation of state p = p( μ) satifying μ+pnot =0, and if the magnetic part of the Weyl tensor (with respect to the fluid flow) vanishes, then the fluid's volume expansion is zero. The class of all such fluids is subsequently characterized. Further analysis of the solutions shows that, in general, the space-times may be regarded as being locally stationary and axisymmetric (they admit a two-dimensional Abelian isometry group with timelike orbits, which is in fact orthogonally transistive), although various specializations can occur, with the ''most special'' case being the well-known Goedel model, which is space-time homogeneous (it admits a five-dimensional isometry group acting multiply transitively on the space-time). all solutions are of Petrov type D. The fact that there are any solutions in the class at all means that a theorem appearing in the literature is invalid, and the existence of some special solutions in which the fluid's vorticity vector is orthogonal to the acceleration reveals the incompleteness of a previous study of a class of space-times, in which there are Killing vectors parallel to the fluid four-velocity and to the vorticity vector

  18. Improving The Perfect Storm: Overcoming Barriers To Climate Literacy

    Science.gov (United States)

    Tillinger, D.

    2015-12-01

    Students and scientists are trained to speak different languages. Climate science, and the geosciences more broadly, are strictly classroom topics, not subjects appropriate for casual conversation, social media, or creative projects. When students are aware of climate change through the mainstream media, it is nearly always in a political or technological context rather than a scientific one. However, given the opportunity, students are perfectly capable of not only understanding the science behind climate change, but communicating it to their peers. At the American Museum of Natural History, a group of underprivileged high school students visited Nature's Fury: The Science of Natural Disasters to learn about volcanoes, earthquakes, and climate change impacts. They were then able to write pitches and develop trailers for scientifically accurate, but still compelling, disaster movies. Arts in Parts, a creative outreach group formed as a response to Hurricane Sandy, facilitated a workshop in which younger children made mobiles from beach debris they collected while learning about the the threat of sea level rise locally and globally. Participants in an undergraduate natural disasters class wrote guides to understanding climate change that remained factual while showing great creativity and reflecting the personality of each student. Art, humor, and popular culture are the languages that society chooses to use; scientific literacy might benefit from their inclusion.

  19. Building the perfect parasite: cell division in apicomplexa.

    Directory of Open Access Journals (Sweden)

    Boris Striepen

    2007-06-01

    Full Text Available Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.

  20. PERFECTED enhanced recovery (PERFECT-ER) care versus standard acute care for patients admitted to acute settings with hip fracture identified as experiencing confusion: study protocol for a feasibility cluster randomized controlled trial.

    Science.gov (United States)

    Hammond, Simon P; Cross, Jane L; Shepstone, Lee; Backhouse, Tamara; Henderson, Catherine; Poland, Fiona; Sims, Erika; MacLullich, Alasdair; Penhale, Bridget; Howard, Robert; Lambert, Nigel; Varley, Anna; Smith, Toby O; Sahota, Opinder; Donell, Simon; Patel, Martyn; Ballard, Clive; Young, John; Knapp, Martin; Jackson, Stephen; Waring, Justin; Leavey, Nick; Howard, Gregory; Fox, Chris

    2017-12-04

    Health and social care provision for an ageing population is a global priority. Provision for those with dementia and hip fracture has specific and growing importance. Older people who break their hip are recognised as exceptionally vulnerable to experiencing confusion (including but not exclusively, dementia and/or delirium and/or cognitive impairment(s)) before, during or after acute admissions. Older people experiencing hip fracture and confusion risk serious complications, linked to delayed recovery and higher mortality post-operatively. Specific care pathways acknowledging the differences in patient presentation and care needs are proposed to improve clinical and process outcomes. This protocol describes a multi-centre, feasibility, cluster-randomised, controlled trial (CRCT) to be undertaken across ten National Health Service hospital trusts in the UK. The trial will explore the feasibility of undertaking a CRCT comparing the multicomponent PERFECTED enhanced recovery intervention (PERFECT-ER), which acknowledges the differences in care needs of confused older patients experiencing hip fracture, with standard care. The trial will also have an integrated process evaluation to explore how PERFECT-ER is implemented and interacts with the local context. The study will recruit 400 hip fracture patients identified as experiencing confusion and will also recruit "suitable informants" (individuals in regular contact with participants who will complete proxy measures). We will also recruit NHS professionals for the process evaluation. This mixed methods design will produce data to inform a definitive evaluation of the intervention via a large-scale pragmatic randomised controlled trial (RCT). The trial will provide a preliminary estimate of potential efficacy of PERFECT-ER versus standard care; assess service delivery variation, inform primary and secondary outcome selection, generate estimates of recruitment and retention rates, data collection difficulties, and

  1. Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface

    Directory of Open Access Journals (Sweden)

    Zhi-hai Jia

    2016-01-01

    Full Text Available The dynamical wetting behavior has been observed under vertical vibration of a water droplet placed on a micropillared surface. The wetting transition takes place under the different processes. In compression process, the droplet is transited from Cassie state to Wenzel state. The droplet undergoes a Wenzel-Cassie wetting transition in restoring process and the droplet bounces off from the surface in bouncing process. Meanwhile, the wetting and dewetting models during vibration are proposed. The wetting transition is confirmed by the model calculation. This study has potential to be used to control the wetting state.

  2. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    Science.gov (United States)

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  3. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  4. Wet precipitators for sulphuric acid plants

    International Nuclear Information System (INIS)

    Ojanpera, R.O.

    1989-01-01

    Both the service requirements and design construction details have changed considerably in recent years for wet electrostatic precipitators as used for gas cleaning ahead of metallurgical sulphuric acid plants. Increased concern over acid quality has resulted in more emphasis on dust efficiencies compared to collection of acid mist. Also, higher static operating pressures have caused large structural loads on casing and internal components. In this paper these two issues are addressed in the following ways: Recognition that all dusts do not collect similarly. The mechanism by which various dusts collect affect the design of the entire wet gas cleaning system. Use of both traditional and newer materials of construction to accommodate the higher design pressures while still maintaining corrosion resistance

  5. New advances in wet scrubbing improvement efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Keen, A.R. [Altech Group, Toronto, ON (Canada)

    2000-07-01

    Wet scrubbing systems are the most versatile and cost efficient of all air pollution abatement technologies. This paper presented System REITHER{sup TM} which is a new generation of venturi scrubber. The advantages of this design are that it is simple and compact, has high removal efficiencies for sub-micron dusts or aerosols and it is flexible to handle any mass flow rate. It also provides high and constant reliability, is easy to control and has the potential to absorb gaseous pollutants. Another advantage is that it can handle corrosive streams through corrosion resistant materials. Innovations in wet scrubbing have made it possible to provide reliable and efficient separation of fine particles, corrosive aerosols and gases. New technology provides industrial engineers with a cost effective option when control air emissions is required. 1 fig.

  6. Facts and fallacies in wet deposition modelling

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Goddard, A.J.H.; Manning, P.M.; Simms, K.

    1987-01-01

    Following a reactor accident, relatively high contamination at ground level can occur, even at quite long distances from the source, if the pollutant cloud encounters intense precipitation. To estimate such contamination and its extent properly, it is necessary to take into account the spatial and temporal structure of rain patterns and their motion. Currently, models of wet deposition are rather crude. Source meteorology is usually used and is clearly inadequate. Furthermore, no allowance is made for the dynamic nature of rainfall, which occurs as a result of vertical air motions and convergence; nor for the different scavenging mechanism operating in and below cloud. Meteorological information available on these aspects of wet deposition is reviewed, and their importance and inclusion in modelling and prediction of resulting ground contamination is indicated. Some of the pitfalls of simple modelling procedures are illustrated. (author)

  7. Characteristics of Wet Deposition in Japan

    Science.gov (United States)

    Iwasaki, A.; Arakaki, T.

    2017-12-01

    Acid deposition survey in Japan has started since 1991 by Japan Environmental Laboratories Association (JELA). The JELA has about 60 monitoring sites for wet deposition including remote, rural and urban area. The measured constituents of wet deposition are; precipitation, pH, electric conductivity, major Anions, and major Cations. From those data, we analyze spatial and temporal variations of wet deposition components in Japan. Among the 60 monitoring sites, 39 sampling sites were selected in this study, which have kept sampling continuously between 2003JFY and 2014JFY. All samples were collected by wet-only samplers. To analyze area characteristics, all the areas were divided into 6 regions; Northern part of Japan (NJ), Facing the Japan Sea (JS), Eastern part of Japan (EJ), Central part of Japan (CJ), Western part of Japan (WJ) and Southern West Islands (SW). NO3- and non-sea-salt-SO42- (nss-SO42-) are major components of rain acidification. Especially, between December and February (winter) the air mass from west affected the temporal variations of those acid components and the concentrations were higher in JS and WJ regions than those in other regions. Japanese ministry of the Environment reported that mixing ratio of NO2 in Japan has been less than 0.04ppm since 1976, and that of SO2 has been less than 0.02ppm since 1978. Their concentrations in Japan have remained flat or slowly decreased recently. However the temporal variations of NO3-/nss-SO42- ratio in winter in JS region were significantly increased on average at 2.2% y-1 from 2003JFY to 2014JFY. The results suggest that long-range transboundary air pollutants increased NO3- concentrations and NO3-/nss-SO42- ratio.

  8. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  9. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    Science.gov (United States)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  10. A perfect storm? Welfare, care, gender and generations in Uruguay.

    Science.gov (United States)

    Filgueira, Fernando; Gutiérrez, Magdalena; Papadópulos, Jorge

    2011-01-01

    This article claims that welfare states modelled on a contributory basis and with a system of entitlements that assumes stable two-parent families, a traditional breadwinner model, full formal employment and a relatively young age structure are profoundly flawed in the context of present-day challenges. While this is true for affluent countries modelled on the Bismarckian type of welfare system, the costs of the status quo are even more devastating in middle-income economies with high levels of inequality. A gendered approach to welfare reform that introduces the political economy and the economy of care and unpaid work is becoming critical to confront what may very well become a perfect storm for the welfare of these nations and their peoples. Through an in-depth study of the Uruguayan case, the authors show how the decoupling of risk and protection has torn asunder the efficacy of welfare devices in the country. An ageing society that has seen a radical transformation of its family and labour market landscapes, Uruguay maintained during the 1980s and 1990s a welfare state that was essentially contributory, elderly and male-oriented, and centred on cash entitlements. This contributed to the infantilization of poverty, increased the vulnerability of women and exacerbated fiscal stress for the system as a whole. Furthermore, because of high levels of income and asset inequality, the redistribution of risk between upper- and lower-income groups presented a deeply regressive pattern. The political economy of care and welfare has begun to change in the last decade or so, bringing about mild reforms in the right direction; but these might prove to be too little and too late.

  11. Carrier mobility and crystal perfection of tetracene thin film FET

    International Nuclear Information System (INIS)

    Moriguchi, N.; Nishikawa, T.; Anezaki, T.; Unno, A.; Tachibana, M.; Kojima, K.

    2006-01-01

    It is well-known that the carrier mobility of an organic field effect semiconductor (FET) depended on the crystal quality and/or the crystal perfection of the organic thin films [T.W. Kelly, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, Mater. Res. Soc. Symp. Proc. 771 (2003) L6.5.1; D.J. Gundlach, J.A. Nichols, L. Zhou, T.N. Jackson, Appl. Phys. Lett. 80 (2002) 2925; H.K. Lauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 92 (2002) 5259; M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. Lett. 81 (2002) 268; D. Knipp, R.A. Street, A.R. Volkel, Appl. Phys. Lett. 82 (2003) 3907; R. Ruiz, A.C. Mayer, G.G. Malliaras, Appl. Phys. Lett. 85 (2004) 4926; R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. A 201 (2004) 1031]. To improve the crystal quality of the thin film many efforts were made. One of the important improvements was the surface treatment of the substrate. The tetracene thin film FET (top contact structure) was fabricated using the substrate, which was coated by a spin-coating method with a 0.1% poly α-methylstyrene (AMS) solution. The crystal quality was improved by this treatment so that the carrier mobility was higher than that of non-treatment. The maximum mobility of the AMS-treated sample was obtained to be 0.12 cm 2 /V s

  12. Design Aspects of Wet Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle.

  13. The wetting behavior of alkanes on water

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, Karine; Broseta, Daniel; Kalaydjian, Francois [Institut Francais du Petrole, BP 311, 92852 Rueil Malmaison Cedex (France); Bonn, Daniel; Meunier, Jacques [ENS, Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Indekeu, Joseph [Katholieke Universiteit Leuven, Laboratorium voor Vaste-Stoffysica en Magnetisme, B-3001 Leuven (Belgium)

    1998-06-06

    This paper presents recent experimental and theoretical results concerning the wetting behavior of n-alkanes on water as a function of thermodynamic conditions (i.e., temperature, pressure, etc.). The transition from lenses to a macroscopically thick film, that takes place when the temperature is increased, occurs for n-alkanes on water in a manner very different from that encountered in other fluid systems. For n-pentane on water, ellipsometric measurements reveal that the growth of the pentane layer to a macroscopically thick film occurs in a continuous manner, for a temperature ({approx}53C) corresponding to a change in the sign of the Hamaker constant. A theoretical approach based on the Cahn-Landau theory, which takes into account long-range (van der Waals) forces, enables us to explain the mechanism of this continuous wetting transition. This transition is preceded (at a lower temperature) by a discontinuous transition from a thin film (of adsorbed molecules) to a thick (but not macroscopically thick) film. The latter transition was not visible for pentane on water (it should occur below the freezing temperature for water), but we expect to observe it for longer alkanes (e.g., hexane) on water. Work is underway to examine the wetting behavior of oil/brine systems more representative of reservoir conditions

  14. Design Aspects of Wet Scrubber System

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong

    2015-01-01

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle

  15. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances ... ally considered oxide materials for many applications. .... three cases but is more pronounced in the case of C12A7.

  16. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non

  17. On the perfectness of C^{∞,s}-diffeomorphism groups on a foliated manifold

    OpenAIRE

    Jacek Lech

    2008-01-01

    The notion of \\(C^{r,s}\\) and \\(C^{\\infty,s}\\)-diffeomorphisms is introduced. It is shown that the identity component of the group of leaf preserving \\(C^{\\infty,s}\\)-diffeomorphisms with compact supports is perfect. This result is a modification of the Mather and Epstein perfectness theorem.

  18. Construction of Subgame-Perfect Mixed Strategy Equilibria in Repeated Games

    NARCIS (Netherlands)

    Berg, Kimmo; Schoenmakers, Gijsbertus

    2017-01-01

    This paper examines how to construct subgame-perfect mixed-strategy equilibria in discounted repeated games with perfect monitoring.We introduce a relatively simple class of strategy profiles that are easy to compute and may give rise to a large set of equilibrium payoffs. These sets are called

  19. 10 CFR 611.108 - Perfection of liens and preservation of collateral.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Perfection of liens and preservation of collateral. 611... of collateral. (a) The Agreement and other documents related thereto shall provide that: (1) DOE and... necessary to perfect and maintain liens, as applicable, on assets which are pledged as collateral for the...

  20. Tunable THz perfect absorber with two absorption peaks based on graphene microribbons

    DEFF Research Database (Denmark)

    Gu, Mingyue; Xiao, Binggang; Xiao, Sanshui

    2018-01-01

    Perfect absorption is characterised by the complete suppression of incident and reflected electromagnetic wave, and complete dissipation of the incident energy. A tunable perfect terahertz (THz) absorber with two absorption peaks based on graphene is presented. The proposed structure consists of ...